人人范文网 范文大全

工业机器人读书报告

发布时间:2020-03-02 09:58:02 来源:范文大全 收藏本文 下载本文 手机版

工业机器人读书报告

今天刚好没什么事,于是就应老师的要求把我们《工业机器人》这本书老师让我们自己课后看的第二章认真看了一遍。

《工业机器人》第二章讲的是工业机器人机械系统的设计。这本书主要是从以下6个方面来讲的:1.工业机器人总体设计;2.驱动机构;3.机身和臂部设计;4.腕部设计;5.手部设计;6.行走机构设计。

在2.1中,书中主要给我们讲了一下工业机器人的总体设计思路。机器人总体设计一般分为系统分析和技术设计两大步骤。其中系统分析主要分为以下几步:1.根据使用场合,确定机器人的目的和任务;2.分析机器人所在系统的工作环境,包括机器人与已有设备的兼容性;3.分析系统的工作要求,确定机器人的基本功能和方案,准备做技术设计;4.进行必要的调查研究,搜集国内外的有关资料,进行综合分析,找出可供借鉴之处,以及别人的经验教训。技术设计主要有以下几个过程:1.确定机器人的基本参数(自由度数目、工作范围、承载能力、运动速度、定位精度等);2.确定机器人的运动形式;3.拟定检测传感系统框图;4.确定控制系统总体方案,绘制框图;5.机械结构设计。

在2.2中,书中给我讲了一下机器人的驱动机构。首先它给我们分析了一下液压、气压和电气这三种驱动方式的优缺点,其中液压驱动的优点是:1.体积小,可以获得较大的推力和转矩;2.介质的可压缩性小,系统工作稳定可靠,精度高;3.容易实现对力、速度、方向的自动控制;4.油液介质使系统具有防锈蚀和自润滑性能。缺点是:1.油液的黏度受温度影响,影响工作性能;2.液体泄漏难以克服,要求液压元件制造精度高;3.需要提供相应的供油系统和严格的滤油装置。气压驱动的优点是:1.压缩空气黏度小,容易达到高速(1m/s);2.工厂一般都自有空气压缩机站,可提供压缩空气,不必再额外的添加动力设备,而且空气介质对环境无污染,使用安全;3.气动元件工作压力低,因此制造要求也低一些,价格低廉;4.空气具有压缩性,是系统能够实现过载自动保护。缺点是:1.压缩空气一般为0.4~0.6Mpa,要想获得较大的压力,结构就要增大;2.空气具有压缩性,工作平稳性差,速度控制困难,要实现准确的位置控制更困难;3.压缩空气排水比较麻烦;4.排气造成噪音污染。电气驱动的特点是:1.步进电机:多为开环控制,简单,功率较小,多用于低精度、小功率的机器人;2.直流伺服电机:易于控制,有较理想的机械特性,但其电刷易磨损,易形成火花;3.交流伺服电机:结构简单,运行可靠,可以频繁的启动、制动。交流伺服电机和直流伺服电机相比:没有电刷等易磨损部件,外形尺寸小,能在重载下高速运行,加速性能好,能实现动态控制和平滑运动,但控制较复杂。其次它把驱动机构分为了直线驱动机构和旋转驱动机构,然后分别深入地给我们讲解了这两种机构。其中直线驱动可以直接由气缸或液压缸和活塞产生,也可以采用齿轮齿条、丝杠、螺母等传动元件由旋转运动转换而得到。旋转驱动主要有齿轮链驱动、同步带传动装置驱动、谐波齿轮驱动、摆线针轮传动减速器驱动。

在2.3中,书中主要给我们介绍了一下机身和臂部设计,这一节主要是从三方面来给我们讲的:首先是给我们介绍了一下机身设计过程,书中给我们介绍了几种机身的典型机构,并给我们讲了一下机身驱动力和力矩的计算,还给我们列举了一些设计机身时要注意的问题;其次给我们讲了一下机器人的臂部设计,它是先给我们介绍了一下臂部设计的基本要求,再给我们介绍了一些手臂的常用机构;最后还给我们举了一个MOTOMAN SV3机器人的机身与臂部的例子。机身设计要注意以下问题:1.要有足够的刚度和稳定性;2.运动要灵活,升降运动的导套长度不宜过短,避免发生卡死现象,一般要有导向装置;3.结构布置要合理。通常工业机器人的机身具有具有回转、升降、回转与升降、回转与俯仰、回转与升降及俯仰等5种运动方式,采用哪一种方式由工业机器人的总体设计来确定。机身驱动力和力矩的计算主要分为三种:1.垂直升降运动的驱动力的计算:作垂直运动时,除克服摩擦力之外,还要克服机身自身运动部件的重力和其承受的手臂、手腕、手部、工件等总重力以及升降运动的全部部件的惯性力,因此其驱动力的计算如下:

;2.回转运动的驱动力矩的计算:作回转运动时,驱动力矩只包括两项:回转部件的摩擦总力矩;机身自身运动部件和其携带的手臂、手腕、手部、工件等总惯性力矩,因此,其驱动力矩计算方法为:中

,其

。3.升降立柱下降过程不卡死的条件计算偏重力矩是指臂部全部零部件与工件的总重量对机身立柱轴的静力矩。当手臂在最大行程位置时,偏重力矩最大,因此,偏重力矩按悬伸最大行程,最大抓重时进行计算。手臂在总重量G的作用下,产生偏重力矩,导致立柱倾斜。如果偏重力矩过大, 并且导套设计不合理(导套长度不够),立柱在导套中有卡住现象,这时,机身的升降驱动力必须增大,相应驱动及传动装置结构就庞大。如果机身下降靠重力的话,则可能立柱被卡死在导套内而不能作下降运动,这就是自锁。因此必须根据偏重力矩的大小决定立柱导套的长度。要使立柱在导套内自由下降,则臂部总重量必须大于导套与立柱之间的摩擦力,这就是升降立柱靠自重下降而不卡死的条件:在2.4中,书中给我们讲的是机器人的腕部设计。这一节主要是从腕部的作用于自由度和机器人的手腕分类这两个方面给我们讲解

了一下,并给我们举了一个MOTOMAN SV3机器人的手腕机构的例子,还给我们分析了一下六自由度关节型机器人的关节布置与机构特点。工业机器人的腕部是连接手部和臂部的部件,起支承手部的作用,手腕上的自由度主要是使手部(末端操作器)达到目标位置和处于期望的姿态。为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X、Y、Z的转动,即具有翻转、俯仰、偏转三个自由度,如下图所示。一般将手腕的翻转称为Roll,用R表示;将手腕的俯仰称为Pitch,用P表示;将手腕的偏转称为Yaw,用Y表示,图(d)所示的手腕即可实现RPY运动。机器人的手腕分类主要有以下两种方法:1.按自由度数目来分类:可分为单自由度手腕、两自由度手腕、三自由度手腕。2.按驱动方式分类:可分为直接驱动手腕、远距离传动手腕。 在2.5这一节,书中主要是从机器人手部的特点和手部的分类这两个方面给我们着重介绍了一下机器人的手部设计。工业机器人的手部也称末端操作器,是装在工业机器人手腕上直接抓握工件或执行作业的部件。工业机器人手部的特点有:1.手部与手腕相连处可拆卸。手部与手腕有机械接口,也可能有电、气、液接头,当作业对象不同时,可以方便地拆除和更换手部;2.手部是工业机器人末端操作器,它可以是像人手那样具有手指,也可以不具备手指,直接就是进行专业作业的工具。3.手部的通用性比较差,手部属于专用的装置,一只手爪往往只能抓握一种或几种在形状、尺寸、重量等方面近似的工件;一种工具只能执行一种作业任务;4.手部是一个独立的部件。手部的分类主要有以下几种方法:1.按用途分类:可分为手爪、工具。2.按夹持原理分类:可分为机械类、磁力类、真空类。3.按手指或洗盘数目分类:可分为两指手爪、多指手爪。4.按智能化分类:可分为普通手爪、智能手爪。

2.6这一节,书中主要给我们着重介绍了一下车轮式行走机构和履带式行走机构、步行机构,并简单介绍了一下其他行走机构。 机器人可分为固定机器人和行走机器人,一般的工业机器人都是固定式的,随着科学技术的发展,行走机器人的应用也越来越多。行走机构是行走机器人的重要执行部件,它由行走的驱动装置、传动机构、位置检测元件、传感器、电缆以及管路组成。一方面它支承机器人的机身、臂部、腕部。手部、工件,另一方面还根据工作任务的要求,带动机器人实现在广阔的空间内运动。行走机构按其行走运动轨迹可分为固定轨迹式和无固定轨迹式。固定轨迹式行走机构主要用于工业机器人,无固定轨迹式主要有轮式、履带式、步行式。

这一章看起来比较简单,涉及到的计算也不多,但真正想把它搞透彻还是需要一点时间的,我是花了整整一下午才把它理解得差不多。

工业机器人开题报告

工业机器人调研报告

调研报告(工业机器人)

工业机器人市场调研报告

工业机器人

工业机器人

工业机器人论文

工业机器人学习心得

浅谈工业机器人

工业机器人行业标准

工业机器人读书报告
《工业机器人读书报告.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档