人人范文网 范文大全

人工智能在游戏中的应用

发布时间:2020-03-03 00:00:05 来源:范文大全 收藏本文 下载本文 手机版

人工智能在游戏中的应用

专业:计算数学 姓名:XXX 学号:XXX

人工智能在游戏中的应用

人工智能在游戏中的目标主要有五个:一是为玩家提供适合的挑战;二是使玩家处于亢奋状态;三是提供不可预知性结果;四是帮助完成游戏的故事情节;五是创造一个生动的世界。这个生动的世界可以是类似现实生活中的世界,也可以是与现实世界完全不同的世界。但不管何种世界都要求有一整套能够自圆其说的游戏规则。

在游戏制作过程中,实现人工智能的关键主要有:虚拟现实与拟人化、动画效果与机器角色场景感知、机器角色的机器学习和进化、玩家与机器角色之间的平衡性、人工愚蠢技术、确定性人工智能技术与非确定性人工智能技术的互补。

人工智能在游戏中应用的技术非常之多,如:有限状态自动机(Finite State Machines)、模糊逻辑(Fuzzy Logic)、产生式系统(production system)、脚本设计(Scripting)、基于规则的人工智能和系统(Rules-based AI and Systems)、贝叶斯推论(Bayesian Inference)和非确定性贝叶斯网络(Bayesian Networks for Uncertainty Decisions)、人工生命(Artificial life)、决策树(Decision Tree)、专家系统(Expert system)、神经网络(Neural Networks)、遗传算法(Genetic Algorithms)等。限于文章篇幅,下面只具体介绍这八种较容易理解的技术:有限状态自动机、模糊逻辑、产生式系统、决策树、人工生命、专家系统、神经网络和遗传算法。 有限状态自动机 :

有限状态自动机(FSM \"finite state machine\")是为研究有限内存的计算过程和某些语言类而抽象出的一种计算模型。有限状态自动机拥有有限数量的状态,每个状态可以迁移到零个或多个状态,输入字串决定执行哪个状态的迁移。有限状态自动机可以表示为一个有向图。

有限状态自动机有多种类型:接受器判断是否接受输入;转换器对给定输入产生一个输出。常见的转换器有Moor机与Mealy机。Moore 机对每一个状态都附加有输出动作,Mealy 机对每一个转移都附加有输出动作。

有限状态自动机还可以分成确定与非确定两种。非确定有限状态自动机可以转化为确定有限状态自动机。 有限状态自动机识别的语言是正规语言。 有限状态自动机除了它在理论上的价值,还在数字电路设计、词法分析、文本编辑器程序等领域得到了应用。 模糊逻辑:

模糊逻辑(Fuzzy Logic),模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。

模糊逻辑通常使用 IF/THEN 规则,或构造等价的东西比如模糊关联矩阵。规则通常表达为如下形式: IF 模糊变量 IS 模糊集合 THEN 动作

例如,一个非常简单的使用风扇的温度调节器:IF 温度 IS 非常冷 THEN 停止风扇IF 温度 IS 冷 THEN 减速风扇IF 温度 IS 正常 THEN 保持现有水平IF 温度 IS 热 THEN 加速风扇注意没有 \"ELSE\"。所有规则都被求值,因为温度在不同程度上可以同时是\"冷\"和\"正常\"。 产生式系统 :

一个产生式系统(production system)由下列3部分组成: 一个总数据库(global database),它含有与具体任务有关的信息。 一套规则,它对数据库进行操作运算。每条规则由左右两部分组成,左部鉴别规则的适用性或先决条件,右部描述规则应用时所完成的动作。应用规则来改变数据库。

一个控制策略,它确定应该采用哪一条适用规则,而且当数据库的终止条件满足时,就停止计算。

产生式规则是对数据库进行操作的一系列规则。规则的一般形式是: IF 条件 THEN 操作

即满足应用的先决条件后,就对数据库实行后面的操作。

控制策略规定了操作的顺序,即在任何条件下用什么规则进行操作,什么条件下停止运行,它规定了问题的求解的搜索策略和路线。控制策略一般可分为不可撤回方式和试探法两大类,试探法又包括回溯法和图搜索法两种。 决策树:

决策树(Decision Tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。比如,在贷款申请中,要对申请的风险大小做出判断,图是为了解决这个问题而建立的一棵决策树,从中我们可以看到决策树的基本组成部分:决策节点、分支和叶子。

决策树中最上面的节点称为根节点,是整个决策树的开始。本例中根节点是“收入>¥40,000”,对此问题的不同回答产生了“是”和“否”两个分支。

决策树的每个节点子节点的个数与决策树在用的算法有关。如CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。

每个分支要么是一个新的决策节点,要么是树的结尾,称为叶子。在沿着决策树从上到下遍历的过程中,在每个节点都会遇到一个问题,对每个节点上问题的不同回答导致不同的分支,最后会到达一个叶子节点。这个过程就是利用决策树进行分类的过程,利用几个变量(每个变量对应一个问题)来判断所属的类别(最后每个叶子会对应一个类别)。 人工生命:

人工生命(Artificial life)是通过人工模拟生命系统,来研究生命的领域。人工生命的概念,包括两个方面内容:1)、属于计算机科学领域的虚拟生命系统,涉及计算机软件工程与人工智能技术,以及2)、基因工程技术人工改造生物的工程生物系统,涉及合成生物学技术。

虽然人工生命(AL)领域与人工智能(AI)领域的确有明显的重叠区,但他们有截然不同的初衷和演生史.以研究是否以及如何实现模拟智能的人工智能研究,早在计算机诞生后的初期就已经兴起,然而以试图澄清emergent behaviors的本质的人工生命的研究者们,可以说一直不知其他人在做类似的工作而孤军作战,直到80年代末,这个领域才正式的诞生。人工生命分为以下两种主导观念 强人工生命:主张\"生命系统的演化过程,是一个可以从任何特殊媒介物中抽象出来的过程.\"(John Von Neumann).Notably, Tom Ray 在Tierra模拟试验中第一次展示了,进化过程在有着抢占计算机存储空间之争的计算机程序的某种群体中极易发生。

弱人工生命:认为不通过基于碳\"生命过程\"的生成是不可能的.他们的研究不是去模拟这一过程,而是试图去理解单个的现象。通常通过agent based model进行研究,它通常可提供最简的可能结论,就是: 我们不知道自然界中的什么生成了这种现象,但是通过模拟也许可以找到复杂生物现象的原理。 专家系统:

专家系统(expert system)是人工智能应用研究最活跃和最广泛的课题之一。 运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 神经网络:

神经网络(Neural Networks)首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

网络学习的准则是:如果网络做出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。 遗传算法:

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它的主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 遗传算法的基本运算过程如下: a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

b)个体评价:计算群体P(t)中各个个体的适应度。

c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。

e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。

群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。 f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

本文主要简介了电脑游戏中的人工智能技术,提出了通过了“游戏中的图灵测试”的游戏是最适合玩家娱乐的理念,介绍了目前网络游戏中流行的外挂技术以及部分人工智能在游戏中应用的技术。

参考文献

[1]顶级游戏设计[M].北京:电子工业出版社,2004年5月

[2]John David Funge.人工智能在计算机游戏和动画中的应用——认知建模方法[M].北京:清华大学出版社,2004年6月

[3]David M.Bourg, Glenn Seeman.游戏开发中的人工智能[M].南京:东南大学出版社,2006年9月

人工智能在游戏中的应用

环保教育在游戏中

五行相生相克在小盘数字游戏中的应用

让孩子在游戏中成长

在游戏中快乐学数学

在手指游戏中感受快乐

父母在游戏中教孩子说话

游戏中的启示

游戏中的幼儿教育

游戏中的科学

人工智能在游戏中的应用
《人工智能在游戏中的应用.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档