人人范文网 教案模板

化工原理教案模板(精选多篇)

发布时间:2020-11-23 08:36:57 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:化工原理

比容:单位质量的流体所具有的体积,用v表示

剪应力:单位面积上的内摩擦力,以τ

压强:流体的单位表面积上所受的压力,称为流体的压力强度,简称压强

流量:单位时间内通过管道任一截面的流体量

体积流量:单位时间内流体流经管道任一截面的体积,

质量流量:单位时间内流体流经管道任一截面的质量,

流速:单位时间内流体质点在流动方向上所流经的距离,

稳态流动:流体在各截面上的有关物理量仅随位置而变,不随时间改变。

流动边界层:流体流经固体壁面时,由于粘性力的存在,在壁面附近产生了速度梯度,这一存在速度梯度的区域称为流动边界层。

局部阻力:流体流经一定管件、阀门及管截面的突然扩大及缩小等局部地方所引起的阻力。 直管阻力:流体流经一定管径的直管时由于流体的内摩擦而产生的阻力。

绝对粗糙度:壁面凸出部分的平均高度,

相对粗糙度:绝对粗糙度与管道直径的比值

水力半径:流体在流道里的流通截面与润湿周边长度之比,(当量直径为4倍的水力半径) 气缚:离心泵启动时,泵内存有空气,由于空气密度很低,旋转后产生的离心力小,因而叶轮中心区所形成的低压不足以将贮槽内的液体吸入泵内,虽启动离心泵也不能输送液体。 轴功率N:单位时间电动机输入泵轴的能量。

压头:也叫扬程,是离心泵对单位重量流体所提供的有效能量。

容积损失:叶轮出口处高压液体因机械泄漏返回叶轮入口所造成的能量损失。

水力损失:黏性液体流经叶轮通道蜗壳时产生的摩擦阻力以及在泵局部处因流速和方向改变引起的环流和冲击而产生的局部阻力。

机械损失:由泵轴和轴承之间,泵轴和填料函等产生摩擦引起的能量损失。

均相物系:物系内部各处组成均匀且不存在相界面。

床层的自由截面积:单位床层截面上未被颗粒占据的面积,流体可自由通过的面积。 床层的比表面积:单位体积床层中所具有的固体颗粒表面积。

自由沉降:单一颗粒在粘性流体中不受其他颗粒干扰的沉降。

离心沉降:依靠惯性离心力的作用而实现的沉降过程。

过滤:利用重力或压差使悬浮液通过多孔性过滤介质,将固体颗粒截留,从而实现固液分离。 过滤速率:单位四级获得的滤液体积

过滤速度:单位时间通过单位过滤面积的滤液体积。

热传导:物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热能传递。

热对流:流体各部分之间发生相对位移所引起的热传递过程

稳态传热:传热过程中,如果传热系统中各处温度只随位置而变,不随时间而变。 等温面:温度场中同一时刻下温度相同的各点组成的面。

温度梯度:等温面法线方向上的温度变化率。

推荐第2篇:化工原理结晶、萃取教案

结晶、萃取

1.结晶器

用于结晶操作的设备。结晶器的类型很多,按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。结晶槽可用作蒸发结晶器或冷却结晶器。为提高晶体生产强度,可在槽内增设搅拌器。结晶槽可用于连续操作或间歇操作。间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。

1.1强制循环蒸发结晶器

一种晶浆循环式连续结晶器(图1)。操作时,料液自循环管下部加入,与离开结晶室底部的晶浆混合后,由泵送往加热室。

1.2DTB型蒸发结晶器

即导流筒-挡板蒸发结晶器,也是一种晶浆循环式结晶器。 1.3奥斯陆型蒸发结晶器

又称为克里斯塔尔结晶器,一种母液循环式连续结晶器。 2.萃取

液-液萃取又称溶剂萃取,是向液体混合物中加入适当溶剂(萃取剂),利用原混合物中各组分在溶剂中溶解度的差异,使溶质组分A从原料液转换到溶剂S的过程,它是三十年代用于工业生产的新的液体混合物分离技术。随着萃取应用领域的扩展,回流萃取,双溶剂萃取,反应萃取,超临界萃取以及液膜分离技术相继问世,使得萃取成为分离液体混合物很有生命力的单元操作之一。蒸馏和萃取均属分离液体混合物的单元操作,对于一种具体的混合物,要会经济合理化的选择适宜的分离方法。 一般工业萃取过程分为如下三个基本阶段:

1.1混合过程 将一定量的溶剂加入到原料液中,采取措施使之充分混合,以实现溶质由原料向溶剂的转移的过程;

1.2沉降分层 分离出萃取相与萃余相。 1.3脱出溶剂 获得萃取液与萃余液,回收的萃取剂循环使用。翠取过程可在逐级接触式或微分接触式设备中进行,可连续操作也可分批进行。

3.1 液-液萃取设备

和气-液传质过程类似, 在液-液萃取过程中, 要求在萃取设备内能使两相密切接触并伴有较高程度的湍动,以实现两相之间的质量传递;而后,又能较快地分离.但是, 由于液液萃取中两相间的密度差较小,实现两相的密切接触和快速分离.要比气液系统困难的多.为了适应这种特点,出现了多种结构型式的萃取设备。目前,为了工业所采用的各种类型设备已超过30种,而且还不断开发出新型萃取设备。根据两相的接触方式,萃取设备可分为逐级接触式和微分接触式两大类;根据有无外功输入,又可分为有外能量和无外能量两种。工业上常用萃取设备的分类情况如下表: 本接简要介绍一些典型的萃取设备及其操作特性。

3.2混合-澄清槽

混合-澄清槽是最早使用,而且目前仍广泛用于工业生产的一种典型逐级接触式萃取设备。它可单级操作,也可多级组合操作.每个萃取级均包括混合槽和澄清槽两个主要部分。为了使不互溶液体中的一相被分散成液滴而均匀分散到另一相中,以加大相际接触面积并提高传质速率,混合槽中通常安装搅拌装置.也可用脉冲或喷射器来实现两相的充分混合。澄清器的作用是将已接近于平衡状态的两液相进行有效的分离.4.塔式萃取设备

习惯上,将高径比很大的萃取装置统称为塔式萃取设备.为了获得满意的萃取效果, 塔设备应具有分散装置,以提供两相混合和分离所采用的措施不同,出现不同结构型式的萃取塔。

4.1填料萃取塔

用于萃取的填料塔与用于气-液传质过程的填料塔结构上基本相同,即在塔体内支承板上充填一定高度的填料层。萃取操作时,连续相充满整个塔中,分散相以液滴状通过连续相。 5.萃取设备的选择

各种不同类型的萃取设备具有不同的特性,萃取过程中物系性质对操作的影响错综复杂.对于具体的萃取过程选择适宜设备的原则是:首先满足工艺条件和要求,,然后进行经济核算,使设备费和操作费总和趋于最低.萃取设备的选择, 应考虑如下的因素: 5.1所需的理论级数

当所需的理论级数不大于2-3级时,各种萃取设备均可满足要求; 当所需的理论级数较多(如大于4-5级)时,可选用筛板塔;当所需的理论级数再多(如10-20级)时, 可选用有能量输入的设备, 5.2生产能力

当处理量较小时,可选用填料塔,脉冲塔.对于较大的生产能力,可选用筛板塔, 转盘塔及混合-澄清槽.离心萃取器的处理能力也相当大.5.5其它

在选用设备时,还需考虑其它一些因素,如:能源供应状况,在缺电的地区应尽可能选用依重力流动的设备;当厂房地面受到限制时,宜选用塔式设备, 而当厂房高度受到限制时,应选用混合澄清槽。

四、课堂小结

本节课所学知识点比较多,但应分清主次,应重点复习需掌握结晶和萃取的定义,了解相关设备的结构及工作原理。

五、布置作业

课后习题3(34-46)。

推荐第3篇:化工原理教学大纲

《化工原理》(A)教学大纲

《化工原理》(A)教学大纲

课程名称:化工原理 英文名称:Principle of Chemical Engineering 学 分:8.0(理论课程6.5学分, 实验1.5学分) 学 时:104 实验学时:40 教学对象:

化学工程与工艺专业本科生。 教学目的:

本课程是在学生学完预修课程: 高等数学、物理学和物理化学等课程学习的基础上开设的一门专业基础课,是一门工程学科的课程。使学生掌握研究化工生产中各种单元操作的基本原理,过程设备和计算方法。培养学生具有运用课程有关理论来分析和解决化工生产过程中常见实际问题的能力。并为后续专业课程的学习打下必要的基础。

教学要求:

1. 熟练掌握最基本的单元操作的基本概念和基础理论,对单元过程的典型设备具备基础的判断和选择能力;

2. 掌握本大纲所要求的单元操作的基本常规计算方法,常见过程的计算和典型设备的设计计算或选型; 3. 熟悉运用过程的基本原理,根据生产上的具体要求,对各单元操作进行调节;

4. 了解化工生产的各单元操作中的故障,能够寻找和分析原因,并提出消除故障和改进过程及设备的途径。 教学内容: 绪论(2学时)

1.化工过程与单元操作的关系

化工生产过程的特点 化工工艺学与化学工程学的性质 单元操作的任务

2.《化工原理》课程的性质,内容 基础理论 典型单元操作 相关课程 3.《化工原理》课程规律和重要基础概念

物料衡算 能量衡算 单位换算和公式转换平衡关系 过程速率 经济效益 基本要求:

了解《化工原理》课程的性质和学习要求。 重 点:

化工原理课程中三大单元操作的分类和过程速率的重要概念的内涵。 难 点:

使学生通过对课程性质的了解,把基础课程的学习思维逐步转移到对专业技术课程的学习上,在经济效益观点的指导下建立起"工程"观念。 第一章 流体流动(18学时) 1.概述

流体的特性 连续介质模型

2.流体静力学原理和应用

流体密度 流体静压强 流体静力学基本方程 U型压差计 3.流体流动中的守恒定律

流体流动的连续性方程及其应用 定态流动 柏努利方程及其几何意义和应用 流线与轨线 4.流体流动的阻力

管流现象 流动型态--层流和湍流

雷诺数的物理意义和临界值 流动阻力分析 管流阻力计算 牛顿粘性定律 管流速度分布 边界层的发展和和分离 5.流体流动阻力的计算

直管阻力计算式 层流时的摩擦系数 湍流时的摩擦系数 海根-泊稷叶公式样 布拉修斯公式 范宁公式

局部阻力系数法和当量长度法 非圆管道的当量直径计算法 因次分析法 Moody图及其使用 6.管路计算

简单管路与复杂管路 简单管路计算的方程组 管路的设计型计算 管路的操作型计算

空气、水在管中的常用流速范围 简单管路的典型试算法 7.流速和流量的测量

皮托管 孔板流量计 文丘里流量计 转子流量计 基本要求:

熟练掌握流体静力学基本方程式,连续性方程式和柏努利方程式及其应用;正确理解流体的流动类型和流动阻力的概念;掌握流体流动阻力的计算,简单管路的设计型计算和输送能力的核算。了解测速管,文丘里流量计,孔板流量计和转子流量计的工作原理和基本计算。 重 点:

流体流动过程中的基本原理及流体在管内的流动规律;柏努利方程式的应用;流体在管道内的流动阻力产生的原因和摩擦阻力的计算;简单管路的计算。 难 点:

流体的不同流型的摩擦系数及其计算,简单管路的设计型计算和输送能力的核算。 第二章 流体输送机械(12 学时) 1. 概述

离心泵的结构和工作原理 速度三角形 2.离心泵的基本方程 欧拉方程

3.离心泵的特性曲线及影响因素

泵的流量、扬程、轴功率和效率参数 升扬高度 扬程、轴功率、效率与流量的关系曲线 泵的设计点和离心泵的铭牌参数

液体物理性质对特性曲线的影响 泵的转速和叶轮直径对特性曲线的影响。 4.离心泵的工作点和流量调节

管路特性曲线方程式 改变阀门的开度 改变泵的转速及叶轮外径 对离心泵工作点的影响 离心泵的串联和并联 5.离心泵的安装和选型

汽蚀现象 安装高度计算 离心泵的类型 离心泵的选型 6.离心式风机

风机分类 性能参数 特性曲线 风机选型 7.其他类型的流体输送机械 往复泵 喷射泵 齿轮泵 旋涡泵等 风机 基本要求:

了解离心泵的结构及基本方程式;掌握离心泵的性能参数及影响因素、泵的特性曲线、工作点和流量调节;掌握离心泵安装高度的确定原则;正确选用离心泵、风机的型号。了解其它类型流体输送机械。 重 点:

离心泵的特性曲线及其影响因素 ; 管路特性曲线方程式。 难 点:

离心泵的基本方程式 ;离心泵的工作点的改变 ; 离心泵安装高度的计算。 第三章 颗粒流体力学基础与机械分离(14学时) 1.概 述

非均相物系 非均相物系分离的理论依据

颗粒流体力学的研究内容 非均相分离的方法和用途 机械分离 2.颗粒的几何特性

单颗粒的特性 颗粒群的特性 颗粒床层的特性 3.液体过滤与过滤设备

固定床层的流动现象 毛细管束流动模型 模型参数的估值 柯士尼公式和欧根公式 过滤的分类 过滤速度基本计算式 过滤常数和过滤基本方程式及其应用 常见过滤设备的结构 和操作与计算

4.颗粒沉降与沉降设备

重力沉降过程和沉降速度的基本概念 颗粒重力自由沉降计算式 沉降室的工艺计算 离心沉降的基本原理

旋风分离器的工艺计算 5.固体流态化

固体颗粒床层的分类 流态化操作特点 固体流态化的 流体力学特性曲线 流化床的流化空速范围的计算 基本要求 :

球形颗粒和均匀床层的特性的理解;一维固定床层的流动压降的计算。正确理解液体过滤操作的基本原理;掌握过滤基本方程式及其应用;掌握过滤过程及设备的计算和过滤常数的测定方法。了解重力沉降运动的基本原理,掌握重力沉降设备的计算。 重 点:

影响固定床层流动压降的主要因素;恒压过滤基本方程式及其应用;板框过滤机的操作和工艺计算;球形颗粒的重力自由沉降速度的计算;斯托克斯公式;除尘室的生产能力计算。 难 点:

可压缩滤饼的过滤常数的理解与应用;滤布阻力的确定与当量滤饼层概念的引入;颗粒沉降的因次分析法的应用;应用直接判据法计算沉降速度。 第四章 传热及换热器(18学时) 1.概 述

传热的基本方式 冷、热流体热交换的形式 传热速率和热通量及其相互关系 传热在化工生产中的应用 2.热传导

温度场与傅立叶定律 导热系数的物理意义 温度和压力对导热系数的影响

平壁和圆筒壁的热传导过程的特点 壁内温度分布形式 接触热阻

热传导速率的计算式

3.对流传热

对流传热过程分析 对流传热过程的分类 牛顿冷却定律

影响对流传热系数的主要因素 无相变化流体的对流传热系数准数关联式

有相变化流体的传热系数关联式 对流传热系数的一般范围 传热系数计算公式中的解析方法、因次分析法和纯经验法的应用

4.辐射传热

物体的辐射能力 普朗克定律 斯蒂芬--波尔茨曼定律

克希霍夫定律 固体壁面间的辐射传热 对流与辐射的串联传热 对流与辐射的并联传热 5.传热过程计算

冷、热流体间壁传热过程的分解 传热速率方程式及其物理意义

无相变化与有相变化时热负荷的计算 恒温传热与变温传热平均温差的计算 推导对数平均温度差的简化假设条件 总传热系数的意义和计算 传热面积的计算与壁温的估算

换热器的设计型计算 换热器的核算型计算 传热效率法计算 式及其应用 6.换热器

换热器的分类 传热过程的强化途径 换热器的设计与选型 基本要求:

熟练掌握热传导的基本原理,傅立利定律,平壁与圆筒壁的稳定热传导及计算,掌握对流传热的基本原理,牛顿冷却定律,对流传热系数关联式的用法和条件;熟练运用传热速率方程并对热负荷、平均温度差、总传热系数进行计算;要求能够根据计算结果及工艺要求选用合适的换热器。了解列管换热器的结构特点及其应用。

重 点:

傅立叶定律及其一维稳态热传导应用;牛顿冷却定律和影响对流传热系数的主要因素;流体在圆形直管内强制湍流传热及对流传热系数的计算;换热器的热负荷计算,对数平均温度差的计算;总传热系数的计算;换热器的设计型计算。 难 点:

传热过程中传热速率、传热推动力和热阻的基本概念;流体的相态的物理性质,流动状况和类型以及传热设备的型式对对流传热过程的影响;对流传热系数的类比法的应用,换热器的总传热系数与对流传热系数的关系及其简化应用;换热器的核算型计算。 第五章 吸 收(14学时) 1.概述

吸收与传质 物理吸收与化学吸收 吸收与解吸 溶剂的选择 2.汽液相平衡

平衡溶解度 过程方向判断与过程推动力 3.分子扩散

分子扩散速率(菲克定律) 分子扩散传质速率 组分在气相、液相中的分子扩散系数 4.对流传质

吸收过程 吸收机理模型 对流传质速率 总传质系数 5.填料塔中低浓度气体吸收过程的计算

填料塔简介 低浓度气体吸收的特点 物料衡算 填料层高层的计算

传质单元高度的计算 传质单元数的计算 填料吸收塔的设计型计算

填料吸收塔的操作型计算 基本要求: 掌握吸收的概念、类型和目的;了解解吸的概念;掌握溶剂选择的原则;掌握亨利定律三种表达形式及相关的计算;掌握吸收与解吸的过程方向判断及过程推动力的计算。了解菲克定律的适用范围;掌握等摩尔相向分子扩散和分子单向扩散时,分子扩散速率与传质速率之间的关系;掌握摩尔相向分子扩散和分子单向扩散传质速率积分式的区别;了解气、液相分子扩散系数。了解吸收过程;掌握双膜理论;掌握汽、液相总传质系数的计算方法,以及推动力与阻力的关系;掌握气膜控制和液膜控制;掌握物料衡算和操作线方程;掌握汽、液相总传质单元高度及总传质单元数常用的计算方法;掌握设计型和操作型计算;了解其它吸收流程。 重 点:

溶剂选择 , 亨利定律 , 菲克定律 , 双膜理论 , 汽、液相总传质系数 , 操作线 ,平衡线 , 设计型和操作型计算。 难 点:

分子扩散传质速率积分式 ; 操作型的计算及判断题。

第六章 液 体 蒸 馏(14学时) 1.概述

蒸馏原理与蒸馏操作 闪蒸 2.双组分体系的汽液平衡

理想体系的汽液平衡 非理想体系的汽液平衡 3.双组分简单蒸馏 简单蒸馏

4.双组分连续精馏

连续精馏原理与过程分析 基本型连续精馏塔的设计型和操作型计算

其它类型的连续精馏 5.间歇精馏 间歇精馏特点与计算 6.特殊精馏 萃取精馏 恒沸精馏 基本要求:

了解蒸馏与蒸发的区别;掌握相对挥发的定义;了解闪蒸的原理;掌握用安托因方程计算平衡的汽液相组成;掌握 "t~x~y"图线、泡点线和露点线;了解总压对泡点线和露点线的影响;了解正、负偏差溶液的形成和特点。了解简单蒸馏的计算;掌握精馏原理及回流的定义;掌握全塔物料衡算;掌握恒摩尔流假设;掌握五种进料状态;掌握平衡线、q线、精馏段操作线和提馏段操作线;掌握理论板的定义及全塔效率的概念。掌握全回流、最小回流比和最佳加料板位置的概念;掌握进料状态对理论塔板数的影响;掌握设计型计算中图解法、逐板计算法求解理论塔板数的方法;了解吉利兰快速估值法和芬斯克方程求最少理论塔板数。在操作型计算中,掌握进料浓度、回流比的变化对塔顶产品和塔底产品的影响。了解直接蒸汽加热、分凝器、冷液回流、侧线出料和回收塔各自的特点。了解间歇精馏的特点与计算,了解特殊精馏的特点。 重 点:

相对挥发度 , "t~x~y"图线 , 精馏原理 , 恒摩尔流假设 , 进料状态 , 操作线方程 , 操作型计算和设计型计算。

难 点:

"t~x~y"图线 , 精馏原理 , 操作型计算与判断。 第七章 气 液 传 质 设 备(2学时) 1. 概述

塔设备的分类 塔设备的性能指标 2. 填料塔

填料塔的结构 填料的种类 填料塔的流体力学性能和气液传质 填料塔附件 等板高度 3. 板式塔

板式塔的结构 塔板的型式 塔板的流体力学性能 塔板效率 4. 填料塔和板式塔的比较 两种塔型的异同点 塔型的选择 基本要求:

了解填料塔和板式塔的主要构件;掌握塔内气液两相的流动状况和传质特性;了解常见的不正常操作情况和评价设备的基本性能;熟悉常规塔设备的一般计算方法。 重 点:

气体通过填料层的压力降;影响泛点气速的主要因素。板式塔的负荷性能图;筛板塔的设计。 难 点:

填料塔压降通用关联图及其应用;板式塔的操作参数与塔板结构尺寸的关系。 第八章 固 体 干 燥(10学时) 1.概述

2.湿空气的性质和湿度图

湿空气的性质 湿空气的"I-H"图及其应用 3.干燥过程的物料衡算和热量衡算

物料衡算 热量衡算 干燥器出口空气状态的确定 干燥器的热效率和干燥效率 4.干燥速率和干燥时间

物料中所含水分的性质 干燥速率及其影响因素 恒定干燥条件下干燥时间的计算

5.干燥器 干燥器的类型

基本要求: 了解湿分的定义、去湿的方法及干燥的分类;了解干燥过程的必要条件和干燥推动力。掌握湿空气的主要性质,它们的定义和计算公式;掌握湿空气的"I-H"图及其中的五种线;掌握确定湿空气状态的三种条件及由状态点确定空气有关参量。掌握物干燥过程的物料衡算和热量衡算;掌握等焓和非等焓干燥过程确定干燥器出口状态空气;掌握干燥器的热效率和干燥效率的定义。了解物料中所含水分性质;掌握平衡水分与自由水分、结合水分与非结合水分的概念;掌握干燥速率的定义及干燥速率曲线;掌握临界水含量的概念;了解影响恒速干燥和降速干燥的因素。掌握恒速和降速段干燥时间的计算方法。了解干燥器的主要型式及它们的特点。 重 点:

湿空气性质 , 物料衡算和热量衡算 , 干燥速率和干燥速率曲线 , 临界水含量 , 干燥 时间的计算。 难 点:

露点 , 湿球温度 , 绝热饱和温度, 影响恒速干燥和降速干燥的因素。 《化工原理》(A)实验

1.流体流动阻力的测定(4学时) 基本要求:

测定流体流过光滑管与粗糙管的直管阻力,作出实测的摩擦系数与雷诺数曲线,并与教材中推荐的经验曲线或理论关系曲线相比较;测出一定开启度的闸阀的局部阻力系数数值。 重 点:

保证实验中的流动稳定,正确读取转子流量计读数和U型压差计及压差传感器的读数。 难 点:

实验系统的气体排除,倒U型管压差计及压差传感器的的使用。 2.离心泵性能曲线的测定(4学时) 基本要求:

测定离心泵在一定转速下输送水的特性曲线,即压头、轴功率和泵效率与流量曲线。 重 点:

了解离心泵的结构,操作要点;仪器的使用方法各操作参数的测定方法。 难 点:

离心泵的灌泵和启动;真空表和压力表的正确读数;涡轮流量计的正确使用和倍率设置;扭矩仪及压差传感器的正确读数。 3.过滤实验(4学时) 基本要求:

熟悉板框压滤机的结构与操作,对碳酸钙与水悬浮液作恒压过滤实验,测出恒压下的过滤常数,并根据不同压力下的过滤常数值回归出压缩性指数值。 重 点:

悬浮液的配制和输送;过滤过程管路中的阀门正确操作;滤液计量的准确可靠。 难 点:

控制悬浮液的浓度均匀,防止固体颗粒沉淀。 4.固定床与流态化实验(4学时) 基本要求:

熟悉固体颗粒床层的结构与操作,测出气固相床层的流体力学特性曲线,即流动压降与表观气速关系曲线。

重 点:

颗粒床层的均匀性;流动压降的正确测定。 难 点:

控制流量均匀,防止颗粒床层严重的沟流和节涌。 5.传热实验(4学时) 基本要求: 观察水蒸气在管外壁面冷凝的现象;学会用热电阻测量内管壁温的原理及测定方法,测出"水与水蒸汽"或"空气与水蒸汽"体系的传热膜系数,并与由经验式计算值相比较。 重 点:

了解套管换热器的结构;蒸汽中冷凝水和不凝性气体排放;流体流量的稳定;热电阻的温度正确读取。 难 点: 保持蒸汽压力恒定;使传热处于稳定状态;冷凝液的液面恒定。 6.填料塔的传质性能实验(4学时) 基本要求: 观察填料塔内的气液流动现象;学会气相色谱仪、二氧化碳气敏电极的测定方法及原理,测出"二氧化碳、空气与水"体系的体积传质系数。 重 点:

了解填料塔的结构,气液流量的稳定;二氧化碳浓度的正确测定。 难 点:

二氧化碳气敏电极的熟练使用;使传质处于稳定状态;塔底液位的恒定。 7.精镏实验(4学时) 基本要求: 掌握双组分连续精馏塔的实验原理及测定方法,测定"乙醇与水"体系的全塔效率或等板高度。 重 点:

了解精镏塔的结构;全回流条件下的总板效率或等板高度的测定。

难 点:

非理想物系的理论塔板数的求取。 8.干燥曲线测定实验(4学时) 基本要求: 在恒定干燥条件下测定干燥曲线,求出"湿空气,湿毡与水体系"的临界含水量及临界干燥速率;了解称重传感器、自动记录仪和电加热控温仪的原理和使用方法。 重 点:

恒定干燥条件的建立;湿物料的正确配制和秤量。干燥过程中湿物料的含水量随时间的变化规律。 难 点:

准确掌握湿物料的加入水量;正确调节和使用称重传感器。 9.仿真实验(4学时) 基本要求: 掌握每个实验的模拟演示,要求自动评分达到额定标准。 重 点:

实验步骤的正确性,分析模拟实验数据的合理性。 难 点: 准确回答思考题。 10.演示实验(2学时) 基本要求: 通过实物实验的直观教学,对化工单元设备有一个感性认识,加深对化工原理课程理论的理解。 重 点:

掌握单元操作过程中的能量转换、流动现象。 难 点:

能量转换现象分析。 11.实验仪表(2学时) 基本要求: 了解常见仪表的使用原理,熟悉实验仪器的使用方法和操作步骤。 重 点:

热电阻的测定要点,涡轮流量计的操作范围。 难 点:

干燥数据测定仪的正确使用。 12.数据处理(2学时) 基本要求: 通过实验数据处理方法的介绍,掌握数据有效位数、精确度、准确度、误差、误差分析及实验结果的数据处理。 重 点:

实验数据的误差分析及数据处理。 难 点:

实验数据结果表达法。 预修课程:

高等数学、普通物理、物理化学。 考试方式: 理论课闭卷考试。

实验课采用口试结合笔试形式。

考题出自全国《化工原理》专业指导委员会编制的试题库。 参考教材:

1.南京化工大学《化工原理》,化学工业出版社,1995 2.华东化工学院《化工原理》,化学工业出版社,1991 3.天津大学《化工原理》,天津科学技术出版社,1987 4.南京化工大学《化工原理实验》,东南大学出版社,1996

推荐第4篇:化工原理教学大纲

《化工原理》课程教学大纲

上册102 学时,下册60 学时

一、课程性质、目的和任务

《化工原理》课程是化工类及相近专业的一门主要技术基础课,它是综合运用数学、物理、化学等基础知识,分析和解决化工类型生产中各种物理过程(或单元操作)问题的工程学科,本课程担负着由理论到工程、由基础到专业的桥梁作用。该课程教学水平的高低,对化工类及相近专业学生的业务素质和工程能力的培养起着至关重要的作用。

本课程属工科科学,用自然科学的原理(主要为动量、热量与质量传递理论)考察、解释和处理工程实际问题,研究方法主要是理论解析和在理论指导下的实验研究,本课程强调工程观点、定量运算和设计能力的训练、强调理论与实际相结合,提高分析问题、解决问题的能力。学生通过本课程学习,应能够解决流体流动、流体输送、沉降分离、过滤分离、过程传热、蒸发、蒸馏、吸收、萃取和干燥等单元操作过程的计算及设备选择等问题,并为后续专业课程的学习奠定基础。

二、教学基本要求

《化工原理》课程在第

五、六学期(四年制)开设。教材内容分为课堂讲授、学生自学和学生选读三部分,其中课堂讲授部分由教师在教学计划学时内进行课堂教学,作为基本要求内容;学生自学部分由学生在教师的指导下,利用课外时间进行自学,作为一般要求内容;学生选读部分由学生根据自己的兴趣及能力,进行课外选读,不作要求。

本课程教学计划总学时112学时,其中上册102学时(课堂讲授80学时,习题课18学时、课堂讨论2学时,机动2学时);下册60学时(课堂讲授56学时,课堂讨论2学时,机动2学时)。

本课程课件依照学时安排制作,每次课一个文件,内容包括每次课讲授内容,思考题及课后作业。每次课后留2~3个作业题,由学生独立完成,教师可根据情况布置综合练习题和安排习题讨论课。本课程每周安排课外答疑一次(3小时)。

三、教学内容

本课程主要内容包括:

1.流体流动。流体的重要性质;流体静力学;能量衡算方程及其应用;流体的流动现象;流动在管内的流动阻力;管路计算;流量测量。

2.流体输送机械。离心泵的工作原理、性能参数与特性曲线、流量调节以及安装;其他液体输送机械简介;气体输送机械简介。

3.机械分离与固体流态化。颗粒与颗粒床特性;重力沉降与离心沉降的原理和操作;过滤分离原理与设备。

4.液体搅拌。搅拌器的性能和混合机理;搅拌功率简介。

5.传热。传热概述;热传导;对流传热概述;传热过程计算;对流传热系数关联式;辐射传热简介;换热器简介。

6.蒸发。蒸发设备、流程与操作特点;单效蒸发计算;多效蒸发简介。 7.传质与分离过程概论。质量传递的方式;传质设备简介。

8.气体吸收。吸收过程的平衡关系;吸收过程的速率关系;低组成气体吸收的计算(包

1 括物料衡算与操作线方程、吸收剂用量的确定、塔径的计算、传质单元数法计算填料层高度等);吸收系数简介;填料塔的结构与特点;填料塔的流体力学性能。

9.蒸馏。两组分理想溶液的气液平衡;精馏原理与流程;两组分连续精馏的计算(包括理论板和恒摩尔流的概念、物料衡算和操作线方程、进料热状况的影响、理论板层数的计算、回流比的影响及其选择、塔高和塔径的计算等);板式塔的结构;板式塔的流体力学性能与操作特性。

10.液-液萃取和液-固浸取。液-液萃取相平衡;萃取过程的计算;其他萃取技术简介;萃取设备。

11.固体物料的干燥。湿空气的性质及湿度图;干燥过程的物料衡算与热量衡算;物料中所含水分的性质;干燥曲线、干燥速率与干燥速率曲线;干燥器。

12.其他分离方法。结晶的基本概念;结晶过程的相平衡;结晶过程的动力学。

四、学时分配

注: ★—课堂讲授内容

☆—学生自学内容

※—学生选读内容

《化工原理》(上册)

绪论(★)

2学时 第一章

流体流动

22学时

第一节

流体的重要性质 (2学时)

1.1.1 连续介质假定(★) 1.1.2 流体的密度(★)

1.1.3 流体的可压缩性与不可压缩流体(★) 1.1.4 流体的黏性(★) 第二节

流体静力学(3学时) 1.2.1 流量的受力(★) 1.2.2 静止流体的压力特性(★) 1.2.3 流体静力学方程(★) 1.2.4 流体静力学方程的应用(★) 第三节

流体流动概述(2学时) 1.3.1 流动体系的分类(★) 1.3.2 流量与平均流速(☆) 1.3.3 流动型态与雷诺数(★) 第四节

流体流动的基本方程(3学时) 1.4.1 总质量衡算——连续性方程(★) 1.4.2 总能量衡算方程(★) 1.4.3 机械能衡算方程的应用(★) 第五节

动量传递现象(2学时)(★) 1.5.1 层流——分子动量传递(★) 1.5.2 湍流特性与涡流传递(★)

2 1.5.3 边界层与边界层分离现象(★☆)(★) 1.5.4 动量传递小结(★)

第六节

流体在管内流动的阻力(4学时) 1.6.1 管流阻力计算的通式(★) 1.6.2 管内层流的摩擦阻力(★)

1.6.3 管内湍流的摩擦阻力与量纲分析(★) 1.6.4 非圆形管的摩擦阻力(★) 1.6.5 管路上的局部阻力(★) 1.6.6 管流阻力计算小结(★) 第七节

流体输送管路的计算(3学时) 1.7.1 简单管路(★) 1.7.2 复杂管路(★)

1.7.3 可压缩流体管路的计算(※) 第八节

流量测量(2学时) 1.8.1 测速管(★) 1.8.2 孔板流量计(★) 1.8.3 文丘里流量计(★) 1.8.4 转子流量计(★)

第九节

非牛顿型流体的流动(1学时) 1.9.1 非牛顿型流体的流动特性(★) 1.9.2 幂律流体在管内流动的阻力(※)

第二章

流体输送机械

第一节

概述(1学时)

2.1.1 流体输送机械的作用(★) 2.1.2 流体输送机械的分类(★) 第二节

离心泵(8学时)

2.2.1 离心泵的工作原理和基本结构(★) 2.2.2 离心泵的基本方程式(★) 2.2.3 离心泵的性能参数与特性曲线(★) 2.2.4 离心泵在管路中的运行(★) 2.2.5 离心泵的类型与选择(★) 第三节

其他类型化工用泵(3学时) 2.3.1

往复式泵(★) 2.3.2

回转式泵(☆) 2.3.3

旋涡泵(☆)

2.3.4

常用液体输送机械性能比较(☆) 第四节

气体输送和压缩机械(4学时) 2.4.1

气体输送机械的分类(★)

2.4.2

离心式通风机、鼓风和压缩机(★☆) 2.4.3

往复压缩机(★)

16学时

2.4.4

回转鼓风机、压缩机(☆) 2.4.5

真空泵(☆)

2.4.6

常用气体输送机械的性能比较(☆)

第三章

非均相混合物分离及固体流态化

16学时

第一节

沉降分离原理及设备(5学时) 3.1.1 颗粒相对于流体的运动(★) 3.1.2 重力沉降(★) 3.1.3 离心沉降(★)

第二节

过滤分离原理及设备(8学时) 3.2.1 流体通过固体颗粒床层的运动(★) 3.2.2 过滤操作的原理(★) 3.2.3 过滤基本方程(★) 3.2.4 恒压过滤(★)

3.2.5 恒速过滤与先恒速后恒压的过滤(★) 3.2.6 过滤常数的测定(★) 3.2.7 过滤设备(★☆) 3.2.8 滤饼的洗涤(★) 3.2.9 过滤机的生产能力(★) 第三节 离心机(1学时) 3.3.1 一般概念(★)

3.3.2离心机的结构和操作简介(※) 第四节 固体流态化(2学时) 3.4.1 流态化的基本概念(★) 3.4.2 流化床的流体力学特性(★☆) 3.4.3 流化床的浓相区高度和分离高度(☆) 3.4.4 气力输送简介(★☆)

第四章 液体搅拌

第一节

搅拌器的性能和混合机理(2学时) 4.1.1 搅拌设备(★☆)

4.1.2 搅拌作用下流体的流动(★) 4.1.3 混合机理(★) 4.1.4 其他类型混合器(☆) 4.1.5 搅拌器的选型和发展趋势(☆) 第二节

搅拌功率(1学时) 4.2.1 搅拌功率的准数关联式(★) 4.2.2 均相系统搅拌功率的计算(☆) 4.2.3 非均相物系搅拌功率的计算(☆) 4.2.4 非牛顿型流体的搅拌功率(※) 第三节

搅拌器的放大(1学时)

4学时

第五章

传热

18学时

第一节 传热过程概述(2学时) 5.1.1 热传导及导热系数(★) 5.1.2 对流(★) 5.1.3 热辐射 (★)

5.1.4冷热流体(接触)热交换方式及换热器(★)

5.1.5 载热体及其选择 (★) 第二节 热传导(3学时)

5.2.1 平壁一维稳态热传导 (★) 5.2.2圆筒壁的一维稳态热传导(★) 第三节 换热器的传热计算(4学时) 5.3.1 热平衡方程(★)

5.3.2 总传热速率微分方程和总传热系数 (★) 5.3.3传热计算方法(★)

第四节 对流传热(4学时)

5.4.1对流传热机理和对流传热系数(★)

5.4.2对流传热的量纲分析(★)

5.4.3 流体无相变时的对流传热系数(★☆) 5.4.4流体有相变时的对流传热系数(★☆)

5.4.5非牛顿型流体的传热(※) 第五节 辐射传热(2学时) 5.5.1 基本概念和定律 (★) 5.5.2 两固体间的辐射传热(★) 第六节 换热器(3学时)

5.6.1间壁式换热器的结构形式(★) 5.6.2 换热器传热过程的强化(★) 5.6.3 传热过程强化效果的评价 (★) 5.6.4 管壳式换热器的设计和选型(★☆)

第六章

蒸发

第一节 概述

第二节 蒸发设备(3学时) 6.2.1 循环型蒸发器(★) 6.2.2 单程型蒸发器(★)

6.2.3 蒸发设备和蒸发技术的进展(☆) 6.2.4 蒸发器的选型(☆) 6.2.5 蒸发器的辅助设备(☆) 第三节 单效蒸发的计算(5学时) 6.3.1 物料衡算与热量衡算(★) 6.3.2 蒸发器的传热面积(★) 6.3.3 蒸发器的生产强度(★)

10学时

6.3.4 加强蒸汽的节能措施(★) 第四节 多效蒸发(2学时) 6.4.1 多效蒸发的基本流程(★) 6.4.2 多效蒸发的计算(☆)

6.4.3 多效蒸发与单效蒸发的比较(★) 6.4.4 多效蒸发的适宜效数(★) 第五节 生物溶液的增浓(0学时) 6.5.1 生物溶液的蒸发(※) 6.5.2 冷冻浓缩(※)

(下册)

第七章

传质与分离过程概论

第一节

概 述(2学时) 7.1.1 传质分离方法(★) 7.1.2 相组成的表示方法(★)

第二节

质量传递的方式与描述(3.5学时)7.2.1 分子传质(扩散)(★) 7.2.2 对流传质(★) 7.2.3 相际间的传质(★) 第三节

传质设备简介(0.5学时) 7.3.1 传质设备的分类与性能要求(★) 7.3.2 典型的传质设备(★)

第八章

气体吸收

第一节

概 述(0.5学时) 8.1.1 气体吸收过程与流程(★) 8.1.2 气体吸收的分类(★) 8.1.3 吸收剂的选择(★)

第二节

吸收过程的相平衡关系(1学时)8.2.1 气体在液体中的溶解度(★) 8.2.2 亨利定律(★)

第三节 吸收过程的速率关系(2.5学时) 8.3.1 膜吸收速率方程(★) 8.3.2 总吸收速率方程(★) 8.3.3 吸收速率方程小结(★) 第四节 低组成气体吸收的计算(5学时) 8.4.1 物料衡算与操作线方程(★) 8.4.2 吸收剂用量的确定(★) 8.4.3 塔径的计算(★)

8.4.4 吸收塔有效高度的计算(★) 第五节 吸收系数(0.5学时)

6学时16学时 《化工原理》

8.5.1 吸收系数的测定(★) 8.5.2 吸收系数的经验公式(※) 8.5.3 吸收系数的准数关联式(★※) 第六节 其他吸收与解吸(1学时) 8.6.1 高组成气体吸收(※) 8.6.2 化学吸收(※) 8.6.3 解吸(★)

第七节

填料塔(3.5学时)

8.7.1 塔填料(★)

8.7.2 填料塔的流体力学性能与操作特性(★) 8.7.3 填料塔的内件(★)

第九章

蒸馏

18学时

第一节 概述(0.5学时)

第二节 两组分溶液的气液平衡(1学时) 9.2.1 两组分理想物系的气液平衡(★) 9.2.2 两组分非理想物系的气液相平衡(※) 9.2.3 气液相平衡的应用(★) 第三节

单级蒸馏过程(1学时) 9.3.1平衡蒸馏(★) 9.3.2 简单蒸馏(★)

第四节

精馏——多级蒸馏过程(0.5学时) 9.4.1 精馏原理(★) 9.4.2 精馏操作流程(★)

第五节

两组分连续精馏的计算(10学时) 9.5.1 理论板的概念和恒摩尔流假定(★) 9.5.2 物料衡算与操作线方程(★) 9.5.3 理论板层数的计算(★) 9.5.4 回流比的影响及选择(★) 9.5.5 简捷法求理论板层数(★)

9.5.6 几种特殊情况理论板层数的计算(★)

9.5.7 连续精馏装置的热量衡算与精馏过程的节能(★) 9.5.8 精馏过程的操作型计算和调节(☆) 第六节

间歇精馏(1学时)

9.6.1 回流比恒定时的间歇精馏(★) 9.6.2 馏出液组成恒定时的间歇精馏(★) 第七节

特殊精馏(0.5学时) 9.7.1 恒沸精馏(★) 9.7.2 萃取精馏(★) 9.7.3 盐效应精馏(※) 第八节

多组分精馏概述(0学时)

7 9.8.1 流程方案的选择(※) 9.8.2 多组分物系的气液平衡(※) 9.8.3 物料衡算及关键组分(※) 9.8.4 简捷法确定理论板层数(※) 第九节

板式塔(3.5学时)

9.9.1 塔板的类型及性能评价(★) 9.9.2 塔板的结构(★)

9.9.3 板式塔的流体力学性能和操作特性(★) 9.9.4 板式塔工艺尺寸的计算(★)

第十章

液-液萃取和液-固浸取

第一节

液-液萃取概述(0.5学时) 第二节

液-液相平衡(1.5学时) 10.2.1 三角形坐标图及杠杆规则(★) 10.2.2 三角形相图(★) 10.2.3 萃取剂的选择(★)

第三节

液-液萃取过程的计算(3学时) 10.3.1 单级萃取的计算(★) 10.3.2 多级错流萃取的计算(★) 10.3.3 多级逆流萃取的计算(★) 10.3.4 微分接触逆流萃取的计算(★) 第四节

液-液萃取设备(0.5学时) 10.4.1 萃取设备的基本要求与分类(★) 10.4.2 萃取设备的主要类型(☆) 10.4.3 萃取设备的选择(★) 第五节

其他萃取技术简介(0.5学时) 10.5.1 超临界流体萃取(★) 10.5.2 回流萃取(※) 10.5.3 化学萃取(※) 第六节

液-固浸取(0学时) 10.6.1 液-固浸取概述(※) 10.6.2 浸取过程中的平衡关系(※) 10.6.3 单级浸取(※) 10.6.4 多级逆流浸取(※) 10.6.5 浸取设备(※)

第十一章

干燥

第一节

湿空气的性质及湿度图(2.5学时) 11.1.1 湿空气的性质(★) 11.1.2 湿空气的H-I图(★)

第二节

干燥过程的物料衡算与热量衡算(2学时)11.2.1 湿物料的性质(★)

6学时

8学时

11.2.2 干燥系统的物料衡算和热量衡算(★) 11.2.3 空气通过干燥器时的状态变化(★) 11.2.4 干燥系统的热效率(★) 第三节 干燥速率与干燥时间(2.5学时) 11.3.1 物料中水分的性质(★)

11.3.2 恒定干燥条件下干燥时间的计算(★) 11.3.3 变动条件下的干燥过程(★) 第四节

真空冷冻干燥(0学时) 11.4.1 真空冷冻干燥原理(※) 11.4.2 冷冻干燥过程(※) 11.4.3 冻干程序与冻干曲线(※) 第五节

干燥器(0.5学时) 11.5.1 干燥器的主要型式(★☆) 11.5.2 干燥器的设计(※) 第六节

增湿与减湿(0学时)

11.6.1 增湿与减湿过程的传热、传质关系(※) 11.6.2 空气调湿器与水冷却塔(※)

第十二章

其他分离方法

2学时 第一节

结晶 (2学时)

12.1.1 结晶的基本概念(★) 12.1.2 相平衡与溶解度(★) 12.1.3 结晶动力学简介(★) 12.1.4 工业结晶方法与设备(☆) 12.1.5 结晶过程的计算(※) 第二节

膜分离 (0学时) 12.2.1 膜材料与膜组件(※) 12.2.2 膜分离过程的传递现象(※) 12.2.3 各种膜过程简介(※) 第三节

吸附 (0学时) 12.3.1 吸附现象与吸附剂(※) 12.3.2 吸附平衡与吸附速率(※) 12.3.3 工业吸附方法与设备(※) 第四节

离子交换 (0学时)

12.4.1 离子交换原理与离子交换剂(※) 12.4.2 离子交换平衡与交换速率(※) 12.4.3 工艺方法与设备(※)

五、课程考核办法

考试形式:考试课、闭卷考试

成绩评定:平时成绩占总成绩(20%-30%),含实验课成绩、作业出勤情况; 期末考试成绩占总成绩(70%-80%)。

9

推荐第5篇:化工原理学习心得

化工原理学习感想

在本次的化工原理学习中,虽然是短短的半个学期,却让我了解了到了许多平时会接触到,但又不明白为什么的生产原理及仪器构造原理。这门课程主要包括了流体力学基础,流体输送,非均相分离,传热,蒸馏,气体吸收与干燥。

在学习这门课程的时候,我们收获到在学习的这些知识中,用这些知识可以解释生活生产中说用的各种器械,现象,还有处理方法等等。在流体输送机,换热器,蒸馏塔方面,我们懂得了这些器械的运用以及工作原理,懂得对对这些机械减小由于各种原因造成的损失,从而使效率最大化的方法。在流体的流动力学、密度、摩擦等各种因素中,热传导方面,蒸馏,干燥这些知识点,我们学到用这些知识来解决问题。

化学工程原理,对于我们食品科学与工程的学生来说,对我们以后不管是在食品的研究,以及食品分析仪器的运用方面,都可以很好的去理解器械或者是材料成型的原理以及构造,而不是处于陌生的态度去面对这些,这也就是我们所学的要在实际中的用途。如家里的太阳能热水器就是简单的运用了传热的原理:在太阳的照射之下,真空管集热并最大限度的实现光和热的转换,然后通过微循环把热水送至保温水箱,再经过控制系统到用户。这就是替代了传统加热所需要的煤炭,节约资源,环保高效。为我们的生活带来了许多的便利。

虽然接触这门课的时候还是有些困难,但是每一个所学的知识点还是挺清晰明确的,但初次接触,难免有些内容还是理解的不是很好,在一些公式以及原理的运用上不能很好的去联想到实际中,但是我们相信,所学的总会用到的,通过我们的复习以及设计,我们又进一步的对这门课的知识理解了更多。

感谢老师来带我们这门课程,让我们在这门课的学习中能更好的更深层次的去理解。在下半个学期的化工原理实验中,将会用到这门课程所学习到的知识。这是一个非常好的巩固和重新学习的机会。希望我可以更好的掌握化工原理这门课程,这对以后的实验仪器的构造原理的了解会有很大的帮助。

推荐第6篇:《化工原理》(A)教学大纲

《化工原理》(A)教学大纲

英文名称:Principle of Chemical Engineering 学

分:6.5

时:104学时

先修课程:高等数学、普通物理、物理化学、无机化学、有机化学 适用专业:化学工程与工艺专业。

教学目的:

本课程是在学生学完预修课程: 高等数学、物理学和物理化学等课程学习的基础上开设的一门专业基础课,是一门工程学科的课程。使学生掌握研究化工生产中各种单元操作的基本原理,过程设备和计算方法。培养学生具有运用课程有关理论来分析和解决化工生产过程中常见实际问题的能力。并为后续专业课程的学习打下必要的基础。

教学要求:

1. 熟练掌握最基本的单元操作的基本概念和基础理论,对单元过程的典型设备具备基础的判断和选择能力;

2. 掌握本大纲所要求的单元操作的常规计算方法,常见过程的计算和典型设备的设计计算或选型;

3. 熟悉运用过程的基本原理,根据生产上的具体要求,对各单元操作进行调节;

4. 了解化工生产的各单元操作中的故障,能够寻找和分析原因,并提出消除故障和改进过程及设备的途径。

教学内容:

绪论(2学时)

1.化工过程与单元操作的关系

化工生产过程的特点

化工工艺学与化学工程学的性质

单元操作的任务

2.《化工原理》课程的性质,内容

基础理论

典型单元操作

相关课程

3.《化工原理》课程规律和重要基础概念

物料衡算

能量衡算

单位换算和公式转换

平衡关系

过程速率

经济效益 基本要求:

了解《化工原理》课程的性质和学习要求。

点:

化工原理课程中三大单元操作的分类和过程速率的重要概念的内涵。

点:

使学生通过对课程性质的了解,把基础课程的学习思维逐步转移到对专业技术课程的学习上,在经济效益观点的指导下建立起“工程”观念。

第一章

流体流动(18学时)

46 1.概述

流体的特性

连续介质模型 2.流体静力学原理和应用

流体密度

流体静压强

流体静力学基本方程

U型压差计 3.流体流动中的守恒定律

流体流动的连续性方程及其应用

定态流动

柏努利方程及其几何意义和应用

流线与轨线 4.流体流动的阻力

管流现象

流动型态——层流和湍流

雷诺数的物理意义和临界值

流动阻力分析

管流阻力计算

牛顿粘性定律

管流速度分布

边界层的发展和和分离

5.流体流动阻力的计算

直管阻力计算式

层流时的摩擦系数

湍流时的摩擦系数 海根-泊稷叶公式

布拉修斯公式

范宁公式

局部阻力系数法和当量长度法

非圆管道的当量直径计算法

因次分析法

Moody图及其使用

6.管路计算

简单管路与复杂管路

简单管路计算的方程组

管路的设计型计算

管路的操作型计算

空气、水在管中的常用流速范围

简单管路的典型试算法 7.流速和流量的测量

皮托管

孔板流量计

文丘里流量计

转子流量计 基本要求:

熟练掌握流体静力学基本方程式,连续性方程式和柏努利方程式及其应用;正确理解流体的流动类型和流动阻力的概念;掌握流体流动阻力的计算,简单管路的设计型计算和输送能力的核算。了解测速管,文丘里流量计,孔板流量计和转子流量计的工作原理和基本计算。

点:

流体流动过程中的基本原理及流体在管内的流动规律;柏努利方程式的应用;流体在管道内的流动阻力产生的原因和摩擦阻力的计算;简单管路的计算。

点:

流体的不同流型的摩擦系数及其计算,简单管路的设计型计算和输送能力的核算。

第二章

流体输送机械(12 学时)

1. 概述

离心泵的结构和工作原理

2.离心泵的基本方程 欧拉方程

速度三角形

3.离心泵的特性曲线及影响因素

泵的流量、扬程、轴功率和效率参数

升扬高度

扬程、轴功率 效率与流量的关系曲线

泵的设计点和离心泵的铭牌参数

液体物理性质对特性曲线的影响

泵的转速和叶轮直径对特性曲线的影响

4.离心泵的工作点和流量调节

管路特性曲线方程式

改变阀门的开度、改变泵的转速及叶轮直径对离心泵工作点的影响

离心泵的串联和并联

47 5.离心泵的安装和选型

汽蚀现象

安装高度计算

离心泵的类型

离心泵的选型

6.离心式风机

风机分类

性能参数

特性曲线

风机选型

7.其他类型的流体输送机械

往复泵

喷射泵

齿轮泵

旋涡泵等

风机

基本要求:

了解离心泵的结构及基本方程式;掌握离心泵的性能参数及影响因素、泵的特性曲线、工作点和流量调节;掌握离心泵安装高度的确定原则;正确选用离心泵、风机的型号。了解其它类型流体输送机械。

点:

离心泵的特性曲线及其影响因素 ; 管路特性曲线方程式。

点:

离心泵的基本方程式 ;离心泵的工作点的改变 ; 离心泵安装高度的计算。

第三章 颗粒流体力学基础与机械分离(14学时)

1.概 述

非均相物系

非均相物系分离的理论依据

颗粒流体力学的研究内容

非均相分离的方法和用途

机械分离 2.颗粒的几何特性

单颗粒的特性

颗粒群的特性

颗粒床层的特性

3.液体过滤与过滤设备

固定床层的流动现象

毛细管束流动模型

模型参数的估值 柯士尼公式和欧根公式

过滤的分类

过滤速度基本计算式

过滤常数和过滤基本方程式及其应用

常见过滤设备的结构和操作与计算 4.颗粒沉降与沉降设备

重力沉降过程和沉降速度的基本概念

颗粒重力自由沉降计算式

沉降室的工艺计算

离心沉降的基本原理

旋风分离器的工艺计算

5.固体流态化

固体颗粒床层的分类

流态化操作特点

固体流态化的流体力学特性曲线

流化床的流化空速范围的计算

基本要求 :

球形颗粒和均匀床层的特性的理解;一维固定床层的流动压降的计算。正确理解液体过滤操作的基本原理;掌握过滤基本方程式及其应用;掌握过滤过程及设备的计算和过滤常数的测定方法。了解重力沉降运动的基本原理,掌握重力沉降设备的计算。

点:

影响固定床层流动压降的主要因素;恒压过滤基本方程式及其应用;板框过滤机的操作和工艺计算;球形颗粒的重力自由沉降速度的计算;斯托克斯公式;除尘室的生产能力计算。

点:

可压缩滤饼的过滤常数的理解与应用;滤布阻力的确定与当量滤饼层概念的引入;颗粒沉降的因次分析法的应用;应用直接判据法计算沉降速度。

48 第四章 传热及换热器(18学时)

1.概

传热的基本方式

冷、热流体热交换的形式

传热速率和热通量及其相互关系

传热在化工生产中的应用 2.热传导

温度场与傅立叶定律

导热系数的物理意义

温度和压力对导热系数的影响

平壁和圆筒壁的热传导过程的特点

壁内温度分布形式

接触热阻

热传导速率的计算式

3.对流传热

对流传热过程分析

对流传热过程的分类

牛顿冷却定律

影响对流传热系数的主要因素

无相变化流体的对流传热系数准数关联式

有相变化流体的传热系数关联式

对流传热系数的一般范围 传热系数计算公式中的解析方法、因次分析法和纯经验法的应用

4.辐射传热

物体的辐射能力

普朗克定律

斯蒂芬——波尔茨曼定律

克希霍夫定律

固体壁面间的辐射传热

对流与辐射的串联传热

对流与辐射的并联传热

5.传热过程计算

冷、热流体间壁传热过程的分解

传热速率方程式及其物理意义

无相变化与有相变化时热负荷的计算

恒温传热与变温传热平均温差的计算

推导对数平均温度差的简化假设条件

总传热系数的意义和计算

传热面积的计算与壁温的估算

换热器的设计型计算

换热器的核算型计算

传热效率法计算式及其应用 6.换热器

换热器的分类

传热过程的强化途径

换热器的设计与选型

基本要求:

熟练掌握热传导的基本原理,傅立利定律,平壁与圆筒壁的稳定热传导及计算,掌握对流传热的基本原理,牛顿冷却定律,对流传热系数关联式的用法和条件;熟练运用传热速率方程并对热负荷、平均温度差、总传热系数进行计算;要求能够根据计算结果及工艺要求选用合适的换热器。了解列管换热器的结构特点及其应用。

点:

傅立叶定律及其一维稳态热传导应用;牛顿冷却定律和影响对流传热系数的主要因素;流体在圆形直管内强制湍流传热及对流传热系数的计算;换热器的热负荷计算,对数平均温度差的计算;总传热系数的计算;换热器的设计型计算。

点:

传热过程中传热速率、传热推动力和热阻的基本概念;流体的相态的物理性质,流动状况和类型以及传热设备的型式对对流传热过程的影响;对流传热系数的类比法的应用,换热器的总传热系数与对流传热系数的关系及其简化应用;换热器的核算型计算。

第五章 气 体 吸 收(16学时)

1.概述

吸收与传质

物理吸收与化学吸收

吸收与解吸

溶剂的选择

2.汽液相平衡

平衡溶解度

过程方向判断与过程推动力

49 3.分子扩散

分子扩散速率(菲克定律)

分子扩散传质速率

组分在气相、液相中的分子扩散系数

4.对流传质

吸收过程

吸收机理模型

对流传质速率

总传质系数

5.填料塔中低浓度气体吸收过程的计算

填料塔简介

低浓度气体吸收的特点

物料衡算

填料层高层的计算

传质单元高度的计算

传质单元数的计算

填料吸收塔的设计型计算

填料吸收塔的操作型计算

基本要求:

掌握吸收的概念、类型和目的;了解解吸的概念;掌握溶剂选择的原则;掌握亨利定律三种表达形式及相关的计算;掌握吸收与解吸的过程方向判断及过程推动力的计算。了解菲克定律的适用范围;掌握等摩尔相向分子扩散和分子单向扩散时,分子扩散速率与传质速率之间的关系;掌握摩尔相向分子扩散和分子单向扩散传质速率积分式的区别;了解气、液相分子扩散系数。了解吸收过程;掌握双膜理论;掌握汽、液相总传质系数的计算方法,以及推动力与阻力的关系;掌握气膜控制和液膜控制;掌握物料衡算和操作线方程;掌握汽、液相总传质单元高度及总传质单元数常用的计算方法;掌握设计型和操作型计算;了解其它吸收流程。

点:

溶剂选择 , 亨利定律 , 菲克定律 , 双膜理论 , 汽、液相总传质系数 , 操作线 ,平衡线 , 设计型和操作型计算。

点:

分子扩散传质速率积分式 ; 操作型的计算及判断题。

第六章 液 体 蒸 馏(12学时) 1.概述

蒸馏原理与蒸馏操作

闪蒸

2.双组分体系的汽液平衡

理想体系的汽液平衡

非理想体系的汽液平衡

3.双组分简单蒸馏

简单蒸馏

4.双组分连续精馏

连续精馏原理与过程分析

基本型连续精馏塔的设计型和操作型计算

其它类型的连续精馏 5.间歇精馏

间歇精馏特点与计算

6.特殊精馏

萃取精馏

恒沸精馏

基本要求:

了解蒸馏与蒸发的区别;掌握相对挥发的定义;了解闪蒸的原理;掌握用安托因方程计算平衡的汽液相组成;掌握 “t~x~y”图线、泡点线和露点线;了解总压对泡点线和露点线的影响;了解正、负偏差溶液的形成和特点。了解简单蒸馏的计算;掌握精馏原理及回流的定义;掌握全塔物料衡算;掌握恒摩尔流假设;掌握五种进料状态;掌握平衡线、q线、精馏段操作线和提馏段操作线;掌握理论板的定义及全塔效率的概念。掌握全回流、最小回流比 50 和最佳加料板位置的概念;掌握进料状态对理论塔板数的影响;掌握设计型计算中图解法、逐板计算法求解理论塔板数的方法;了解吉利兰快速估值法和芬斯克方程求最少理论塔板数。在操作型计算中,掌握进料浓度、回流比的变化对塔顶产品和塔底产品的影响。了解直接蒸汽加热、分凝器、冷液回流、侧线出料和回收塔各自的特点。了解间歇精馏的特点与计算,了解特殊精馏的特点。

点:

相对挥发度 , “t~x~y”图线 , 精馏原理 , 恒摩尔流假设 , 进料状态 , 操作线方程 , 操作型计算和设计型计算。

点:

“t~x~y”图线 , 精馏原理 , 操作型计算与判断。

第七章 气 液 传 质 设 备(2学时)

1. 概述 塔设备的分类 2. 填料塔 填料塔的结构 填料塔附件

3. 板式塔 板式塔的结构 塔设备的性能指标 填料的种类

等板高度 塔板的型式

塔板的流体力学性能

塔板效率

填料塔的流体力学性能和气液传质

4. 填料塔和板式塔的比较 两种塔型的异同点

塔型的选择

基本要求:

了解填料塔和板式塔的主要构件;掌握塔内气液两相的流动状况和传质特性;了解常见的不正常操作情况和评价设备的基本性能;熟悉常规塔设备的一般计算方法。

点:

气体通过填料层的压力降;影响泛点气速的主要因素。板式塔的负荷性能图;筛板塔的设计。 难

点:

填料塔压降通用关联图及其应用;板式塔的操作参数与塔板结构尺寸的关系。

第八章 固 体 干 燥(10学时)

1.概述

2.湿空气的性质和湿度图

湿空气的性质

湿空气的“I—H”图及其应用

3.干燥过程的物料衡算和热量衡算

物料衡算

热量衡算

干燥器出口空气状态的确定

干燥器的热效率和干燥效率

4.干燥速率和干燥时间

物料中所含水分的性质

干燥速率及其影响因素

恒定干燥条件下干燥时间的计算

5.干燥器

干燥器的类型

基本要求:

了解湿分的定义、去湿的方法及干燥的分类;了解干燥过程的必要条件和干燥推动力。掌握湿空气的主要性质,它们的定义和计算公式;掌握湿空气的“I—H”图及其中的五种线;掌握确定湿空气状态的三种条件及由状态点确定空气有关参量。掌握物干燥过程的物料 51 衡算和热量衡算;掌握等焓和非等焓干燥过程确定干燥器出口状态空气;掌握干燥器的热效率和干燥效率的定义。了解物料中所含水分性质;掌握平衡水分与自由水分、结合水分与非结合水分的概念;掌握干燥速率的定义及干燥速率曲线;掌握临界水含量的概念;了解影响恒速干燥和降速干燥的因素。掌握恒速和降速段干燥时间的计算方法。了解干燥器的主要型式及它们的特点。

点:

湿空气性质 , 物料衡算和热量衡算 , 干燥速率和干燥速率曲线 , 临界水含量 , 干燥 时间的计算。

点:

露点 , 湿球温度 , 绝热饱和温度, 影响恒速干燥和降速干燥的因素。

考试方式:

化工原理采用闭卷考试。

考题出自全国《化工原理》专业指导委员会编制的试题库。

参考教材:

1.管国锋,赵汝溥.《化工原理》(第二版),化学工业出版社,2003 2.陈敏恒,丛德滋,方图南,齐鸣斋.《化工原理》上册(第二版),化学工业出版社,1999 3.陈敏恒,丛德滋,方图南,齐鸣斋.《化工原理》下册(第二版),化学工业出版社,2000 4.柴诚敬,张国亮.《化工流体流动与传热》,化学工业出版社,2000 5.贾绍义,柴诚敬.《化工传质与分离过程》,化学工业出版社,2001 6.冯晖,居沈贵,夏毅.《化工原理实验》,东南大学出版社,2003

执笔人:居沈贵

52

推荐第7篇:《化工原理》教学大纲.

《化工原理》教学大纲

课程名称:中文名称 :化工原理;英文名称:Principle of Chemical Engineering 课程编码:092077 学 分:2.0分

总 学 时:32学时(理论32学时) 适应专业:给排水

先修课程:高等数学、大学物理、普通化学、计算技术等。 执 笔 人:吴洪特、傅家新

审 订 人:

一、课程的性质、目的与任务

《化工原理》学科专业基础课。

化工原理也称“化工单元操作”或“化工过程与设备”,该课程由理论教学、课后实验二部分组成。①该课程重点阐述单元操作的基本原理和设备结构,扼要介绍相关的传递过程基础,是化学工程、化工工艺及其相近专业的一门专业主干必修课;②它以高等数学、物理及物理化学、计算技术为基础,将自然科学的普遍规律应用于解决工程问题,是承前启后、由理及工的桥梁;③该课程主要研究化工生产过程中以物理加工过程为主要背景归纳而成的若干共性规律,并应用这些共性规律进行设计计算、指导操作、强化过程及延伸拓展;④该课程强调工程观点、定量运算、实验技能和设计能力的训练,强调理论联系实际,培养学生分析和解决工程问题的能力。

通过对该课程的学习,主要解决流体流动等单元操作中有关过程与设备的设计和选型问题

二、教学内容与学时分配

绪论

(2学时)

一、课程背景、内容;

二、贯穿课程的三大守恒定律;

三、研究方法;

四、工程观点 第一章

流体流动

(10学时)

本章重点和难点:

一、静力学方程;

二、柏努利方程、

三、连续性方程。第一节 流体静力学方程及应用

一、密度;

二、压力的表示方法;三流体静力学方程;

四、应用 第二节 流体流动的基本方程

一、基本概念;

二、连续性方程;

三、机械能衡算方程 第三节 流体流动现象

一、流动型态;

二、湍流基本概念;

三、管内流动分析;

四、边界层及分离 第四节 管内流体的阻力损失

一、沿程损失计算及层流阻力;

二、湍流阻力及摩擦系数 第四节 管内流体的阻力损失 局部损失 第五节 管路计算 简单管路

第二章

流体输送机械

(4学时)

本章重点和难点:

一、离心泵特性;

二、工作点流量调节;

三、离心泵的安装高度。第一节 离心泵

一、离心泵工作原理、部件;

二、离心泵的压头;

三、离心泵的主要参数;

四、离心泵的特性曲线及应用;

四、离心泵的工作点;

五、离心泵的安装高度;

六、离心泵类型、选用 第二节 其他类型泵

第三章 机械分离与固体流态化

(6学时)

本章重点和难点:

一、沉降分离;

二、过滤计算。第一节 筛分 (自学) 第二节 沉降分离

一、沉降原理;

二、重力分离设备;

三、离心分离设备 第三节 过滤

一、概述;

二、过滤基本理论;

三、过滤计算;

四、滤饼洗涤;

五、生产能力计算 第四章

搅拌(自学)

(0学时)

第一节 搅拌装置概述

搅拌功率 第二节 搅拌装置设计

第五章

传热

(10学时)

本章重点和难点:

一、三种传热方式(导热、对流、辐射);

二、传热计算方法 第一节 概述 第二节 热传导

一、傅立叶定律;

二、稳定热传导计算 第三节 两流体间的热量传递

一、传热分析;

二、传热速率和传热系数;

三、间壁流体热交换及总传热系数;

四、传热速率方程及热量衡算;

五、平均温差计算;

六、壁温计算

第四节 给热系数

一、给热系数的影响因素;

二、无相变对流传热;

三、蒸气冷凝的给热系数;

四、液体沸腾的给热系数

三、教学基本要求

课堂教学应力求使学生弄清基本概念,熟练掌握基本内容。在了解基本概念的基础上,应当结合专业特点,理论联系实际,引导学生学会分析问题和解决问题的能力,努力克服死记硬背个别名词概念和条文的学习方法。教学方法上应贯彻少而精、启发式和形象化等原则,通过实物、挂图、幻灯、录象、课堂演示及课外实验等各种途径加深学生的印象,提高教学效果。授课教师除应吃透教材内容外,还应广泛阅读有关参考材料,注意本学科的发展,随时修改教材中已过时的内容,并适当介绍一些重要的新进展。

四、大纲说明

本大纲对每个章节的例题示范及习题讲授课时安排略显不足,实际上,结合我校学生的实际情况,根据多年的教学经验,化工原理的例题讲授不应少于总理论学时的三分之一。由于现在学生的工程计算能力普遍比较差,对工程计算问题应给予强化是化工原理的主要任务,因此,一些主要章节的例题讲解应不少于6学时。

六、教学参考书 1.谭天恩等,《化工原理》第三版,化学工业出版社。 2.天津大学化工原理教研室编,《化工原理》第四版,化学工业出版社。

推荐第8篇:化工原理论文

化工原理仿真实验在教学实践中的研究论文 院系:江苏师范大学科文学院生物化学系

姓名:周红霞

班级:10生物

学号:108316130

摘要:采用图形软件及动画设计软件共同开发的化工原理仿真实验系统以其耗时短,成本低,条件多样化的优点已成为一种发展趋势。本文重点阐述仿真实验的内容、优点及实践意义。 关键词:化工原理实验 仿真实验

正文:随着时代的发展和科学技术的进步,传统的教学思想、教学方法、教学手段等都面临着前所未有的挑战,特别是计算机、多媒体技术、网络技术等都已广泛应用于教学各领域,引发了教学方法和教学手段的革命。仿真实验将成为一种发展趋势。在这样的形势下,化工原理实验课程传统的教学方法也在进行着新的尝试与改革, 化工原理仿真实验也在化工原理实验教学中崭露头角。目前大学里开设的化工原理实验课大都采用传统的分组实验的形式,由于受到场地和实验装置以及课时和师资的限制,很难实现学生个人独立完成实验的目的。很多学生只是听听老师的讲解,看看其他同学做的实验,然后根据同组的数据写出实验报告,就算做完了一个实验。通常只是走一个过场,多数学生并没有什么实际操作,这种现象非常普遍。引入仿真实验教学则在很大程度上解决了这个问题。根据我在仿真实验系统开发中的体会,下面谈点粗浅认识和看法。

江苏师范大学科文学院

1仿真实验的内容

仿真一词译自英文Simulation ,通常译作“模拟”,仿真是利用系统模型对真实系统或设想系统的本质和规律进行研究、分析和实验的方法。化工原理实验教学中的仿真实验则是以真实的实验原理、实验现象、实验过程和实验数据为基础,在计算机上通过动态数学模型进行模拟实验现象,通过互动动画模拟在现场的真实操作,并产生和真实实验一样的操作结果。它主要包括六方面的内容。

1)选择不同的实验装置:化工原理包括八个实验: ①离心泵性能曲线测定实验; ②流量计曲线标定; ③流体流动阻力系数测定实验; ④换热实验; ⑤精馏实验; ⑥吸收实验; ⑦干燥实验;⑧管路特性曲线 这八个实验基本上包括了化工原理实验课程的主要内容,是最具有代表性的八个实验。在仿真软件中均有设置。

2)实验指导:与实验讲义相关的内容介绍,包括实验目的、实验原理、实验设备、计算公式、实验操作以及注意事项等,也均有详尽的论述。

3)仿真操作:对虚拟装置进行仿真操作。操作界面直观、简洁、友好,使学生读取数据方便而不失真实,特别设计局部放大功能,需要读取数据的仪表、气压计等,都可以放大到最清晰的效果。在实验操作上,也采用相似的设计,感觉真实而又简单明了。

4)数据处理:对实验操作的结果,进行数据的记录、计算、绘制曲线。数据记录由软件或学生自己完成,软件自动生成记录表格,数据处理部分将计算并将结果自动列表,通过连接打印机将实验报告打印出来。这一部分也可以由学生手动计算。

5)考题测试:通过内置题库对学生进行测试。

2 仿真实验的优点

仿真实验与传统的化工原理实验相比较,具有以下明显的优点:

1)仿真实验投资少,维护方便:化工原理实验装置一般价格较高,并且占地大,对于学生较多的班级很难做到人均一台装置,而仿真实验由于由每个学生利用仿真实验软件在计算机上运行,这就解决了学生多而实验装置少的问题。

2)实验操作简便,工艺流程形象逼真:化工原理实验课程对实验装置的结构、实验原理的讲解都是在课堂上进行的,既不够形象、直观,又呆板;而仿真实验的计算技术、图形和图像技术,可以方便、迅速而形象地再现出教学实验装置、实验过程和结果。这种既具体形象又生动逼真的教学,使学生产生如亲临实验现场一般的体验。

3)数据处理、计算、结果分析自动化:化工原理实验的数据处理大多数是一个繁琐的过程,学生往往需要一到两天的时间, 才能完成实验报告。采用仿真实验, 记录实验数据后, 数据处理部分, 计算机可将结果自动列表, 并将数据在坐标图上自动描点, 然后准确的回归并画出连续、平滑的曲线, 大大减少了数据处理所用的时间。

4)仿真实验软件极具扩展性由于仿真实验采用模块化开发技术,这样不仅便于软件的扩展,而且可以增加新的实验装置,教师可根据需要自行增加内容。

3 仿真实验的运用意义

工原理及实验是化工学科的重要技术基础课, 它是化工、轻工、

生物工程、制药工程等专业的必修课。高校化工原理实验教学中的仿真实验一般可分两种情况进行。第一种情况是学校没有化工原理实验装置,可以利用仿真实验完全代替真实实验,模拟实验操作效果;或者只有一小部分装置,不能够满足学生的实验需求,可利用仿真实验弥补缺少的实验。第二种情况是学校拥有完整的化工原理实验装置,但由于学生比较多,教师无法保证每个学生都可以独立完成实验,因而在学生上真实实验装置实验之前,先配以仿真实验进行模拟操作,完成实验预习,再进行真实实验,强化教学效果,这二者结合,效果为最好。

当然仿真实验不可能完全替代真实实验仿真实验是对真实实验的模拟, 与真实的实验操作环境还存在一定的差距, 若学生只知道仿真实验而不知真实实验, 无异于纸上谈兵, 不利于培养学生的动手能力及工程观念。因此, 仿真实验不可能完全替代真实实验, 它是真实实验的一种有效的补充。

综上所述,可以清楚看出,仿真实验引入到化工原理实验课中,对于提高整体教学效果的作用是非常明显的。在使用上,虽然仿真实验不能完全代替真实实验,但它们之间具有互补性,而且仿真实验有它自己的优势:首先,利用仿真实验,可以保证每个学生都能自己动手做实验,观察实验现象,验证公式、原理定理,提高了学生实际动手能力。同时,对于难做的实验,学生可以重复进行实验,而不受时间、场地、安全等实际实验条件的限制。其次,仿真实验使理论教学与实验教学更为紧密地联系在一起,既方便了课堂的实验演示,又增加了课堂内

容。三是减轻了教师对实验装置的维护压力,减少了教师实验前的准备工作量。四是仿真实验软件可直接安装在现有的网络教学计算机上,而无需增加硬件投资,同时它和多媒体课件可以资源共享,符合现代多媒体教学的要求。

化工原理实验仿真教学方法以真实实验为基础,吸收和运用了先进的教学思想,利用现代化的教学手段,培养了学生的实际动手能力,将实验改革引入了新的天地。所以在化工原理实验教学中开展仿真实验已经成为化工原理实验教学改革的新方向。

参考文献

[1]陈祖福.迎接知识经济时代,转变教育思想观念,振兴和创新高等教育[J ] .大学化学,1999 (1) .

[2]李金云.浅谈高校化工原理实验教学中的计算机辅助教学—— 仿真实验[1].潍坊学院学报, 2002, 2( 2) .

推荐第9篇:化工原理实验报告

化工原理实验报告---- 离心泵性能的测定

制药11013110902019檀庭波

实验二离心泵性能的测定

一、实验目的

1、熟悉离心泵的操作,了解离心泵的结构和特性

2、学会离心泵特性曲线的测定方法

3、了解单级离心泵在一定转速下的扬程,轴功率,效率和流量之间的关系

二、实验原理

离心泵的特性主要是指泵的流量,扬程,功率和效率,在一定的转速下,离心泵的流量,扬程,功率和效率均随流量的大小改变。即扬程和流量的特性曲线Hef(Qe);功率消耗和流量的特性曲线N轴f(Qe);及效率和流量的特性曲线f(Qe)。这三条曲线为离心泵的特性曲线。它们与离心泵的设计,加工情况有关,必须由实验测定。三条特性曲线中的Qe和N轴由实验测定。He和由以下各式计算,,由伯努利方程可知:

22u0u1HeH压强表H真空表h0 2g

式中:

He-----泵的扬程(m-----液柱)

H压强表 -----压强表测得的表压(m-----液柱)

H真空表-----真空表测得的真空度(m-----液柱)

h0-----压强表和真空表中心的垂直距离(m)

u0-----泵的出口管内流体的速度(m/s)

u1-----泵的进口管内流体速度(m/s)

g------重力加速度( m)

流体通过泵之后,实际得到的有效功率:Ne=2NHeQe=e。;离心泵的效率: N轴102

推荐第10篇:化工原理大纲

1、流体流动:

流体静力学、流体流动中的守恒原理、流体流动的内部结构、阻力损失、输送管路计算、流速与流量的测定。

2、流体输送设备:

离心泵、往复泵和通风机、鼓风机,真空泵工作原理。

3、液体的搅拌:

混合机理、搅拌器的性能和搅拌功率。

4、流体通过颗粒层的流动:

颗粒床层的特性、流体通过固定床层的压降、过滤原理及设备、过滤过程计算和过滤过程的强化。

5、颗粒的沉降和流态化:

颗粒的沉降运动、重力与离心沉降设备、固体流态化技术。

6、传热:

热传导、对流给热、无相变时对流给热过程分析及数学描述、相变(沸腾与冷凝)给热、热辐射、传热计算和换热器。

7、吸收:

气液相平衡、传质机理与吸收速率、低含量气体吸收的计算。

8、液体精馏:

两组分溶液的气液平衡、平衡蒸馏与简单蒸馏、双组分连续精馏的设计型计算、双组分连续精馏的操作型计算、间歇精馏、恒沸精馏和萃取精馏。

9、气液传质设备:

对板式塔和填料塔的设计有一定的了解。

10、液液萃取:

液液相平衡、萃取过程计算、萃取设备。

11、固体干燥:

干燥静力学、干燥速率与干燥过程计算、干燥器。

12、化工原理实验:

单相流动阻力实验;离心泵的操作和性能测定实验;传热系数测定实验;精馏塔实验;吸收塔实验;干燥速率曲线测定实验。

二、考试说明

1、考试形式均为笔试,考试时间为三小时,考试满分为150分。

2、考试大体上分化工原理课程部分和化工原理实验二大部分。化工原理课程部分总计125分,考题题型包括填空题(约占15%)、选择题(约占25%)、计算题(约占50%)及公式推导题(约占10%)。化工原理实验部分总计25分,考题题型包括选择题和简答题。

第11篇:化工原理课程设计

化工原理课程设计

摘 要 本次设计是针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完 整的精馏设计过程。 我们对此塔进行了工艺设计, 包括它的辅助设备及进出口管路的计算, 画出了塔板负荷性能图,并对设计结果进行了汇总。 此次设计的筛板塔是化工生产中主要的气液传质设备。此设计的精馏装置包括精馏 塔,再沸器,冷凝器等设备,热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进 行精馏分离,由塔顶产品冷凝器中的冷却介质将余热带走。本次设计是精馏塔及其进料预 热的设计,分离质量分数为 20%的苯-甲苯溶液,使塔顶产品苯的质量分数达到 95%,塔 底釜液质量分数为 2%。 综合工艺操作方便、经济及安全等多方面考虑,本设计采用了筛板塔对苯-甲苯进行分 离提纯,塔板为碳钢材料,按照逐板计算求得理论板数为 12。根据经验式算得全塔效率为 0.5386。塔顶使用全凝器,部分回流。精馏段实际板数为 10,提馏段实际板数为 13。实际 加料位置在第 11 块板。精馏段弹性操作为 2.785,提馏段弹性操作为 2.864。塔径为 1.4m。 通过板压降、漏液、液泛、液沫夹带的流体力学验算,均在安全操作范围内。确定了操作 点符合操作要求。

关键词:苯-甲苯;精馏;负荷性能图;精馏塔设备结构 -I- 化工原理课程设计

Abstract This design is in two yuan of the distillation analysis, selection, calculation, calculation and drawing, is a complete distillation design proce.This tower was proce design, including its auxiliary equipment and import and export pipeline calculation, draw plate load performance diagram, and the design results are summarized.The design of the sieve plate tower is the chemical industry in the production of gas-liquid ma transfer equipment.The design of rectifying device comprises a distillation column reboiler, condenser and other equipment, heat from the reactor input, material in the column after repeated partial gasification and partial condensation distillation separation by top product condenser cooling medium to heat away.The design of distillation column and its feed preheating design, separation and ma fraction of 20% benzeneII - 化工原理课程设计 前 言 课程设计是化工原理课程的一个非

第12篇:化工原理 心得

化工原理实验心得

院系:化学化工学院

专业:应用化学(含职教师范)学号:姓名:

**** ****

2014.12.05

化工原理实验是化工原理中理论与实践相联系、相结合的重要教学环节之一。其基本任务是巩固和加深对化工原理课程中基本理论只是的理解,通过实验操作喝实验现象的观察,使我们掌握一定的基本实验技能。

这个学期我们通过流体流动阻力的测定、离心泵性能、传热系数的测定等实验,通过实验的方式,我觉得让我们对课上的基础理论知识有了更为深刻的理解,更加地了解了化工原理的理论与实践的结合,记忆更加深刻,有助于我们在这一门课程上的学习。

开始的时候我并不是很了解,也不是很理解许多实验仪器的使用方法以及如何通过实验的方法验证课上学的理论知识,虽然说每次实验可前,都有可以参考的书籍,但是在没有真正接触刀实验的时候还是会有一些一头雾水的感觉。我觉得课前老师的讲解非常重要,自己不明白的地方,通过老师的讲解和操作便会豁然开朗。如果不知道或是不明白实验的原理和实验仪器的操作方法,那么是不会真正利用到实验的真正价值的。

让我印象最深的是离心泵特性曲线测定实验。

第一,这个实验的目的是了解离心泵的结构与特性,熟悉离心泵的操作和测定离心泵在一定转速下的特性曲线。

第二,这个实验的原理是离心泵的特性曲线是在恒定转速下泵的扬程,轴功率及效率与泵的流量之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

(1) 扬程H的测定与计算

取离心泵进口真空表和出口压力表处为1,2截面,列伯努利方程

z1+(p0-p1)/ρg+u1^2/2g+H=z2+(p0+p2)/ ρg+u2^2/2g+Hf,1-2 (2) 轴功率N的测量与计算

泵的轴功率=电动机的输入功率×电动机的效率×传动效率=N电η电η传 (3) 效率η的计算 Η=Ne/N=Hqvρg/N (4)转速改变时的换算

泵的特性曲线是在一定转速下的实验所得,但实际上感应电动机在转矩的改变时,其转速会有变化,因此需换算。 一般以4~5人为一小组合作进行实验,实验前必须作好组织工作,做到既分工、又合作,每个组员要各负其责,并且要在适当的时候进行轮换工作,这样既能保证质量,又能获得全面的训练。

第三,实验流程

泵将水箱中的水吸入泵体,吸入导管上装有泵进口压力传感器,吸入导管的底端装有底阀,其作用是防止灌泵时水漏出,实验中通过软件改变电动调节阀开度调节流量,流量值由涡轮流量计测,离心泵进,出口处的压力由压力传感器测。

第四,实验数据处理

(1) 根据所测数据计算对应流量下的H,N, η。

(2) 根据比例定律,求出转速为2900r/min时,对应流量下泵的H’,N’ ,η’。

数据处理过程中应注意实验中由于水的循环使用,温度会不断升高,这样水的密度会随着变化,所以密度应取对应温度时的值。还有绘图时应尽量使各曲线在同一区域,是美观并便于分析。

最后,通过做这个实验发现做此实验应注意以下这些事项

(1)实验设备的启动操作,应按教材说明的程序逐项进行,设备启动前必须检查:

(a)对泵、风机、压缩机、真空泵等设备,启动前先用手扳动联轴节,看能否正常转动。

(b)设备、管道上各个阀门的开、闭状态是否合乎流程要求。 上述两点皆为正常时,才能合上电闸,使设备运转。

(2)操作过程中设备及仪表有异常情况时,应立即按停车步骤停车并报告指导教师,对问题的处理应了解其全过程,这是分析问题和处理问题的极好机会。

(3)操作过程中应随时观察仪表指示值的变动,确保操作过程在稳定条件下进行。出现不符合规律的现象时应注意观察研究,分析其原因,不要轻易放过。

我认为实验的过程是一个既快乐而又充满理性知识的过程,就像书本上的知识能够用到实处,不再那么枯燥无味。通过自己动手操作和计算将原理进行证明,自己亲身奖励去学习化工原理的相关知识。

例如流动阻力的测定实验目的是让我们了解流动阻力的测定方法,确定摩擦系数与雷诺准数的关系以及局部阻力。由于一开始对这个试验不是很了解,所以流体的流量过小达不到实验的预期效果。

化工原理实验最重要的是将理论付诸实践当中,平时我们上化工原理课的时候,只能通过老师的讲解,自己的想象了解知识,许多时候我们甚至不能知道为什么就能有这样的结论。而化工原理实验就提供给我们这样一个平台,我们可以通过实验锻炼动手能力,团队合作能力不再读死书,死读书。 学习化工原理实验课程,可以在学习化工原理理论知识的基础上,进一步理解一些比较典型的或已被应用的化工过程与设备的原理和操作,巩固的深化化工原理理论知识

以上是我对这学期的几个实验的总结,通过这些实验我也确实从中学到了不少知识,对我的生活和学习都有很大的帮助。希望在这些实验的基础上能把下学期的实验做的更好。

第13篇:化工原理实验

吸收实验

?

一、实验目的

1、? 熟悉填料吸收塔结构和流程

2、? 观察填料塔流体力学状况,测定压降与气速的关系曲线

3、? 掌握气相总体积系数kYa和气相总传质单元高度HOG的测定方法。

?

二、实验原理

1、? 填料塔流体力学特性

图2-73 填料层压降-空塔气速关系示意图填料塔的压降与泛点气速是填料塔设计与操作的重要流体力学参数,气体通过填料层引起的压降与空塔气速关系如图2-73所示:

当无液体喷淋时,干填料层压降Dp对气速u的关系在双对数坐标中可得斜率为1.8~2的直线,(图中aaˊ线)。当有液体喷淋时,在低气速下,(c点以前)对填料表面覆盖的液膜厚度无明显影响,填料层内的持液量与空塔气速无关,仅随喷淋量的增加而增大,压降正比于气速的1.8~2次幂,由于持液使填料层的空隙率减少,因此,压降高于相同气速下的干填料层压降,是图中bc段为恒持液区。随气速的增加液膜增厚,出现填料层持液量增加的“拦液状态”(或称载液现象),此时的状态点,图中的c点称载点或拦液点。气速大于载点气速后,填料层内的持液量随气速的增大而增加,压降与气速关系线的斜率增大,图中cd段为载液区段。当气速继续增大,到达图中d点,该点成为泛点,泛点对应的气速称为液泛气速或泛点气速。此时上升气流对液体产生的曳力使液体向下流动严重受阻,积聚的液体充满填料层空隙,使填料层压降急剧上升,压降与气速关系线变陡,图中d点以上的线段为液泛区段。填料塔实际操作的气速控制在接近液泛但又不发生液泛时的气速,此时传质效率最高。一般操作气速取液泛气速的60%~80%。

2、? 气相总体积吸收系数kYa的测定

(1)?? 气相总体积吸收系数

?? (2—63)

式中:V ——惰性气体流量,kmol/s;

z ——填料层的高度,m;

W——塔的横截面积,m2;

Y

1、Y2——分别为进塔及出塔气体中溶质组分的摩尔比,kmol(溶质)/kmol(惰性组分);——塔顶与塔底两截面上吸收推动力与的对数平均值,称为对数平均推动力。

?? (2—64)

在本实验中,由测定进塔气体中的氨量和空气量求出Y1,由尾气分析器测出Y2,再由平衡关系求出Y*。数据整理步骤如下:

(1)?? 空气流量

标准状态的空气流量为V。用下式计算:

? (2—65)

式中:V1——标定状态下的空气流量,(m3/h);

T0、P0——标准状态下空气的温度和压强,kPa;

T

1、P1——标定状态下空气的温度和压强, kPa;

T

2、P2——使用态下空气的温度和压强, kPa;

(2)?? 氨气流量

标准状态下氨气流量 用下式计算:

(2—66)

式中:——氨气流量计示值,(m3/h);

——标准状态下空气的密度,kg/m3;

——标准状态下氨气的密度, kg/m3。

若氨气中含纯氨为98%,则纯氨在标准状态下的流量V0〞用下式计算:

??? ?(2—67)

(3)?? 混合气体通过塔截面的摩尔流速:

(2—68)

式中:d——填料塔内径,m。

(4)?? 进塔气体浓度

?? (2—69)

式中:n1——氨气的摩尔分率。

n2——空气的摩尔分率。

根据理想气体状态方程式:

∴? ?(2—70)

(5)??平衡关系式

如果水溶液

Y*=mx??? (2—71)

式中:m——相平衡常数,

?? (2—72)

H——亨利系数,Pa;

p——系统总压强,Pa.

? (2—73)

?

式中:p*——平衡时的氨气分压,(mmHg或Pa),其数值可从附录5.1氨气的平衡分压表查得。

(6)?? 出塔气体(尾气)浓度

出塔气体(尾气)浓度由尾气分析仪测得,具体见附录5.4,尾气浓度的测定方法。 尾气中氨的浓度由下式计算:

??? (2—74)

式中:T

1、p1——空气流经湿式气体流量计的压强和温度;

T0、p0——标准状态下空气的温度和压强;

V1——湿式气体流量计所测得的空气体积,ml;

Vs——硫酸体积,L;

Cs——硫酸浓度,mol/L;

rs——反应式中硫酸配平系数,本实验rs =1;

r2——反应式中氨配平系数,本实验r2=2。

(7)?? 出塔液相浓度

根据物料平衡方程:

(2—75)

因进塔液相为清水,即X2=0,则

? (2—76)

(8)?? 计算

由对数平均推动力公式计算,其中∵X2=0∴Y*=0

(9)?? 求气相总体积吸收系数KYa

3、? 传质单元高度HOG的测定

? (2—77)

式中:HOG——气相总传质单元高度,m;

NOG——气相总传质单元数,无因次。

z已知,NOG求出后,则HOG可求得。

?

三、实验装置及流程

图2-74 吸收装置流程图

l—风机;2—空气调节阀;3—油分离器;4—转子流量计;5—填料塔;6—栅板;7—排液管; 8—喷头;9—尾气调压阀;10—尾气取样管;11—稳压瓶;12—旋塞;13—吸收盒;14—湿式气体流量计;

15—总阀;16—水过滤减压阀;17—水调节阀;18—水流量计;19—压差计;20、21—表压计;

22—温度计;23—氨瓶;24—氨瓶阀;25—氨自动减压阀;

26、27—氨压力表;28—缓冲罐; 29—膜式安全阀;30—转子流量计;31—表压计;32—闸阀

四、实验步骤及注意事项

1、? 实验步骤

(1)?? 填料塔流体力学测定操作

1)? 先全开叶氏风机的旁通阀,然后再启动叶氏风机,风机运转后再逐渐关小旁通阀调节空气流量。做无液体喷淋时,干填料层压降Dp对应气速u的关系。

2)? 全开旁通阀,再打开供水系统在一定液体喷淋量下,缓慢调节加大气速到接近液泛,使填料湿润,然后再回复到预定气速进行正式测定。

3)? 正式测定时固定某一喷淋量,测量某一气速下填料的压降,按实验记录表格记录数据。

4)? 实验完毕停机时,必须全开空气旁通阀,待转子降下后再停机。

(2)?? 气相总体积吸收系数测定的操作

1)? 实验前确定好操作条件(如氨气流量、空气流量、喷淋量)准备好尾气分析器。

2)? 按前述方法先开动水系统和空气系统,再开动氨气系统,实验完毕随即关闭氨气系统,尽可能节约氨气。

2、? 注意事项

(1) 填料塔流体力学测定操作,不要开动氨气系统,仅用水与空气便可进行操作。

(2) 正确使用供水系统滤水器,首先打开出水端阀门,再慢慢打开进水阀,如果出水端阀门关闭情况下打开进水阀,则滤水器可能超压。

(3) 正确使用氨气系统的开动方法,事先要弄清氨气减压阀的构造。开动时首先将自动减压阀的弹簧放松,使自动减压阀处于关闭状态,然后打开氨瓶顶阀,此时自动减压阀的高压压力表应有示值,关好氨气转子流量计前的调节阀,再缓缓压紧减压阀的弹簧,使阀门打开,低压氨气压力表的示值达到5ⅹ104Pa或8ⅹ104Pa时即可停止。然后用转子流量计前的调节阀调节氨气流量,便可正常使用。关闭氨气系统的步骤和开动步骤相反。

(4) 尾气浓度的测定,详见附录5.4。

?

五、实验报告要求

1、? 在双对数坐标纸上绘出干填料层压降Dp与空塔气速u的关系曲线及一定液体喷淋密度下的压降Dp与空塔气速u的关系曲线。

操作条件下液体的喷淋密度 [m3/m2.h]

??? (2—78)

2、? 测定含氨空气~水系统在一定的操作条件下的气相总体积吸收系数KYa和传质单元高度HOG。

六、思考题

1、? 阐述干填料压降线和湿填料压降线的特征。

2、? 为什么要测Dp~u的关系曲线?实际操作气速与泛点气速之间存在什么关系?

3、? 为什么引入体积吸收系数KYa?它的物理意义是什么?

混合气体经过填料塔吸收后,塔顶尾气浓度是怎样测定?

第14篇:化工原理工程设计心得

化工原理工程设计心得

本次化工原理工程设计历时两周,是学习化工原理以来第一次的工业设计。化工原理工程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。

经过这次化工原理课程设计,我充分认识到以下几点: (1).“纸上得来终觉浅,绝知此事要躬行”。

面对这次专业性较强的课程设计,在起初的时候,我还一头雾水,后来跟我的组员沟通交流,再进行整个流程的计算,再到工程材料商的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践结合的种种困难,也体会到了仅凭自己所学的有限的理论知识去解决实际中各种问题实属不易。我们也从这次的工业设计中明白刀,我们所学的知识结构还不完善,对设计对象的理解还停留在课本上,学无止境,我们必须通过不断地学习,完善自己的知识结构,也要学会实际与理论的结合,将实际当中事物的方方面面包括经济成本方面和生产安全性,考虑进实际的工业设计中。 (2).化工制图,要一丝不苟

初次接触到往届学生的课程设计所绘的图纸,我一脸茫然!要画这么大个图,还要仔细标注每一个细枝末节,还要不停地翻查数据并计算,还要有剖开或放大的局部零件,这实属不易啊!在惊叹之余,我还对往届工程设计以及邵老师产生深深的敬佩之情,当然我也对即将下来的工程设计害怕及茫然。毕竟,零件尺寸的确定、绘制的简洁美观、局部细节的准确性,还有眼力、笔力、精力的多重考验,我告诉自己:化工制图,要一丝不苟 (3).“书籍是人类进步的阶梯”

课程设计动员会一结束,我就不由得开始紧张起来,要完成这项工业设计,似乎是难中之难,,我也只能迎难而上。于是我带着书包来到图书馆,开始了查阅各种与换热器的设计相关的书籍。

当我完成设计,一种成就感油然而生。我也更加确信“书籍是人类进步的阶梯”。 (4).老师指导,团队合作,是胜利的催化剂

在这次的课程设计当中,如果没有邵老师给我们释疑答惑,作出指导,我们根本无从下手。同学们都是有感恩之心的,老师的热情让同学们挺感动的。

还有,邵老师将布置班级的同学分为若干组,促进了同学之间的交流和携手共进,良好的团队工作氛围是成功的一半。在设计过程中遇到一些小问题,经同学间的相互点醒和帮助,让我们更快地排除阻碍,完成设计。这不禁让我想起老生常谈的:团结就是力量

通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力,也加深了我对相关的专业知识的理解、提升了我考虑事情的全面性和做事情的严谨行性,让我分析问题、考虑问题、解决问题的能力有了进一步的提升。同时,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。

我还要感谢本次工业设计给予我帮助与指导的邵老师以及组员的相互支持。当然,限于我们的水平,设计中难免有不足和谬误,我们要牢牢记住这次设计获得的心得,不断鞭策自己,不断提升自己。

XXX 2015.6.30

第15篇:化工原理学习感想

化工原理学习感想

大二的下学期我们学习了化工原理,时间飞逝,转眼间厚厚的一本书已经浓缩为我们的智慧结晶,深深埋入我们的脑海。经过一学期奋斗,我有很多学习感想。

化工原理对化工专业的学生来说是一门极其重要的课,在将来的工作中扮演着不可或缺的角色,所以我们十分重视,也学到了很多东西。同样的,化工原理实验是对课程的深化,对理论的进一步实践,让我们更深刻的领悟了公式的意义,也锻炼了解决实际问题的能力.在学习这门课程的时候,我们收获到在学习的这些知识中,用这些知识可以解释生活生产中说用的各种器械,现象,还有处理方法等等。在流体输送机,换热器,蒸馏塔方面,我们懂得了这些器械的运用以及工作原理,懂得对对这些机械减小由于各种原因造成的损失,从而使效率最大化的方法。在流体的流动力学、密度、摩擦等各种因素中,热传导方面,蒸馏,干燥这些知识点,我们学到用这些知识来解决问题。

课上,老师讲解了实验的注意事项以及实验数据处理方法、实验报告的格式要求等,这些使我体会到想要做好化工原理实验需要严谨的态度。随后我们观看了第一个演示实验即流体流动状态的模型,直观的了解了湍流、层流以及像孔板流量计的形成原因和工作原理。让我们对流体实验有了一个初步的认识,但那时我们还对很多知识概念都很模糊。第二次做了流体阻力实验,我们了解流体流动阻力的测定方法,确定摩擦系数与雷诺准数的关系以及局部阻力。根据上机课时在电脑上的模拟与老师的讲解我们分成小组摸索着开始了实验。大家边讨论边请教老师,终于完成了实验,但是一些细节的问题还是没有注意到,比如实验的范围的选择,点的分布以及组员之间配合的问题。随着实验一次次的进行到传热试验的时候,大家也渐渐掌握了实验方法,怎样高效的合作等等。

虽然接触这门课的时候还是有些困难,但是每一个所学的知识点还是挺清晰明确的,初次接触,难免有些内容还是理解的不是很好,在一些公式以及原理的运用上不能很好的去联想到实际中,但是我们相信,所学的总会用到的,通过我们的复习以及设计,我们又进一步的对这门课的知识理解了更多。

实验也是很重要的!实验教会了我耐心,实验过程中,很多地方都是需要注意的,不符合预期现象的,要及时问老师。实验后大量繁琐的计算要求我必须克服毛躁的毛病,计算必须准确到位才能得出实验结论。由于自身的性格,做事不怎么仔细,所以在做数据处理的过程中,经常会算错,接连下面全错了,前前后后修改了很多次,实验数据处理教会了我要仔细,不能图快,要仔仔细细的完成每一步,克服掉粗心的毛病。通过化工原理实验,让我再一次深刻领会实验者必备的严谨求实的科学态度,这对我以后影响都是非常大的。

化工原理实验最重要的就是将理论付诸实践,化工原理实验就提供给我们一个平台,一个能更深入了解化工原理知识、更锻炼自己动手能力、在学习上更加丰富的平台。我们可以通过实验锻炼动手能力,团队合作能力,更能够把理论上的知识在实践中具体应用,增强了理论与实际的相结合。

最后,经过一个学期的化工原理学习,我有很多学习的收获,我相信这些收获会广泛应用于其他科目和以后的学习。

一,重视课本的基础和细节,对教材的每个章节自己有个系统的认识,以为化工原理太多的计算,并且都和实际生产操作相关,故对每种单元操作条件的要求要非常明确。

二,公式这个毋庸置疑,化工原理里面的公式出奇的多,并且千奇百怪,更让人头疼的是适用条件这个在流体力学里体现的淋漓尽致,哪怕是死记硬背也好,也要丝毫不差的把他们背下来,达到看见题目的条件,自然反射的就能写出相应的公式。

三,注意对题型进行分类总结,化工原理的题目是做不完的,做好分类足矣应付各种考试。

我们作为工科生,最为重要的就是动手和根据实际情况解决实际问题的能力,我一定会好好总结经验与教训,将从化工原理实验课上所获得的种种继续应用到以后的学习中去。

第16篇:化工原理实验心得

化工原理实验论文

化工原理实验课是一门理论与实际结合很紧密的课程。虽然课程已经结束,但我对实验时的场景仍然记忆犹新。

和以前开设的实验课一样,老师要求我们实验前须做到充分预习。复习伯努利实验时,我发现伯努利方程有多个表达式。每个表达式代表的意义不同。,由于压强在实际中容易测出,因此可以通过测定各部位压强来验证伯努利方程。从实验预习给我的深刻印象是:没有掌握理论知识是不可能充分理解实验原理的,每次预习前,因为对该实验理论知识的遗忘都使我花大时间去重新复习,预习过程使我再次复习了理论知识,也对实验的顺利完成信心提升了不少。

实验过程是一个深刻体会理论联系实际,指导时间的过程。每次在我们亲手做实验前,老师都会细心认真地给我们讲解仪器装置的操作步骤,说明如何记录实验现象。要做好实验必须按照实验步骤进行,能够在预习之前熟悉操作步骤固然很好,但是实际的操作与理论又有所不同。

初见装置实物时有种生疏感,,众多开关,阀门使我感觉实验无从下手,例如,在流体流动阻力的测定过程中,实验要求我们测水通过三根不同管(光滑管、粗糙管和局部阻力管)的压降,十几个实验控制开关在交错的管路中,光是熟悉水的流动路径就得认真认识,而对于各个开关的操控就比其他类型的实验显得更复杂。要动手做实验,就必须清楚装置的运作原理,在其他已做此实验的同学的指导下,我终于把管路和操作步骤熟悉透了。

在填料塔精馏过程实验中,填料精馏塔的塔身连接着很多管子,每根各司其职,虽然在实验前对实验有了充分的预习,管路的纵横交错使我又一次困惑起来,而课前老师的讲解对我来说十分重要,自己不明白的地方,在听老师讲解时有时便会豁然开朗:对于精馏塔的流程,首先,应该先给塔釜先加料,加料后对原料进行加热,然后就可以开始进行精馏操作了,对于塔顶应当用冷凝水冷凝,于是操作分加料,加热精馏,回收三个主步骤,对每个步骤的操作应该控制好各个开关,这样才不会出错。在我看来,每一个独立的实验装置都是一个小型的工厂,因为我们所做的每个实验现代化的工厂都找的到应用的例子,它们让我感觉实验很贴近实际,每个装置扩大化再加上工程师的调试,就可以投入生产了。

实验过程中,仔细认真地注意实验现象很重要,在膜分离实验中,我们用硫酸铜溶液进行实验,实验很简单,我本以为我们圆满地完成了实验,但之后老师问我们膜分离的效果怎么没写,我哑然无声了,做完了整个实验却没有认真观察实验现象,这无异于没有做完实验。因此,我特别提醒自己:以后做实验时,一定要注意观察实验中的现象和异常,这些地方往往是发现问题的关键所在。实验现象往往是实验是否成功的最直接证明,因此在实验过程要注意现象的观察和改进实验方法,在流体流动型态的观察和测定实验中,我们要调出管中红墨水细线的变化,实验中我发现通过转子流量计不能准确调控细线的状态,经过组员的一番讨论后,我们把红墨水量加多,并且耐心地调节流量计阀门,最终成功验证了实验现象。

要保证实验能够完成,实验装置需维持正常。在离心泵特性曲线的测定实验中,我们组差点犯了个错,就是在离心泵启动时,没有先关闭泵的出口阀门,而且在离心泵关闭前没有关闭泵的出口阀门。离心泵的轴功率随流量的增大而上升,流量为零时轴功率最小。若没有关闭出口阀门,离心泵突然启动时,由于流量瞬变,轴功率瞬间变大,使得启动电流陡然增大,从而大大增加了烧坏电机的可能性。而离心泵关闭前,如果未关闭出口阀门,离心泵停止工作的瞬间,出口处的高压水流会逆流冲击叶片,多次重复这种情况,会减短离心泵的寿命或直接损毁叶片,导致装置的损坏。通过其他组同学的提醒,我们避免了这一错误。我也在反思,要将实验做好,除了理论知识要掌握外,爱护实验设备和要保护实验设备的意识是把每个实验者必备的素质。

化工实验让我第一次感觉到电脑在实验过程中的强大,在流体流动阻力实验,恒压过滤实验,空气传热系数等实验中我们都是用电脑来记录数据的,将要测参数部位的仪器通过传感器与电脑连接起来,在设计的监控软件上就能实时监测与采集数据。较之人工测量方便了很多。

实验过程是一个收获颇多的过程,通过与组员的配合交流,发现并改进问题,我在实验方面的操作能力长进了不少。

我发现,写报告很考验自己语言总结的能力,虽然比较枯燥,但是受益却非浅,比如在处理数据的过程中,公式的繁杂与推算,数据量之大非常考验自己的耐心。在做填料精馏塔实验时,得到的原始数据是折光率,而要做塔板图时,需要得出各量的摩尔分率,因此得通过各个公式来由折光率推算摩尔分率,最终得到实验处理结果。虽然过程繁琐,但我发现完成这一“壮举”后,自己又熟悉了公式,熟悉了量的推算,对理论知识的掌握又更深了一步。

在完成实验报告的过程中,我自学了许多软件,例如word,excel,origin等等,如果不使用这些辅助软件,我想实验数据处理将会是一个的过程。在做空气传热系数实验的到数据后,数据量很大,手算需要花费很多时间,后来我就用excel添加公式然后循环拖放将各个流量下的值算出来了。忽然发现一个好的科研者应该知识渊博,因为很多学科对他都是很有帮助的。我现在还处在一个学习知识的阶段一个接受新事物的黄金阶段,以前认为的计算机过了级拿到证书就了事的想法真的很幼稚,那些知识在今天还都能够用上,为了今后不再有今天这样的遗憾,我决定今后更加扎实的学习,拓宽自己的知识面。

实验教会了我耐心,实验过程中,很多地方都是需要注意的,不符合预期现象的,要及时问老师。实验后大量繁琐的计算要求我必须克服毛躁的毛病,计算必须准确到位才能得出实验结论。由于自身的性格,做事不怎么仔细,所以在做数据处理的过程中,经常会算错,接连下面全错了,前前后后修改了很多次,实验数据处理教会了我要仔细,不能图快,要仔仔细细的完成每一步,克服掉粗心的毛病。通过化工原理实验,让我再一次深刻领会实验者必备的严谨求实的科学态度,这对我以后影响都是非常大的。

第17篇:化工原理课程设计心得体会

化工原理课程设计心得体会

我们用了两周的时间去完成这次的化工原理设计,我们做的是煤油冷却器和水吸收二氧化碳。虽然制作的时间不长,但却让我学到了很多东西。刚开始接触化工原理课程设计,使我心中满怀新鲜感和期待感,我学到的东西终于可以在这里得到使用。刚开始接触到老师跟我们讲的设计时,我感到有点不知所措,不知道该从何下手。可是在这短短的两周里,我从开始的一无所知,到在寻找材料的过程中逐渐了解这门课程,之后的与同学讨论交流,对材料进行选取论证确定设计的题目,开始一步一步的按着过程开始制作,接着进行整个流程的计算,再到后期的设计过程的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我们在绘图过程中也遇到了不少的麻烦,让人觉得头疼的同时又觉得有所收获。刚开始整体的布局规划就很麻烦,要布局得当才能使图既能够画完,又表现得十分清晰。而且因为换热器中有很多的零部件,它们的尺寸或者厚度很小,画的时候很难准确地按照比例将其绘画出来。即使老师说只要简单的画出大体的结构,但对于没学过CAD的我们来说这还是一个很艰难的过程。但是,皇天不负有心人,在我们一次次讨论,一次次的修正中,图纸也一点点的画好了。通过本次课程设计的训练,让我对自己的专业有了更加清晰和理性的认识,这对我们的将来的学习是一个很好的指导方向,使我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。

第18篇:化工原理课程设计心得体会

河南科技大学化工原理课程设计心得体会

本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。

由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。

我的课程设计题目是苯——氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。

在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。

通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。

最后,我还要感谢我的指导老师对我们的教导与帮助,感谢同学们的相互支持,与他们一起对一些问题的探讨和交流让我开拓了思路,也让我在课程设计时多了些轻松、愉快。

第19篇:化工原理实习报告

学 号: 201443300101

迁安中化煤化工有限责任公司 化工原理认识实习报告

学生姓名: 杨震 专业班级: 14化专1班 院 系: 材料与化工系 指导教师: 王莉娜

华北理工大学迁安学院

2015年12月

第20篇:化工原理课程设计心得体会

相信每一个学生经过了化工原理的课程设计之后都会有许多的感悟心得。下面是小编整理收集的化工原理课程设计心得体会范本,欢迎阅读参考!

篇1:化工原理课程设计心得

本次化工原理课程设计历时两周,是學習化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。

在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。

我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。

在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。

通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续學習是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。

我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。 限于我们的水平,设计中难免有不足和谬误之处,恳请老师批评指正。

篇2:化工原理课程设计心得

两周的课程设计结束了,在这次的课程设计中不仅检验了我所學習的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,与同学分工设计,和同学们相互探讨,相互學習,相互监督。学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世。

过而能改,善莫大焉。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解。在今后社会的发展和學習实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!

课程设计给我很多专业知识以及专业技能上的提升,给了我许多道,给了我很多思,给了我莫大的空间。同时,设计让我感触很深。使我对抽象的理论有了具体的认识。通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实

在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、學習中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。

同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。 由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。

篇3:化工原理课程设计心得体会

这次为期六个星期左右的课程设计终于结束,这次的任务是设计一个列管式换热器。虽然设计和學習的时间不长,却收获颇多,受益匪浅。

首先,这次课程设计是我们所接触的实践任务中最繁琐的、专业性最强的课程设计,让我认识到:课堂上理论知识掌握的再好,没有落实到实处,是远远不够的。换热器的设计,从课本上简单的理论计算,到根据需求满足一定条件的切实地进行设计,不再仅仅包括呆板单调的计算,还要根据具体要求选择、区分和确定所设计的换热器的每一个细节,我觉得这是最大的一个挑战。

其次,这次课程设计还考验了我们的团队合作精神,以及严谨的工作态度、平和的心态。这次设计工作量大,用到的知识多,而且我们又是第一次设计,所以单独靠自己是不法完满的完成本次课程设计。我经常与同组同学一起讨论,甚至争论,这样,我们就能发现问题,并能因此产生比较合理的结果和方法。大家都明白了,那其他的都不是问题。同时争论让我更加清楚地了解自己,让我明白我要更加耐心的表达我的想法,把问题解析清楚,也要耐心的听其他同学的意见。在同组同学无法通过讨论得出正确结果的时候,我们通过请教其他组同学或者与其讨论得到新的想法和正确的结论。

最后要提到的就是绘图了。由于工程制图不是我们的专业,而且我们将近两年时间没有接触了,差不多都将其内容忘光了。于是乎我们只能捧着厚厚的课本将其仔细的复习一遍,然后再进行正式的绘图工作。绘图过程中遇到了不少的麻烦,简直让人头疼。刚开始整体的布局规划就很麻烦,要布局得当才能使图既能够画完,又表现得十分清晰。而且因为换热器中有很多的零部件,它们的尺寸或者厚度很小,画的时候很难准确地按照比例将其绘画出来。而且A1图纸又是非常的巨大,我只能早点去图书馆,找个没人的位置坐下,终于功夫不负有心人,经过几天的努力,最后将换热器图圆满顺利地完成了。虽然在这次的换热器设计中遇到了很多的麻烦,但最终通过自己的努力、同学们的帮助,最终还是完成了任务。通过这次的设计任务,我巩固了以前所學習的知识,并让我对化工知识有了更深的认识和理解,还增强了我的查阅能力以及动手能力。总之,收获还是蛮多的。

通过这次化工原理课程设计,我收获颇丰,不但把之前学过的内容复习一遍,加深对该课程的印象。通过与同学一起讨论,是我体会到团队精神的重要性,对于即将立足于社会的我们也有非常大的意义。感觉做完之后非常累,但是也感觉这段时间过得非常充实!

化工原理教案模板
《化工原理教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档