人人范文网 范文大全

尾矿库安全监测系统考察总结报告

发布时间:2020-03-02 06:54:24 来源:范文大全 收藏本文 下载本文 手机版

尾矿库安全监测系统考察总结报告

摘要

通过此次山西各地尾矿库的实地考察我们了解了现实中尾矿库的具体内容,其中安全监测(又称在线监测)设备在尾矿库当中的应用是考察的重点,此次考察我们一共考察了9个尾矿库,其中尖山尾矿库是山西省第一个引进成套安全监测设备的矿业单位,同时据我们了解它也是山西省目前在安全监测方面最具权威的单位,在坝体浸润线、坝体水平(沉降)位移、滩顶高程以及库水位等方面的监测已经相当纯熟,因此以尖山尾矿库安全监测系统为例来简述尾矿库安全监测系统的具体内容。

正文

一、尖山尾矿库概况

尖山铁矿是国家大型黑色冶金矿山企业,是太钢集团重要的铁精粉原料生产基地,年产铁精粉320多万t。其城东沟尾矿库距选矿厂5 km,筑坝方式为上游式,采用水力旋流器筑坝工艺同分散放矿相结合的方法堆筑子坝平台。初期坝设在沟口,初期坝地面标高1 276 m,初期坝坝顶标高1 305 m,坝高29 m。尾矿库按原设计选矿厂年处理原矿400万t,尾矿产率60%,尾矿最终堆积标高1 400 m,最大坝高124 m,总库容9 427万m3。按原处理量尾矿库可使用51 年。目前尾矿堆积标高1 354 m,尾矿坝坝高已达78.0 m,从1 354 m到最终堆积标高1 400 m尚有库容6 427万m3,按年处理原矿1 100万t,最终堆积标高提高到1 410 m,尚可使用15 年,属于三等尾矿库。整体布局见下图。

图1.1 尾矿库远景

图1.2

尾矿库远景2

图1.3

尾矿库主坝

图1.4

尾矿库主坝2

图1.5

施工建设中的后期坝

图1.6

尾矿库干滩

图1.7

尾矿库干滩2

二、尾矿库安全监测概况

尖山铁矿是山西省首家投用尾矿库在线监测系统矿山企业,系统于2009年7月30号全部建设完成并投入使用,由北京矿咨信矿业技术研究有限公司设计和承建,主要监测:坝体浸润线埋深、坝体水平(沉降)位移、滩顶高程、干滩特征点高程、库区水位、降雨量,通过对比分析,得出警告、预警和报警信息,实现尾矿库的安全稳定运行。

下面按照各个测量量的相关方面进行阐述:

1、坝体浸润线埋深————渗压管深埋测量

尖山尾矿库浸润线监测是:浸润线观测点按平行坝轴线间距120 m,垂直坝轴线间距100 m布置,总共有39个浸润线观测点。现状条件下,浸润线观测点:1320 m子坝3个,1340 m子坝7个。并采用进口渗压计检测,浸润线埋深控制:最小埋深6m(埋深普遍在15.5—30米)。浸润线检测:浸润线水位测餐的精度不大于15 mm。

据了解渗压管本身很长,它的前端两米不透水,以此为线以上部分为透水层,通过人工钻孔让坝体内的地下水流过,流过时水面的高度平面便形成了所谓坝体一侧的浸润线,通过实时监测浸润线的位置(高度)数据从而有效保证尾矿库安全。值得一提的是,尖山尾矿库对不同时期的后期坝浸润线测量有所区别,前期主要采取图2.1的坚固模型,而随着后期堆积的不断拔高,浸润线测量则采取了联合水位监测仪的方法,如图2.2所示。

图2.1 前几期尾矿库浸润线监测点

图2.2

后几期尾矿库浸润线监测点

2、库水位以及干滩长度监测————溢洪塔底端带有浮子式水位计

前面提过尖山尾矿库分为主坝和子坝,排洪系统使用塔洞方案,溢洪塔为框架式结构,有4个溢洪塔。l#,2#,3#溢洪洞已经封堵埋没,现在只启用4#溢洪塔。其中库水位的监测主要在4个溢洪塔那边,在溢洪塔底端带有浮子式水位计以及监控设备,如图3.2所示据了解溢洪塔测量干滩长度主要是根据干滩长度可以通过沉积滩顶与库水位高差、尾矿库的实际运行坡度计算获得,通过设置安全长度对坝体安全进行预警。

库水位检测采用防感应雷击能力较强的遥测水位计。该水位计是一种浮子传感器型水位计。

图3.1

4号溢洪塔铭牌

图3.2

溢洪塔底端(带有浮子式水位计)

图3.3

溢洪塔远景

3、坝体水平(沉降)位移————GPS定位监测

尖山尾矿库可以说走在了全省坝体位移监测的最前列,率先安装了全套GPS位移监测系统,由于GPS具有精度高、操作性强和易于管理等优点,通过尾矿库监测管理系统可以轻松的做到实时监测坝体位移将数据反馈到管理者界面上。

尾矿库没置了位移观测设施,位移观测点按平行坝轴线问距120 m、垂直坝轴线间距100 m布置,初期坝和尾矿坝共布置39个位移标点。目前子坝1356 1111标高以下,坝体表面位移标点:初期坝2个,1320 m子坝3个,1340 m子坝7个;坝体表面形变检测采用GPS位移检测的方式。

尖山尾矿库坝体形变监测系统,其包括:监测站,包括监测站GPS天线和监测站GPS接收机以及监测站通讯模块;基准站,包括基准站GPS天线和基准站GPS接收机以及基准站通讯模块;以及数据控制模块,连接于监测站和基准站,用于处理来自于监测站和基准站的数据,并对监测站和基准站进行控制。

如图4.1所示,GPS监测点上面安有4个接收天线,用于接收GPS信号从而得到坝体位移信息。不过美中不足的是购买成套的GPS位移监测系统成本过高,对于项目的研究不是很合适,但是在坝体位移监测方面也为我们提供了一个很好的借鉴。

图4.1

GPS监测点

图4.2

GPS监测点远景

4、滩顶高程测量————干滩设置标杆测量

尖山尾矿库干滩自动化监测系统,是在尾矿库干滩上设置多个剖面,每个剖面设两个监测点,在上述监测点处设置干滩高程监测仪,测量该监测点处的高滩高程数据,通过无线传输方式传送至数据采集设备;上述数据采集设备所汇集的高滩高程数据,传送至控制中心计算机中,计算机内的专用软件根据每一个剖面的滩顶和滩内两处高程数据,结合库区水位数据,解算库区的安全高差和调洪高差是否处于尾矿安全生产规范所要求的安全标准内,并根据解算结果自动发出相关预警信息。本实用新型实现了尾矿库干滩数据在各种恶劣条件下的自动化采集,真正实现了尾矿库干滩数据、安全高差、调洪高差在各种条件下的实时监测,具有产业上的利用价值。

如图5.1所示,干滩中等间距设置了10个测量标杆,仔细观察会发现在标杆顶端有一个类似于突起的装置,据了解是小型太阳能装置,能够为标杆的传感器进行供电,从而合理的利用资源,而且这种滩顶高程的测量方法还能够达到很高的标准,能够满足尾矿库的精度要求。

图5.1

滩顶高程测量标杆

图5.2

测量标杆远景

5、太阳能供电装置

尖山尾矿库在环保节能方面也走在了前面,在坝体的一侧设置了专门的太阳能供电模块,称为“采集室”,如图所示,房顶安装有一块太阳能板,据了解在阳光充足的情况下可以对整个系统进行持续供电,不但节省成本,也能避免造成过多的资源浪费和环境污染。

图6.1 太阳能供电模块

图6.2

太阳能采集室

6、视频监控设施

尖山尾矿库在主要6个地点设置了视频监控点,通过安全监测系统对如干滩、尾矿坝大院、初期坝等尾矿坝关键地段进行实时的视频监控,实时的掌握大坝基本情况,对于任何可能的突发状况做出快速有效地处理,更好的提高大坝监测的安全系数。

图7.1 监控室视频监控界面

7、监控室尾矿库管理系统概况

尖山铁矿尾矿库安装了成套在线安全监测系统,其中也包括工程师在监控室中完成实时监控的管理系统,如图所示是我们拍到的尾矿库管理系统的界面和主要功能以及相关数据,在监测过程中用户可以通过设置一定的数值上限作为报警临界值,若超过此值则报警,管理者可以很轻松的完成对大监测的各方面进行实时管理,同时系统模块化设计更方便人们来管理,及时发现问题并作出相关措施,这是监测过程核心的部分。

图8.1

系统模拟尾矿库画面(红色标记干滩监测点位置)

图8.2

GPS观测点分布

图8.3

浸润线观测点分布

图8.4

实时监测数据界面

图8.5

沉降位移监测界面

结合了解到的尾矿库安全监测系统的信息可以看出了解到现在可行的在线监测系统公认的设计要求 ,如下所示:

(1)浸润线观测孔和坝体表面位移标点要按照尾矿库设计单位的设计布设,另外还要考虑尾矿库后续27个浸润线观测孔和27个坝体表面位移标点的扩展性和部分数据线的预先铺设。数据传输用光缆从尾矿库传至矿调度中心。

(2)坝体表面形变检测:采用GPS位移检测的方式,检测精度不大子2 mm。

(3)防洪高差检测:防洪高差的检测是通过液位计检测处理得到的,精度为≤±0.1 m。 (4)库水位检测:库水位测量的精度不大于15mm。

(5)干滩长度检测:干滩长度的检测是通过数据处理得到的,精度为≤±10 m。由于尖山铁矿在实际运行过程中干滩长度近l km,远远大于设计420 m的干滩长度要求,所以对干滩长度检测精度要求较低。

三、收获与不足

此次考察尾矿库之行可以说收获颇丰,相对于泛泛的在实验室查资料凭空想象,实地的考察则显得更加直观明了,现实中跟自己脑子里面想的有很大区别,也让自己对尾矿坝有了一个全新的认识,更加重要的是通过现场调研我们也真正了解了实际的尾矿库安全监测是什么样子、具体用什么方法、采用何种设备以及实际操作状况等信息,同时在监控室里也亲身体验了在尾矿库安全监测系统操作下各种监测如何协调等方面的解决,通过考察真正对尾矿坝安全监测、对咱们的项目规划有了全新的认识。

不过美中不足的是由于实际安装了安全监测系统的尾矿库是集体采购的一整套在线安全监测系统,因此对于具体到每个器件甚至传感器单元的具体信息以及参数等详细信息生产厂家并没有提供,我们也就无法得到具体到节点的有效信息,只能得知一些合作公司的简单信息,具体细节并不是很详细,但是通过此次考察我们还是学到了很多东西,尤其是了解到很多有用的信息,对后面的项目进程都有很大帮助。

四、安全监测系统的可行性方案

综合所考察的9个尾矿库安全监测系统的实际情况可以看出,在监测对象方面可以大体分为浸润线、库水位、干滩长度、干滩标程,坝体位移,降雨量、视频监控等几个方面来监测,通过客户端与服务器连接从而实时的反映出各个检测量的情况,并通过网络向上级机关进行汇报,大大加强了尾矿库的安全系数。对于安全监测的几个方面,结合我们自己的想法,我想提出自己的可行性方案如下:

1.浸润线监测:所有考察的尾矿库都是采用深埋渗压管来实现,通过中间透水部分流过的水面高度来监测浸润线,一般埋深为15.5到30米,在渗压管中安装类似于浮子式水位计的压力传感器,根据水的压强变化来监测,同时还可监测渗流量,这个方法是现在比较成熟的。传感器方面建议采取振弦式渗压计安装在渗压管中,从而实时监测浸润线和渗流量等参数。

2.坝体位移监测:同样的所有尾矿库都是采用GPS监测位移,包括水平位移和沉降位移,这也是一个核心的部分,一套完整的在线监测系统最重要也是最昂贵的就是GPS位移监测模块,只是价格上来说比较昂贵,我曾经考虑过用激光原理来监测位移,但是由于激光的直线性传输使得它很难对位移的细微变化准确监测,而且激光本身也需要耗费大量时间且技术并不成熟,因此这个方法行不通。综合考虑还是应该选用GPS监测系统来实现位移监测,不过我们想所拍到的只是GPS的接收装置,另外在监控室旁边设有GPS基站,以此为基准进行测量,因此我们可以做的应该是接收装置以及后期的无线组网这些工作,具体用到的高精度传感器需要另行购买。 3.干滩长度、库水位:前面已经提到干滩长度和库水位都是通过安装在溢洪塔上面的水位计来实现的,区别在于库水位是直接测量得到,而干滩长度则是通过库水位和干滩长度成反比的关系,同时结合具体的几何关系相似三角形计算得出的因此二者可以合二为一,库水位监测有多种选择,常见的是浮子式,另外还有超声波等,值得一提的是干滩高程的监测就是在标杆上端安装超声波传感器,通过两点间干滩的高度差经计算便可得出干滩长度,因此才会划分成干滩长度和干滩高程两个测量参数。 4.视频监控:我想这个应该是最简单的,现在的视频监控技术越来越成熟,应用也很广泛,只需要选好几个监测点,一般为6到9个点,然后安装摄像头最后组网即可,而且我们的现实条件也允许我们自行制作视频监控设备,十分方便。另外在龙华尾矿库我们还发现除了摄像头他们还加装了夜视仪,也算是一个创新了。

5.系统界面:需要作为补充的是,我们所考察的9个尾矿库中监控室里面除了实时传送的视频监控图像外,还有为了方便监控的管理员系统,正如上面举例的尖山尾矿库安全监测系统界面一样,不同公司做的系统有所不同,但基本功能都差不多,我想到后期我们也需要做出这样的一个系统软件,方便用户对实时了解尾矿库现状并进行管理,使用起来能够方便快捷。

尾矿库在线自动监测系统解决方案

尾矿库监测资料

安全监测系统自检报告

安全监测监控系统管理制度

尾矿库安全生产责任制

尾矿库安全管理制度

尾矿库安全管理制度

尾矿库实时在线安全监测预警系统方案及说明

漓铁尾矿库坝体变形GPS自动监测系统成功案例

安全监测监控系统相关管理制度

尾矿库安全监测系统考察总结报告
《尾矿库安全监测系统考察总结报告.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档