人人范文网 范文大全

合成氨工业

发布时间:2020-03-03 01:41:23 来源:范文大全 收藏本文 下载本文 手机版

武汉市第十一中学2010-2011学年度

研 究 性 学习

制作者:蔡洋、陈西子、郑哲、郑晴、周慧敏

高二(12)班

合成氨工业是基本无机化工之一。氨是化肥工业和基本有机化工的主要原料。从氨可加工成硝酸,现代化学工业中,常将硝酸生产归属于合成氨工业范畴。合成氨工业在20世纪初期形成,开始用氨作火炸药工业的原料,为战争服务;第一次世界大战结束后,转向为农业、工业服务。随着科学技术的发展,对氨的需要量日益增长。50年代后氨的原料构成发生重大变化,近30年来合成氨工业发展很快。

二、合成氨工业的历史

1918年诺贝尔化学奖获得者哈伯与合成氨工业

哈伯(FritzHaber),德国化学家。 1868年12月9日生于德国的布劳斯雷。哈伯先后在柏林大学和海德堡大学学习。1891年他在夏洛顿堡高等工业学院获得博士学位。此后,进人瑞士苏黎世的埃德格内西高等工业学院,在德国化学家尤奇的指导下,成为化学工程专业博士后研究生。毕业后任耶纳大学诺尔教授的助教,后又转人卡尔斯鲁厄高等工业学院任教。

1896年,他任巴登大学讲师。1902年德国本生学会派哈伯到美国做访问学者。

1905年哈伯在慕尼黑出版了《工业气体反应热力学》一书。书中阐述了他对氮、氢合成反应平衡关系的研究。哈伯经过不断探索和不懈努力,从常温常压到高温高压,从火花下反应到使用不同催化剂。最后,在200个大气压和温度在500-600℃时,氢、氮反应得到6%以上的氨。1909年7月,哈伯成功地建立了每小时能产生80克氨的实验装臵。哈伯为合成氨工业奠定了基础。德国巴登苯胺和苏打公司由此看景,投人巨资,聘业化设计。耗时5剂,并设计出能长

到了合成氨的工业化发展前请化学工程专家波施从事工年,终于找到了合适的催化期使用和可操作的简便合成氨装臵。1910年该公司建起了世界第一座合成氨试验厂。1913年建立了年产7000吨规模的合成氨厂。

1914年第一次世界大战开始,在战争期间该厂为德国提供了世界少有的氮化合物,以生产炸药和化肥。此后,用哈伯—波施法生产合成氨,在世界各国广为发展。1912年哈伯出任柏林凯萨—威廉物理化学和电化学研究所所长。威尔施泰特和贝克曼两位化学家与哈伯共同领导了该所的化学部门。民族沙文主义激起的盲目爱国热情,冲昏了威廉物理化学及电化学研究所所长哈伯的头脑。他把自己的实验室变成了为战争服务的军事机构,并担任德国毒气战的科学负责人。

在哈伯的建议下,德军首次在战场上使用毒气,并有效地打击了敌人。不过,当毒气战计划传达给德军师级指挥官时,遭到了所有指挥官的拒绝。只有部队被围困在伊普雷城的阿尔布雷希特公爵予以支持。3个多月后,“毒气战”在伊普雷战役中正式诞生,造成英法联军约15000人中毒,并带走了5000多人的性命。

不过,这场毒气战最终并没有给德国人带来胜利,却让哈伯陷入了众叛亲离的境地。哈伯的妻子克拉克也是化学博士,很清楚毒气的危害。当她恳求丈夫放弃这种惨无人道的武器时,丈夫不仅咒骂她,还声称毒气是“尽快结束战争的人道武器”。哈伯认为,作为战争工具的毒气,并不比“天上飞的弹体”更残忍。这些言行遭到来自国际科学界的一致谴责。

愤怒和无奈之下,克拉克用哈伯的手枪自杀身亡。但这并没有促使狂热的爱国者冷静下来。相反,他坚信自己所做的一切,都是“为了人类的和平,为了祖国的战争”。

1918年,哈伯因研制合成氨作出重大贡献而获得诺贝尔化学奖,由于第一次世界大战中哈伯为德国军方研制杀人化学武器,哈伯被战胜国列入战犯名单。这个消息像一颗重磅炸弹,把整个科学界炸得沸沸扬扬。来自英法两国的科学家尤其激愤。在他们眼里,哈伯是个彻头彻尾的战争魔鬼。他的获奖受到美、英、法等国科学家的指责,认为不应把此奖授予一位不人道的科学家。

瑞典皇家科学院更看重科学本身。他们认为哈伯获奖当之无愧。理由是他在9年前发明的工业化合成氨法,“使人类从此摆脱了依靠天然氮肥的被动局面”。在时人眼里,哈伯就像一个可能“解救世界粮食危机”的科学天使。然而,这个曾经被称为“利用空气制造面包”的人,在得知自己获奖的消息后,还只能躲在瑞士的乡下。他非常害怕自己会被当做战犯审判。哈伯很清楚在过去的几年里,自己在战场上犯下了怎样的罪行。

1920年,哈伯的名字被从战犯名单里剔除,瑞典皇家科学院为他举行了迟到的授奖仪式。这个爱国者也对自己曾经的行为进行了深刻反思。

哈伯在凯萨—威廉研究所任所长期间,所内人员共发表论文700余篇,一战后该所成为世界著名科研中心。1919年该所举办的哈伯学术会议吸引了全欧洲的科学家。到1929年,该所吸引了来自世界许多国家的访问学者。在纳粹当政期间,凯萨—威廉研究所的工作受到影响,哈伯对迫害犹太人的政策十分不满,辞去了所长职务。哈伯已从第一次世界大战时期自己的行为中吸取了教训,成为了一位正直的科学家。他在辞职信中写道:“…我以员工的智慧和特长为基础选择我的合作者,而不是他们的祖先,我不愿意为了我的余生而改变这一方式。”哈伯辞职后曾应邀访问英国剑桥大学。1943年,哈伯在应聘去以色列丹尼尔〃西夫研究所任职途中(有文献说是去美国途中),于1月29日在瑞士的巴塞尔病逝,年仅66岁。

哈伯法合成氨

翻阅诺贝尔化学奖的记录,就能看到1916一1917年没有颁奖,因为这期间,欧洲正经历着第一次世界大战,1918年颁了奖,化学奖授予德国化学家哈伯。这引起了科学家的议论,英法等国的一些科学家公开地表示反对,他们认为,哈伯没有资格获得这一荣誉。这究竟是为什么? 随着农业的发展,对氮肥的需求量在迅速增长。在19世纪以前,农业上所需氮肥的来源主要来自有机物的副产品,如粪类、种子饼及绿肥。

1809年在智利发现了一个很大的硝酸钠矿产地,并很快被开采。一方面由于这一矿藏有限,药也需要大量的硝另辟途径。一些有将来的粮食问题,

另一方面,军事工业生产炸石,因此解决氮肥来源必须远见的化学家指出:考虑到为了使子孙后代免于饥饿,我们必须寄希望于科学家能实现大气固氮。因此将空气中丰富的氮固定下来并转化为可被利用的形式,在20世纪初成为一项受到众多科学家注目和关切的重大课题。哈伯就是从事合成氨的工艺条件试验和理论研究的化学家之一。

利用氮、氢为原料合成氨的工业化生产曾是一个较难的课题,从第一次实验室研制到工业化投产,约经历了150年的时间。1795年有人试图在常压下进行氨合成,后来又有人在50个大气压下试验,结果都失败了。19世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可逆的,增加压力将使反应推向生成氨的方向:提高温度会将反应移向相反的方向,然而温度过低又使反应速度过小;催化剂对反应将产生重要影响。这实际上就为合成氨的试验提供了理论指导。当时物理化学的权威、德国的能斯特就明确指出:氮和氢在高压条件下是能够合成氨的,并提供了一些实验数据。法国化学家勒夏特里第一个试图进行高压合成氨的实验,但是由于氮氢混和气中混进了氧气,引起了爆炸,使他放弃了这一危险的实验。在物理化学研究领域有很好基础的哈伯决心攻克这一令人生畏的难题。

哈怕首先进行一系列实验,探索合成氨的最佳物理化学条件。在实验中他所取得的某些数据与能斯特的有所不同,他并不盲从权威,而是依靠实验来检验,终于证实了能斯特的计算是错误的。在一位来自英国的学生洛森诺的协助下,哈伯成功地设计出一套适于高压实验的装臵和合成氨的工艺流程,这流程是:在炽热的焦炭上方吹人水蒸汽,可以获得几乎等体积的一氧化碳和氢气的混和气体。其中的一氧化碳在催化剂的作用下,进一步与水蒸汽反应,得到二氧化碳和氢气。然后将混和气体在一定压力下溶于水,二氧化碳被吸收,就制得了较纯净的氢气。同样将水蒸汽与适量的空气混和通过红热的炭,空气中的氧和碳便生成一氧化碳和二氧化碳而被吸收除掉,从而得到了所需要的氮气。

氮气和氢气的混和气体在高温高压的条件下及催化剂的作用下合成氨。但什么样的高温和高压条件为最佳?以什么样的催化剂为最好?这还必须花大力气进行探索。以楔而不舍的精神,经过不断的实验和计算,哈伯终于在1909年取得了鼓舞人心的成果。这就是在600C的高温、200个大气压和锇为催化剂的条件下,能得到产率约为8%的合成氨。8%的转化率不算高,当然会影响生产的经济效益。哈怕知道合成氨反应不可能达到象硫酸生产那么高的转化率,在硫酸生产中二氧化硫氧化反应的转化率几乎接近于100%。怎么办?哈伯认为若能使反应气体在高压下循环加工,并从这个循环中不断地把反应生成的氨分离出来,则这个工艺过程是可行的。于是他成功地设计了原料气的循环工艺。这就是合成氨的哈怕法。

走出实验室,进行工业化生产,仍将要付出艰辛的劳动。哈伯将他设计的工艺流程申请了专利后,把它交给了德国当时最大的化工企业——巴登苯胺和纯碱制造公司。这个公司原先计划采用以电弧法生产氧化氮,然后合成氨的生产方法。两相比较,公司立即取消了原先的计划,、组织了以化工专家波施为首的工程技术人员将哈伯的设计付诸实施。

首先,根据哈怕的工艺流程,他们找到了较合理的方法,生产出大量廉价的原料氮气、氢气。通过试验,他们认识到锇虽然是非常好的催化剂,但是它难于加工,因为它与空气接触时,易转变为挥发性的四氧化物,另外这种稀有金属在世界上的储量极少。哈怕建议的第二种催化剂是铀。铀不仅很贵,而且对恒量的氧和水都很敏感。为了寻找高效稳定的催化剂,两年问,他们进行了多达6500次试验,测试了2500种不同的配方,最后选定了含铅镁促进剂的铁催化剂。开发适用的高压设备也是工艺的关键。当时能受得住200个大气压的低碳钢,却害怕氢气的脱碳腐蚀。波施想了许多办法,最后决定在低碳钢的反应管子里加一层熟铁的村里,熟铁虽没有强度,却不怕氢气的腐蚀,这样总算解决了难题。

哈伯的合成氨的设想终于在1913年得以实现,一个日产30吨的合成氨工厂建成并投产。从此合成氨成为化学工业中发展较快,十分活跃的一个部分。合成氨生产方法的创立不仅开辟了获取固定氮的途径,更重要的是这一生产工艺的实现对整个化学工艺的发展产生了重大的影响。合成氨的研究来自正确的理论指导,反过来合成氨生产工艺的研试又推动了科学理论的发展。鉴于合成氨工业生产的实现和它的研究对化学理论发展的推动,决定把诺贝尔化学奖授予哈伯是正确的。哈伯接受此奖也是当之无愧的。

一些英、法科学家认为哈伯没有资格获取诺贝尔奖,原因何在?有人曾认为,假若没有合成氨工业的建立,德国就没有足够的军火储备,军方就不敢贸然发动第一次世界大战。有了合成氨工业,就可以将氨氧化为硝酸盐以保证火药的生产,否则仅依靠智利的硝石,火药就无法保证。当然某些科学的发明创造被用于非正义的战争,科学家是没有直接责任的。英、法科学界对哈伯的指责更多地集中在哈伯在第一次世界大战中的表现。

1906年哈伯成为卡尔斯鲁厄大学的化学教授, 1911年改任在柏林近郊的威廉物理化学及电化学研究所所长,同时兼任柏林大学教授。1914年世界大战爆发,民族沙文主义所煽起的盲目的爱国热情将哈伯深深地卷入故争的漩涡。他所领导的实验室成了为战争服务的重要军事机构:哈伯承担了战争所需的材料的供应和研制工作,特别在研制战争毒气方面。他曾错误地认为,毒气进攻乃是一种结束战争、缩短战争时间的好办法,从而担任了大战中德国施行毒气战的科学负责人。

根据哈怕的建议, 1915年1月德军把装盛氯气的钢瓶放在阵地前沿施放,借助风力把氯气吹向敌阵。

第一次野外试验获得成功。该年4月22日在德军发动的伊普雷战役中,在6公里宽的前沿阵地上,在5分钟内德军施放了180吨氯气,约一人高的黄绿色毒气借着凤势沿地面冲向英法阵地(氯气比重较空气大,故沉在下层,沿着地面移动),进入战壕并滞留下来。这股毒浪使英法军队感到鼻腔、咽喉的痛,随后有些人窒息而死。这样英法士兵被吓得惊慌失措,四散奔逃。据估计,英法军队约有15000人中毒。这是军事史上第一次大规模使用杀伤性毒剂的现代化学战的开始。此后,交战的双方都使用毒气,而且毒气的品种有了新的发展。毒气所造成的伤亡,连德国当局都没有估计到。然而使用毒气,进行化学战,在欧洲各国遭到人民的一致遣责。科学家们更是指责这种不人道的行径。鉴于这一点,英、法等国科学家理所当然地反对授予哈伯诺贝尔化学奖。哈伯也因此在精神上受到很大的震动,战争结束不久,他害怕被当作战犯而逃到乡下约半年。

1919年第一次世界大战以德国失败而告终。战后的一段时间里,哈伯曾设计了一种从海水中提取黄金的方案。希望能借此来支付协约国要求的战争赔款。遗憾的是海水中的含金量远比当时人们想像的要少得多,他的努力只能付诸东流。此后,通过对战争的反省,他把全部精力都投入到科学研究中。在他卓有成效的领导下,威廉物理化学研究所成为世界上化学研究的学术中心之一。根据多年科研工作的经验,他特别注意为他的同事们创造一个毫无偏见、并能独立进行研究的环境,在研究中他又强调理论研究和应用研究相结合。从而使他的研究所成为第一流的科研单位,培养出众多高水平的研究人员。为了改变大战中给人留下的不光彩印象,他积极致力于加强各国科研机构的联系和各国科学家的友好往来。他的实验室里将近有一半成员来自世界各国。友好的接待,热情的指导,不仅得到了科学界对他的谅解,同时使他的威望日益增高。然而,不久悲剧再次降落在他身上。1868年12月9日哈伯出生在德国的布里斯劳(即现在波兰的弗劳茨瓦夫市)的一个犹太商人家庭。1933年希特勒篡夺了德国的政权,建立了法西斯统治后,开始推行以消灭“犹太科学”为已任的所谓“雅利安科学”的闹剧,尽管哈伯是著名的科学家,但是因为他是犹太人,和其他犹太人同样遭到残酷的迫害。法西斯当局命令在科学和教育部门解雇一切犹太人。弗里茨〃哈伯这个伟大的化学家被改名为:“Jew。哈怕”,即犹太人哈伯。他所领导的威廉研究所也被改组。哈伯于1933年4月30日庄严地声明:“40多年来,我一直是以知识和品德为标准去选择我的合作者,而不是考虑他们的国籍和民族,在我的余生,要我改变认为是如此完好的方法,则是我无法做到的。”随后,哈伯被迫离开了为她热诚服务几十年的祖国,流落他乡。首先他应英国剑桥大学的邀请,到鲍波实验室工作。4个月后,以色列的希夫研究所聘任他到那里领导物理化学的研究工作。但是在去希夫研究所的途中,哈怕的心脏病发作,于1934年1月29日在瑞士逝世。

哈怕虽然被迫离开了德国,但是德国科学界和人民并没有忘却他,就在他逝世一周年的那一天,德国的许多学会和学者,不顾纳粹的阻挠,纷纷组织集会,缅怀这位伟大的科学家。

三、世界合成氨工业概况

1、生产能力和产量 合成氨是化学工业中产量很大的化工产品。1982年,世界合成氨的生产能力为125Mt氨,但因原料供应、市场需求的变化,合成氨的产量远比生产能力要低。近年,合成氨产量以苏联、中国、美国、印度等十国最高,占世界总产量的一半以上。

2、消费和用途

合成氨主要消费部门为化肥业,用于其他领域的(主要是高分化工、火炸药工业等)非化肥用氨,称为工业用氨。目前,合成氨年总消

工子统费量(以N计)约为78.2Mt,其中工业用氨量约为10Mt,约占总氨消费量的12%。

3、原料

合成氨主要原料有天然气、石脑油、重质油和煤等。1981年,世界以天然气制氨的比例约占71%,苏联为92.2%、美国为96%、荷兰为100%;中国仍以煤、焦炭为主要原料制氨,天然气制氨仅占20%。70年代原油涨价后,一些采用石脑油为原料的合成氨老厂改用天然气,新建厂绝大部分采用天然气作原料。

4、生产方法

生产合成氨的方法主要区别在原料气的制造,其中最广泛采用的为蒸汽转化法和部分氧化法。

四、合成氨的条件

氨的合成是一个放热、气体总体积缩小的可逆反应。

根据化学反应速率的知识,得知升温、增大压强、及使用催化剂都可以是合成氨的化学反应速率增大。

1、压强:

有研究表明,在400°C,压强超过200MPa时,不使用催化剂,氨便可以顺利合成,但实际生产中,太大的压强需要的动力就大,对材料要求也会增高,这就增加了生产成本,因此,受动力材料设备影响,目前我国合成氨厂一般采用20MPa~50MPa.

2、温度:

从理想条件来看,氨的合成在较低温度下进行有利,但温度过低,反应速率会很小,故在实际生产中,一般选用500°C。

3、催化剂:

采用铁触媒(以铁为主,混合的催化剂),铁触媒在500°C时活性最大,这也是合成氨选在500°C的原因。

最后,制得的氨量也不算多,还可以采取迅速冷却,使气态氨变为液态氨。也可原料重复利用。

五、合成氨的工艺流程

1、原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

2、净化

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

(1) 一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。

变换反应如下: CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

(2) 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前以脱除,以天然气为原料的蒸汽转化法,第道工序是脱硫,用以保护转化催化剂,以重

加一油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位臵。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO

2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

(3) 气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ

3、氨合成

将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g) =-92.4kJ/mol

4、合成氨的催化机理

热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:

xFe + N2→FexN FexN +„H‟吸→FexNH FexNH +„H‟吸→FexNH2

FexNH2 +„H‟吸FexNH3xFe+NH3

在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。

5、催化剂的中毒

催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。

催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永性中毒两种。例如,对于合成氨反应中的铁

久催化剂,O

2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。

六、特点

1、农业对化肥的需求是合成氨工业发展的持久推动力。

世界人口不断增长给粮食供应带来压力,而施用化学肥料是农业增产的有效途径。氨水(即氨的水溶液)和液氨体本身就是一种氮肥;农业上广泛采用的尿素、硝酸铵、硫酸铵等固体氮肥,和磷酸铵、硝酸磷肥等复合肥料,都是以合成氨加工生产为主。

2、与能源工业关系密切。

合成氨生产通常以各种燃料为原料,同时生产过程还需燃料供给能量,因此,合成氨是一种消耗大量能源的化工产品。每吨液氨的理论能耗为 21.28GJ,实际能耗远比理论能耗多,随着原料、工厂规模、流程与管理水平不同而有差异。日产 1000t氨的大型合成氨装臵生产液氨的实际能耗约为理论能耗的两倍。

3、工艺复杂、技术密集。

氨合成是在高压高温和催化剂存在下进行的,为气固相催化反应过程。由于氨合成催化剂(见无机化工催化剂)很易受硫的化合物、碳的氧化物和水蒸气毒害(见催化剂中毒),而从各种燃料制取的原料气中都含有不同数量的这些物质,故在原料气送往氨合成前,需将有害物质除去。因此合成氨生产总流程长,工艺也比较复杂,根据不同原料及不同的净化方法而有多种流程。

七、发展趋势

1、原料路线的变化方向

从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍,自从70年代中东石油涨价后,从煤制氨路线重新受到重视,但因以天然气为原料的合成氨装臵投资低、能耗低、成本低的缘故,预计到20世纪末,世界大多数合成氨厂仍将以气体燃料为主要原料。

2、节能和降耗

合成氨成本中能源费用占较大比重,合成氨生产的技术改进重点放在采用低能耗工艺、充分回收及合理利用能量上,主要方向是研制性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等。现在已提出以天然气为原料的节能型合成氨新流程多种,每吨液氨的设计能耗可降低到约29.3GJ。

3、与其他产品联合生产

合成氨生产中副产大量的二氧化碳,不仅可用于冷冻、饮料、灭火,也是生产尿素、纯碱、碳酸氢铵的原料。如果在合成氨原料气脱除二氧化碳过程中能联合生产这些产品,则可以简化流程、减少能耗、降低成本。中国开发的用氨水脱除二氧化碳直接制碳酸氢铵新工艺,以及中国、意大利等国开发的变换气气提法联合生产尿素工艺,都有明显的优点。

浅析合成氨工业废水处理方法(优秀)

合成氨工业现状及节能技术(DOC)

我国合成氨工业的现状及发展趋势

合成氨

合成氨

合成氨

合成氨工业节能减排技术研究论文

合成氨工业节能减排研究论文[优秀]

合成氨工艺流程

合成氨工艺

合成氨工业
《合成氨工业.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题 工业合成氨 合成氨
点击下载本文文档