人人范文网 范文大全

离散数学证明题

发布时间:2020-03-03 01:39:02 来源:范文大全 收藏本文 下载本文 手机版

离散数学证明题

离散数学证明题:链为分配格

证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大下界是b,最小上界是a,故链一定是格,下面证明分配律成立即可,对A中任意元素a,b,c分下面两种情况讨论:

⑴b≤a或c≤a

⑵a≤b且a≤c

如果是第⑴种情况,则a∪(b∩c)=a=(a∪b)∩(a∪c)

如果是第⑵种情况,则a∪(b∩c)=b∩c=(a∪b)∩(a∪c)

无论那种情况分配律均成立,故A是分配格.一.线性插值(一次插值)

已知函数f(x)在区间的端点上的函数值yk=f(xk),yk+1=f(xk+1),求一个一次函数y=p1(x)使得yk=f(xk),yk+1=f(xk+1),其几何意义是已知平面上两点(xk,yk),(xk+1,yk+1),求一条直线过该已知两点。

1.插值函数和插值基函数

由直线的点斜式公式可知:

把此式按照yk和yk+1写成两项:

并称它们为一次插值基函数。该基函数的特点如下表:

从而

p1(x)=yklk(x)+yk+1lk+1(x)

此形式称之为拉格朗日型插值多项式。其中,插值基函数与yk、yk+1无关,而由插值结点xk、xk+1所决定。一次插值多项式是插值基函数的线性组合,相应的组合系数是该点的函数值yk、yk+1.

例1:已知lg10=1,lg20=1.3010,利用插值一次多项式求lg12的近似值。

解:f(x)=lgx,f(10)=1,f(20)=1.3010,设

x0=10,x1=20,y0=1,y1=1.3010

则插值基函数为:

于是,拉格朗日型一次插值多项式为:

故:

即lg12由lg10和lg20两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792).二.二次插值多项式

已知函数y=f(x)在点xk-1,xk,xk+1上的函数值yk-1=f(xk-1),yk=f(xk),yk+1=f(xk+1),求一个次数不超过二次的多项式p2(x),使其满足,

p2(xk-1)=yk-1,p2(xk)=yk,p2(xk+1)=yk+1.

其几何意义为:已知平面上的三个点

(xk-1,yk-1),(xk,yk),(xk+1,yk+1),

求一个二次抛物线,使得该抛物线经过这三点。

1.插值基本多项式

有三个插值结点xk-1,xk,xk+1构造三个插值基本多项式,要求满足:

(1)基本多项式为二次多项式;(2)它们的函数值满足下表:

因为lk-1(xk)=0,lk-1(xk+1)=0,故有因子(x-xk)(x-xk+1),而其已经是一个二次多项式,仅相差一个常数倍,可设

lk-1(x)=a(x-xk)(x-xk+1),

又因为

lk-1(xk-1)=1==>a(xk-1-xk)(xk-1-xk+1)=

1得

从而

同理得

基本二次多项式见右上图(点击按钮“显示Li”)。

2.拉格朗日型二次插值多项式

由前述,拉格朗日型二次插值多项式:

p2(x)=yk-1lk-1(x)+yklk(x)+yk+1lk+1(x),p2(x)

是三个二次插值多项式的线性组合,因而其是次数不超过二次的多项式,且满足:

p2(xi)=yi,(i=k-1,k,k+1)。

例2已知:

xi101520

yi=lgxi11.17611.3010

利用此三值的二次插值多项式求lg12的近似值。

解:设x0=10,x1=15,x2=20,则:

故:

所以

7利用三个点进行抛物插值得到lg12的值,与精确值lg12=1.0792相比,具有3位有效数字,精度提高了。

三、拉格朗日型n次插值多项式

已知函数y=f(x)在n+1个不同的点x0,x1,…,x2上的函数值分别为

y0,y1,…,yn,求一个次数不超过n的多项式pn(x),使其满足:

pn(xi)=yi,(i=0,1,…,n),

即n+1个不同的点可以唯一决定一个n次多项式。

1.插值基函数

过n+1个不同的点分别决定n+1个n次插值基函数

l0(x),l1(x),…,ln(X)

每个插值基本多项式li(x)满足:

(1)li(x)是n次多项式;

(2)li(xi)=1,而在其它n个li(xk)=0,(k≠i)。

由于li(xk)=0,(k≠i),故有因子:

(x-x0)…(x-xi-1)(x-xi+1)…(x-xn)

因其已经是n次多项式,故而仅相差一个常数因子。令:

li(x)=a(x-x0)…(x-xi-1)(x-xi+1)…(x-xn)

由li(xi)=1,可以定出a,进而得到:

2.n次拉格朗日型插值多项式pn(x)

pn(x)是n+1个n次插值基本多项式l0(x),l1(x),…,ln(X)的线性组合,相应的组合系数是y0,y1,…,yn。即:

pn(x)=y0l0(x)+y1l1(x)+…+ynln(x),

从而pn(x)是一个次数不超过n的多项式,且满足

pn(xi)=yi,(i=0,1,2,…,n).例3求过点(2,0),(4,3),(6,5),(8,4),(10,1)的拉格朗日型插值多项式。

解用4次插值多项式对5个点插值。

所以

四、拉格朗日插值多项式的截断误差

我们在上用多项式pn(x)来近似代替函数f(x),其截断误差记作

Rn(x)=f(x)-pn(x)

当x在插值结点xi上时Rn(xi)=f(xi)-pn(xi)=0,下面来估计截断误差:

定理1:设函数y=f(x)的n阶导数y(n)=f(n)(x)在上连续,

y(n+1)=f(n+1)(x)

在(a,b)上存在;插值结点为:

a≤x0

pn(x)是n次拉格朗日插值多项式;则对任意x∈有:

其中ξ∈(a,b),ξ依赖于x:ωn+1(x)=(x-x0)(x-x1)…(x-xn)

证明:由插值多项式的要求:

Rn(xi)=f(xi)-pn(xi)=0,(i=0,1,2,…,n);

Rn(x)=K(x)(x-x0)(x-x1)…(x-xn)=K(x)ωn+1(x)

其中K(x)是待定系数;固定x∈且x≠xk,k=0,1,2,…,n;作函数

H(t)=f(t)-pn(t)-K(x)(t-x0)(t-x1)…(t-xn)

则H(xk)=0,(k=0,1,2,…,n),且H(x)=f(x)-pn(x)-Rn(x)=0,所以,

H(t)在上有n+2个零点,反复使用罗尔中值定理:存在ξ∈(a,b),

使;因pn(x)是n次多项式,故p(n+1)(ξ)=0,而

ωn+1(t)=(t-x0)(t-x1)…(t-xn)

是首项系数为1的n+1次多项式,故有

于是

H(n+1)(ξ)=f(n+1)(ξ)-(n+1)!K(x)

得:

所以

设,则:

易知,线性插值的截断误差为:

二次插值的截断误差为:

下面来分析前面两个例子(例1,例2)中计算lg12的截断误差:

在例1中,用lg10和lg20计算lg12,

p1(12)=1.0602,lg12=1.0792

e=|1.0792-1.0602|=0.0190;

估计误差:f(x)=lgx,

,当x∈时,

2

离散数学证明题

离散数学证明题解题方法

离散数学历年考试证明题

电大离散数学证明题参考题

离散数学

离散数学

离散数学

离散数学

证明题

证明题

离散数学证明题
《离散数学证明题.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档