人人范文网 其他范文

大学物理学习方法(精选多篇)

发布时间:2022-03-24 15:05:59 来源:其他范文 收藏本文 下载本文 手机版

推荐第1篇:大学物理学习方法介绍

大学物理学习方法介绍

概述:

大学物理课程是高等院校理工科各专业学生的一门重要的基础课,其内容包括力学、热学、电磁学、波动光学、近代物理五部分。该课程对学生的要求是:

1.学好必要的物理知识,为今后的学习和工作打下坚实的物理基础。

2.通过该课程的学习培养科学的思维方法及分析问题解决问题的能力。该课程的不同部分内容具有不同的知识特点,同时每一部分也有一些学习难点,学生在学习过程中应针对不同的知识特点、难点采用有效的学习方法。

1. 力学部分:该部分以牛顿运动定律为主线,各部分之间联系密切,强调矢量的概念、微积分方法在力学中的运用。如由牛顿运动定律可推出动量定理、功能原理、角动量定理等,借助于对质点的研究方法可对刚体进行研究,质点、刚体的角动量,角动量定理及角动量守恒。这部分的难点主要有(1)变力作用下牛顿定律的积分问题,在求解这类问题时要注意正确分离变量、作合适的变量替换等。(2)质点、刚体的角动量和角动量守恒,在求解这类问题时要注意角动量的矢量性,注意角动量与动量、角动量守恒与动量守恒的区别。

2. 热学部分:该部分主要是从微观和宏观的角度阐述热力学系统的热运动规律,微观理论解释热运动的本质,宏观理论描述系统状态变化的规律,两部分彼此联系、互相补充。这部分的难点主要有(1)速率分布函数的理解,应注意从分子运动的特点和速率分布函数的定义来分析理解。(2)热力学第二定律的统计意义及熵的概念的理解,应从系统的宏观状态与微观状态数之间的关系出发,结合热力学过程自动进行的方向性来理解。

3. 电磁学部分:该部分主要是从场的观点阐述静电场、稳恒磁场的基本概念、基本规律,电磁现象的内在联系、物理本质。这部分的主要难点有(1)任意带电体场强的求解,在求解这类问题时应注意带电体电荷元的划分、场强的矢量性、坐标系的合理选取等问题。(2)有导体存在时静电场的分布及导体上的电荷分布,在求解这类问题时应注意合理应用静电平衡时导体内场强、电势分布的特点及场强、电势的叠加原理。(3)由毕奥-萨伐尔定律求某种载流体产生的磁场,求解这类问题时应注意定律的矢量性,与静电场强计算的相同点、不同点。(4)感生电场、位移电流的理解,要注意他们的产生条件、相互关系、存在空间等问题。

4. 波动光学部分:该部分主要是从光的波动性出发阐述光的干涉、衍射、偏振等现象的基本规律。这部分的主要难点是光栅的衍射规律,应从分析光的多缝干涉和单缝衍射规律入手理解光栅的衍射、缺级、分辨本领等。

5.近代物理学部分:该部分主要介绍描述物体高速运动规律的狭义相对论和描述微观物体运动规律的量子物理基础。相对论部分的难点是相对论运动学,对这部分的理解应从相对论的时空观出发,正确理解惯性系的等价性,时间、空间的

测量以及运动的相对性。量子物理部分的难点是(1)实物粒子的波粒二象性及德布罗意物质波的统计解释,可结合光的波粒二象性、光与实物粒子的区别、统计概率的概念以及当今量子力学界对量子力学的理论基础的争论来理解这部分内容。(2)对薛定谔方程的理解, 可将量子力学研究问题的方法与经典力学进行比较,结合方程的具体简单应用理解方程的地位、应用方法及其物理意义。 具体实践: 首先,“课堂”和“课后”是学习任何一门基础课的两个重要环节,对大学物理来说也不例外。课堂上,我认为高效听讲十分必要,如何达到高效呢?我们听讲要围绕着老师的思路转,跟着老师的问题提示思考,同时又能提出一些自己不太明白的问题。对于老师的一些分析,课本上没有的,及时提笔标注在书上相应空白的地方,便于自己看书时理解。课后,我们在完成作业之前应该先仔细看书回顾一下课堂内容,再结合例题加深理解,然后动笔做作业。除此之外,我认为可以借助一些其他教材或辅导资料来扩展我们的视野,不同教材分析问题的角度可能不同,而且有些教材可能更符合我们自己的思维方式,便于我们加深对原理的理解。总之,课堂把握住重点与细节,课后下功夫通过各种途径来巩固加深理解。第二,对大学物理的学习,我认为自己的脑海中一定要有几种重要思想:一是微积分的思想。大学物理不同与高中物理的一个重要特点就是公式推导定量表示时广泛运用微分、积分的知识,因此,我们要转变观念,学会用微积分的思想去思考问题。二是矢量的思想。大学物理中大量的物理量的表示都采用矢量,因此,我们要学会把物理量的矢量放到适当的坐标系中分析,如直角坐标系,平面极坐标系,切法向坐标系,球坐标系,柱坐标系等。三是基本模型的思想。物理中分析问题为了简化,常采用一些理想的模型,善于把握这些模型,有利于加深理解。如力学中刚体模型,热学中系统模型,电磁学中点电荷、电流元、电偶极子、磁偶极子模型等等。当然,我们还可总结出一些其他重要思想。

最后,我们还要充分发挥自己的想象力、空间思维能力。对于有些模型,我们可以制出实物来反映,通过视觉直观感受,而大学物理中还存在大量我们无法直观反映的模型,因此就必须通过发挥自己的想象力来构造出来。

老师指导:

大学物理是工科院校学生必修的一门重要基础课、学位课程。它对培养人才的素质有着极其重要的影响。

1.注重新概念、新内容的学习。从教学内容和要求看,物理学习到了大学阶段确实出现了

一次飞跃,或者说上了一个台阶。客观地讲,这个台阶的梯度不能算小。这就形成了物理难懂难学的现实。

大学物理的内容不是中学内容的重复或简单的扩展,而是在概念上深化、理论上提高,螺旋式上升。有许多新概念出现,如角动量、热学中的“熵”、量子化、能带等。既学习质点的运动,又研究多粒子体系。用爱因斯坦相对论的时空观代替了牛顿的绝对时空观。量子理论取代了能量连续的看法。从宏观到微观,从低速到高速,从经典到近代,大学物理的内容把同学们带向一个又一个美妙而

又神奇的物质世界。对这些新概念、新内容,从一开始就要给予充分的理解和足够的重视。学习过程,实际上就是智慧能力的发展过程。问题要一个一个的解决,知识要一点一点的积累。不要等问题成了堆,然后坐山兴叹:物理难懂难学也!

2.培养高等数学来思考、处理物理问题的能力。如果硬要把中学物理和大学物理做个比较的话,我要说,中学主要解决“恒”的问题,如物体在恒力作用下的运动,恒力的功等等;大学主要处理“变”的问题,如变力的冲量,变力的功等等。从数学的角度来说,中学物理是用初等数学解题,而大学物理趋向于用高等数学解题。不少学生不适应这种变化,还停留时间在原来的认识水平上。他们只习惯于把中学的思维、中学的方法生搬硬套到新的物理情境中来,不善于变换认识问题的角度,不善于改变解决问题的方式。不少同学只会用初等数学来处理问题,往往不能正确地用高等数学特别是微积分来表达和分析物理问题。同学们经常把矢量当标量、把变量当常量、把积分运算用代数运算来代替等等。

尽管老师反复强调,但仍有不少学生仍按原来的思路去分析、处理问题,这是思维定势的消极影响,给物理学习带来了障碍。

数学不仅是一种计算工具,更是对物理现象进行抽象、概括的表现手段。在大学物理中,许多概念和规律都是用高等数学的形式表达出来的。用高等数学来理解和处理问题是大学物理给同学们提出的一个新课题和基本要求。同学们一定要多加练习、用心揣摩,尽快进入角色中来。

如果同学们对这个问题不给予足够的重视,不尽快予以突破并获得一定自由度的话,高等数学的应用将成为大学物理学习道路上的一个最大的障碍。

3.养成自觉、自主学习的好习惯

从学习方法的特点看,中学生天天与老师在一起,老师抱着学生走,学生们也习惯了在别人的监督下学习,在老师划定的轨道上运行。而到了大学,老师只讲那些最重要的问题,许多内容是要求大家自学的。教师除了上课答疑与学生见面外,剩余的时间完全由学生自己支配。同学们若不会统筹安排自己的时间,认真自学,多少时间就会白白浪费掉。

人总会一天天长大,一辈子要人抱着走的人是没有出息的。大学要培养的是能够自觉的、自主的从书本和实践获取知识并有创新精神的人才。你看,藏书万卷的图书馆,又有那么多良师益友,不正是学习的大好时机吗!不要让宝贵的时光在无为中度过,珍惜自己的分分秒秒,养成自学的好习惯将会终身受益。

4.积极进取,不要松懈。同学们的学习状态等非智力因素看,许多同学进入大学以后往往有松一口气的想法,甚至高呼60分万岁。因为高三各科在追求升学率的思想支配下,对学生加班加点使学生过于疲劳,加之学生对大学物理与中学物理的质的飞跃认识不足,一旦觉醒过来,已经欠账太多,尽管有的学生加倍去弥补,也收效甚微,他们会因心理平衡受到破坏而失去学习的信心。这方面的例子很多。我原来教过的学生中,还有些同学中学物理成绩很好, 参加奥赛还得过奖。他们有一个糊涂的认识:就凭我中学物理的水平,大学马虎一点,及格总不成问题,就放松了对自己的要求。

结果怎样呢?不幸的是:两次补考都不及格!这方面的教训很多。你想,如果一个学生凭中学那点物理知识都能考及格的话,那么大学物理还有必要开课吗?如果说物理难学,那么大学物理就更难学了。思想上不重视,主观上不努力,上课不认真听讲,课后抄作业之风盛行。像这样,要想学好大学物理是不可能的,甚至想及格都难。还有一点,有的学生所学知识能否马上应用,能否作为谋生的手段作为学习有无兴趣的标准,这是相当错误的。大学不是技术培训,她注重的

是人才的科学素质和能力的培养。没有这个素质的培养,你要成为科学的栋梁之材,那是不可能的。

由以上分析我们看到,学生在学习大学物理时,一不留神,学习中便会出现问题、出现障碍。这就要求同学们一开始在思想上便要给予足够的重视,同时要和任课老师密切合作。我们的老师虽然水平不尽相同,但在物理方面总比你们懂得多一些,认真听讲、虚心学习是必要的。

由于考试制度没改变,所以尽管不少人高呼什么素质教育、渗透式教育、创造式教育,但当前的教育基本上还是应试教育。就当前的考试制度而言,死读书、死背书是免不了的。就是说,主要的公式、定理、定义、结论还必须记住。

就大学物理而言,要想考及格也不是一件难事。同学们只要作好三件事:一是认真读书搞清物理概念。如三大守恒定律的条件和应用,高斯定理、安培环路定理的意义等等。考试中,一般有40分左右是专门考概念的。

二是认真作好习题。大约有20到30分的考题来自习题。这些习题是精心设计的,它可以帮助你理解、掌握所学内容。这样作的目的是激励同学们认真完成作业,巩固所学知识。

三是仔细阅读《大学物理学习指导》。该书内容全面,信息量大,题目典型,题型与考题一致,它是你的良师益友。在这本书上花点时间,你是不会后悔的。

大学物理考试覆盖面很大,几乎所有的知识点都要考到,要全面复习,不要押题、猜题。

推荐第2篇:大学物理实验

《大学物理实验》选课要求

一.注册:

网址:219.216.105.181

生本人的期末成绩录入。

二.选课:学生注册后自己上网选课,选课前请

1.仔细阅读网上选课要求。

2.必须确认在没其它课的时间段选课。

2010~2011学年第一学期:

1.选课内容:

每个学生在规定的10个实验中选作9个,其中电桥、示波器、分光计三个实验为必选实验,不可不选。

2.每人每周只可以选作一个实验,如多选无效,只记录一个成绩。

3.网上选课系统开通时间:

第二周周五8:00点~第二周周日24:00点。

4.网上补选时间:

第三周周一8:00点~第三周周二17:00点。

选课人数不足4人不开课。学生可于第三周周一查看选课结果,如所选的上课时间段不足4人,要重新补选。

2010~2011学年第二学期:

具体要求详见网上的选课要求。

三.上课时间:

物理实验课上课时间每天分段:

第一段: 7:30;

第二段:10:10;

第三段:13:30;

推荐第3篇:大学物理实验报告

摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电阻温度特性

1、引言

热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为: ⅰ、负电阻温度系数(简称ntc)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指mf91~mf96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。 ⅱ、正电阻温度系数(简称ptc)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理

【实验装置】 【实验原理】 根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为 (1—1) 式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为 式中 为两电极间距离, 为热敏电阻的横截面, 。 对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有 (1—3) 上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值, 以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。 热敏电阻的电阻温度系数 下式给出 (1—4) 从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。 热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,b、d之间为一负载电阻 ,只要测出 ,就可以得到 值。

·物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板

当负载电阻 → ,即电桥输出处于开 路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。 (1—5) 在测量mf51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则 (1—6) 式中r和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△r,从而求的 =r4+△r。

3、热敏电阻的电阻温度特性研究

根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下g、b开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。

温度℃ 25 30 35 40 45 50 55 60 65 电阻ω 2700 2225 1870 1573 1341 1160 1000 868 748

xiexiebang.com范文网(FANWEN.CHAZIDIAN.COM)

表二 非平衡电桥电压输出形式(立式)测量mf51型热敏电阻的数据 温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4 0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4 4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1

4、实验结果误差

通过实验所得的mf51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示: 表三 实验结果比较 温度℃ 25 30 35 40 45 50 55 60 65 参考值rt ω 2700 2225 1870 1573 1341 1160 1000 868 748 相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00

从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。

5、内热效应的影响

在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。

6、实验小结

通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。

参考文献:

[1] 竺江峰,芦立娟,鲁晓东。 大学物理实验[m] [2] 杨述武,杨介信,陈国英。普通物理实验(

二、电磁学部分)[m] 北京:高等教育出版社 [3] 《大学物理实验》编写组。 大学物理实验[m] 厦门:厦门大学出版社 [4] 陆申龙,曹正东。 热敏电阻的电阻温度特性实验教与学[j]

推荐第4篇:大学物理论文

共振的应用及危害

摘要:任何事物都有两面性,共振也是,它曾给人们造成巨大的伤害。这其中最为人们所知晓的便是桥梁垮塌。1940年,美国的全长860米的塔柯姆大桥因大风引起的共振而塌毁,尽管当时的风速还不到设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故的发生。以前听说这件事时,就令我对共振产生强烈的好奇心,共振竟能有如此的威力,如果善用共振,人类将受益匪浅。本文对共振进行讨论,重点是共振在社会上的应用及其带来的危害,并提出了一些解决方法。 关键词:共振 应用 危害 消除

正文:

在18世纪中叶,一座桥因大队士兵齐步走产生的频率正好与大桥的固有频率一致,使桥的振动加强,最终断裂 。每年肆虐于沿海各地的热带风暴,也是借助于共振为虎作伥,才会使得房屋和农作物饱受摧残。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。地震时,地壳会产生各种波长的横波或纵波,当波传到地面上,会与建筑物产生强烈的共振,这样就造成了屋毁人亡的惨剧。另外还有许多例子:持续发出的某种频率的声音会使玻璃杯破碎;机器可以因共振而损坏机座;高山上的一声大喊,可引起山顶的积雪的共振,顷刻之间造成一场大雪崩;行驶着的汽车,如果轮转周期正好与弹簧的固有节奏同步,所产生的共振就能导致汽车失去控制,从而造成车毁人亡„„

如果你对共振的威力还有怀疑,那就让我们一起来了解共振吧。 共振创造了世界 共振是物理学上的一个运用频率非常高的专业术语。

一、什么是共振

任何物体产生振动后,由于其本身的构成、大小、形状等物理特性,原先以多种频率开始的振动,渐渐会固定在某一频率上振动,这个频率叫该物体的固有频率。当人们从外界再给这个物体加上一个振动(称为驱动)时,这时物体的振动频率等于驱动力的频率,而与物体的固有频率无关,这时称为强迫振动。但如果驱动力的频率与该物体的固有频率正好相同,物体振动的振幅达到最大,这种现象叫共振。 物体的振幅与驱动力的关系图如下:

二、共振的应用

共振现象也可以说是一种宇宙间最普遍和最频繁的自然现象之一,所以在某种程度上甚至可以这么说,是共振产生了宇宙和世间万物,没有共振就没有世界。从宇宙大爆炸到微观世界的“共振体”,从人类说话交谈到虫鸣鸟吟,都是共振的魔力。还有一些研究表明,宇宙中的紫外线射向地球时,是臭氧层的振动频率与紫外线产生共振,从而吸收了大部分的紫外线,保护了地球;叶绿素与某些可见光共振才能吸收阳光,产生光合作用;甚至连色彩的产生也是因为各色光线与物体的共振所赐。

在日常的生产生活中,共振也是我们的好帮手,人类利用共振现象的能量特征,发明了不少实用的东西。利用共振能给人类带来福祉。

实际上,中国人对于共振的运用,还可以追溯到很久远的年代。

早在战国初期,当时的人就发明了各种各样的共鸣器,用来侦探敌情。《墨子·备穴》记载了其中的几种:

在城墙根下每隔一定距离挖一深坑,坑里埋置一只容量有七八十升的陶瓮,瓮口蒙上皮革,这样,实际上就做成了一个共鸣器。让听觉聪敏的人伏在这个共鸣器上听动静,遇有敌人挖地道攻城的响声,不仅可以发觉,而且根据各瓮瓮声的响度差可以识别来敌的方向和远近。另一种方法是:在同一个深坑里埋设两只蒙上皮革的瓮,两瓮分开一定距离,根据这两瓮的响度差来判别敌人所在的方向。

随着近代科学的发展,供着应用于越来越多的领域。

“共振筛”是利用共振现象最典型的例子之一。它是把筛子用四个弹簧支撑起来,并在筛子上装上偏心轮,偏心轮在皮带的带动下转动,是筛子受到周期驱动力的作用,做受迫振动。调整偏心轮的转速,可使驱动力的频率接近筛子的固有频率,筛子发生共振,获得较大振幅,提高筛子的效率。

在建筑工地上,我们经常可以看到.建筑工人在浇灌混凝土的墙壁或地板时,为了提高质量,总是一边灌混凝土,一边用电振泵进行振动,使混凝土之间因振动的作用而变得更紧密、更结实。像粉碎机、测振仪、电振泵等,这些都是利用共振原理工作的。

在人们的日常生活中,共振也充当着重要的角色,如常用的微波炉。为什么微波炉在加热食品时食品内外能同时升温呢?原来微波炉中的磁控管产生915MHz或2450MHz的微波,即一种超高频率交变电磁场,它经波导传送出去,再经风扇搅拌器把它反射到炉腔各处,食物是吸收微波的一种介质,而且食物分子的振动频率跟微波的电磁场频率相同或相近,大量分子就在食物中原来位置的附近剧烈振动而摩擦出大量的热,使食物内外介质的温度同时升高,食物很快被烤熟。这是共振在家用电器中的应用。再比如说收音机,电台通过天线发射出短波/长波信号,收音机通过将天线频率调至和电台电波信号相同频率来引起共振,将电台信号放大,再经过过滤后传至喇叭发声。还有市面上极为少见的共振音箱,它是让音频经过转换后以机械振动介质 面(木质桌面,玻璃等) ,使介质整个物体产生共振,从而使物体播放出悠扬的乐曲。

共振在医学上也有应用。专家研究认为,音乐的频率,节奏和有规律的声波振动,是一种物理能量,而适度的物理能量会引起人体组织细胞发生和谐共振现象,这种声波引起的共振现象,会直接影响人们的脑电波,心率,呼吸节奏等,使细胞体产生轻度共振,使人有一种舒适、安逸感。人们还发现,当人处在优美悦耳的音乐环境中,可以改善精神系统,心血管系统,内分泌系统和消化系统的功能,促使人体分泌一种有利健康的活性物质,提高大脑皮层的兴奋性,振奋人 的精神,让人们的心灵得到了陶冶和升华。所以,人们已经开始运用音乐产生的共振,来缓解人们由于各种因素造成的紧张,焦虑,忧郁等不良心理状态,而且还能用于治疗人的一些心理和生理上的疾病。 就医学影像学来说, 核磁共振 (MRI) 是继 CT 后的又一重大进步。将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的 接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

总之,共振技术普遍应用于机械、化学、力学、电磁学、光学及分子、原子物理学、工程技术等几乎所有的科技领域。

三、共振对我们生活的危害

从共振的特点来分析,它并不需要强大的破坏力,而是能自动进行能量的积累,如果不适当地利用它或者避免它,共振的危害也是很可怕的。开头曼彻斯特的惨剧就是一个鲜明的例子。在我们的日常生活中,无处不在的共振现象也经常带来烦恼。

人体是一个弹性体,各器官都有它的固有频率,当外来振动的频率与人体某器官的固有频率一致时,会引起共振,因而对那个器官的影响也最大。人体固有的振动频率经科学研究,人脑是8~12Hz,内脏器官为4~18Hz。在外来振动的不断激发下,人脑和内脏器官的振动频率与外来振动频率相近或相同,吸收外来振动的能量而共振,轻者能使人产生头晕、烦躁、耳鸣、恶心,如果强度大,就能使人的心脏及其内脏剧烈抖动、狂跳,以致血管破裂,使人死亡。

登山运动员登山时严禁大声喊叫。因为喊叫声中某一频率若正好与山上积雪的固有频率相吻合,就会因共振引起雪崩,其后果十分严重。

对人危害程度尤为厉害的是次声波所产生的共振。次声波是一种每秒钟振动很少、我们耳朵听不到的声波,自然界的很多现象都能产生次声波。目前已研制出次声波枪和次声波炸弹。它们利用频率为16赫兹左右的次声波,与人体内的某些器官发生共振,使受振者的器官发生变形、位移或出血。

千里之堤,溃于蚁穴”,最终的结果是可怕的。要避免共振的灾害作用,就必须尽量增大振动系统和可能的策动力频率之间的差距,使受迫振动被限制在极小振幅的范围内。比如,跟振动源十分接近的操作人员,如拖拉机驾驶员、电锯等操作工,在工作时应尽量避免这些振动源的频率与人体有关部位的固有频率产生共振。为了保障工人的安全与健康,有关部门已做出相应规定,要求用手工操作的各类振动机械的频率必须大于20Hz。

四、消除共振的危害

共振给人们带来意想不到的灾难,那么,人们能不能消除这些灾难呢?为此,人们经过实践,总结出许多消除共振的办法。 据史籍记载,我国晋代就有人对共振现象作出了正确的解释,并已经能够完全认识到,防止共振的最好的方法是改变物体的固有频率,使之与外来作用力的频率相差越大越好。

到了今天,人类对付共振危害的方法更是多种多样和更加先进。例如:人们在电影院、播音室等对隔音要 求很高的地方,常常采用加装一些海绵、塑料泡沫或布帘的办法,使声音的频率在碰到这些柔软的物体时, 不能与它们产生共振,而是被它们吸收掉。又如电动机要安装在水泥浇注的地基上,与大地牢牢相连,或要安装在很重的底盘上,为的是使基础部分的固有频率增加,以增大与电机的振动频率(驱动力频率)之差来防止基础的振动。

大街上的行人、车辆的喧闹声、机器的隆隆声——这些连绵不断的噪声不仅影响人们正常生活,还会损害 人的听力。于是人们发明了一种消声器,它是由开有许多小孔的孔板和空腔所构成,当传来的噪声频率与 消声器的固有频率相同时,就会跟小孔内空气柱产生剧烈共振。这样,相当一部分噪声能在共振时被”吞吃” 掉,而且还能够转变为热能来进行使用。

虽然人类现在并不能将共振所带来的危害全部消除,但我们可以努力将它降到最低,期待这一天早些到来。

【参考文献】

[1]梁绍荣,刘昌年,盛正华,《普通物理学》第一分册,力学,第三版,高等教育出版社,2005 [2]赵凯华,罗蔚茵,《新概念物理教程》第一分册,力学,第二版,高等教育出版社,2004 [3]马文蔚,《物理学》第四版,高等教育出版社,1998 [4] [美]W.T 汤姆逊著,《振动理论及其应用》,胡宗斌等译,煤炭工业出版社,2002

推荐第5篇:大学物理论文

大学物理论文

随着时代的发展,科技的迅猛发达,人类对生活的需求也越来越高,然而在迅猛发展的科技中,应用最高的便是电磁学,正是因为有了前人不断的发现与研究,才有了像电磁炉、电磁起重机、电磁继电器、等等一系列方便人们生产生活的发明创造。公元前2750年,古埃及人就已经知道发电鱼会发出点击,大约2500年后,希腊人、罗马人、阿拉伯自然学者和阿拉伯医学者,才又记载出关于发电鱼的记载,而在遥远的古希腊及地中海古老文化中,也有文字记载琥珀棒与猫毛摩擦后,会吸引与贸易类的物质;西元前600年左右,古希腊的哲学家泰勒斯做了一系列关于静电的观察,他认为,摩擦琥珀使琥珀变得磁性化;1600年的英国医生威廉·吉尔伯特总结了前人对磁的研究,经过大量实验,使磁学经验转变为科学;1660年摩擦起电机腾空出世,这为人类在电磁学上的研究奠定了夯实的一步,也使人类对磁学研究有了更加浓厚的兴趣,造福后人;十八世纪以前,像本杰明·富兰克林这类的科学家一直采用这类摩擦起电机来研究静电场,与此同时发现了静电力同性相互排斥、异性相互吸引的特性,以及静电感应现象以及电荷守恒原理。库仑定律的发现使人类对电学的研究有了突破性的发现,人们曾将静电力与久负盛名的牛顿万有引力定律相比较,苏格兰物理学家约翰·罗比迅和英国物理学家亨利·卡文迪什等人都通过多年大量实验验证了静电力的平方反比律,1785年法国物理学家夏尔·奥古斯丁·库伦通过我们高中物理课本上著名的扭秤实验真正证明了这一假说,库仑的结论为:“对同样材料的金属导线而言,扭矩的大小正比于偏转角度,导线横截面直径的四次方,且反比于导线的长度……”——夏尔·奥古斯丁·库仑,《金属导线扭矩和弹性的理论和实验研究》,在之后的几年,他也研究出了磁偶极子之间的作用力,18世纪末,意大利生理学家路易吉·伽伐尼认为生物中存在着一种“神经电流”,然而这种想法却遭到了意大利物理学家亚历山德罗·伏达的反对,经过伏达长期的试验,发明了伏打电池和电堆,这位研究稳定恒流源创造了条件。在1826年的德国,物理学家奥格尔格·欧姆从傅里叶对热传导规律的研究中得到了启发,欧姆测量得到的偏转角度与电路中的两个物理量分别成正比和反比关系,这两个量实际相当于电动势和电阻;1827年欧姆发表《直流电路的数学研究》这一举世瞩目的巨作,这本书中所提出的电学定律就是被后人所熟知的欧姆定律,欧姆结合了丹麦物理学家奥斯特发现的电流的磁效应,这是点于此的首次结合,也为后续的电磁学研究奠定了不可或缺的基础。

推荐第6篇:大学物理观后感

一.丁肇中的故事

读完丁肇中的故事,首先对这位诺贝尔物理学奖获得者有了初步的认识,他的认真,他的坚持都是他如今成就的根源。并且丁肇中虽然入了美国籍,但他深深地知道他的根在中国。为了祖国高能物理的发展,他不辞辛劳,远涉重洋,多次来大陆从事学术交流和参观访问,介绍国际高能物理的发展,努力促进国际物理学界同中国物理学家合作。在他亲自指导和无微不至地关怀下,从事研究的中国科学工作者有的已经在欧美获得了博士学位。他不仅为中国培养了一批实验物理的科研人才,而且还热心为祖国培养实验物理的研究生而努力奔波。现在他受聘出任中国科技大学名誉教授。丁肇中说:“四千年以来中国在人类自然发展史上有过很多重要贡献,今后一定能做出更大的贡献。我希望在自己能工作的时间内,为中国培养更多的人才。”这样的一位的学者是令人敬佩的,而且,会被永远记住。

二.居里夫婦的故事

居里夫妇用一生为我们诠释了科学的真谛,他们一直都是在简简单单地坚持,坚持着她们心中的理想,居里夫人曾说过:我要把人生变成科学的梦,然后再把梦变成现实。同时皮埃尔的陪伴也是居里夫人强大的精神支柱,他们一起提炼出了两种前所未有的元素,并将其命名为钋和镭,他们一起努力,为了证实钋与镭的存在,那段时光相信是他们一起拥有的最美好的时光。皮埃尔的离去虽是悲痛却击不垮坚强的居里,她会带着科学的梦一直走下去。

最后,就像居里夫人说的:我们的生活都不容易,但是那有什么关系?我们必须有恒心,尤其要有自信力!我们必须相信我们的天赋是要用来做某种事情的,无论代价多么大,这种事情必须做到。

三.诺贝尔奖获奖名录

诺贝尔奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产作为基金创立的,诺贝尔奖包括金质奖章、证书和奖金支票。在遗嘱中他提出,将部分遗产(920万美元)作为基金,以其利息分设物理、化学、生理或医学、文学及和平(后添加了„经济‟奖)5种奖金,授予世界各国在这些领域对人类做出重大贡献的学者。

许多年来,有众多的学者获得了诺贝尔奖,这也意味着这些年来,世界在进步,社会在发展,人类在走向更好的未来。而狭隘一点看,仅仅作为一个中国人,在看到诺贝尔奖获奖者名单中少有中国人,觉得自己的民族应该有更大的发展。也希望中国的科技、文化发展能更进一步,发展成真正的强国。

四.哥白尼日心说

哥白尼提出的“日心说”,有力地打破了长期以来居于宗教统治地位的“地心说”,实现了天文学的根本变革。他相信研究天文学只有两件法宝:数学和观测。他不辞劳苦,克服困难,每天坚持观测天文现象,30年如一日,终于取得了可靠的数据,提出了“日心说”,并在临终前终于出版了他的不朽名著《天体运行论》。哥白尼的“日心说”沉重地打击了教会的宇宙观,这是唯物主义和唯心主义斗争的伟大胜利。哥白尼是欧洲文艺复兴时期的一位巨人。他用毕生的精力去研究天文学,为后世留下了宝贵的遗产。哥白尼遗骨于2010年5月22日在波兰弗龙堡大教堂隆重的重新下葬。

“你不必赏我像赏给圣保罗的恩宠,但求你赏赐我像你给圣伯多禄的宽赦和右盗的仁慈”,这是哥白尼死前他为自己预作的墓志铭,他已与世长辞,但他留给我们的是永恒的真理。

五.扫描隧穿显微镜

扫描隧穿显微镜(scanning tunneling microscope,STM)是一种利用量子理论中的隧道效应探测物质表面结构的仪器,利用电子在原子间的量子隧穿效应,将物质表面原子的排列状态转换为图像信息的。在量子隧穿效应中,原子间距离与隧穿电流关系相应。通过移动着的探针与物质表面的相互作用,表面与针尖间的隧穿电流反馈出表面某个原子间电子的跃迁,由此可以确定出物质表面的单一原子及它们的排列状态。

它于1981年由格尔德·宾宁及亨利希·罗勒在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与厄恩斯特·鲁什卡分享了1986年诺贝尔物理学奖。作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个 原子,它具有比它的同类原子力显微镜更加高的分辨率。此外扫描隧道显微颌在低温下可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。

隧穿显微镜的原理是巧妙地利用了物理学上的隧道效应及隧道电流。金属体内存在大量\"自由\"电子,这些\"自由\"电子在金属体内的能量分布集中于费米能级附近,而在金属边界上则存在一个能量比费米能级高的势垒。因此,从经典物理学来看,在金属内的\"自由\"电子,只有能量高于边界势垒的那些电子才有可能从金属内部逸出到外部。但根据量子力学原理,金属中的自由电子还具有波动性,这种电子波在向金属边界传播而遇到表面势垒时,会有一部分透射。也就是说,会有部分能量低于表面势垒的电子能够穿透金属表面势垒,形成金属表面上的\"电子云\"。这种效应称为隧道效应。所以,当两种金属靠得很近时(几纳米以下),两种金属的电子云将互相渗透。当加上适当的电压时,即使两种金属并未真正接触,也会有电流由一种金属流向另一种金属,这种电流称为隧道电流。隧道电流和隧道电阻随隧道间隙的变化非常敏感,隧道间隙即使只发生0.01nm的变化,也能引起隧道电流的显著变化。

总之,隧穿显微镜的发明是伟大的,为人类的发展做出了重大的贡献。

推荐第7篇:大学物理心得体会

心得体会

大学物理作为一门系统的自然科学,物理学的概念原理的确很多.学好物理要求首先理并掌握有关的概念原理,这很容易使人望而生畏,觉得太难学,但是只要我们沉下心来好好总结,我们就会发现,物理学的这些概念并不是杂乱的堆积,而是系统的组织起来的,其中有主有次,有基础的,也有衍生的

学习物理的重要方式是解答物理问题或习题.我们已经是大学生,要经常用物理知识去解释和解决生活当遇到的物理问题,勤思善想,我想经常这样做我们会受益匪浅的.物理源于实践又高于实践,经常解释一些问题可以使我们加深对物理概念的理解,所谓熟能生巧吗

学习物理还要加强自学能力的培养,首先做到仔细阅读教材,领会其基本内容,有时也要去图书馆或者书店找一些参考资料帮助学习,可以向老师学习,注意听讲,在课堂上有选择有重点地听讲.聆听老师的讲课是难得的学习机会,应该自觉的珍惜把握从中获益.我高中物理老师的许多话我还记忆犹新,他说过:\"无论一道多么复杂的物理习题,总是有若干个比较简单的物理过程组合而成,你只要把每个物理过程分析清楚了,那么各个物理过程所对应的物理定律就自然而然的显现出来.\"这句话我体会特别深,也获益匪浅.总之,物理是一门基础学科,只要学习得法,刻苦认真,从中不仅能学到大量知识,而且能培养科学思想与方法,提高科学素质和激发创新能力.我非常爱探索各种物理现象,所以我也非常喜欢学习物理,我忠心希望我们学校的每一个同学都对物理产生浓厚的兴趣,因为我相信用知识武装起来的头脑是不可战胜的

在学习过程中还要注意及时归纳总结,特别是在经过一个阶段的学习以后,经验和教训都要一起总结,总结经验主要就是把一些好的经典的解题方法和思路在过一过目,看自己是否真正的掌握了。而总结教训则是把自己平时总喜欢犯的一些错误归结到一起,看看它们的共同点,并找出症结,这样对症下药才能达到立竿见影的效果,如果是基础知识没有掌握牢固,那么就加强基础的学习,而如果是计算上的问题,那么就要注意计算能力的提高。 总之,态度决定一切,细节决定成败。

推荐第8篇:《大学物理》教学大纲

《大学物理》教学大纲

适用专业:机电一体化函授

课程性质:学科基础 学 时 数:24

学 分 数: 课程号:

开课学期: 大纲执笔人:王玉娥

大纲审核人:郑永春

一、课程定位和目标

课程定位:大学物理课程是理工科专业的学科基础课。物理学是研究物质的基本结构、相互作用和物质最基本、最普遍的运动方式及其相互转化规律的学科。物理学的研究对象具有极大的普遍性。它的基本理论渗透到了自然科学的一切领域,应用于生产技术的各个部门,它是自然科学的许多领域和工程技术的基础。

课程目标:通过大学物理课的教学,应使学生对课程中的基本概念、基本理论、基本方法有比较全面和系统的认识和正确的理解,并具有初步应用和探究的能力。使学生树立正确的学习态度,掌握科学的学习方法,培养独立获取知识的能力,为学生毕业后的工作和进一步学习新理论、新技术、奠定必要的理论基础。

二、课程教学内容和基本要求

(一)质点运动学(2学时) 教学重点、难点:

教学重点:质点运动的描述, 加速度为恒矢量时的质点运动,圆周运动。 教学难点:描述质点运动及运动变化四个基本物理量。 教学内容和基本要求: 教学内容:

质点运动的描述, 直线运动、圆周运动。 教学要求:

了解内容: 了解质点运动学的研究方法。

理解内容: 理解描述质点运动及运动变化四个基本物理量(位置矢量、位移、速度和加速度),理解这四个基本物理的矢量性、瞬时性和相对性。

掌握内容: 掌握描述质点运动的四个基本物理量的表达式及其相互关系。 掌握直线、圆周运动的规律及其应用。 考核的主要知识技能: 识记描述质点运动及运动变化的四个基本物理量(位置矢量、位移、速度和加速度),理解它们的表达式及其相互关系,掌握直线、圆周运动的规律及简单应用。

(二)动量守恒定律和能量守恒定律 (4学时) 教学重点、难点:

教学重点:牛顿第二定律,动量守恒定律,动能定理,功能原理,机械能守恒定

律,能量守恒定律。

教学难点:势能概念的引入及不同引力势能的计算。 教学内容和基本要求: 教学内容:

牛顿第二定律,质点和质点系的动量定理,动量守恒定律,动能定理,保守力和非保守力和 势能,功能原理,机械能守恒定律。 教学要求:

了解内容:惯性系和非惯性系。

理解内容: 理解保守力和非保守力、势能的概念。

掌握内容: 掌握牛顿第二定律、动量、冲量、动量定理,动量守恒定律的物理意义;掌握功与功率、动能、势能(重力势能、弹性势能、引力势能)概念,动能定理、功能原理、机械能守恒定律。 考核的主要知识技能:

识记保守力和非保守力、势能的概念;理解动量、冲量、动量定理,动量守恒定律的物理意义;能进行牛顿第二定律、功与功率、动能、势能概念,动能定理、功能原理、机械能守恒定律的综合运算。

(三)静电场(3学时) 教学重点、难点:

教学重点:电场强度,电势。 教学难点:电势。 教学内容和基本要求: 教学内容:

电荷守恒定律,电场强度,电势能,电势。 教学要求:

了解内容: 高斯定理。 理解内容: 库仑定律、电场强度、电势能、电势的概念。 掌握内容: 电场强度、电势能、电势的叠加计算方法。 考核的主要知识技能:

识记库仑定律、理解电场强度、电势能、电势的概念。

(四)恒定磁场 (3学时) 教学重点、难点:

教学重点:电源电动势,毕奥-萨伐尔定律,载流导线在磁场中所受的力。 教学难点:电源电动势和毕奥-萨伐尔定律。 教学内容和基本要求: 教学内容:

电源电动势,磁感强度定义,毕奥-萨伐尔定律,带电粒子在电场和磁场中的运动,载流导线在磁场中所受的力。 教学要求:

了解内容: 电流强度、电流密度与电荷的运动关系。

理解内容: 电源电动势、毕奥-萨伐尔定律和带电粒子在电场和磁场中的运动。

掌握内容: 能计算载流导线的磁感应强度和在磁场中的受力。 考核的主要知识技能:

识记电动势概念,理解带电粒子在电场和磁场中的运动;能够用毕奥-萨伐尔定律进行简单计算。

(五)电磁感应(2学时) 教学重点、难点:

教学重点:电磁感应定律,动生电动势。 教学难点:电磁感应定律和动生电动势的应用。 教学内容和基本要求: 教学内容:

电磁感应定律,动生电动势。 教学要求:

理解内容: 电磁感应定律。

掌握内容: 电磁感应定律,动生电动势的应用。 考核的主要知识技能: 理解电磁感应定律、动生电动势,能进行动生电动势的简单计算。

(六)振动(2学时) 教学重点、难点:

教学重点:简谐运动方程,简谐运动中的振幅、周期、频率和相位,简谐运动的合成。

教学难点:简谐运动的判定,简谐运动的合成。 教学内容和基本要求: 教学内容:

简谐运动方程,简谐运动中的振幅、周期、频率和相位的确定,简谐运动的合成。 教学要求:

了解内容: 旋转矢量及其应用。

理解内容: 简谐运动方程和简谐运动的合成。

掌握内容: 会确定简谐振动的振幅、周期和频率、相位,能进行简单的计算。 考核的主要知识技能:

识记简谐运动的合成方法;理解简谐运动的判定方法;会求简谐振动的振幅、周期和频率、相位,进行简单的计算。

(七)波动 (2学时) 教学重点、难点:

教学重点:平面简谐波的波函数,。 教学难点:平面简谐波的波函数的求法。 教学内容和基本要求: 教学内容:

机械波的几个概念,平面简谐波的波函数,惠更斯原理,波的干涉。 教学要求:

了解内容: 了解机械波的几个概念,平面电磁波。 理解内容:平面简谐波的波函数的含义和波的干涉。 掌握内容:平面简谐波的波函数的求法。 考核的主要知识技能:

平面简谐波的波函数的求法,波的干涉的简单计算。

(八)光学(2学时) 教学重点、难点:

教学重点:相干光,杨氏双缝干涉,光程,薄膜干涉,光的偏振性,马吕斯定律。 教学难点:薄膜干涉。 教学内容和基本要求: 教学内容:

相干光,杨氏双缝干涉,光程,半波损失,薄膜干涉,劈尖,光的偏振性,马吕斯定律。 教学要求:

了解内容:反射光和折射光的偏振。

理解内容: 相干光,光程,薄膜干涉,光的偏振性,马吕斯定律。 掌握内容: 杨氏双缝干涉和薄膜干涉计算及应用。 考核的主要知识技能:

识记光程、半波损失的概念,理解光的偏振性、马吕斯定律;理解杨氏双缝干涉和薄膜干涉,能进行简单计算。

(九)气体动理论(2学时) 教学重点、难点:

教学重点:理想气体概念,理想气体状态方程,理想气体分子动能和温度的关系,能量均分定理,理想气体内能。 教学难点:理想气体内能。 教学内容和基本要求: 教学内容:

理想气体物态方程,理想气体的压强公式,理想气体分子的平均平动动能和温度的关系,能量均分定理,理想气体内能。 教学要求:

了解内容:物质的微观模型和统计规律性,理想气体的压强公式。 理解内容:平衡态,理想气体状态方程。

掌握内容: 理想气体分子的平均平动动能和温度的关系,能量均分定理,理想气体内能,能进行简单计算。 考核的主要知识技能:

识记平衡态、理想气体状态方程;理想气体分子的平均平动动能和温度的关系、能量均分定理、理想气体内能;能进行简单计算。

(十)热力学基础(2学时) 教学重点、难点:

教学重点:热力学第一定律,理想气体的等体过程、等压过程、等温过程和绝热过程。

教学难点:等温过程和绝热过程。 教学内容和基本要求:

1、了解准静态过程,功,热量,熵增加原理。

2、理解热力学第一定律,内能概念。

3、掌握理想气体的等体过程、等压过程。考核的主要知识技能:

识记热力学第一定律、内能概念;理解理想气体的等体过程、等压过程、温过程和绝热过程;能简单计算准静态过程做功和传递热量。

三、本课程教学建议

本课程以课堂讲授为主,讲清基本概念及意义,基本定理的推导过程,结合实际讲解其基本的应用。在课堂教学中可适当补充难易适中的题目作为例题,开阔学生的视野,拓宽知识面。在作业和练习方面,任课教师可以有针对性地选择一定量的习题,并适当增加概念理解和规律应用题的数量,以培养学生对物理基本知识的理解,锻炼学生解决实际问题的能力。

根据教育发展的趋势和教学改革的要求,在本课程的教学过程中,采用多媒体与传统板书相结合的教学方法。除教材外,应给学生指定相关的参考书,以拓宽学生的知识面。

四、本课程学业评价 (一) 考核目的

检验学生通过学习是否达到了《大学物理》教学大纲的基本要求,检查学生对课程涉及的的基本知识、基本理论、基本方法和基本技能的掌握程度。

(二)考核方式及考核用时

考核包括平时考核和期末考核两部分组成,考核总成绩为100分(四舍五入取整数)。平时考核成绩占总成绩的40%,由作业成绩、小测验成绩、考勤等组成。期末考核成绩占总成绩的60%,采取闭卷笔试方式进行,试卷总分100分,考试时长为110分钟。

(三)命题要求

1、依据教学大纲命题,命题要突出教学的重点内容,要覆盖大纲中考核主 要知识、技能的大部分;题型可以是填空、选择、判断、简答、证明、分析、计算等,题量适宜,难度适中。

2、A、B两套试卷,100分制,附参考答案和评分标准。

五、建议教材和教学参考书

建议教材:赵近芳主编,《大学物理简明教程》( 21世纪高等学校规划教材)北京邮电大学出版社,2012年.教学参考书:

[1].马文蔚主编,物理学,高等教育出版社,2012年. [2] 张三慧主编,大学物理学(1-5册),清华大学出版社,2011年.[3] 卢德馨主编,大学物理学( 面向21世纪课程教材),高等教育出版社,2003年.[4] 程守洙主编,《普通物理学》(上、下册),高教出版社,2012年,第六版.[5]胡玉才、汪静主编,《大学基础物理学》,科学出版社,2011年,第一版.

推荐第9篇:大学物理总结

大学物理课程总结

本学期我们学习了大学物理这门课,主要是电学中的电磁感应以及热学与光学。纵观这学期的内容,我对光学的内容比较感兴趣。课程总结就主要围绕它来说吧。

光学这一部分主要分:振动、波动、光的干涉、光的衍射以及光的偏振。内容彼此联系。前面是基础,后面是详细讲。我主要想就一点,半波损失来简单谈一谈。

所谓的半波损失,就是光从光疏介质射向光密介质时反射过程中,如果反射光在离开反射点时的振动方向相对于入射光到达入射点时的振动方向恰好相反,这种现象叫做半波损失。

从一般人的认识中,反射应该是不会改变的。但事实并非如此。从波动理论知道,波的振动方向相反相当于波多走(或少走)了半个波长的光程。入射光在光疏媒质中前进,遇到光密媒质界面时,在掠射或垂直入射2种情况下,在反射过程中产生半波损失,这只是对光的电场强度矢量的振动而言。如果入射光在光密媒质中前进,遇到光疏媒质的界面时,不产生半波损失。不论是掠射或垂直入射,折射光的振动方向相对于入射光的振动方向,永远不发生半波损失。在大学物理光学这一部分,光的干涉现象是有关光的现象中的很重要的一部分,而只要涉及到光的干涉现象,半波损失就是一个不得不考虑的问题。

光在反射时为什么会产生半波损失呢?通过查阅资料以及结合老师所讲,这是和光的电磁本性有关的,可通过菲涅耳公式来解释。由于知识有限,菲涅耳公式没有深入了解,就不做理论证明了。

光在不同介质表面反射时,在入射点处,反射光相对于入射光来说,可能存在半波损失,半波损失可以通过直观的实验现象——干涉花样——来得到验证。

在洛埃镜实验中,如果将屏幕挪进与洛埃镜相接触。接触处两束相干波的波程差为零,但实验发现接触处不是明条纹,而是暗条纹。这一事实说明洛埃镜实验中,光线自空气射向平面镜并在平面镜上反射后有了量值为π的位相突变,这也相当于光程差突变了半个波长。从而实验上证明了半波损失的存在。

半波损失理论在实践生活中有很重要的应用,如:检查光学元件的表面,光学元件的表面镀膜、测量长度的微小变化以及在工程技术方面有广泛的应用。

这些只是我对半波损失的一些粗浅认识,在以后的学习中,无论是通过网络资源还是书本,还会对它有更加深入的了解。对于厚厚的大学物理书,我深知有许多还没学好的知识,虽然这门课这学期就要结束了,但它作为基础学科,里面涉及的许多知识都将让我终生受益。

推荐第10篇:大学物理小结

大学物理小结

1、大学物理热学部分小结

大学物理的热学部分还是相对不是太难的,因为与高中的物理关联很大,很多概念都是以前接触过的,但是没有深入研究,这已经给这部分的学习带来了极大的便利。如果说要有什么不同,主要那有如下几个方面:

1、研究方法的不一样:虽然很多内容是接触过的,但是重新学习的时候明显感觉到不一样的是研究方法,随着其他知识的累积,尤其是高数的引入,给物理的学习带来的极大的便利,特别是一些公式的推理过程让我们更好的了解公式的来由,更好的便于记忆和理解。

2、准确度的不同:在学习过程中,总有些以前的东西对推翻,因为要考虑的东西越来越多,微观的宏观的等压的等温的„„这些都告诉我们要全面细致地学习,应用的知识越来越多,要把知识串成串。

3、学习方法的不同:大学阶段的物理学习和中学阶段的物理学习存在着很大的不同,课少了,作业也少了,但是仍然不能放松,毕竟在中学几乎每天都在学物理,所以现在的物理学习更需要自己的主动和认真。

2、大学物理力学小结

能量守恒定律定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。

1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等等。

(2)不同形式的能量之间可以相互转化:“摩擦生热是通过克服摩擦做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能等等”。这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。

(3)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。

能量守恒的具体表达形式保守力学系统:在只有保守力做功的情况下,系统能量表现为机械能(动能和位能),能量守恒具体表达为机械能守恒定律。热力学系统:能量表达为内能,热量和功,能量守恒的表达形式是热力学第一定律。相对论性力学:在相对论里,质量和能量可以相互转变。计及质量改变带来能量变化,能量守恒定律依然成立。历史上也称这种情况下的能量守恒定律为质能守恒定律。

能量守恒定律的重要意义能量守恒定律,是自然界最普遍、最重要的基本定律之一。从物理、化学到地质、生物,大到宇宙天体。小到原子核内部,只要有能量转化,就一定服从能量守恒的规律。从日常生活到科学研究、工程技术,这一规律都发挥着重要的作用。人类对各种能量,如煤、石油等燃料以及水能、风能、核能等的利用,都是通过能量转化来实现的。能量守恒定律是人们认识自然和利用自然的有力武器。基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。

表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-A或Q=ΔU+A这就是热力学第一定律的表达式。如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-A+Z。当然,上述ΔU、A、Q、Z均可正可负。对于无限小过程,热力学第一定律的微分表达式为

dQ=dU+dA因U是态函数,dU是全微分;Q、A是过程量,dQ和dA只表示微小量并非全微分,用符号d以示区别。又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背能量守恒定律。

两者的区别与联系:热力学第一定律是人类在长期的生产和科学实验中总结出来的一条普遍规律,适用于一切热力学过程。热力学第一定律表明,一切热力学过程都必须服从能量守恒定律,因此热力学第一定律实际上是包括热现象在内的能量转化与守恒定律。

3、大学物理学习小结

《大学物理》是我们工科必修的一门重要基础课,但由于我们现在所学的《大学物理》涵盖的内容广,包括力学、热学、电磁学、光学、量子力学与相对论以及一些新兴的科学如混沌等,而且对高等数学、线性代数等数学基础要求较高,是我们大家都望之不寒而栗的一门课。

首先,“课堂”和“课后”是学习任何一门基础课的两个重要环节,对大学物理来说也不例外。课堂上,我认为高效听讲十分必要,如何达到高效呢?我们听讲要围绕着老师的思路转,跟着老师的问题提示思考,同时又能提出一些自己不太明白的问题。对于老师的一些分析,课本上没有的,及时提笔标注在书上相应空白的地方,便于自己看书时理解。课后,我们在完成作业之前应该先仔细看书回顾一下课堂内容,再结合例题加深理解,然后动笔做作业。除此之外,我认为可以借助一些其他教材或辅导资料来扩展我们的视野,不同教材分析问题的角度可能不同,而且有些教材可能更符合我们自己的思维方式,便于我们加深对原理的理解。总之,课堂把握住重点与细节,课后下功夫通过各种途径来巩固加深理解。

第二,对大学物理的学习,我认为自己的脑海中一定要有几种重要思想:一是微积分的思想。大学物理不同与高中物理的一个重要特点就是公式推导定量表示时广泛运用微分、积分的知识,因此,我们要转变观念,学会用微积分的思想去思考问题。二是矢量的思想。大学物理中大量的物理量的表示都采用矢量,因此,我们要学会把物理量的矢量放到适当的坐标系中分析,如直角坐标系,平面极坐标系,切法向坐标系,球坐标系,柱坐标系等。三是基本模型的思想。物理中分析问题为了简化,常采用一些理想的模型,善于把握这些模型,有利于加深理解。如力学中刚体模型,热学中系统模型,电磁学中点电荷、电流元、电偶极子、磁偶极子模型等等。当然,我们还可总结出一些其他重要思想。

最后,我们还要充分发挥自己的想象力、空间思维能力。对于有些模型,我们可以制出实物来反映,通过视觉直观感受,而大学物理中还存在大量我们无法直观反映的模型,因此就必须通过发挥自己的想象力来构造出来。

半学期的大学物理学习体会

通过接近半学期的大学物理学习,感觉自己的思维有了一个值的飞跃。在学习物理的时候,根据不同的物理规律,选择不同的物理对象,变换不同的思维角度,对我们的创造思维和发散思维的发展是非常有利的。因而更好的锻炼了理性思考问题的能力。

学习物理开阔了我的视野,使我了解到物理给我们的生活带来的巨大变化,物理学的研究对象具有极大的普遍性,它的基本理论渗透在自然科学的一切领域,广泛地应用于生产技术的各个部门,它是自然科学和工程技术的基础。在科学的前沿,物理是最有用的基础学科。

学习物理,使我更好的学习了数学,因为大学物理的计算必须利用数学的知识。因而在学习物理的同时提高了数学水平。而物理这个学科本身又让我们更明白一些事物的发展规律引导着我们怎样去思考平常在生活中遇到的一些看似平常,但却包含着好多的规律和知识。

学习物理还可以让我更明白自己以后的发展前景,在一些和物理联系紧密的学科里,比如说:航天,航空,电器等等。可以密切的联系生活,比如我们现在知道了光、无线电、电话、电视这些都和物理有关,可以激发我们去思考他们的有关物理的一些问题。

学习物理关键在于多思考,搞清楚其中的原理。、学习物理不是简单的套用公式,进行数字推导;物理知识重要的是要掌握扎实的基础知识。要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用而不能简单地以做习题,对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多,,做题的目的是为了巩固基本知识,从而达到灵活运用。所以上课时是最重要的。

4、大学物理实验报告小结

该有试验报告纸和试验预习报告纸。有的话照着填。没有的话这样:

预习报告:

1.试验目的。(这个大学物理试验书上抄,哪个试验就抄哪个)。

2.实验仪器。照着书上抄。

3.重要物理量和公式:把书上的公式抄了:一般情况下是抄结论性的公式。再对这个公式上的物理量进行分析,说明这些物理量都是什么东东。这是没有充分预习的做法,如果你充分地看懂了要做的试验,你就把整个试验里涉及的物理量写上,再分析。

4.试验内容和步骤。抄书上。差不多抄半面多就可以了。

5.试验数据。做完试验后的记录。这些数据最好用三线图画。注意标上表号和表名。EG:表1.紫铜环内外径和高的试验数据。

6.试验现象.随便写点。

试验报告:

1.试验目的。方法同上。

2.试验原理。把书上的归纳一下,抄!差不多半面纸。在原理的后面把试验仪器写上。

3.试验数据及其处理。书上有模板。照着做。一般情况是求平均值,标准偏差那些。书上有。注意:小数点的位数一定要正确。

4.试验结果:把上面处理好的数据处理的结果写出来。

5.讨论。如果那个试验的后面有思考题就把思考提回答了。如果没有就自己想,写点总结性的话。或者书上抄一两句比较具有代表性的句子。

实验报告大部分是抄的。建议你找你们学长学姐借他们当年的实验报告。还有,如果试验数据不好,就自己捏造。尤其是看到坏值,什么都别想,直接当没有那个数据过,仿着其他的数据写一个。

不知道。建议还是借学长学姐的比较好,网络上的不一定可以得高分。每个老师对报告的要求不一样,要照老师的习惯写报告。我现在还记得我第一次做迈克尔逊干涉仪实验时我虽然用心听讲,但是再我做时候却极为不顺利,因为我调节仪器时怎么也调不出干涉条纹,转动微调手轮也不怎么会用,最后调出干涉条纹了却掌握不了干涉条纹“涌出”或“陷入个数、速度与调节微调手轮的关系。测量钠光双线波长差时也出现了类似的问题,实验仪器用的非常不熟悉,这一切都给我做实验带来了极大的不方便,当我回去做实验报告的时候又发现实验的误差偏大,可庆幸的是计算还顺利。

总而言之,第一个实验我做的是不成功,但是我从中总结了实验的不足之处,吸取了很大的教训。因此我从做第二个实验起,就在实验前做了大量的实验准备,比如说,上网做提前预习、认真写好预习报告弄懂实验原理等。因此我从做第二个实验起就在各个方面有了很大的进步,实验仪器的使用也熟悉多了,实验仪器的读数也更加精确了,仪器的调节也更加的符合实验的要求。就拿夫-赫实验/双光栅微振实验来说,我能够熟练调节ZKY-FH-2智能夫兰克—赫兹实验仪达到实验的目的和测得所需的实验数据,并且在实验后顺利地处理了数据和精确地画出了实验所要求的实验曲线。在实验后也做了很好的总结和个人体会,与此同时我也学会了列表法、图解法、函数表示法等实验数据处理方法,大大提高了我的实验能力和独立设计实验以及创造性地改进实验的能力等等。

下面我就谈一下我在做实验时的一些技巧与方法。首先,做实验要用科学认真的态度去对待实验,认真提前预习,做好实验预习报告;第二,上课时认真听老师做预习指导和讲解,把老师特别提醒会出错的地方写下来,做实验时切勿出错;第三,做实验时按步骤进行,切不可一步到位,太心急。并且一些小节之处要特别小心,若不会,可以跟其他同学一起探讨一下,把问题解决。第四,实验后数据处理一定要独立完成,莫抄其他同学的,否则,做实验就没有什么意义了,也就不会有什么收获。

总而言之,大学物理实验具有非常重要的意义。首先,物理概念的建立、物理规律的发现依赖于物理实验,是以实验为基础的,物理学作为一门科学的地位是由物理实验予以确立的;其次,已有的物理定律、物理假说、物理理论必须接受实验的检验,如果正确就予以确定,如果不正确就予以否定,如果不完全正确就予以修正。例如,爱因斯坦通过分析光电效应现象提出了光量子;伽利略用新发明的望远镜观察到木星有四个卫星后,否定了地心说;杨氏双缝干涉实验证实了光的波动假说的正确性。可以说,物理学的每一次进步都离不开实验。这对我们大学生来说也是非常重要的,尤其是对将来所从事的实际工作所需要具备的独立工作能力和创新能力等素质来讲,也是十分必要的,这是大学物理理论课不能做到,也不能取代的。

5、大学物理实验小结

经过一年的大学物理实验的学习让我受益菲浅。在大学物理实验课即将结束之时,我对在这一年来的学习进行了总结,总结这一年来的收获与不足。取之长、补之短,在今后的学习和工作中有所受用。

在这一年大学物理实验课的学习中,让我受益颇多。

一、大学物理实验让我养成了课前预习的好习惯。一直以来就没能养成课前预习的好习惯(虽然一直认为课前预习是很重要的),但经过这一年,让我深深的懂得课前预习的重要。只有在课前进行了认真的预习,才能在课上更好的学习,收获的更多、掌握的更多。

二、大学物理实验培养了我的动手能力。“实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。”现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台。每个实验我都亲自去做,不放弃每次锻炼的机会。经过这一年,让我的动手能力有了明显的提高。

三、大学物理实验让我在探索中求得真知。那些伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。实验是检验理论正确与否的试金石。为了要使你的理论被人接受,你必须用事实(实验)来证明,让那些怀疑的人哑口无言。虽说我们的大学物理实验只是对前人的经典实验的重复,但是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。

大学物理实验都是一些经典的给人类带来了难以想象的便利与财富。对于这些实验,我在探索中学习、在模仿中理解、在实践中掌握。大学物理实验让我慢慢开始“摸着石头过河”。学习就是为了能自我学习,这正是实验课的核心,它让我在探索、自我学习中获得知识。

四、大学物理实验教会了我处理数据的能力。实验就有数据,有数据就得处理,这些数据处理的是否得当将直接影响你的实验成功与否。经过这一年,我学会了数学方程法、图像法等处理数据的方法,让我对其它课程的学习也是得心应手。

经过这一年的大学物理实验课的学习,让我收获多多。但在这中间,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要很强的动手能力时我还不能从容应对;我的探索方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成;我的数据处理能力还得提高,当眼前摆着一大堆复杂数据时我处理的方式及能力还不足,不能用最佳的处理手段使实验误差减小到最小程度„„

总之,大学物理实验课让我收获颇丰,同时也让我发现了自身的不足。在实验课上学得的,我将发挥到其它中去,也将在今后的学习和工作中不断提高、完善;在此间发现的不足,我将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。在今后的学习、工作中有更大的收获,在不断地探索中、在无私的学习、奉献中实现自己的人身价值!

第11篇:大学物理(B)

大学物理(B) (学科基础课)

College Physics B

University physics

以下部分标题填写用黑体五号字体,具体填写内容字体为宋体五号)

【课程编号】 BX260116

【学分数】4

【学时数】110

一、教学目的、任务

物理学研究物质的基本结构及其物质运动的普遍规律,它的基本理论渗透在自然科学的许多领域,应用于生产技术的各个部门,是自然科学和工程技术的基础。以物理学基础知识为内容的《大学物理》课程, 是工科各专业学生的一门重要的必修基础课。

课程教学目的:为学生系统地打好必要的物理基础;初步学习科学的思想方法和研究问题的方法;激发探索和创新精神、增强适应能力,提高素质的目的。

课程教学任务:对物理学的基本概念、理论、方法有系统的认识与理解;具有初步应用物理知识的能力;培养辩证唯物主义世界观和科学方法论;具备提出问题、分析问题、解决问题的能力和动手操作的能力。

二、课程教学的基本要求

教学内容基本要求分为三个层次:掌握、理解、了解。

掌握:属较高要求。对于要求掌握的内容都应比较透彻明了,并能熟练地用以分析和计算有关问题,对于那些由基本定律导出的定理要求会推导。

理解:属于一般要求。对于要求理解的内容都应明了,并能用以分析和计算有关问题,对于定理不要求会推导。

了解:属较低要求。对于要求了解的内容,应该知道所涉及问题的现象和有关实验,并能对它们进行定性解释,适应知道与问题直接有关的物理量和公式等的物理意义。

三、教学内容和学时分配

绪论1学时

主要内容:大学物理学习的内容

学习物理学的意义

学习物理学的方法 【课程类别】学科基础课 【编写日期】2010.3.30 【先修课程】高数【适用专业】生物、化学、化工、环境 等

质点运动学5学时

主要内容:质点运动的描述

圆周运动

教学要求:理解质点、参考系的概念及运动叠加原理;

掌握位矢、位移、速度、加速度、切向加速度、法向加速度、角位移、角速度、角加速度 等物理量及角量与线量关系。

牛顿定律3学时

主要内容:牛顿定律

牛顿定律的应用

教学要求:理解惯性、质量、力的概念;

掌握牛顿运动定律。

动量守恒定律和能量守恒定律5学时

主要内容:质点动量定理动量守恒定律

质点动能定理

保守力与势能功能原理机械能守恒定律

教学要求:掌握质点动量定理质点系的动量定理及动量守恒定律;

掌握质点动能定理;

理解保守力、势能、机械能的概念,掌握功能原理、机械能守恒定律。

刚体的转动7学时

主要内容:刚体定轴转动的运动学

力矩转动定律转动惯量

角动量刚体定轴转动的角动量定理角动量守恒定律

力矩做功刚体定轴转动的动能定理

教学要求:了解刚体定轴转动的运动学;

理解转动惯量、力矩,掌握转动定律;

理解冲量矩、角动量,掌握角动量定理、角动量守恒定律;

了解力矩做功,掌握刚体定轴转动的动能定理。

静电场8学时

主要内容:库伦定律

电场强度高斯定理

环路定理电势能

电势

教学要求:掌握库仑定律

理解电场强度的定义,掌握电场叠加原理;

理解高斯定理的物理意义,熟练应用高斯定理计算带电系统的电场强度; 理解环路定理的物理意义,掌握电势的计算。

静电场的导体和电介质6学时

主要内容:静电场中的导体电介质

电位移电容与电容器

静电场的能量

教学要求:理解静电平衡条件,掌握静电平衡时导体上电荷、场强和电势分布;

了解电介质的极化和介质对电场的影响,理解电位移矢量,掌握介质中的高斯定理; 掌握计算静电场能量的方法;

理解电容的概念以及掌握电容的计算方法。

恒定磁场8学时

主要内容:恒定电流电源与电动势

磁感应强度毕-萨定律

磁通量磁场的高斯定理

安培环路定理

磁场中的磁介质

教学要求:了解恒定电流、电源与电动势;

理解磁感应强度的定义;

掌握毕-萨定律,会计算几何形状简单的载流导体的磁场分布;

掌握磁通量的计算,理解高斯定理的物理意义;

理解安培环路定理的物理意义,并应用定理计算具有高度对称性的磁场; 了解磁介质对磁场的影响,理解电场强度,掌握介质中的安培环路定律。

电磁感应电磁场6学时

主要内容:电磁感应定律

动生电动势感生电动势

自感和互感

磁场能量

电磁场方程

教学要求:掌握法拉第电磁感应定律、楞次定律;

能够用动生电动势公式计算导体产生的动生电动势;

理解感生电场的性质,理解自感与互感现象,会计算自感、互感系数;

理解位移电流,理解麦克斯韦电磁场方程组的物理意义。

振动7学时

主要内容:简谐运动的运动学描述旋转矢量

简谐运动的动力学特征

简谐运动的合成

教学要求:理解描述简谐振动的各物理量的意义;

掌握简谐振动的动力学特征,建立简谐振动的运动方程;

掌握旋转矢量法;

掌握同方向同频率简谐振动合成的规律,了解同方向不同频率简谐振动合成的规律; 理解振动的能量。

波动6学时

主要内容:平面间谐波的波函数

不得衍射惠更斯原理

波的干涉驻波

教学要求:理解描述波动的各物理量意义,会建立平面简谐波的波函数;

波的能量传播特征及能流、能流密度;

理解惠更斯原理和波的叠加原理、掌握波的相干条件;

理解波程差,掌握干涉时振动加强、减弱的条件;

了解驻波形成的条件及其现象,理解半波损失。

光学11学时

主要内容:相干光杨氏干涉薄膜干涉

劈尖牛顿环迈克尔孙干涉仪

光的衍射单缝衍射圆孔衍射衍射光栅

光的偏振性反射光和折射光的偏振晶体的双折射

教学要求:了解波动光学的基本概念;

了解相干光的获得,理解光程的物理意义,掌握杨氏干涉、薄膜干涉;

了解惠更斯原理,掌握弗朗和费单缝衍射,了解衍射光栅及弗朗和费圆孔衍射; 了解自然光、偏振光,掌握马吕斯定律和布儒斯特定律,了解晶体双折射现象。

气体动理论7学时

主要内容:气体物态方程

理想气体的微观模型统计的规律性

气体的压强公式能量均分定理

教学要求:理解平衡状态和平衡过程,理想气体状态方程;

掌握压强公式和温度公式;

理解能量按自由度均分原理,掌握理想气体内能的计算。

热力学基础8学时

主要内容:准静态过程功和热量热力学第一定律

理想气体四个等值过程

循环过程卡诺循环

热力学第二定理卡诺定理

教学要求:理解功、热量、内能概念及热力学第一定律;

掌握热力学第一定律在理想气体四个等值过程中的应用;

理解循环过程,掌握卡诺循环的热机效率及致冷系数计算;

理解热力学第二定律的两种宏观表述及微观解释,了解可逆过程与不可逆过程;了解卡诺定理。

相对论4学时

主要内容:迈克尔逊-莫雷实验

狭义相对论的时空观

狭义相对论质点动力学简介

教学要求:了解迈克尔逊-莫雷实验

理解狭义相对论的时空观

理解狭义相对论的动量、质量、能量

量子物理基础4学时

主要内容:黑体辐射 光的波粒二象性

氢原子的波尔理论

波函数薛定谔方程

教学要求:了解黑体辐射 光的波粒二象性

理解氢原子的波尔理论

理解波函数及薛定谔方程

实验14学时

主要内容:实验基本理论(2学时)

实验(在以下实验中任选4个,每个实验3个学时)

气垫导轨研究匀变速运动规律

三线摆测刚体转动惯量

静电场的描绘

霍尔法测螺线管内部磁感应强度

液体粘滞系数测定

金属膨胀系数测定

牛顿环测透镜曲率半径

分光计测光波波长

四、教学重点、难点及教学方法

1.对牛顿力学基本规律的理解和应用

2.对静电学基本概念的认识和电场强度、电势等的计算

3.对振动与波动的概念认识与理解

4.对热力学系统的定律理解和应用

5.对光学基本概念的认识与应用

五、考核方式及成绩评定方式:考试、考查

六、教材及参考书目

推荐教材:《物理学》(第五版)(马文蔚.高等教育出版社,2008年)

参考书:

1.大学物理学(第三版)赵近芳主编北京邮电大学出版社2008年

2.大学物理学吴百诗主编西安交通大学出版社 2004年

3.大学物理习题讨论课指导沈慧君 清华大学出版社 2006年

修(制)订人:审核人:

2010年6月1 日

第12篇:大学物理实验报告

大学物理实验报告

姓名:__________,______________学院,_____________专业,______班,_______组,成绩______

实验时间:___月___日,星期____,实验地点:__________,_________实验室,____号实验台

实验题目:

一、实验目的

二、实验仪器

三、实验原理 ___________________

第13篇:大学物理实验报告

大学物理实验报告

姓名学号日期

实验名称

一、实验目的

二、实验仪器和器材

三、实验原理:(简明扼要地阐述实验的理论依据、计算公式、画出电路图或光路图)

四、实验步骤:

五、数据记录:

六、数据处理:(根据实验目的对测量结果进行计算或作图表示,并对测量结果进行评定,计算误差或不确定度。

七、实验结果:(扼要地写出实验结论)

八、误差分析:(当实验数据的误差达到一定程度后,要求对误差进行分析,找出产生误差的原因。

第14篇:大学物理实验报告

物理实验报告

姓名学号日期

实验名称

一、实验目的

二、实验仪器和器材

三、实验原理:(简明扼要地阐述实验的理论依据、计算公式、画出电路图或光路图)

四、实验步骤:

五、数据记录:(表格设计)

六、数据处理:(根据实验目的对测量结果进行计算或作图表示。

七、实验结果:(扼要地写出实验结论)

八、误差分析:(当实验数据的误差达到一定程度后,要求对误差进行分析,找出产生误差的原因。

九、思考题:

第15篇:大学物理总结

大学物理总结

--1603012022 陈军

物理学学习是一次充满迷茫、艰难探索、循序渐进的长途旅行,对物理概念、物理定律和物理思想的理解要经过反复思索、逐步加深、直到顿悟的漫长过程。学习大学物理,我们从开始就会发现,许多概念和定律在中学都曾学习过,也有了一定的理解,遇到的一些问题也能用中学物理方法解决,这种不断重复、逐步深化的方式本是学习物理学的常用方法。但这种方法易使我们产生轻敌思想,误以为学习大学物理不难,对概念的理解、方法的掌握、物理思想的确立以及物理问题的处理思路习惯于停留在中学水平,忽视了对知识体系和思想体系的深入思考,慢慢地感到学习越来越困难,逐渐失去了对物理课的兴趣,也就不可能有好的学习效果。因此,需要特别提醒的是,我们从开始就要十分重视对大学物理的学习,不仅要投入足够的时间和精力,而且要掌握正确的学习方法。 学习物理关键在于多思考,搞清楚其中的原理。学习物理不是简单的套用公式,进行数字推导;物理知识重要的是要掌握扎实的基础知识。要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用,而不能简单地以做习题对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多.做习题的目的是为了巩固基本知识,从而达到灵活运用。所以上课时是最重要的。这就是我学习大学物理的体会。

与学习任何课程一样,学习大学物理也要牢牢抓住课前预习、课堂听讲、做好笔记、理解例题、课后复习(包括完成作业)和考前复习这几个主要环节。课前预习就是粗略浏览将要学习的内容,目的在于明确课堂上必须重点解决的问题;课堂听讲就是要学习老师引出物理概念的目的、建立物理模型的思路、描述物理现象的方式、演绎物理原理的程序、解释物理定律的思想、分析物理问题的过程、解决物理问题的方法。在课堂上最重要的是学习物理思想和物理方法,同时以提纲的形式记录下老师授课的全过程,重点记录课本上没有的内容和自己觉得重要的东西,以备查阅。讲解例题是课堂教学的重要组成部分,学习例题也是 学会应用理论的开始。教师通过对例题的分析和求解,一方面是要教会学生求解某一类题目的方法,另一方面是要培养学生分析问题的能力,而更为重要的是要加深学生对基本理论的理解、提高应用理论解决实际问题的能力。每个例题都是一个物理模型,物理题实际上已知模型的拓展和变化。如何懂一道题通一类题,剖开题目表面找到问题所在是我们学习的关键。课后复习(包括完成作业)就是所谓的“把书读厚”,既要全面回顾课堂听讲的过程和所学内容,又要凭借记忆和查阅课本,把提纲式课堂笔记补充为详细笔记,并写下自己的思考体会,还要理清知识重点、难点以及解决某类物理问题的步骤和技巧,更要在完成作业的过程中巩固所学知识、解决发现存在的问题。考前复习就是所谓的“把书再读薄”,此时的重点不在于记忆概念、定律和结论,而在于理清课程体系和知识框架、独特的研究方法和思想模式、常见问题的处理流程和技巧、常用的数学知识,当然还要查漏补缺。

当然在大学学习物理不打你有文化课要学习,我们还有大学物理实验要做,这是在加强我们的动手能力,所以在大一下学期开始,每一次实验,我们都要预习,写好预习报告。基本上是通过看大学物理实验教材,了解本次实验的实验目的、实验原理和实验步骤,并把它们写在实验报告册上,每次总要几乎都写不下,都要加好几页纸。虽然有时候我们不情愿写,但是后来想想还是值得的,因为预习是这一步,很重要,它关系到实验的成败。我觉得我自己准备还是比较充分的,所以很多时候我都能顺利地完成实验。在这些准备的同时我们还需要学会共同学习,科学家很少独立进行研究,他们更多的是在团队中合作工作。如果能与同学或老师经常面对面或通过互联网等形式进行交流,甚至参与老师的科研项目,或者与同学组成学习小组共同学习,那么将会收获更多的知识和乐趣。

我在平时尽量要求自己,争取每节课后提出一个问题。如果没有问题,也可以在老师身边听听其它同学有什么问题。有一些问题可能折射出我们在某个知识点上的欠缺,所以问问题是必要的查漏补缺环节。另外,经常逛逛物理学习交流论坛,参与问题讨论也是件很有乐趣的事。

总之,知之者不如好之者,好之者不如乐之者。态度决定一切,细节决定成败。大学学习是人生事业的真正开始,每一门课程内容都是专业知识体系的有机组成部分。我们作为学生,应该端正学习态度,浓厚学习兴趣,改进学习方法,

重视对所有课程的学习,投入足够的精力和时间,在每一门课程的学习中取得最大收获,充实地度过大学这段宝贵时光。并且我们在学习大学物理的过程中我们应该踏踏实实,不要出现哪些三天打鱼,两天晒网的事,一步一个脚印相信你会很快掌握其中的知识,在一步的在学习的道路上走得更远,让我们共同体会物理学家爱因斯坦的名言:发展独立思考和独立判断的一般能力,应当始终放在首位,而不应当把获取专业知识放在首位。

最后我想说大学物理做为一门基础学科,即使我们认为它对于自己的专业用处不,但 我们也应该好好学,这也是一门学术上的修养的一种培养。态度决定一切,细节决成败。大学学习是人生事业的真正开始,每一门课程内容都是专业知识体系的有机成部分。我们作为学生,应该端正学习态度,浓厚学习兴趣,改进学习方法,重视对所有课程的学习,入足够的精力和时间,在每一门课程的学习中取得最大收获,充实地度过大学这段宝时光。

第16篇:大学物理学习心得

大学物理是工科院校学生必修的一门重要基础课、学位课程。它对培养人才的素质有着极其重要的影响。

1.注重新概念、新内容的学习。从教学内容和要求看,物理学习到了大学阶段确实出现了

一次飞跃,或者说上了一个台阶。客观地讲,这个台阶的梯度不能算小。这就形成了物理难懂难学的现实。

大学物理的内容不是中学内容的重复或简单的扩展,而是在概念上深化、理论上提高,螺旋式上升。有许多新概念出现,如角动量、热学中的“熵”、量子化、能带等。既学习质点的运动,又研究多粒子体系。用爱因斯坦相对论的时空观代替了牛顿的绝对时空观。量子理论取代了能量连续的看法。从宏观到微观,从低速到高速,从经典到近代,大学物理的内容把同学们带向一个又一个美妙而又神奇的物质世界。对这些新概念、新内容,从一开始就要给予充分的理解和足够的重视。学习过程,实际上就是智慧能力的发展过程。问题要一个一个的解决,知识要一点一点的积累。不要等问题成了堆,然后坐山兴叹:物理难懂难学也!

2.培养高等数学来思考、处理物理问题的能力。如果硬要把中学物理和大学物理做个比较的话,我要说,中学主要解决“恒”的问题,如物体在恒力作用下的运动,恒力的功等等;大学主要处理“变”的问题,如变力的冲量,变力的功等等。从数学的角度来说,中学物理是用初等数学解题,而大学物理趋向于用高等数学解题。不少学生不适应这种变化,还停留时间在原来的认识水平上。他们只习惯于把中学的思维、中学的方法生搬硬套到新的物理情境中来,不善于变换认识问题的角度,不善于改变解决问题的方式。不少同学只会用初等数学来处理问题,往往不能正确地用高等数学特别是微积分来表达和分析物理问题。同学们经常把矢量当标量、把变量当常量、把积分运算用代数运算来代替等等。

尽管老师反复强调,但仍有不少学生仍按原来的思路去分析、处理问题,这是思维定势的消极影响,给物理学习带来了障碍。

数学不仅是一种计算工具,更是对物理现象进行抽象、概括的表现手段。在大学物理中,许多概念和规律都是用高等数学的形式表达出来的。用高等数学来理解和处理问题是大学物理给同学们提出的一个新课题和基本要求。同学们一定要多加练习、用心揣摩,尽快进入角色中来。

如果同学们对这个问题不给予足够的重视,不尽快予以突破并获得一定自由度的话,高等数学的应用将成为大学物理学习道路上的一个最大的障碍。

3.养成自觉、自主学习的好习惯

从学习方法的特点看,中学生天天与老师在一起,老师抱着学生走,学生们也习惯了在别人的监督下学习,在老师划定的轨道上运行。而到了大学,老师只讲那些最重要的问题,许多内容是要求大家自学的。教师除了上课答疑与学生见面外,剩余的时间完全由学生自己支配。同学们若不会统筹安排自己的时间,认真自学,多少时间就会白白浪费掉。

人总会一天天长大,一辈子要人抱着走的人是没有出息的。大学要培养的是能够自觉的、自主的从书本和实践获取知识并有创新精神的人才。你看,藏书万卷的图书馆,又有那么多良师益友,不正是学习的大好时机吗!不要让宝贵的时光在无为中度过,珍惜自己的分分秒秒,养成自学的好习惯将会终身受益。

4.积极进取,不要松懈。同学们的学习状态等非智力因素看,许多同学进入大学以后往往有松一口气的想法,甚至高呼60分万岁。因为高三各科在追求升学率的思想支配下,对学生加班加点使学生过于疲劳,加之学生对大学物理与中学物理的质的飞跃认识不足,一旦觉醒过来,已经欠账太多,尽管有的学生加倍去弥补,也收效甚微,他们会因心理平衡受到破坏而失去学习的信心。这方面的例子很多。我原来教过的学生中,还有些同学中学物理成绩很好, 参加奥赛还得过奖。他们有一个糊涂的认识:就凭我中学物理的水平,大学马虎一点,及格总不成问题,就放松了对自己的要求。

结果怎样呢?不幸的是:两次补考都不及格!这方面的教训很多。你想,如果一个学生凭中学那点物理知识都能考及格的话,那么大学物理还有必要开课吗?如果说物理难学,那么大学物理就更难学了。思想上不重视,主观上不努力,上课不认真听讲,课后抄作业之风盛行。像这样,要想学好大学物理是不可能的,甚至想及格都难。还有一点,有的学生所学知识能否马上应用,能否作为谋生的手段作为学习有无兴趣的标准,这是相当错误的。大学不是技术培训,她注重的是人才的科学素质和能力的培养。没有这个素质的培养,你要成为科学的栋梁之材,那是不可能的。

由以上分析我们看到,学生在学习大学物理时,一不留神,学习中便会出现问题、出现障碍。这就要求同学们一开始在思想上便要给予足够的重视,同时要和任课老师密切合作。我们的老师虽然水平不尽相同,但在物理方面总比你们懂得多一些,认真听讲、虚心学习是必要的。

由于考试制度没改变,所以尽管不少人高呼什么素质教育、渗透式教育、创造式教育,但当前的教育基本上还是应试教育。就当前的考试制度而言,死读书、死背书是免不了的。就是说,主要的公式、定理、定义、结论还必须记住。

就大学物理而言,要想考及格也不是一件难事。同学们只要作好三件事:

一是认真读书搞清物理概念。如三大守恒定律的条件和应用,高斯定理、安培环路定理的意义等等。考试中,一般有40分左右是专门考概念的。

二是认真作好习题。大约有20到30分的考题来自习题。这些习题是精心设计的,它可以帮助你理解、掌握所学内容。这样作的目的是激励同学们认真完成作业,巩固所学知识。

三是仔细阅读《大学物理学习指导》。该书内容全面,信息量大,题目典型,题型与考题一致,它是你的良师益友。在这本书上花点时间,你是不会后悔的。

大学物理考试覆盖面很大,几乎所有的知识点都要考到,要全面复习,不要押题、猜题。

考题类型:一是单项选择题,选择a、b、c、d中的一个作答就行,60分左右。我这样说,并不意味着习题中的填空题就不考了,它也可能变为选择题。二是4个计算题,40分左右。考试时间120分钟。

第17篇:大学物理学习心得

大学物理学习心得

《大学物理》是大学生不可缺少的一门公共基础课。学习大学物理对提高学生多种能力和改善学生综合素质都有积极作用,但面对如此之多的物理公式与繁冗的计算过程让同学们对物理产生了恐惧心理,然而在真正的学习中,学好物理并不是像同学们想象的那么困难。那么,怎样才能学好《大学物理》呢?经过我对物理的学习与老师的交流认为应该抓好以下几个环节:

第一、做好准备。在正式开始《大学物理》学习之前,要根据老师对课程体系的介绍,以及在高年级同学那里得到的信息,弄清课程特点和必备的基础知识,结合自己对中学物理的学习情况,提前做好充分准备。当然,复习必要的数学知识、做好课前预习也很重要。

二、科学学习。每个人都有不同的学习习惯和方法偏好,更有参差不齐的专业基础,要正确认识自身,熟悉周围学习条件和学习环境,根据课程特点,把一天中学习效果最好的时间安排给相应课程的学习。

第三、共同学习。科学家很少独立进行研究,他们更多的是在团队中合作工作。如果能与同学或老师经常面对面或通过互联网等形式进行交流,甚至参与老师的科研项目,或者与同学组成学习小组共同学习,那么你会收获更多的知识和乐趣。

第四、课堂学习。课堂学习是学习的主要方式,教师的课堂讲解和示范对于正确理解物理理论有很大帮助,保证课堂学习效果是提高整体学习效率的关键一环。要保证课堂学习效果,就要做好预习、认真听讲、积极思考、跟紧老师思路、理解理论内涵,掌握例题解法、记录课堂笔记,还要把课后复习、完成作业及总结提高与课堂学习相结合。

第五、理解例题。讲解例题是课堂教学的重要组成部分,学习例题也是学会应用理论的开始。教师通过对例题的分析和求解,一方面是要教会学生求解某一类题目的方法,另一方面是要培养学生分析问题的能力,而更为重要的是要加深学生对基本理论的理解、提高应用理论解决实际问题的能力。

第六、完成作业。学习的目的是为了应用,应用也是更为重要的学习。完成作业是课堂所学理论的首次应用,也是对理论掌握程度的实际检测,同时还是深化对理论理解的过程。因此,要认真完成作业,进一步发现和解决存在的问题,扩大学习成果。

第七、复习与总结。复习包括课后复习和考前复习。课后复习要全面回顾课堂学习内容,完善课堂笔记,理清知识重点、难点以及求解习题的基本步骤与技巧,解决完成作业过程中发现的新问题。考前复习的重点在于梳理课程知识体系、研究方法、思想模式等。总结包括阶段总结和课程总结。前者是对一章或一部分相对独立的学习内容的总结,涉及主要内容、基本概念、基本定律、基本公式、基本题型、求解方法,其目的是融会贯通、举一反三。后者是对整个课程学习的全面总结,应在期终考试前进行,主要涉及课程内容、思想方法、研究方法、课程特点、学习心得等,其目的是为后续课程的学习积累经验。

总之,知之者不如好之者,好之者不如乐之者。态度决定一切,细节决定成败。大学学习是人生事业的真正开始,每一门课程内容都是专业知识体系的有机组成部分。作为学生,应该端正学习态度,浓厚学习兴趣,改进学习方法,重视对所有课程的学习,投入足够的精力和时间,在每一门课程的学习中取得最大收获,充实地度过大学这段宝贵时光。

第18篇:大学物理论文

大学物理论文

班级: 学号: 姓名:

摘要:日常生活中,大量的物理现象都存在我们的周围,我们也时时刻刻都在不自觉运用物理知识,所以说,物理学与我们的生活紧密联系。物理学已经成为自然科学中最基础的学科之一。在学习物理学后,可以给很多自然现象一个解释和总结。物理的学习和应用很是值得一谈。

关键词:物理学,联系,感悟 正文:

物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。物理伴随我从初中到大学,使我对物理学的了解更加深入。物理学使我对大自然中很多现象有了新的认知,使我的视野扩大,思维提升。

一、大学物理和高中物理的区别和联系:

大学物理和高中物理之间区别明显易见。从内容上看,中学物理的内容虽然包括了力学,热学,电磁学,光学和波五大部分的基础知识,所用到数学工具也并不多,学习的难度较小。而大学物理的内容虽然也是这些内容,但知识在深度和广度上都有很大加深,同时,大学物理也引入里高等数学的知识,大量的使用微积分的数学工具。从研究的问题来看,例如,中学研究的力是恒力,运动是匀速等,而大学物理研究的是变力和变速等,这主要是由于数学知识的限制。另外,大学物理与某些专业的实际问题息息相关,更注重公式的推导和证明。尽管中学物理与大学物理的区别很多,但这两者也有着一定的联系,两者的联系之处就物理的思想。不管是中学物理还是大学物理,所学习得物理思想是一致,比如说,牛顿三定律,电磁理论,守恒定律与对称性,功能转化等这些思想是没有改变的。

总之,大学物理是中学物理的深入。

二、通过学习大学物理,有什么收获或启示: 大学物理的学习即将结束了,在这一年的学习中感触颇多。 首先,大学物理使我对物理的认知提升了一个层次,大学物理帮我们解决中学物理很多不能解决的问题,这就是一个值得很欣慰的收获。其次,大学物理还融入高等数学的知识,因此,在学习物理知识的同时,也可以运用一下高等数学的知识,更是一件两全其美的事情。

通过对物理学的学习,能解释了自然界很多现象以及生活中很多物体的工作原理。因此,物理学与我们的生活是不可分割,物理知识是我们必须得掌握一项技能以及掌握物理的思考问题的方法。

三、哪些物理内容与以后的专业学习联系更紧密?

我学习的专业是机械设计制造及自动化,在这个专业的学习中力学是永远不可避免。再强调力学重要性也不为过,其中包括:质点运动学、牛顿定律、动量守恒定律和能量守恒定律、刚体的转动。我们学习的《理论力学》,《流体力学》,《热力学基础》和《气体动理论》等都离不开物理学中的力学。另外,物理学中机械波和振动与机械专业的学习也是紧密联系的。所以,物理学对我的专业尤其重要,要很好的掌握物理学的知识。要学会把物理学知识和专业知识融汇到一起。可见,物理是专业知识学习的一项必备工具,物理学对专业学习是不可缺少的。

四、你觉得大学物理应该学什么?怎样学?

学好大学物理首先必须要有良好的自主学习的态度,学会自己独立思考。大学物理会对每个定律、定理和重点公式进行详细推导,并且要求同学们能具体掌握其物理思想和解决问题的方法,那么,我们就要熟练掌握推导过程,更重要的是掌握推导过程中的思想。

另外,学好大学物理还要具备一项技能-----掌握基本的高等数学知识和理解重要的物理概念。大学物理的学习过程中,高等数学是一门必备的工具,所以,我们必须熟练掌握相关高数知识并且学会运用。

掌握物理学解决问题的基本思路和物理学的基本概念和规律。更重要的是学会把物理知识和规律运用到实际问题中来解决问题。因此,在求解问题之前必须对所研究的物理问题建立一个清晰的模型和了解问题的实质, 分析出问题所涉及的物理知识,从而明确解题的思路和方法。只有这样,才能在解完题之后留下一些值得回味的东西,体会到物理问题所蕴含的奥妙和涵义,真正掌握物理学的思想方法。

物理学与我们的生活有着紧密的联系。我们这五彩缤纷世界是不可缺少物理知识,如果没有了物理知识,世界前进的步伐将会被大大停滞。物理学的基本理论和实验方法已经越来越广泛地应用于其他学科,极大地推动了科学技术的创新与革命,极大地促进了社会的发展和人类文明的进步。

参考文献:

1.《物理学》作者:马文蔚

高等教育出版社 2.《物理教学论》作者:袁海泉..高等理科教育出版社

第19篇:《大学物理》(A)教学大纲

《大学物理》(A)教学大纲

适用对象 理工科内地本科生(学分:8 学时:144) 

一、课程的性质和任务

物理学是研究物质结构和性质、运动形态及其相互作用基本规律的科学。物理学包括力学、热学、电磁学、光学及近代物理等五个部分,是近代科学技术的基础之一,是高等院校的一 门重要必修基础课。 

本课程的教学任务 

1 通过本课程的教学,使学生系统地掌握物理学的基本原理、基础知识以及各种运动形态的基本规律,为了学习后继课程提供必要的物理基础。 

2 通过本课程和物理实验的配合,使学生在实验能力、运算能力、抽象思维能力等方面受到初步严格的训练,培养和提高他们分析问题与解决问题的能力。 

3 通过教学实践,使学生能正确认识物理理论的建立和发展过程,逐步培养他们科学的思维方法和研究方法。 

二、课程的教学内容

(一) 绪论:本课程的目的和任务。物理学的研究对象和研究方法。物理学在高等院校各专业教学中的地位。物理学与近代科学技术的联系。 

(二) 经典物理:

1 力学 

(1) 质点运动学:参照系与坐标系。质点。位置矢量。位移、速度与加速度。运动方程。运动叠加原理。切向加速度与法向加速度。 

角位移、角速度、角加速度。角量与线量的关系。 

(2) 质点动力学:牛顿运动定律。惯性、质量、力的概念。力学的单位制和量纲。惯性系。伽利略相对性原理。 

功、功率。动能定理。保守力与非保守力。势能、势能曲线。功能原理。机械能守恒定律。能量转化与守恒定律。 

动量与冲量,动量定理。碰撞。动量守恒定律。 

(3) 刚体的转动:刚体的平动与转动。力矩、转动惯量、转动定律。力矩的功与转动动能。动量矩与冲量矩。动量矩守恒定律。 

2 分子物理学和热力学 

(1) 气体分子运动论:平衡态,理想气体状态方程。理想气体的压强和温度的统计意义。能量按自由度均分原理。理想气体的内能。 

麦克斯韦速度分布律。分子平均碰撞次数和平均自由程。气体内迁移现象与规律。 

(2) 热力学的物理基础:系统的内能、功和热量。势力学第一定律及其对理想气体等值过程中的应用。气体的摩尔热容。绝热过程,多方过程。 

循环过程,卡诺循环。热机的效率。热力学第二定律的两种表述。可逆过程和不可逆过程。卡诺定理。热力学第二定律的统计意义。 

3 电磁学 

(1) 静电场:电荷,电荷量子化,电荷守恒定律。库仑定律。静电场。电场强度,电场强度叠加原理,电场强度的计算。电力线,电通量,真空中的高斯定理。 

电场力的功。电场强度环流。电势能,电势,电势差及其计算。等势面,电场强度与电势梯度的关系。 

导体的静电平衡。导体上的电荷分布。静电屏蔽。电介质的极化,电极化强度。电位移矢量。D、E、P三矢量之间的关系。介质中的高斯定理。 

电容器的电容。简单电容器的电容计算。电场能量,电场能量密度。 

(2) 电流与电场:电流形成的条件。导体内稳恒电场的建立。电源的电动势。电流密度。欧姆定律的微分形式。焦耳一楞茨定律的微分形成。 

一段含源电路的欧姆定律。 

(3) 电流与磁场:基本磁现象。磁场。磁感应强度。 

磁力线,磁通量。磁场中的高斯定理。毕奥—沙伐尔定律。安培环路定律。运动电荷的磁场。 

磁场对载流导线的用途力——安培定律。电流强度单位“安培”的定义。磁场对载流线圈的作用力矩。载流线圈的磁矩。磁力的功。洛仑兹力。带电粒子在磁场中的运动。霍耳效应。 

物质的磁化。磁介质。磁化强度。磁场强度矢量。B、H、M三矢量之间的关系。铁磁质,磁滞现象。 

电磁感应的基本定律。电磁感应现象和能量转换与守恒定律的关系。  动生电动势。用电子理论解释动生电动势。磁场中转动线圈的电动势。 

感生电动势,涡旋电场。涡电流。 

自感与互感。磁场能量,磁场能量密度。 

(4) 电磁理论的基本概念:位移电流。麦克斯韦电磁理论的基本概念。麦克斯韦方程组的积分形式。麦克斯韦方程的微分形式。 

4 振动与波动 

(1) 振动学基础:谐振动。谐振动动力学及运动学方程。频率、周期、振幅和位相。谐振动旋转矢量表示法。谐振动的能量。阻尼振动、受迫振动、共振。同方向谐振动的合成,拍。互相垂直的谐振动的合成。 

(2) 波动学基础:机械波的产生与传播,简谐波。波速、波频与波长的关系。平面简谐波波动方程。波的能量,能流,能流密度。波的吸收。 

惠更斯原理。波的反射与折射。波的叠加原理。波的干涉。驻波。波的衍射与散射。 

5 波动光学 

(1) 法的干涉:光波。光矢量。光的单色性和相干性。相干光的获得。杨氏双缝干涉。光程。等厚干涉(劈尖、牛顿环)。等倾干涉。迈克耳孙干涉仪。时间相干性和空间的相干性。 

(2) 光的衍射:光的衍射现象。惠更斯一菲涅耳原理。单缝衍射。光栅,光栅光谱。小圆孔衍射。光学仪器的分辨率。 

(3) 光的偏振:自然光和偏振光。反射光和折射光的偏振。布懦斯特定律。单轴晶体中光的双折射。偏振片。马吕斯定律。偏振光的干涉。偏振面的旋转。 

(三)近代物理:

1 狭义相对论基础 

经典力学的时空观。狭义相对论基本原理。洛仑兹变换。狭义相对论的时空观(同时性、运动物体长度缩短,时间膨胀)。 

相对论力学的基本方程。质量和速度的关系。质量和能量的关系。 

2 光的量子性 

光电效应,光的波粒二象性。 

三、课程的教学要求

本课程是一门基础理论课,与其他基础课、技术基础课有密切的联系,因此在教学中与大学、中学有关课程既要避免不必要的重复,也要避免脱节。为此应注意: 

1 根据本课程的目的和任务,正确处理好经典物理与近代物理的关系。经典物理是基础,应切实加强;但应避免过分强调经典物理部分,而把近代物理作为可有可无。若因学时不够,要精选与近代科技有密切联系的近代物理内容教学,使学生眼界放宽,思路活跃。 

2 在理论讲授中,应精讲基本内容,注意教学方法,充分利用多媒体教学手段,阐明基本概念及基本规律,分清主次,突出重点,并应注意逐步培养学生自学能力及科学思维能力。 

3 应切实保证大学物理科学系统性和基本内容的完整性,不宜过分强调结合专业。 

4 注意与中学物理的衔接,尽量利用学生已掌握的物理知识,力求避免与中学物理的不必要的重复。随着中学物理教学水平的提高,应在系统归纳、综合阐述基本内容的基础上,进一步提高。 

5 应充分利用高等数学表述物理规律和分析问题。高等数学的运用也要有一个循序渐进过程。例如,力学部分着重矢量代数、导数和微分及简单积分的运用;电学部分则着重线积分和面积分及矢量积分及矢量分析的运用,振动和波动着重微分方程的运用。 

6 具体要求 

(1) 〔力学〕 力学是大学物理学中最基本而又十分重要的部分,它是物理学其他部分的基础,与其他学科有着密切联系。鉴于力学在中学物理中已有一定的基础,应特别注意和中学物理及后续课程之间的衔接和配合,避免不必要的重复。大学物理的力学部分应在中学基础上适当提高。初步运用微积分及矢量代数高等数学,巩固和加深力、动量、功、动能、势能等基本概念,牛顿运动定律及动量定理、功能原理、动量守恒和机械能守恒等基本定律。 

(2) 〔气体分子运动论和热力学基础〕 分子运动论和热力学是从不同的观点、用不同的方法来研究物质热运动的规律。分子运动论是微观理论,热力学是宏观理论。进行这部分教学时,要求学生初步领会微观理论和宏观理论各自的特点,以及两者之间相辅相成的关系。由于学生对微观理论中的统计平均概念,以及宏观理论中的逻辑推理方法还不熟悉、不习惯,因此在教学中应多加诱导,使学生逐步掌握这两种问题的处理方法。 

(3) 〔电磁学〕 电磁运动是物质一种基本运动形式。电磁运动的规律和理论在工程技术中有广泛应用,因此电磁学在大学物理占有很重要的地位。 

在教学中,电磁学部分应以场为主。重点介绍静电场和稳定磁场的基本概念和基本规律,以及随时间变化的磁场与电场间的互相关系。利用微积分矢量分析等来表达电场、磁场所遵循的规律并进行简单的运算。关于电流部分,主要用场的观点阐明稳恒电流中基本概念和基本规律。  (4) 〔振动、波动和波动光学〕 振动和波动是一种普遍而又重要的运动形式。机械振动、机械波和电磁振荡、电磁波虽然机理不同但其运动规律和基本特征却是相同的。在自然界和工程技术中振动和波动是很普遍的。 

振动和波动的重点内容是谐振动的基本特征和规律,同方向同频率振动的合成,平面简谐波方程,波传播能量的概念和波的叠加原理,教学中应着重抓住这些重点,讲清与这些内容有关的物理概念和物理规律。 

在波动光学的教学中,应着重通过光的干涉、衍射和偏振现象认识光的波动性,以及干涉、衍射和偏振的基本定律和应用。 

(5) 〔近代物理〕近代物理在科学技术的发展与应用日趋重要,现代高科技中不少课题是与近代物理有关的。因而在工科物理中它占有一定地位。但是近代物理部分涉及的内容很广泛,在课时日益减少的情况下,不可能在本课程有限时间内讲述详细,所以在内容选择上应有所侧重。在这部分中应以狭义相对论及量子理论为重点。量子理论中则以经典量子论为主。 

四、课程的重点和难点

1 力学 

(1) 质点运动学:位置矢量、位移的矢量性。速度、加速度的瞬时性、矢量性。运动的相对性和独立性。曲线运动中的切向加速度与法向加速度。从已知运动方程求导得到速度和加速度。从已知的加速度通过积分求得运动方程。描述质点运动规律时直角坐标系与自然坐标系的建立。 

圆周运动的角量描述,角量与线量的关系。 

(2) 质点动力学:牛顿运动定律。用牛顿运动定律解题的基本思路和方法。惯性系与伽利略相对性原理。力学量的国际单位制。 

变力做功的计算。保守力做功特征。势能,重力势能、弹性势能的计算式。 

功能原理,机械能守恒定律的条件及其应用。动能定理,动量定理的物理意义、表达式及其应用。 

(3) 刚体的转动:力矩、转动惯量、角动量物理概念。刚体定轴转动的转动定律的物理意义及其应用。平动物体与转动物体所组成系统简单综合性问题的解题思路和方法。 

2 气体分子运动论和热力学基础 

(4) 气体分子运动论:平衡态。理想气体状态方程及其应用。压强与温度的微观意义。能量按自由度均分原理。平均平运动能与温度的关系。气体分子平均动量的计算。理想气体内能的计算及它与温度之间的关系。宏观量与微观量之间的关系。  气体分子速率的统计分布规律。气体分子三种速率的统计意义,公式及其用途。气体分子平均碰撞次数及平均自由程的计算。气体内迁移的实验定律及其定性的微观解释。 

(5) 热力学的物理基础:功、热量、内能的物理意义。做功与传递热量对系统内能改变的等效性。热力学第一定律的物理意义及它在理想气体等值过程中的应用。气体的摩尔热容公式及计算。理想气体等值过程的特点及过程方程。 

循环过程的定义。循环效率的计算。卡诺循环的特点及效率的计算。可逆过程与不可逆过程。卡诺定理的意义。 

热力学第二定律的两种表术及其物理意义及它在判定自然过程进行的方向性所发挥的作用。 

3 电学 

(6) 静电场:电场强度、电势、电势差、电力线、电位移、电通量等物理概念的意义。库仑定律、场强叠加原理、高斯定理的物理意义及其应用。场强与电势梯度的关系。运用高等数学工具计算较有规则的几何形态带电体附近空间的场强、电势。 

(7) 静电场中的导体和电介质:导体静电平衡的条件与特征。静电场中电介质的极化现象及其微观解释。有导体和电介质存在的静电场中,场强及电势的计算。有电介质存在的静电场中,利用高斯定理求解场强的条件和方法。 

电容值的定义。导体及电容器电容的计算。电场的能量密度公式及电场能量的计算。 

(8) 稳恒电流:维持稳恒电流的条件。电源电动势的概念。闭合回路及一段含源电路欧姆定律的意义,实质及其应用。欧姆定律微分形式的物理意义。焦耳一愣茨定律微分形式的物理意义。 

基尔霍夫定律的物理意义及其应用,用它解题时应注意之点。 

(9) 电流的磁场:磁场的物质性。磁感应强度的定义。磁力线与磁通量的定义及磁通量的计算。 

毕奥—沙伐尔定律的应用。用安培环路定律求解磁感应强度的条件和方法。运动电荷的磁感应强度公式。 

(10) 磁场对电流的作用:安培定律及其应用。磁矩的定义。磁矩的功。洛仑磁力的计算。带电粒子在均匀的电场和磁场中的运动规律。霍耳效应的产生及其应用。 

(11) 电磁感应:动生电动势的产生、微观解释及其计算。感生电动势的产生、微观解释及其计算。涡旋电场的产生及其计算。自感与互感现象的产生原因及其应用。互感系数与自感系数的计算。互感电动势与自感电动势的计算。 

磁场能量密度公式。磁场能量的计算。 

(12) 物质的磁性:磁介质概念。磁介质磁化现象的定性解释。磁场强度的定义。铁磁质磁化的特点及其应用。 

(13) 电磁理论的基本概念、电磁振荡、电磁波:位移电流概念。变化电场引起变化磁场;变化磁场引起变化电场的规律。麦克斯韦方程组主积分形式的物理意义。 

4 机械振动与机械波 

(14) 机械振动:谐振动微分运动方程的建立。谐振动的基本特征。振幅、周期、频率、位相的物理概念。利用初始条件计算谐振动的初相和振幅。简谐振动方程的建立。 

谐振动的动能,势能及系统的能量特征、系统能量与振幅的关系。 

同方向同频率谐振动合成的计算。合振动大小与分振动位相差的关系。 

(15) 机械波:振幅、周期、频率、波速等物理概念。平面简谐波动方程的建立及方程各物理量的意义。波的叠加原理,波的相干条件、波干涉现象及干涉加强和削弱的条件。波干涉加强与削弱的计算。 

波的能量特征。能流密度公式。波能量与振动能量的异同。 

驻波的形成条件及特征,它与行波的区别。 

5 波动光学 

(16) 光的干涉:光的相干性及相干光的获得方法。光程、光程差的概念。光干涉加强与削弱的条件。光干涉静态与动态分布特征及其光干涉强弱分布的计算。等倾及等厚干涉的计算及应用。 

(17) 光的衍射:光的衍射现象。惠更斯—菲涅耳原理。半波带法,单缝夫琅和费衍射的特征及强弱分布的计算。光栅衍射光谱。光栅衍射主极大的计算方法。光学仪器的分辨率。 

(18) 光的偏振:自然光与偏振光的概念。偏振光的产生与检验方法。马吕斯定律及布懦斯特定律的应用。光的双折射现象。偏振光干涉的应用。 

6近代物理 

(19) 狭义相对论基础:爱因斯坦相对论的基本假设及相对论的时空观。洛仑兹的坐标变换及速度变换。同时性的相对性。时间的膨胀与长度缩短效应。质量与速度的关系。能量与质量的关系。 

(20) 光的量子性:光电效应的实验定律。爱因斯坦的光子说。爱因斯坦方程。光电效应的应用。光的二象性。 

五、课程的学时分配

六、教材和主要参考书  教材:《物理学》 马文蔚 高等教育出版社 

参考书:《大学物理学》程守洙 高等教育出版社

第20篇:《大学物理》心得体会

《大学物理》心得体会

这学期的《大学物理》课程终于结束了,从这门课程中我受益匪浅,学到了很多物理上的知识,并且从这些知识引申到现实生活,我感到这门课程是非常利于我们成长的课程。

我认为在《大学物理》的学习中最基础的是“极限”。极限是一种思想,正是由于这样一种思想的诞生,使人们解决了许多在生活中所不能解决的问题。自然界中有很多量仅仅通过有限次的算术是计算不出来的,而必须通过分析一个无限变化过程的变化趋势才能求得结果,这正是极限概念和极限方法产生的客观基础。所以,没有极限这种思想,就不会有现在的微积分理论。应用极限方法研究各类变化率问题和几何学中曲线的切线问题,就产生了微分学;应用极限方法研究诸如曲边图形的面积等这类涉及到微小量无穷积累的问题,就产生了积分学。另外,对连续、可导、可积概念的引出均是以极限为基础的。因此,在《大学物理》中最重要、最基础的莫过于极限的概念和极限的方法了。

在经济、商业、生命科学、物理学、社会科学等方面微积分的作用都是显著的。这学期我刚接触《大学物理》,在学习过程中我就认为这门课完全就是运用微积分来解决实际问题。例如求变速问题、变力做功、刚体转动、等等全是在运用微积分解题。

这门课程从一开始的简单到逐渐的加难,一开始学微积分的时候都是丈二和尚摸不着头,因为以前没有接触过这方面的知识,但是通过几次课的连续就逐渐熟悉了大学物理的套路,并且越学越感到简单,利用大学的微积分就可以做出正确的答案,只要细心,学好《大学物理》是没问题的。

总之,这门课对我的影响非常大,让我进入到物理的新世界,让我对物理的热情更加高涨,在此以后我会更加努力的学习。

宋健

041160239 建工2班

大学物理学习方法
《大学物理学习方法.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档