人人范文网 工作心得体会

光谱工作心得体会(精选多篇)

发布时间:2020-04-18 19:24:50 来源:工作心得体会 收藏本文 下载本文 手机版

推荐第1篇:光谱工作总结

光谱分析工作总结

张新慈

我于2012年6月毕业于南京理工大学紫金学院机械工程及其自动化专业。2012年7月受聘于常州电站辅机总厂有限公司,从事理化检验工作。从毕业到现在已有三个年头,在这段工作时间中,领导和同事给予了我很多的宽容支持和帮助,让我在工作中学习到了很多宝贵的经验,同时也坚定了自己的对未来工作的信心。

随着国家认证实验室评审的日益临近,我们的实验室管理、设备、技术能力、质量意识不断提高。本质量检测中心今年上半年购入了一台新型金属分析光电直读光谱仪,因为光电直读光谱仪分析速度快,准确度高,适用于较宽的波长范围;光电倍增管对信号放大能力强,对强弱不同谱线可用不同的放大倍率,因此它可用同一分析条件对样品中多种含量范围差别很大的元素同时进行分析;线性范围宽,可做高含量分析。

本公司的光电直读光谱仪主要用以碳钢45#、合金钢40Cr中主要元素(C、S、Mn、Si、P)含量的测量分析。

主要操作规程如下:

1、打开氩气总开关,将输入分压表调整到0.3MPa~0.4MPa;打开控制箱总电源并接通稳压器,打开光谱仪电源,打开光谱仪前面激发台开关。

2、检查设备是否正常,光源、高压、真空指示等是否正常;清理入射窗,调整电极间隙,清理样品台内部残渣。

3、磨制试样和标准试样,使分析面平整并有一定的粗糙度;磨削合金钢和普通碳素钢试样应使用各自专用的砂轮片试样磨削后放在有盖的容器中;禁止用手触摸或擦拭分析表面,禁止长期暴露在空气中。

4、打开汞灯电源,稳定一段时间后,进行狭缝校准。

5、打开氩气减压器,调节出口压力。每天第一次试验时应将管道内残余气体放尽。

6、用一块相关试样进行多次激发,直到各元素(主要是硫、磷)读数逐渐稳定。

7、用控样检查分析数据是否正确,如误差较大,应重新标准化;若两次标准化后仍无法达到要求的精度,则应停止试验,立即报告主管领导和设备员。

8、标准化正确后即可分析试样,每个试样应激发三次以上,舍去不良数据后,取平均值作为分析结果。

注意事项:

1、如果因为放假要关闭所有电源,则应该先关闭真空阀门,然后再关闭真空泵。遇雷雨天气,为安全起见,应关闭所有电源,拔掉稳压器电源。

2、样品每激发一次,改变一次位置,并清刷电极;样品激发面要光滑且纹路一致,不得用手触摸磨好的激发面。

3、在实际测量时要观察燃烧的斑点。正常是3~6mm以上。如果燃烧斑点的白边过大说明氩气存在问题。

4、在做高碳、高合金时或做超低碳和低合金时,先激发几次试样,这样避免由于清理电极不好而造成没必要的污染。

5、试样背面有油污、铁锈时可用砂轮或砂纸除去,打磨不同基体试件要更换砂纸,尽量避免基体之间的污染。

6、探头与主机的连接电缆和氩气管不要硬折或是有硬物磕碰它们。

2015年10月

推荐第2篇:拉曼光谱

拉曼光谱实验报告

一、实验目的

1.了解拉曼光谱的基本原理、主要部件的功能;2.了解拉曼光谱对所观察与分析样品的要求;

3.了解拉曼光谱所观察材料的微观组织结构和实际应用;4.初步掌握制样技术和观察记录方法

二、实验仪器原理

1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关, 大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线 )。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。

拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:

设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。 附加频率值与振动能级有关的称作大拉曼位移,与同一振动能级内的转动能级有关的称作小拉曼位移:

大拉曼位移:(为振动能级带频率) 小拉曼位移:(其中B为转动常数) 简单推导小拉曼位移:利用转动常数 拉曼光谱仪一般由以下五个部分构成。 光源

它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。目前拉曼光谱实验的光源己全部用激光器代替历史上使用的汞灯。对常规的拉曼光谱实验,常见的气体激光器基本上可以满足实验的需要。在某些拉曼光谱实验中要求入射光的强度稳定,这就要求激光器的输出功率稳定。

外光路

外光路部分包括聚光、集光、样品架.滤光和偏振等部件。

(1) 聚光:用一块或二块焦距合适的会聚透镜,使样品处于会聚激光束的腰部,以提高样品光的辐照功率,可使样品在单位面积上辐照功率比不用透镜会聚前增强105倍。

(2) 集光:常用透镜组或反射凹面镜作散射光的收集镜。通常是由相对孔径数值在1左右的透镜组成。为了更多地收集散射光,对某些实验样品可在集光镜对面和照明光传播方向上加反射镜。

(3) 样品架:样品架的设计要保证使照明最有效和杂散光最少,尤其要避免入射激光进入光谱仪的入射狭缝。为此,对于透明样品,最佳的样品布置方案是使样品被照明部分呈光谱仪入射狭缝形状的长圆柱体,并使收集光方向垂直于入射光的传播方向。几种典型样品架的空间配置参见右图。

(4) 滤光:安置滤光部件的主要目的是为了抑制杂散光以提高拉曼散射的信噪比。在样品前面,典型的滤光部件是前置单色器或干涉滤光片,它们可以滤去光源中非激光频率的大部分光能。小孔光栏对滤去激光器产生的等离子线有很好的作用。在样品后面,用合适的干涉滤光片或吸收盒可以滤去不需要的瑞利线的一大部分能量,提高拉曼散射的相对强度。

(5) 偏振:做偏振谱测量时,必须在外光路中插入偏振元件。加入偏振旋转器可以改变入射光的偏振方向;在光谱仪入射狭缝前加入检偏器,可以改变进入光谱仪的散射光的偏振;在检偏器后设置偏振扰乱器,可以消除光谱仪的退偏干扰。

色散系统

色散系统使拉曼散射光按波长在空间分开,通常使用单色仪。由于拉曼散射强度很弱,因而要求拉曼光谱仪有很好的杂散光水平。各种光学部件的缺陷,尤其是光栅的缺陷,是仪器杂散光的主要来源。当仪器的杂散光本领小于10-4时,只能作气体、透明液体和透明晶体的拉曼光谱。

接收系统

拉曼散射信号的接收类型分单通道和多通道接收两种。光电倍增管接收就是单通道接收。

信息处理

为了提取拉曼散射信息,常用的电子学处理方法是直流放大、选频和光子计数,然后用记录仪或计算机接口软件画出图谱。

图表 1.1 拉曼光谱结构示意图

三、实验操作及注意事项

操作规程

1.开机前启动稳压电源,冷却风扇运行正常后,启动仪器,开外接Olympus 照明电源和样品台控制系统Proscan电源。打开计算机,双击Omnic Dispersive Raman 软件,进入仪器操作系统,仪器自动进行初始化,当System Status键转变为绿色时表示仪器状态正常。

2.点击Collect\\Experment Setup\\Aligment,把Align Tools 放置于样品台,聚焦pinhole 位置后准直光路,仪器自动校准成功后方可进行测试。

3.在collet Experment Setup菜单下设定实验参数方法,将样品放入样品仓,在显微镜中聚焦,选择样品测试点,采集样品的拉曼光谱数据。

注意事项

1.使用仪器前,必须仔细阅读仪器说明书,熟悉仪器结构和主要部件、配套设备的性能、使用和操作步骤。

2.本仪器配备有三套激光器,激发波长分别为780nm,633nm,532nm,更换不同的激光器前必须关闭仪器电源,严格按照操作步骤,注意安全。3. 凡使用本仪器,须有管理人员在场指导。严禁没有管理人员在场时启动任何设备。

4. 严格控制室内的温度(18℃-25℃)与湿度(30%。-60%。),确保室内清洁,以保证仪器的正常运行。

5. 严格按照仪器的操作步骤,防止发生仪器损坏及其他安全事故。一旦发生事故必须立即报告,并做好事故记录。

四、实验的心得体会

通过本次实验我对拉曼光谱的工作原理以及分析之前的制样过程有了较深的了解。之前都是在文献中接触这些分析技术,这次实验课上我零距离地感受了一次测试的过程,加深了我对投射电镜的了解,且对我今后自己的课题有非常大的帮助,在此对老师们的辛勤教学表示感谢。

对于课程的一个小建议就是实验内容不是很深,当然这主要是由于选修本课程的学生人数较多,所以我们能够学到的知识也很有限,所以希望今后可以多提供一些测试方面的教学内容。

推荐第3篇:有机化学光谱解读

八、光谱

(1)紫外光谱

1生色基:能在某一段光波内产生吸收的基团称为这一段波长的生色基。紫外光谱的生色基是:碳碳共轭结构、含有杂原子的共轭结构、能进行n→π*跃迁的基团、能进行n→σ*跃迁并在近紫外区能吸收的原子或基团。

2红移:使最大吸收峰向长波方向移动的现象称为红移现象。

3伍德沃德和费塞尔规则:用来估算二烯烃,多烯烃及共轭烯酮类化合物的紫外吸收λ

(参见表max位置的经验规则,一般计算值与实验值之间的误差约为±5nm。

5-8)。

4助色基:非键电子与π电子的共轭即为p-π共轭,p-π共轭使电子活动范围增大,吸收向长波方向位移,并使颜色加深,这种效应称为助色效应,这种基团称为助色基,如—OH,—OR,—NH2,—NR2,—SR,卤素等均是助色基。

5减色效应:使ε值减弱的效应称为减色效应。

6紫外光谱图:紫外光谱图提供两个重要的数据:吸收峰的位置和吸收光谱的吸收强度。紫外光谱图以波长(nm)为横坐标,指示吸收峰的位置;以吸光度为纵坐标,指示了吸收峰的吸收强度。在图中,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。

7紫外吸收光谱:由于分子中价电子的跃迁而产生的吸收光谱称为紫外吸收光谱。也可以称它为电子光谱。

8紫(蓝)移:最大吸收峰向短波方向移动的现象称为紫(蓝)移现象。 9增色效应:使ε值增加的效应称为增色效应。

(2)红外光谱

1红外光谱:原子和分子所具有的能量是量子化的,称之为原子或分子的能级,有平动能级、转动能级、振动能级和电子能级。基团从基态振动能级跃迁到上一个振动能级所吸收的辐射正好落在红外区,所以红外光谱是由于分子振动能级的跃迁而产生的。

2红外光谱图:红外光谱图的横坐标是红外光的波长(m)或波数(cm—1),纵坐标是透过率T或吸光度A。A与T的关系是A=lg(1/T)。中间是一条吸收曲线。吸收曲线的吸收峰形状是各不相同的,一般分为宽峰、尖峰、肩峰,双峰等类型。

3泛频峰:1+2,21+2…吸收峰称为合频峰,1—2,21—2…吸收峰称为差频峰,合频峰与差频峰统称为泛频峰。

4伸缩振动:键长改变的振动。分为对称伸缩振动(s)和反对称伸缩振动(as)两种。

5官能团区和指纹区:从IR谱的整个范围来看,可分为4000~1350cm—1与1350~650cm—1两个区域。4000~1350cm—1区域是由伸缩振动产生的吸收带,光谱比较简单但具有很强的特征性,称为官能团区。官能团区的吸收带对于基团的鉴定十分有用,是红外光谱分析的主要依据。在1350~650cm—1区域,有C—O,C—X的伸缩振动和C—C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。该区域中各峰的吸收位置受整体分子结构影响较大,分子结构稍有不同,吸收就有细微的差异,所以称这个区域为指纹区。指纹区对于用已知物来鉴别未知物十分重要。

6费米共振:一个基团振动的倍频与另一个基团振动的基频接近时,也会发生相互作用而产生很强的吸收峰或发生峰的裂分,这种现象称为费米共振。

7弯曲振动:键角改变的振动。也称为变形振动,分为面内变形振动和面外变形振动两种。前者又可分为剪式振动和面内摇摆振动,后者则分为扭曲振动和面外摇摆振动。

8振动的偶合:分子中符合某种条件的基团间的相互作用也会引起频率位移。例如:两个振动频率很接近的邻近基团会产生相互作用而使谱线一分为二,一个高于正常频率,一个低于正常频率。这种基团间相互作用称为振动的偶合。

9倍频峰:在红外光谱中,基团从基态跃迁到第二激发态、第三激发态等产生的吸收峰称为倍频峰。

(3)核磁共振

1 1H-NMR :1H的核磁共振称为质磁共振,简称PMR,也表示为1H-NMR。 2 13C-NMR :13C的核磁共振简称CMR,也表示为13C-NMR。 3一级图谱:符合n+1规律的图谱称为一级图谱。

4化学位移:同种核由于在分子中的化学环境不同而在不同共振磁场强度下显示吸收峰,这称为化学位移。

5化学位移等价:在分子中,具有相同化学位移的核称为化学位移等价的核。 6化学等价:分子中两相同原子处于相同的化学环境时称为化学等价,化学等价的质子必然具有相同的化学位移。分子中的质子,如果可通过对称操作或快速机制互换,它们是化学等价的。

7对映异位质子:通过镜面对称操作能互换的质子叫对映异位质子。对映异位质子在非手性溶剂中是化学等价的,在手性环境中是非化学等价的。

8去屏蔽效应:假如感应磁场在某些区域与外磁场一致,则质子实际上感受到的有效磁场应是外磁场强度加上感应磁场强度。这种作用称为去屏蔽效应,也称为顺磁去屏蔽效应。

9各向异性效应:当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽,这一现象称为各向异性效应。

10

13C同位素边峰:13C与1H能发生偶合并产生裂分峰,这对裂分峰称为13C同位素边峰。由于13C的天然丰度仅为1.1%,只有在浓度很大或图谱放大时才会发现13C同位素边峰。

11自旋偶合:在分子中,不仅核外的电子会对质子的共振吸收产生影响,邻近质子之间也会因互相之间的作用影响对方的核磁共振吸收。并引起谱线增多。这种原子核之间的相互作用称为自旋-自旋偶合,简称自旋偶合。

12自旋裂分:因自旋偶合而引起谱线增多的现象称为自旋-自旋裂分,简称自旋裂分。 13扫频和扫场:要使射=0,可以采用两种方法。一种是固定磁场强度H0,逐渐改变电磁波的辐射频率射,进行扫描,当射与H0匹配时,发生核磁共振。这种方法称为扫频。另一种方法是固定辐射波的辐射频率射,然后从低场到高场,逐渐改变磁场强度H0,当H0与射 匹配时,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。

14非对映异位质子:不能通过对称操作或快速运动进行互换的质子叫做非对映异位质子。非对映异位质子在任何环境中都是化学位移不等价的。

15 n+1规律:有些1H谱的自旋裂分的峰数目符合n+1规律,即一组化学等价的质子,其共振吸收峰的个数由邻接质子的数目来决定,若它只有一组数目为n的邻接质子,那末它的吸收峰数目为n+1。如果它有两组数目分别为n,n’的邻接质子,那末它的吸收峰数目为(n+1)(n’+1)。

16屏蔽效应:分子中磁性核不是完全裸露的,被价电子包围着。这些电子在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁场强度应是外磁场强度减去感应磁场强度。核外电子对核产生的这种作用称为屏蔽效应,也叫抗磁屏蔽效应。σ称为屏蔽常数。

17核磁共振:核磁共振主要是由原子核的自旋运动引起的。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振。

18偶合常数:自旋偶合的量度称为自旋的偶合常数。偶合常数用符号J表示, J值的大小表示了偶合作用的强弱。J的左上方常标以数字,它表示两个偶合核之间相隔键的数目,J的右下方则标以其它情报。

19旋转边峰:在1H-NMR测定时,旋转的样品管会产生不均匀的磁场,导致在主峰两侧产生对称的小峰,这一对小峰称为旋转边峰。旋转边峰与主峰的距离随样品管旋转速度的改变而改变,在调节合适的仪器中旋转边峰可消除。

20等位质子:通过对称轴旋转而能互换的质子叫等位质子。等位质子在任何环境中都是化学等价的。

21磁等价:一组化学位移等价的核,如对组外任何其它核的偶合常数彼此之间也都相同,那么这组核就称为磁等价核或磁全同核。

22碳谱:13C核的核磁共振谱。

(4)质谱

1分子离子和分子离子峰:分子被电子束轰击失去一个电子形成的离子称为分子离子,在质谱图上,与分子离子相对应的峰称为分子离子峰。

2多电荷离子:带两个或多个电荷的稳定离子称为多电荷离子。

3同位素离子和同位素离子峰:含有同位素的离子称为同位素离子。在质谱中,与同位素离子相对应的峰称为同位素离子峰。

4亚稳离子:在分析器中裂解产生的离子(m3)称为亚稳离子。

5麦克拉夫悌(Mclafferty)重排裂解:具有γ氢原子的侧链苯、烯烃、环氧化合物、醛、酮等化合物经过六元环状过渡态使γ氢转移到带有正电荷的原子上,同时在α,β原子间发生裂解,这种重排裂解称为麦克拉夫悌重排裂解。

6质谱:质谱分析的基本原理是很简单的,下面结合EI源来说明:使待测的样品分子汽化,用具有一定能量的电子束轰击气态分子,使其失去一个电子而成为带正电的分子离子,分子离子还可能断裂成各种碎片离子,所有的正离子在电场和磁场的综合作用下按质荷比(m/z)大小依次排列而得到谱图。

7质谱图:都用棒图表示,每一条线表示一个峰,图中高低不同的峰各代表一种离子,横坐标是离子质荷比(m/z)的数值,图中最高的峰称为基峰,并人为地把它的高度定为100,其它峰的高度为该峰的相对百分比,称为相对强度,以纵坐标表示之;有时也用纵坐标表示某峰与所有峰总强度比的相对强度,但一般都采用第一种方法表示。

8 α-裂解:有机官能团与α碳原子或其它原子之间的裂解称为α-裂解。 9 β-裂解:与官能团相连的α碳原子与β碳原子之间的裂解称为β-裂解。 10碎片离子和重排离子:分子离子在电离室中进一步发生键断裂生成的离子称为碎片离子。经重排裂解产生的离子称为重排离子。

推荐第4篇:光谱实验室制度

光谱实验室卫生、安全管理制度

1.光谱实验室的安全、卫生管理工作由相应实验员负责。

2.光谱分析实验室应清洁、无尘、无强烈振动,以免影响精密仪器的使用。

3.保持工作台面及周围环境整洁卫生,工具、标样、试料、仪器用完后要清理,恢复原位。

4.实验室所有的试样、药品、仪器、设备及办公用品、资料档案等必须规定定点放置,应有良好的通风设施。

5.严格执行实验室管理规定和防火、防水、防盗制度,做到人员落实,责任到人。

6.仪器设备操作和维护要严格按照操作规程进行操作,明确各人职责,未经培训不准操作使用仪器。

7.光谱实验室的钥匙由专人负责,实验人员不得在未经同意情况下私自配备或转借他人。

8.非工作人员不得进入实验室。

9.不得擅自安装和使用大功率加热器,如因检测需要,须经主管批准,使用期间人员不得离开,离开时必须关闭。

10.消防器材和设施要放在明显的位置,定期检查,发现故障及时排除和维修,使之处于完好状态。

11.实验室必须建立安全值班制度,工作人员下班前需检查门、窗、水、电、和易燃易爆气体等,做好相应处理。

推荐第5篇:光谱化验员岗位职责

光谱化验员岗位职责

1、穿戴好劳保用品,按时上下班,不迟到早退。

2、严格按照技术和安全操作规程进行光谱分析工作,完成光谱分析任务。

3、对本班的检测记录和检测结果负责,对未完成的工作任务和质量失控负责,发现异常及时向领导汇报。

4、认真做好光谱分析记录,做到详细、清晰、完整、真实。

5、严格按规定开具数据报告单,不泄露原始数据,不散发、复制检测报告。

6、严格执行光谱试验操作规程,复制广利、维护保养光谱检测有关的检测仪器设备和工具,保证其完好状态,防止仪器设备事故发生,按时填写仪器设备使用前后的检查使用记录。

7、认真遵守公司各项规程制度和部门劳动纪律。

8、严格按照交接班制度进行交接,做好交接班记录。

9、服从领导安排,数据不得弄虚作假,弄虚作假者开除。

10、岗位职责为做好和不履行岗位职责每次考核50元。

11、及时完成生产任务和指令,不能完成生产任务和指令每次考核100元。

推荐第6篇:光谱分析员岗位职责

光谱分析员岗位职责

1、贯彻“质量第一”的方针,认真贯彻执行有关法规、标准和规范;

2、质量职责:根据下达的《检测任务通知单》及协议、合同的要求,严格按作业指导书进行光谱分析工作,完成光谱分析任务;接受专业检测责任人(即质量监督员)的指导;接受复核(验证)人员的复核,对检测记录和检测结论负责,对未完成工作任务和质量失控负责;

3、负责光谱分析记录达到规范化要求,做到详细、清晰、完整、真实;

4、编写光谱分析报告,并保证做到公正性、科学性的要求;

5、为客户保守机密,不泄露原始数据、不散发、复制检测报告;

6、严格执行光谱实验操作规程,负责管理,维护光谱检测有关的检测仪器设备和工具,保持其完好状态,防止发生仪器设备事故,按时填写仪器设备使用前后的检查使用记录;

7、严格执行有关安全规程,防止安全事故的发生;

8、努力提高专业理论水平和操作技能,积极参加专业培训考核;

推荐第7篇:应用光谱解析练习题

Mid-term exercises:

一、Fill the following blanks with suitable words or phrases (20 points)

1、The wavenumber of a transition is

2、The relationship between the energy of a transition and the frequency is given by.3、The number of double bond equivalents corresponds tobetween the molecular formula and that for the saturated acyclic parent compound.

4、UV-Vis spectroscopy involves the promotion of electrons from bonding or non-bonding orbitals to .二、Define the following technical terms (12 points)

Chromophore发色团

fingerprint region指纹区

“first order” spectra“一阶”谱

三、Answer the following questions (30 points)

1、A compound of molecular weight 345 is found to have an absorptivity of 248 dm3 g-1cm-1with a path length of 1 cm cuvette, calculate its molar absorptivity, ε.一个分子量为345化合物被发现的248 L3 g-1cm-1吸,以1厘米比色皿的路径长度,计算其摩尔吸光系数ε

C=

2、IR spectrometer typically operates over a range of 2.5~15 um, expre this range in terms of frequency and wavenumber.红外光谱仪通常工作在2.5〜15微米范围内,表达的频率和波数计算,这范围。

四、The characterization of the following spectroscopic spectra(30 points)

1、Characterize the group frequencies of the following IR spectrum of aniline 表征苯胺以下的红外光谱频率组

2、NMR spectral interpretations and their resonances aignment of isopropylbenzene 核磁共振光谱的解释和他们的共振转让的异丙苯

五、Structure determination using spectroscopic methods (8 points)

A compound with a molecular formula of C9H12 gives the following NMR data and IR spectrum.Deduce its structure.

结构测定使用(8分光谱方法)

阿的和C9H12分子式化合物提供了以下数据,核磁共振和红外光谱。推断其结构。

NMR data: 1.3 (triplet 5H), 2.8 (quartet 2H), 3.0 (singlet 3H),7.2 (multiplet 4H)

1.3(三重5H条),2.8(四方下半年),3.0(单3小时),7.2(多重态4小时)核磁共振数据:

推荐第8篇:什么是高光谱

什么是高光谱,多光谱,超光谱

作者:felles 提交日期:2010-4-26 8:16:00 | 分类:高光谱 | 访问量:196

到底什么是高光谱,多光谱和超光谱技术2009-11-18 13:53多光谱,高光谱和高光谱技术都被称为成像光谱技术,在遥感和其他科研领域具有举足轻重的作用。

多年来,我一直对这种技术理解不深,很多人说什么多光谱,甚至是超光谱,多光谱技术实际上是高光谱技术的原始阶段,几乎被淘汰了。而有些人说的超光谱实际上还在美国研发,根本没有进入到市面上,也就说诸多同仁对成像光谱技术也是糊里糊涂。今日,我在一个网站上发现了对这种技术的解释

http:// , 我认为从专业角度来说,他们说的还比较靠谱。对于科研确实有一定的帮助。我在这里吧相关资料拷贝过来供大家欣赏。

成像光谱技术(高光谱成像技术)基础

Imaging Spectrometer Fundamentals

说明:1.下文所属的成像光谱仪又叫高光谱成像系统,而且同一个概念。

2.该资料为天津菲林斯光电仪器公司 编写,仅作成像光谱技术的内部交流之用,禁止一切形式的侵权传播或引用行为。

一. 技术历史背景

在现代科研过程中, 多数情况下必须对空间不均匀样品的分布特性加以分析和确认,使用传统的光谱仪仅仅能够以聚焦的镜头扫描样品或者获得整个样品

的平均特性,这种光谱和空间信息不可兼得的局限性促使高光谱成像技术(Hyperspectral Imaging)应用而生。

早在20世纪60年代(1960s)人造地球卫星围绕地球获取地球的图片资料时,成像就成为研究地球的有利工具。在传统的成像技术中,人们就知道黑白图像的灰度级别代表了光学特性的差异因而可用于辨别不同的材料,在此基础上,成像技术有了更高的发展,对地球成像时,选择一些颜色的滤波片成像对于提高对特殊农作物、研究大气、海洋、土壤等的辨别能力大有裨益。这就是人类最早的多光谱技术(Multispectral imaging)它最早出现在LandSat卫星上。这些最早的星载图像传感器(例如,LandSat卫星上的Thematic Mapper和法国SPOT卫星上的相机)以离散的几种颜色(或者几个波段)对地球成像,就是人们常说的多光谱成像。

既然多光谱成像(Multispectral Imaging)仅仅以几个连续的光谱波带成像对于我们研究环境就如此有用,为什么不把波带数拓展更多,把光谱分辨率拓展更细呢?因此,用于遥感目的的高光谱成像技术(Hyperspectral Imaging)在20世纪80年代初期诞生了,它最早是机载的成像光谱仪(Airborne Imaging Spectrometer),如今已拓展到先进的可见和红外成像光谱仪(AVIRIS),这两种最早都诞生在NASA的JPL中心(NASA:美国国家航天航空管理局)。

从多光谱到高光谱遥感技术的前进也需要仪器的发展。虽然对地球成像而言七个非连续的波段称不上什么光谱成像技术,但是如果使用200个连续的波段,每个波段的光谱分辨率在10nm左右,谁都不会否认这是光谱成像技术。而且人类对更好更高的追求从来都没停止过,现在光谱成像技术已经发展到超光谱时代(Ultraspectral Imaging),比如,它使用的是空间发射光谱仪(Atmospheric Emiion Spectrometer, AES), 这个超光谱成像仪在红外波段就能产生数千个波带,分辨率高达1/cm。

全球第一个星载高光谱成像器于1997年在NASA随着Lewis卫星发射升空,它包含了384个波段涵盖了400-2500nm波段,不幸的是这颗卫星控制出现问题,失去了动力,升空一个月后就偏离了轨道。随后,一些实验性的机载高光谱成像器在NASA的DOD(Department of Defense)得到了重点研发,这些机载的高光谱成像系统涵盖了VNIR/SWIR和MLIR(3-5微米),LWIR(又称热红外相机,适应波段8-12微米)。

目前,成像光谱技术已经走出了最初的军事应用的局限,在国土资源调查,精准农业生产和研究,农作物分选和检测等多种应用领域发挥不可替代的作用。基于成像光谱技术波长范围为400-1000nm, 900-1700nm,

1100-2500nm,3000-15000nm的各种成像光谱仪和高光谱成像器也应运而生。但是由于军事应用的潜在性依然存在,国外先进成像光谱仪国家对成像光谱仪的对华出口管制非常严格,例如,红外成像光谱仪是百分之百对华禁运,其他波段的成像光谱仪也需要我国用户提供商务部签发的“End User and End Use Statement” ,但是,尽管如此,能否进口到中国来依然存在许多变数。

为什么国外多这种技术对华如此高级别地限制,高光谱技术到底“高”在那些方面,高光谱成像光谱仪如何实现高光谱数据的获取?针对诸多技术细节,天津菲林斯光电仪器公司作为国内专业的成像光谱技术提供者,发挥专业技术优势,从纯技术的角度为广大用户和读者提供一份绝密级别的内部参考资料,这份资料仅供广大用户之间阅读参考,切勿随意散发。

二. 技术综述

成像光谱(高光谱)数据是图谱合一的海量数据源,它同时包含了图像信息和光谱信息,能够给出各个波段上每个像素的光谱强度数据,而且光谱分辨率很高,这样,这种数据在一些对光谱和图像和光谱分辨率要求较高的领域就显示出无可替代的作用。例如,矿产探测,高光谱数据由于较高的光谱分辨率就可以帮助人们通过光谱分析的的办法找到一些隐蔽性极强的稀有矿产,而在以前,普通的光谱技术是无法发现这些矿产的。

高光谱成像的数据是一叠连续多个波段成像获得的景色或样品的图像,就是俗称的图像立方体(Image cube)。这个图像立方具有两个空间维度(X和Y),第三维为每个像素的波长或辐射强度。

图二:一种比较典型的高光谱图像立方体

那么,如何获得这种价值连城的高光谱图像立方体呢?它是通过成像光谱仪获取的,但是成像光谱仪(或高光谱成像系统)本身是一种获取图像的传感器,它获取的只是光谱信息,一般地,成像光谱仪器及其配套软件是不提供该图像立方体的显示功能的,您需要把成像光谱仪获取的数据导入到ENVI软件中才能显出如此漂亮的图片资料。

图三: 一种比较典型的成像光谱仪(Imaging Spectrometer or

Hyperspectral imager)

获取这样一个图像立方有两种方法,一种是推扫式(Push-broom),适合动态成像,也就是成像光谱仪随着搭载平台时刻在运动而探测的目标静止, 另外一种是波长扫描式(Wavelength Scanning),适合静态成像,也就是程序光谱仪和目标都是静止不动。(有关扫摆式和摇摆式成像在此不作阐述)。

在深入该话题的探讨之前,我们首先明确高光谱遥感的三个空间级别:

航天级别:星载遥感(planet-borne)距离地面150公里以上。这是一种典型的高光谱遥感应用,也是高光谱技术(成像光谱技术)的最初应用,它是把成像光谱仪安装于卫星上,对地球目标进行高光谱遥感探测。工作距离通常是几万公里以上,我国的神舟七号飞船就成安装类似的成像光谱仪。使用的成像光谱仪非常庞大,每次实验的费用非常巨大。

航空级别:机载遥感(Airborne)距离地面100-到十多公里的距离。使用小型飞机或无人机作为光谱仪的搭载平台,是目前主要的遥感成像工作方法。它使用的成像光谱仪体积小。但是要获得比较好的实验结果并不容易,需要精确的GPS和惯导定位,高性能的计算机和高频率的拍摄速度。

地面级别:这种应用的主要领域是地面或高度不高于50m的空间成像。它不再是像前两种那样动态的成像,而是通常静态成像,比较常见的是农业应用和是实验室高光谱成像。但是也有把推扫式成像光谱仪放置在地面,配备旋转位移台或线形位移台,以产生两种效果:成像光谱仪运动而待测物目标静止,或者成像光谱仪静止而待测目标运动的效果。

目前,实际科研过程中,常用的是航空级别(动态成像)和地面级别的高光谱遥感成像(静态成像)。现在,可以这样认为:动态的测量应用就需要使用推扫式成像方式获取图像,静态测量应用需要使用波长扫描式获取高光谱图像。这两者有何区别呢?下图将有利于您理解该问题。

图四:A图是波长扫描式的成像方式(静态测量) B图是推扫式成像方式(动态测量)

推荐第9篇:高光谱遥感实习报告

中国地质大学(武汉)

《高光谱遥感》上机实习报告

学 号: 20141000360 班级序号: 113142 姓 名:林浩 指导老师:沈永林

实习一

1.高光谱数据的基本信息查询:

(1)打开数据

(2)鼠标放在cup95eff.Int左键点击->edit header,查看头文件信息

2.数据分析

(1)在ENVI主菜单下选择:File>OpenImageFile,在打开的文件选择窗口中选择图像文件cup95eff,点击OK打开图像。

(2)打开它的2-D散点图Tools>2-DScatterPlots,并且选择band17

2、173

(3)得到2d散点图

3.高光谱数据MNF变换以及纯净端元提取

样本的选取与分类

(1)在ENVI主菜单下选择Transform>MNFRotation>ForwardMNF>EstimateNoiseStatisticsfromData

(2)进行mnf变换设置

(3)得到特征值曲线

(4)查看mnf变换后band1和band2的2d散点图

(5)在散点图中用ROI制图功能将点云拐角零散的几个点圈起来

(6)在2-D散点图窗口中选择:Options >Export All 提取各样本区

(7)点击Select ALL 然后点击stats

(8)在ENVI主菜单下选择:Spectral >Spectral Analyst ,我们选择USGS(美国地质调查局)波谱库

(9)选择红色区域 得到匹配结果

得出红色区域为明矾石。

(10)同理得到绿色区域结果

判断该为锂辉石

蓝色区域

判断该为高岭石

黄色区域

判断该为赤铁矿

青色区域

判断该为黄钾铁矾

洋红区域

判断该为黄钾铁矾

褐红色区域

判断该为白云石

(11)通过分析是否有两类极其相似,于是我把这两类合并。在ROIs Tools窗口中选择Option >Merge Regions

得到分类好的样本区域

分类

(1)在ENVI主菜单下选择:Pixel Purity Index >[FAST]New Output Band

进行10000次迭代

(2)得到的PPI图像如下所示:

(3)由PPI图像生成样本区。

在ROIs Tool对话框中选择Options >Band Threshold to ROI 建立一个只包含拥有高PPI值像素的ROI

(4)在弹出的对话框中输入最小极限值100,提取训练样本。

(5)在ENVI主菜单中选择Spectral >n-Dimensional Visualizer >Visualize with New Data

(6)选择其前十个波段进行观察

(7)使用n维空间观察仪

(8)选择其中5个波段进行模拟

(9)在ENVI主菜单下选择:Claification >Supervised >Spectral Angle Mapper。 选择原始图像作为待分类图像。

(10)在此窗口中选择:Import >form ROI from Input File

(11)选择我们刚才定义好的样本区

(12)这些样本区就出现在端元收集器中了

(13)设置分类参数

(14)得到最后分类的图像

推荐第10篇:高光谱实习报告[全文]

高光谱遥感实习

报告

1、通过给定的数据1DATA(excel文档格式)建立光谱库,并将该光谱库数据重采样至TM传感器的光谱分辨率。

1.1光谱库重采样

使用“Spectral Libraries | Spectral Library Resampling”子菜单进行光谱库重采样。

在“Spectral Resampling Parameters”对话框里,选择 “Input Data File” 作为重采样方法, 第一步:出现“File Containing Output Wavelength”对话框时,点击需要的文件名。此时是can_tmr.img作为参考文件,也就是说光谱库中的光谱将以TM的波长范围进行重采样。 如下系列图所示:

第二步:点击【OK】开始重采样过程。数据文件在它的相关文件头中,必须包含用于重采样的波长数值。如果在文件头中,出现 FWHM 值,它们也将用于重采样。

(1)在“Available Bands List”中出现重采样后的光谱库。 (2)通过光谱库查看功能查看重采样后的光谱数据。

第三步:通过光谱库查看重采样后的结果

1.2光谱库建立

操作步骤:

第一步:选择“Spectral | Spectral Libraries | Spectral Library Builder”。

第二步:出现“Spectral Library Builder”对话框时,从 “Data File” (ENVI 图像文件)或ASCII File”、或“File Input Spectrum”,为新库选择数据源。 第三步:出现“File Containing Output Wavelength”对话框时,用标准选择程序选择包含波长和可选项FWHM值的输入文件。

(1)当采用 “Data File”,波长和 FWHM 值(若存在)从 ENVI 头文件中读取。如图18.

(2)当采用 “ASCII File”, 必须选上包含波长值与 FWHM (若存在)的列。 (3)当采用“file input spectrum”时直接弹出Spectral Library Builder 对话框 (4)点击【OK】。出现“Spectral Library Builder”对话框,允许选择光谱库。如图

第四步:“Spectral Library Builder”对话框运用这一对话框从各种数据源中收集端元光谱。所有光谱自动被重采样到选择的波长空间。这一对话框的个别部分见下面描述(参见错误!未找到引用源。节“端元收集”)。

第五步:此时例子选择的为野外采集光谱文件“ASD file”则根据选择的波长建立光谱库。由选择的光谱建立一个标准ENVI光谱库文件。可以看到,该光谱曲线已经被采样到can_tmr.img文件的波长范围了,即6个波段。这表明输入的ASD数据已经被ENVI识别并已经可以使用了。那么下一步就是将其保存为ENVI的光谱库文件。

第六步:在“Endmember Collection Spectra”对话框中选择“File | Output Spectra | Spectral Library”。

第七步:出现“Output Plots to Spectral Library”对话框时,输入输出文件名,此时该光谱库就已经被建立。

第八步:关闭“Spectral Library Builder”对话框,选择“File | Cancel”

2、对数据2构建三维影像立方体。

操作步骤:

第一步:选择“Spectral | Building 3D Cube”菜单

第二步:输入构建3维影像立方体文件,选择ENVI自带的cup95eff高光谱数据进行实验。 第三步:弹出“3D Cube RGB Face Input Bands”对话框,输入影像RGB,用于影像立方体第一层显示。

第四步:弹出“3D Cube Parameters”对话框,选择色彩对应表,显示立方体其他部分的颜色对应表。

第五步:显示结果

3、对数据2的column=10的位置进行光谱切面。

3.1水平切面

操作步骤:

第一步:选择“Spectral | Spectral Slices | Horizontal Slice”。

第二步:出现“Spectral Slice Input File”对话框时,选择一个输入文件和需要的光谱子集 第三步:出现“Spectral Slice Parameters”对话框时,在标有 “Line” 的文本框里输入用

于水平切面的行数

第四步:选择输出到 “File” 或 “Memory”。如果选择输出到 “File”,输入一个输出文件名,或用【Choose】按钮选择一个输出文件名。

第五步:一旦所有参数都已经输入,点击【OK】继续。水平光谱切面图像将被添加到“Available Bands List”中,可以用标准 ENVI 功能显示和处理。

3.2垂直切面

操作步骤:

第一步:选择“Spectral | Spectral Slice | Vertical Slice”。

第二步:出现“Spectral Slice Input File”对话框时,选择一个输入文件和需要的光谱子集。

第三步:出现“Spectral Slice Parameters”对话框时,在标有 “Sample” 的文本框里,为垂直切面输入一个样本数。

第四步:选择输出到 “File” 或 “Memory”。如果选择输出到 “File”,输入一个输出文件名,或用【Choose】按钮选择一个输出文件名。

第五步:一旦所有参数都已经输入,点击【OK】继续。垂直光谱切面图像将被添加到“Available Bands List”中,可以用标准 ENVI 功能显示和处理。

4、对数据2进行包络线去除,指出包络线去除后的光谱与原始光谱曲线的区别。

操作步骤:

第一步:选择“Spectral | Mapping Methods | Continuum Removal”。

第二步:出现“Continuum Removal Input File”对话框时,选择输入文件,选取的空间或光谱子集或掩模。

第三步:点击【OK】。

第四步:出现“Continuum Removal Parameters”对话框,选择输出到“Memory”或“File”。如果选择输出到“File”,输入一个输出文件名。 第五步:点击【OK】,开始处理。出现一个状态窗口,显示处理的进度。最终结果将出现在“Available Bands List”里。

5、对数据2利用MNF变换进行特征提取,并比较提取后的特征光谱与原始光谱特征光谱的区别。

MNF变换(MNF Rotation)实现对遥感数据进行最小噪声分离,具体实现参见下面步骤:

第一步:选择“Spectral | MNF Rotation | Forward MNF | Estimate Noise Statistics from Data”菜单进行MNF变换。

第二步:在“MNF Transform Input file”中选择进行MNF变换的影像,此处选择的是ENVI自带的cup95eff AVIRIS高光谱影像,为了运算速度,本次实验只选择了该影像的子集(通过“Basic Tools | Resize Data”工具进行)。

第三步:弹出“Forward MNF Transform Parameters”对话框,输入MNF变换所需要的参数。输出噪声统计文件;输出MNF统计文件;选择输出到 “File” 或 “Memory”。如果选择输出到 “File”,输入一个输出文件名,或用【Choose】按钮选择一个输出文件名;选择是否通过特征值选择子集;输出MNF文件的波段数的选择。

第四步:在波段列表中输出MNF影像以及特征值曲线图,从图中可以看出大约在第20个波段以后的MNF波段的特征值很小,因此如果进行降维的话可以选择20左右,此例选择20。

6、利用PPI算法对数据2提取像元的纯净指数,解释结果图像的意义,并通过设置阈值提取端元。

像元纯净指数(Pixel Purity Index,PPI)是一种在多光谱和高光谱图像中寻找光谱纯净像元的方法。

6.1 [Fast] New Output Band

操作步骤:

第一步:选择“Spectral |Pixel Purity Index | [FAST] New Output Band”。 第二步:出现“Fast Pixel Purity Index Input File”对话框时,选择一个输入文件或用标准ENVI 光谱和空间子集程序选择子集。PPI 运行 MNF转换结果,光谱子集根据特征图像和特征值图排除噪声波段。此时采用上一节MNF变换后的例子,经分析得知第20个波段以后的特征值很小(如图),因此只需要选择前20个波段进行处理。这样做的优点是可以在不影响精度的情况下加快PPI的运算速度。点击【OK】后,ENVI会提示用户需要的内存数。

第三步:点击【OK】继续。出现“Pixel Purity Index Parameters”对话框,进行PPI参数设置

第四步:在同一地方重新开始,选择“Spectral | Pixel Purity Index | Existing Output Band” 第五步:显示PPI处理结果。如所示。结果图中的每个像元被标记为极值的总次数,也就是说图中像素越多,它被标记为极值的总次数也越多,像元越纯的可能性就越大。

6.2用PPI图像进行端元(Endmember)选择 操作步骤:

第一步:用标准 ENVI 显示程序显示图像比较亮的像元表示采用的光谱极值较多,光谱比较纯。较暗的像元表示光谱纯度较低。

第二步:在 ENVI主窗口处选择“Tools | Cursor Location/Value”以判定图像中值的范围。

第三步:选择“Tools | Region of Interest | Band Threshold to ROI”来生成一个只包含 PPI 高值的像元。

9、利用线性混合分解技术(linear spectral unmixing)对数据3进行混合像元分解。

操作步骤:

第一步:选择“Spectral | Mapping Methods | Linear Spectral Unmixing”。 第二步:出现“Unmixing Input File”对话框,选择一个输入文件,(若需要)用标准ENVI光谱和空间子集以及掩模程序选取的空间子集或用一个掩模。选择进行分解的影像为ENVI自带的高光谱影像“wuhanTM”影像。通过ROI选择了6个端元

第三步:点击【OK】继续。出现“Endmember Collection:Unmixing”对话框。选择“Import from ROI/EVF file”。 当所有需要的端元都已经选上以后,点击“Endmember Collection:Unmixing”对话框底部的【Apply】按钮。

第四步:弹出“Unmixing Parameters”对话框。如果用户想在分解过程中运用限制性条件则用箭头切换按钮选择【Yes】。如果选择了【Yes】,在“Weight”文本框里输入一个权重。这一权重被添加在分解倒置过程中的联立方程里。权重越大,所进行的分类就越满足设定的限制条件。

第五步:选择输出到“Memory”或“File”。如果选择输出到“File”,输入一个文件名。 第六步:点击【OK】,开始光谱分解。出现一个显示处理状态的窗口。

第七步:混合光谱分解的结果。光谱分解的结果将以一系列灰度图像的形式出现,每个端元对应一幅丰度图像,并加上一个平方根误差图像。较高的丰度(RMS误差图像的较大误差)对应较亮的像元。例如,在下图中,较亮的像元代表了在该图中该端元的丰度较高。丰度值在0~1的数据范围内,但是也有可能出现负值和大于1的值。错误的丰度象征着错误的端元。结果由输入的端元决定,且随端元的变化而变化。

10、利用光谱沙漏向导(spectral hourgla wizard)实现对光谱角分类(SAM)制图。

操作步骤:

第一步:打开“Spectral | Spectral Hourgla Wizard”菜单

第二步:打开向导对话框,该对话框为介绍对话框,选择“Next”进行下一步。

第三步:在下一个对话框中点击【Select Input File】和【Select Output Root Name】选择输入输出文件。选择“Next”进行下一步。如图

第四步:进行MNF变换,选择输出MNF波段的数目。此处可以选择一个空间子集进行操作,选择“Next”进行下一步。如图

第五步:得到MNF结果,被保存且在波段列表中可以显示。选择是否查看和动画显示。如果不满意结果可以选择“Prev”返回之前的操作重新进行,否则选择“Next”进行下一步。 第六步:计算数据维数,通过MNF变换可以降低数据维数,点击【Calculate Dimensionality】,弹出“Spatial Coherence Threshold”对话框,根据空间相关性阈值确定其数据维数为23(图中红线表示)。如果不满意结果可以选择“Prev”返回之前的操作重新进行,否则选择“Next”进行下一步。

第七步:选择是否从影像获取端元。从影像获取端元如下所示,手动方式请参见错误!未找到引用源。节“端元收集”。如果不满意结果可以选择“Prev”返回之前的操作重新进行,否则选择“Next”进行下一步

第八步:进行PPI计算。该步采用PPI获取纯净端元选择,设置PPI相关参数,参数含义参

见像元纯净指数

四、节“像元纯净指数”功能,如果不满意结果可以选择“Prev”返回之前的操作重新进行,否则选择“Next”进行下一步

第九步:得到PPI结果,选择在n维可视化仪显示的最大PPI的像素数,如果不满意结果可以选择“Prev”返回之前的操作重新进行,否则“Next”进行下一步

第十步:利用N维可视化界面进行端元选择,该功能首先自动聚类选择相应的端元供用户参考,如此时选择了23个端元。点击【Retrieve Endmember】将n维可视化仪获得的端元列于“Endmember list”列表中。可以通过【Plot Endmember】查看端元光谱曲线,还可以点击【Start Spectral Analyst】按钮进行光谱分析。

第十一步:选择是否采用n-维可视化仪获得端元进行下一步操作还是用户自己选择端元,本例用n-维可视化仪获得端元,选择NO,如果不满意结果可以选择“Prev”返回之前的操作重新进行,否则选择“Next”进行下一步。

第十二步:选择处理方法及参数,有三种制图方法:光谱角;混合调制匹配滤波;分解。设置相关的参数

第十三步:此时计算出了制图的结果,列于波段列表中。其中SAM结果可以直接通过下图进行查看。

第十四步:任务完成点击【finish】得到总结报告。此时的中间结果都在波段列表中显示。

如图:

小结:

通过这次高光谱遥感实习,我较为熟练的掌握了ENVI这个软件的使用,这次实习题目都是对我们上高光谱遥感课程的知识的巩固和动手能力的提高,让我对高光谱遥感的基本知识和操作有了更深层次的认识。在实习中,对于基本的功能我能够摸索出来,其中,在操作中出现了一些问题,不过,经过与同学的探讨交流,最终基本的实现了结果,但还有许多应改进之处。但是对于这个软件还是有一些不熟悉的地方,以后如有机会还是要再次认真的学习。唯一让我后悔莫及的是考试之前没有好好做这个实习,以至于当时好多内容都没有很好的掌握。总之,通过这次实习,学到了不少东西,虽然以前对遥感进行过ENVI的实习,但是这次实习使我对高光谱遥感有了全新的认识,通过实践对理论知识有了更加深刻的理解,受益颇多。

第11篇:现代近红外光谱(英贤)

注:资料来源于北京英贤仪器有限公司

石油化工科学研究院

现代近红外光谱(NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。

近红外区域按ASTM定义是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,近红外光谱“沉睡” 了近一个半世纪。直到20世纪50年代,随着商品化仪器的出现及Norris等人所做的大量工作,使得近红外光谱技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典近红外光谱分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,从此,近红外光谱进入了一个沉默的时期。80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之近红外光谱在测样技术上所独有的特点,使人们重新认识了近红外光谱的价值,近红外光谱在各领域中的应用研究陆续展开。进入90年代,近红外光谱在工业领域中的应用全面展开,有关近红外光谱的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使近红外光谱在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此近红外光谱技术进入一个快速发展的新时期。 我国对近红外光谱技术的研究及应用起步较晚,除一些专业分析工作人员以外,近红外光谱分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的近红外光谱分析仪器市场。由此也可以看出近红外光谱分析技术在分析界炙手可热的发展趋势。在不久的未来,近红外光谱分析技术在分析界必将为更多的人所认识和接受。

现代近红外光谱分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。是将近红外光谱所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。 与常规分析技术不同,近红外光谱是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。具体的分析过程主要包括以下几个步骤:一是选择有代表性的样品并测量其近红外光谱;二是采用标准或认可的参考方法测定所关心的组分或性质数据;三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;四是未知样品组分或性质的测定。由近红外光谱分析技术的工作过程可见,现代近红外光谱分析技术包括了近红外光谱仪、化学计量学软件和应用模型三部分。三者的有机结合才能满足快速分析的技术要求,是缺一不可的。

与传统分析技术相比,近红外光谱分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次近红外光谱的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。因为建立近红外光谱方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。近红外光谱主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。主要的应用领域包括:石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;在医药领域可以测定药品中有效成分,组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。

相信随着科学技术的不断发展,近红外光谱分析技术这一先进的技术必将得到广泛的认同和应用。

近红外光谱分析原理

近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波,ASTM定义的近红外光谱区的波长范围为780~2526nm(12820~3959cm-1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。

近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同基团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成与性质测量。但在NIR区域,吸收强度弱,灵敏度相对较低,吸收带较宽且重叠严重。因此,依靠传统的建立工作曲线方法进行定量分析是十分困难的,化学计量学的发展为这一问题的解决奠定了数学基础。

其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程: (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的普适性。对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回归,主成分回归,偏最小二乘,人工神经网络和拓扑方法等。显然,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数据有关,还与测量所要求达到的分析精度范围有关。实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范(如ASTM-6500标准)。

(2)在预测过程中,首先使用近红外光谱仪测定待测样品的光谱图,通过软件自动对模型库进行检索,选择正确模型计算待测质量参数。近红外光谱分析技术的优势 样品无须预处理可直接测量:近红外光谱测量方式有透射、反射和漫反射多种形式,适合测量液体、固体和浆状等形式的样品,因此,用途很广。最大的优点就是无须对样品进行任何预处理,如汽油可直接倒入测量杯中或将光纤探头直接插入汽油中进行测量,操作非常方便,几秒钟内完成光谱扫描。 光纤远距离测量:近红外光可以通过光纤进行远距离传输,可以实现距光谱仪以外的远距离测量,可将测量探头或流通池直接安装到生产装置的管线,实现在线测量,或环境苛刻以及危险的地方的现场测量。

一台在线近红外光谱仪可以外接多路(2~10路)光纤回路,实现同时对生

产装置的多个测量点的物料在线测量。在线测量数据可直接输送到DCS或先进控制系统,为生产的优化及时提供油品的质量参数。与其它在线测量仪表提供的参数(如压力、流量和温度等变量)相比,在线近红外分析提供的数据(如组成或性质)是直接质量参数,对生产的优化提供更准确和有益的参考信息。

近红外分析与常规的标准分析方法配合使用,起到双方互补的作用,不仅能够及时向生产控制部门提供分析数据,同时也节省了大量分析化验费用(包括人力、设备,和试剂等);在线近红外分析与DCS连接,直接给控制系统提供数据,据此进行生产优化得到的经济效益是巨大的;与其它在线仪表相比,近红外光谱仪运行故障率和消耗均很低。近红外光谱分析技术注意事项

近红外分析技术的一个重要特点就是技术本身的成套性,即必须同时具备三个条件:(1)各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求;(2)功能齐全的化学计量学软件,是建立模型和分析的必要工具;(3)准确并适用范围足够宽的模型。这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,为此付出代价的厂家有之,因此,一定要对厂家提供模型与技术支持情况有详细了解。

近红外分析技术分析速度快,是因为光谱测量速度很快,计算机计算结果速度也很快的原因。但近红外分析的效率是取决于仪器所配备的模型的数目,比如测量一张光谱图,如果仅有一个模型,只能得到一个数据,如果建立了10种数据模型,那么,仅凭测量的一张光谱,可以同时得到10种分析数据。

近红外光谱分析仪器

近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器和阵列检测五种类型。

滤光片型主要作专用分析仪器,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。光栅扫描式具有较高的信噪比和分辨率。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太适合于在线分析。傅立叶变换近红外光谱仪是具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动性部件,且需要较严格的工作环境。声光可调滤光器是采用双折射晶体,通过改变射频频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快。但目前这类仪器的分辨率相对较低,价格也较高。

随着阵列检测器件生产技术的日趋成熟,采用固定光路、光栅分光、阵列检测器构成的NIR仪器,以其性能稳定、扫描速度快、分辨率高、信噪比高以及性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的阵列检测器中,常用的有电荷耦合器件(CCD)和二极管阵列(PDA)两种类型,其中Si基CCD多用于近红外短波区域的光谱仪,InGaAs基PDA检测器则用于长波近红外区域。近红外光谱仪器的主要性能指标

在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。

1、仪器的波长范围

对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。

2、光谱的分辨率

光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1]

3、波长准确性

光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。

4、波长重现性

波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。

5、吸光度准确性

吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。

6、吸光度重现性

吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。

7、吸光度噪音

吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。

8、吸光度范围

吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。

9、基线稳定性

基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。

10、杂散光

杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。

11、扫描速度

扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。

12、数据采样间隔

采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。

13、测样方式

测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。

14、软件功能

软件是现代近红外光谱仪器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

参考文献

1.陆婉珍,袁洪福,徐广通,强冬梅.现代近红外光谱分析技术.38~40

近红外光谱技术的应用领域

第12篇:光谱色谱理论与实验技术复习题

2014年光谱色谱理论与实验技术复习题

一、简答题

1.质谱碎裂反应遵循的一般规律。

2.AAS(原子吸收光谱)与AES(原子发射光谱)之间的异同?

3.在氢化物发生技术上占绝对优势的是硼氢化钠-酸还原体系,其反应式为?AFS的氢化物发生进样方式的主要优点?

4.光谱法进行样品分析时所用的测量方法常用标准曲线法,其在应用时应注意哪些?

5.气相色谱检测器的性能指标有哪些?对检测器有什么要求?

6.HPLC中流动相的选择有哪些要求?

7.气相色谱法运行的基本原理是什么?

8.HPLC的主要部件有哪些?

9.气相色谱仪的检测器的功能是什么?列出四种检测器的名称。

10.保留时间

11.红外吸收光谱产生的条件

12.AFS(原子荧光光谱仪)的氢化物发生进样方式的主要优点?

13.什么是ICP?ICP发射光谱分析的基本原理?

14.原子荧光光谱法的产生机理?在氢化物发生技术上占绝对优势的是硼氢化钠-酸还原体系,其反应式为?

15.离子色谱分析的主要对象物质有哪些?并举例说明。

16.气相色谱法分析物质有什么特点?

17.红外光谱中的基团频率区和指纹区指的是什么?

二.论述题

1.原子吸收分析中会遇到哪些干扰因素?简要说明各用什么措施可抑制上述干扰?(12分)

2.在气相色谱中需要用到固定液,那对固定液有什么要求?(11分)

3.ICP与AAS的异同?

4.与GC相比,HPLC有哪些优点?

第13篇:记者证首次采用无色光谱彩色印刷技术

印刷新技术新应用

新闻出版广电总局14日在京宣布,2014版新闻记者证换发工作7月15日起全面启动,计划于10月30日结束。本次换发记者证的新闻单位首次增加了纳入试点核发记者证的新闻网站,首次要求新闻单位提供申领人员与所在新闻单位签署的保密承诺书和职务行为信息保密协议。

换发结束后,全国将有25万名新闻记者领到全新设计的记者证。据介绍,2014版新闻记者证长107毫米,宽77毫米,使用了20种防伪技术,年检页首次采用无色光谱彩色印刷技术,使用了摄影记者拍摄的五张经典摄影作品,在自然光下照片显示出基本轮廓,在紫外光下显示出优美的彩色图像,展示祖国的大好河山。天津印刷在线(天津天羽爱德印刷)

第14篇:光谱分析仪器和金属化学分析仪优缺点

光谱分析仪器和金属元素化学分析仪优缺点

光谱分析仪器和金属元素化学分析仪在冶金、化学、制药、机械、新材料开发、航空、宇宙探索等很多领域都有着很广泛的应用。在当今工业快速发展的社会,两者之间又有着各自的优点和不足。

金属元素化学分析仪的优点

1.化学分析法是国家实验室所使用的仲裁分析方法,准确度高。

2.对于各元素之间的干扰可以用化学试剂屏蔽,做到元素之间互不干扰,曲线可进行非线性回归,确保了检测的准确性。

3.取样过程是深入样品中心和多点采集,更具有代表性,特别是对于不均匀性样品和表面处理后的样品可准确检测。

4.应用领域广泛,局限性小,可建立标准曲线进行测定,仪器可进行曲线自我检测。

5.购买和维护成本低,维护比较简单。

金属元素化学分析仪的缺点:

1.流程比光谱分析法较多,工作量较大。

2.不适用于炉前快速分析。

3.对于检测样品会因为取样过程遭到破坏。

光谱分析仪的优点:

1.采样方式灵活,对于稀有和贵重金属的检测和分析可以节约取样带来的损耗。

2.测试速率高,可设定多通道瞬间多点采集,并通过计算器实时输出。

3.对于一些机械零件可以做到无损检测,而不破坏样品,便于进行无损检测。

4.分析速度较快,比较适用做炉前分析或现场分析,从而达到快速检测。

5.分析结果的准确性是建立在化学分析标样的基础上。

光谱分析仪的缺点:

1.对于非金属和界于金属和非金属之间的元素很难做到准确检测。

2.不是原始方法,不能作为仲裁分析方法,检测结果不能做为国家认证依据。

3.受各企业产品相对垄断的因素,购买和维护成本都比较高,性价比较低。

4.需要大量代表性样品进行化学分析建模,对于小批量样品检测显然不切实际。

5.模型需要不断更新,在仪器发生变化或者标准样品发生变化时,模型也要变化。

6.建模成本很高,测试成本也就比较大了,当然对于大量样品检测时,测试成本会下降。

7.易受光学系统参数等外部或内部因素影响,经常出现曲线非线性问题,对检测结果的准确度影响较大。

化学分析仪器系列产品:高频红外碳硫分析仪 红外碳硫仪 碳硫分析仪 碳硅分析仪 铁水分析仪 金相分析仪 钢铁分析仪 金属元素分析仪 金属含量分析仪 元素分析仪 化验仪器 金属材料分析仪等。

第15篇:KBr压片法测定固体样品的红外光谱

实验一 KBr压片法测定固体样品的红外光谱

1.实验目的

1、掌握红外光谱分析法的基本原理。

2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。

3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。

4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。

5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。

2.仪器及试剂

1、仪器:美国热电公司 Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。

2、试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。

3.实验原理

图1 仪器的基本结构

红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。

(2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析

①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

4.实验步骤

1、红外光谱仪的准备

(1)打开红外光谱仪电源开关,待仪器稳定 30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数;

(3)实验参数设置:分辨率 4 cm-1,扫描次数 32,扫描范围 4000-400 cm-1;纵坐标为Transmittance

2、固体样品的制备

(1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。

(2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。

3、样品的红外光谱测定

(3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白背景,再将样品置于光路中,测量样品红外光谱图。

(4)扫谱结束后,取出样品架,取下薄片,将压片模具、试样架等擦洗干净置于干燥器中保存好。

4、数据处理 (1)对所测谱图进行基线校正及适当平滑处理,标出主要吸收峰的波数值,储存数据后,打印谱图。

(2)用仪器自带软件对图谱进行检索,并判别各主要吸收峰的归属,得出化合物的结构,并与已知结构进行对比。

5.实验数据记录及分析

测得苯甲酸样品的红外谱图:

100Transmittance [%]4060801427.70623691.22421695.3836203500300025002000Wavenumber cm-115001000500

以下表1是对谱图的分析:

表1 苯甲酸的特性吸收及对应基团(KBr压片)

Page 1/1特征吸收峰/cm 706.8 669.8 1179.4 1127.1 1067.8 1289.8 1421.4 1590.2左右四呈个

马鞍状的吸收峰

1688.6 1800~2300四个吸收峰 -1

振动类型

苯环上的碳氢的面外弯曲振动 苯环上的碳氢的面内弯曲振动

碳氧键伸缩振动 碳氧氢的变形振动 碳碳双键振动 羰基的伸缩振动

苯环上碳氢面外弯

对应基团 -CH -CH -C-O -C-O-H -C=C- -C=O -CH

曲振动泛频率吸收带

3007.8 2835.0 2674.5 2558.3 3068.0

-OH缔合

苯环上的碳氢伸缩振动

-OH -CH 从我做的样品的红外谱图可以看出,我的谱图中样品的透过率比较高,也就是说样品的吸收率比较低,而造成谱图这样的原因是因为在将样品与KBr的时候要求一般是质量比为1:100-1:200,而我在将样品加入到KBr中时由于第一次操作的原因没有掌握诀窍,导致加入样品量比较少而造成谱图不是很完美。另外在标峰的过程中有一些比较小的峰没有标出来。

6.实验感想

对于这次的仪器培训,让我更加加深了对红外光谱仪的认识,虽然还是不能做到非常熟练的掌握压片技术,但是在老师的指导下也独自完成了对固体样品的测试,更加对红外光谱仪有进一步的实际操作,深刻体验其中的原理。通过实践与理论相结合的学习计划让我更加能够学到仪器是怎么样进行操作的,这次的仪器培训受益颇多。

第16篇:利用高光谱技术反演作物叶绿素浓度

利用高光谱技术反演作物叶绿素浓度

摘 要:高光谱技术作为一种新兴光谱技术,被广泛应用于植物的无损检测中,植被叶片叶绿素含量的估测就是其中之一。利用可见-近红外成像光谱仪采集不同生育期玉米和大豆的冠层“图谱”数据,在逐步提取影像中光照土壤、阴影土壤、光照植被、阴影植被四种组分光谱的基础上,通过选取的敏感波段构建光谱植被指数和叶绿素密度进行波段自相关分析, 探讨各个分量对作物叶绿素密度反演的影响。

关键词:高光谱技术;叶绿素;反演

0 引言

植物通过光合作用获取营养物质,在植物光合作用中,植物细胞中的叶绿体占据了重要的地位,而叶绿体中的色素有叶绿素(叶绿素a,叶绿素b 和叶绿素a+b)与类胡萝卜素(胡萝卜素和叶黄素)。其中,叶绿素是植物光合作用中最重要的色素,其作为主要吸收光能的物质,直接影响植物光合作用的光能利用率。叶片单位面积的叶绿素含量是植物总体生长状况的一个重要指标。叶片叶绿素含量的测定可以用来检测和研究植物突变、压力和营养状态,作物压力和萎黄病的检测对精细农业具有重要的潜在影响[1]。

随着光谱技术的发展,其被应用到各个领域。而高光谱技术作为光谱技术的一种,由于具有众多优点,在光谱检测方面应用十分广泛,备受人们的青睐。人类肉眼的视觉范围在380~780 nm 之间,而高光谱的波段非常宽,一些高光谱仪器的波段达350~2 500 nm。因此,通过高光谱技术可以对绿色植物进行叶绿素的检测和定量分析。本文对高光谱技术在植物,特别是在经济作物的叶绿素含量检测和定量分析中的应用加以概述[2]。

1 成像系统简介及数据处理

1.1 高光谱成像技术简介

高光谱成像技术是在多光谱成像的基础上发展而来的,在较宽的波段范围内,利用成像光谱仪对目标物体进行连续成像, 从而获得每个像元的数十或数百条光谱信息。其成像特点是: 光谱范围广(200~2 500nm)、超多波段(上百个波段)、高的高光谱分辨率(几个nm)、波段窄(≤10-2λ)和图谱合一等。由于所获得的图像信息不仅可以反映物体的大小、形状、缺陷等外部特征, 而且不同物体因结构和成分的不同使光谱吸收也不同, 从而可以用于物体内部的物理结构和化学成分的检测。

高光谱成像检测装置主要由光源、光谱相机(成像光谱仪+CCD)、装有图像采集卡的计算机组成,如图1所示[3]

1

图1 高光谱成像装置简图

在扫描过程中,首先面阵CCD 探测器在光学焦面的垂直方向上完成横向扫描(X 方向),同时,在被测物前进的过程中, 排列的探测器扫描出一条带状轨迹从而完成纵向扫描(Y 方向)。通过综合扫描信息就可以得到物体的三维高光谱图像数据, 从而可以提取所需信息。

1.2 数据获取

当对玉米、大豆冠层进行成像时,先根据作物的高度决定探测器的观测高度。以玉米为例,小喇叭口期玉米株高50cm,行距30cm,为了保证视场内至少有一株完整的玉米,设定VNIS 观测高度距玉米冠层178 cm,距地面228cm,视场范围为60cm×60cm 的正方形。在成像光谱数据采集时,同步用地物光谱仪ASD 采集参考白板的数字量化值,实时记录当时的天气状况,为反射率转换进行原始数据获取。完成观测区的影像采集后,取两株玉米(大豆)活体植株进行叶绿素密度相关参数测定。

1.3 影像处理

获取的遥感影像要转换成相对反射率才能用于作物的定量化反演研究。

2 基于图谱解析的作物叶绿素密度反演及评价

2.1 大豆叶绿素密度反演及评价

不同株型的大豆在不同生育期覆盖度有较大变化,背景土壤在观测视场内的面积比例会对冠层反射率有较大影响。在大豆植被与土壤混合存在时,对叶绿素敏感的波段基本上都位于红光与近红外波段区间。这和RVI、NDVI、DVI、SAVI、OSAVI 五种植被指数构建原理相符, 即都是基于红与近红外波段进行组合运算实现的。当植被光谱提纯后(剔除土壤光谱),它与叶绿素密度的关系是:对叶绿素敏感的波段范围增大, 尤其是蓝、绿波段。五种植被指数都表现为相同的规律。由此说明,背景土壤对利用光学遥感检测植被群体生化指标有较大影响,对阴影叶片的植被光谱信息也进行剔除,尝试分析阴影部分对遥感定量监测的影响程度,植被阴影叶片光谱去除后,对叶绿素密度敏感的波段范围表现为可见光波段增加,近红外波段减少,红边波段决定系数最高。五种植被指数都有相同的规律。那么,可以说阴影叶片会影响植被叶绿素密度敏感波段的选择。

2 当构建新型植被指数时,要根据植被冠层叶片结构, 尝试把阴影比例作为一个影响因子,在公式中加以体现,以便提高叶绿素密度定量化反演精度[4]。

2.2 玉米叶绿素密度反演及评价

上文重点分析了大豆冠层光谱提纯前后反演叶绿素密度的能力,初步结果是土壤光谱去除后,纯植被光谱与叶绿素密度的决定系数有所提高。但是,大豆作为低矮宽叶植被,叶片大而圆,在幼苗分枝期以后对地表都有较高的覆盖度, 茎秆对冠层光谱的影响较小。为了更加突出背景土壤和茎秆对其冠层光谱的影响,选择玉米作为另一研究对象,主要考虑其有明显的叶片垂直分布, 对地表的覆盖度较大豆低(二者的观测视场一致), 且茎秆会影响玉米的冠层光谱。深入分析光谱提纯(土壤、阴影叶片光谱去除前后)对作物生化参数反演的重要意义。

在玉米与土壤混合存在时,对叶绿素密度敏感的波段基本上都在红与近红外波段区间,有些在蓝、红波段;总体的决定系数R2 较低,大部分在0.5 附近。当去除土壤光谱后,即只剩下纯植被光谱, 对叶绿素密度敏感的波段主要集中在红光波段,有些在近红外与蓝光波段。决定系数R2 较前者有所提高,大部分大于0.51,最高到0.67。当阴影叶片光谱去除后, 对叶绿素密度敏感的波段主要集中在蓝、红波段,五种高光谱指数结果差异较大,大部分决定系数降低到0.45 左右。由敏感波段及决定系数可判断,土壤与阴影叶片光谱去除前后,植被冠层光谱与叶绿素密度的相关性有较大变化, 二者可以显著影响植被指数的应用效果。

2.3 作物叶绿素密度反演及评价

大量科学文献表明,冠层结构参数(如叶片内部结构参数、叶面积指数、叶倾角分布函数等)会显著影响植被指数反演作物生化参数的准确性。因此,基于植被指数建立单一预测模型的同时预测多种作物生化参数指标往往比较困难。将玉米与小麦数据进行混合, 利用混合数据筛选最优诊断植株氮浓度的光谱指数, 探讨了建立单一模型预测多种作物植株氮浓度的可行性。上文分别对光谱提纯前后的大豆、玉米冠层光谱与叶绿素密度的敏感性进行了分析,表明二者有相同的趋势,这为单一植被指数在卫星或航空层面对大尺度作物生化参数进行反演提供地面理论支持。光谱提纯前后对叶绿素密度敏感的波段有明显变动,纯植被光谱与叶绿素密度相关的区间增多,在可见光波段表现明显,主要集中在红光波段。对阴影叶片进行剔除后,与叶绿素密度敏感的波段组合主要是蓝-近红和红-红组合, 这与大豆、玉米单独提取时的结果相同。但是对冠层结构差异明显的两种作物数据进行混合后,分析其与叶绿素密度的相关决定系数大小发现,植土混合时最大的决定系数高于纯植被的,这与单独研究时的结果不符。是否因选择的作物组合或试验样本的因素最终影响了混合数据的结果,有待进一步深入研究。但是有一点肯定的是,随着土壤光谱的剔除,与叶绿素密度敏感的波段增多,且表现在叶绿素a 和b 及胡萝卜素强吸收的波段,因此从作物的反射光谱特征上看,文中选择的敏感波段区间是合理的。此外,因这里获得的决定系数较低,故并未进行模型构建及精度检验。

3 3 结论

在光谱提纯的基础上,对大豆、玉米及二者混合叶绿素密度进行反演,得出以下结论:

(1) 影像中土壤光谱去除前后,由RVI、NDVI、DVI、SAVI、OSAVI 五种光谱植被指数对叶绿素密度敏感的波段变化情况得出, 背景土壤对利用光学遥感数据反演植被叶绿素密度有较大影响。在对阴影叶片的光谱信息进行剔除后, 通过五种光谱植被指数选择波段的变化区间说明, 阴影叶片会影响植被冠层叶绿素密度敏感波段的选择, 当构建新型植被指数时, 要根据植被冠层叶片结构尝试把阴影比例作为一个影响因子在公式中加以体现, 以便提高叶绿素密度定量化反演的精度。

(2) 光谱提纯前后( 大豆、玉米及其混合数据),对叶绿素密度敏感的波段有明显变动, 纯植被光谱与叶绿素密度相关的区间增多, 在可见光波段表现明显, 主要集中在红光波段。对阴影叶片进行剔除后,与叶绿素密度敏感的波段组合主要是蓝-近红波段和红-红波段组合。

(3) 对冠层结构差异明显的两种作物(大豆与玉米)数据进行混合后,分析其与叶绿素密度的相关决定系数大小发现, 植土混合时最大的决定系数高于纯植被的,这与单独研究时的结果不符。是否因选择的作物组合或试验样本的因素最终影响了混合数据的结果还有待进一步深入研究。

参考文献:

[1] 宁艳玲,张学文,韩启金,等.基于改进的 PRI 方法对植被冠层叶绿素含量的反演[J].航天返回与遥感,2014.[2] 郭洋洋,张连蓬,王德高等.小波分析在植物叶绿素高光谱遥感反演中的应用[J].2011.[3] 刘燕德,孙祥,杨信廷,等.高光谱技术在作物叶绿素含量检测中的应用研究进展[J].广东农业科学,2013.[4] 张东彦,刘良云,黄文江,等.利用图谱特征解析和反演作物叶绿素密度[J].红外与激光工程,2013.

4

第17篇:工作心得体会

工作心得体会

我作为一名实习生来到公司已有三个月,并在主要负责汽车冷媒制动液加注这一板块的工作。在这几个月的工作中我受益匪浅,不只有工作上的专业技能上的进步,还有为人处世、对待工作的态度。

做好加注汽车制动液关键在于专心、细致、负责。做好每一个工作,让产品质量达标是我们工作者的义务。工作中知识层面不懂的东西应虚心请教“老职工”,使我能更好的理解这个工作。

而三个月来的实习是我收益最大的是工作精神。我认为一个好的员工应有一下几点:

1、团队精神至关重要 没有众人的帮助,没有人能单独完成一项事业。一个人要想成功,必须加入团队中。

2、自动自发,敬业勤力,是一个人首要的基本素质要求 自小我们都有自己的理想,并为之不懈求学,努力攀登。长大工作了,是我们实现理想和人生价值的时刻。不是让你做,而是你要做。无论工作生活,都要有合理的规划,并付诸行动。

3、要有责任心。成功者找方法,失败者找借口。 在做工作时,争取在有限的时间内独立思考完成。现成的东西会叫你头脑僵化,有时类似的东西照搬会出现严重的问题。出现问题时,不要推卸责任,要勇于承担它们,想办法补救和解决它们才是最根本的。注意时常总结经验和教训,以便以后更好地工作。

4、尊敬领导和同事,忠于公司 闻道有先后,术业有专攻。与全体同仁共同进步,知识要不断更新换代,不要自满或停滞不前;毫无疑问,我们每个人都喜欢忠诚的人。所以无论何时何地,我们要忠于工作,忠于公司。

第18篇:工作心得体会

工作心得体会

商务经济管理学院 闫丽

作为一名刚进入工作岗位的教师,虽然已经具备了一定的专业知识技能,但在如何组织教学,如何最大程度的提高教学效果上,还感到缺乏正确的理论指导。通过将近2个月的教课学习,我得到了一次较全面的、系统的锻炼,也学到了许多书本上所学不到的知识和技能。在与学生交流和授课的过程中,我深深的体会到我们的学生如此的渴求有一位知识比较丰富,能力比较全面、能倾听自己心声的朋友。作为他们的朋友,我惟有仔细倾听、耐心询问、认真思考,最终协助他们增强认知正确看待和科学处理他们所面临的困难。作为他们的老师,面对一个个求知的眼睛,我会精心备课、认真组织,用真诚的心对待每一个同学,用清晰的话讲解好每一个问题。同学的积极提问,仔细听讲,鞭策着我在学习和工作中创新开拓,不断进步。

真实,这是我在课堂上首先感受到的。“纸上得来终觉浅,绝知此事要躬行”我们要努力做到学以致用,课堂是一个大舞台,也是教师素质和个人气质、情操的展现台。在教学过程中,教师的教学手法、内容解读,思考问题的角度等,都无时不透露着教师个人内在的东西。学生在心里面能默默感受到这种真实,而当这种心灵的东西和教师教学过程中的表现一致,且这颗心又是善良坦诚又博识的,这时,就默默增加学生潜意识的认同和好感,课程氛围就好起来。 通过这两个月的学习,懂得了作为一名人民教师所背负的责任有多么重大,使我进一步认识到教师这一职业的特殊性、自己的任务及监督的使命,更加坚定了我搞好教学,科研工作的信心。不断提高自己的能力和自身素质,为教育事业发展贡献自己的一份力量。

第19篇:工作心得体会

暑期工作实践心得体会

这个暑假是我成为大学生的第一个暑假,当然,也是我第一次参加社会工作,经历社会实践。对于一个大学生而言,敢于接受挑战是一种基本的素质。于是我毅然踏上了参加社会工作,社会实践的道路。想通过亲身体验社会实践工作让自己更进一步了解社会,在实践中增长见识,锻炼自己的才干,培养自己的韧性;想通过社会实践,找出自己的不足和差距所在。

社会是一个大家庭,不再像学校的生活那么单纯,社会是一个比较复杂的环境,我们要和不同年龄,不同知识背景和社会背景的人交往,走进工作的岗位,要学会承受和自我不断充实自己,在工作的岗位上,不再像学校,有老师的督促和监督,在工作中,再也没有人督促我们要学习,要学习哪些方面的知识,所以一切都的靠自己的自觉,要在工作中不断学习,充实自己。在这一个月的工作中,我经历着一名学生到职员的转变,学会适应从学校到社会的工作环境。

打工的日子,有喜有忧,有欢乐,也有苦累,也许这就是打工生活的全部吧!暑假实践工作虽然只有短短的一个月,但是在这段时间里,我们却可以体会到工作的辛苦,锻炼自己的意志力,同时积累一些社会经验和工作经验.这些经验无非就是我们所拥有的“无形资产”.

时间过的好快,不知不觉我们在这已经“熬”过一个月了,记得刚来的时候,我们有太多的不满接着是顺从,既来之则安之,学会了慢慢适应!一个月从不懂到懂,从跟师父到自己独立,现在想想自己都不知不觉的熬过来了!今天下午人事部找我谈话,谈我的工作感受与生活问题,坐在那里我就在回想我的这一个月,以前在学校早上八点上课,下午四点五十放学,吃饭睡觉玩,而如今工作了,生活也成定性的了,除过休息,早上八点上班,六点半起床,半个小时打扮的时间,七点去吃员工餐,之后开会,接着一天的工作就开始了,下午四点半下班,吃过饭就回宿舍休息,不累的情况下出去逛街!每天都是重复的生活,原来这就是所谓的社会人!我们也由学生变成了职业人的角色! 一切都有不习惯变成了习惯,好多同事看见我都说脱去工装看着你好小!有一个领班开玩笑的对我说:你好年轻哦!我还是一个单纯的小女孩,我不会与人玩心眼,所以吃亏的总是我! 一个月来我单单是工作,可以说是混日子吧!还是没有从我的工作中找到乐趣,发现我好机械化!经理有一次给我谈话问我后悔不后悔我的选择,我说后悔过,但是那是在学校的时候我后悔我的选择,现在走进工作岗位,去实践过之后我不后悔了。记得他第一次就教导我们几个要摆正心态,从学习中成长,从小事做起!那次很令我感动,我有一个工作没有做到位,他就亲手教我,尤其他那句话说的很好:细节做不到何来管理!他还鼓励我继续学习英语,坚持做下去总有成功的那一天! 我把我的感受说出来时,说实话我心里是很不平衡,整天工作的很压抑、没有激情,然而助理针对我的感受又谈了她的见解,她的一席话瞬时点亮了我,当你无法改变这个环境的时候你就改变你自己,我们是堂堂大学生是不错,是社会就不承认你是大学生怎么着,你是大学生那来的经验让人家用你,你不还得从零做起,所以心态很重要,有时你必须向社会低头!这个月每天的工作都是一个新挑战,相信我会以崭新的姿态迎接工作上的挑战,但愿我能学会更多!

在工作的岗位上,要有责任感,自己做错了就需要自己承担责任和后果,也许由于自己的一个不小心,可能会给公司带来巨大的损失,只有自己有高度的责任感,才能更好的避免自己的无数个不小心。在工作的岗位上,要认真,勤奋,努力,还要有团队精神,一个公司是一个团体,一个大家庭,只靠一个人的力量是创造不了什么奇迹的,所以我们要有高度的团队意识,大家要团结一致,齐心协力,努力做好工作过程中每一步,要严格按照工作步骤,切不可偷懒和自己的异想天开。由于我们是刚从学校走出去的大一学生,几乎没有什么工作经验和知识面比较狭窄,所以工作过程中肯定会遇到许多不懂的地方,工作中要主动,遇到不懂的问题,要积极主动的去向有工作经验的员工请教。

在我的打工生活中,我也明白了许多:在日常的工作中上级欺压、责备下级是不可避免的,虽然事实如此,但这也给我上了宝贵的一课.它让我明白到别人批评你好或是你听取他人的意见时,一定要心平气和平,只有这样才能表示你在诚心听他说话.虽然被批评是难受的,但是也要明确表示你是真心在接受他们的批评.这样才能在失败中吸取教训,为以后的成功铺路.我们要学会从哪里跌倒就从哪里爬起来,这才是我们所应该做的.我也从工作中学习到了人际交往色待人处事的技巧.在人与人的交往中,我能看到自身的价值,人往往是很执着的.可是如果你只问耕耘不问收获,那么你一定会交得到很多朋友.对待朋友,切不可以斤斤计较,不可强求对方付出与你对等的真情,要知道了给予比获得更令人开心.不论做什么事情,都有主动性和积极性,对成功要有信心,要学会和周围的人沟通,关心别人,支持别人.在这次暑假的工作中,我懂得了理论与实践相结合的重要性.或益良多,这对我今后的生活和学习都有很大程度上的启发.这次的打工是一个终点,也是一个起点.我相信这个起点将会促使我逐步走向社会,慢慢走向成熟.同时,我发现自己不仅在思想上成熟了,在行动上也稳重了。呵呵,虽然我的这些工作都不尽人意,都不是很顺利,但是我却学到了很多东西,也成长了很多。也许,这就是所谓的逆境造就人才,确实如此。我觉得人生最重要的是经历,经历就是拥有,拥有经历就是拥有财富。

我总结了以下几点:

(1)择业前要谨慎,择业后要义无反顾。 (2)可以高估别人,但不要低估了自己。 (3)做事做人都要坚持自己的原则。

(4)要有责任感,是自己的责任就要承担,不要推卸

(5)错误面前,别人都不爱听借口,因此做错事情的时候不要为自己找借口,如果确实是有客观原因,就坦白的说,要不然别人会说你做人没原则。

(6)对别人的肯定和宽容,在某种程度上也是对自己的一种尊重,因此不要轻易的否定他人。

(7)有些事情可以不忘记,但是要放下,只有放下,才能解脱,才能有新的开始。 (8)不要在背后说别人坏话,因为好人说不坏,坏人也说不好,世界上没有绝对的好人和坏人

(9)要信任朋友,要么就不交朋友,和他(她)交了朋友,就要信任他(她)。 (10)不要倚老卖老,资历比别人深,并不代表就比别人能干。 (11)要诚实,不要不懂装懂,要实事求是。 (12)做人要低调,做事可以高调 (13)不要把单纯老实的人当傻瓜

(14)当别人误会你的时候,不要盲目解释,要找合适的时间和机会再解释,你要坚信真相始终会浮出水面。

(15)面对强势的对自己有恶意的人,千万不要懦弱,不要让他(她)觉得好欺负,当然也不要跟他吵闹。

(16)纠正别人的错误的时候,说话要委婉,这样别人也容易接受,否则,你的好意,也会被当成恶意。 (17)要注意说话方式,和说话的场合,不要当众指责别人的失误;一个真正有内涵的人,他在评论你的时候,你都不知道他到底是在表扬你,还是在批评你,这样你会反复琢磨他的话,从而记住他的话。

(18)对别人的错误要学会宽容和忍耐

现在所吃的苦,所经历的一切都是为了以后而服务的,未来的路还很长,没有三五年的历练,不多受点挫折,那么成功将永远不会来!所以,趁现在还年轻,在外面多吃的苦,经历的多了懂的也就多了,经验都是干出来的,要学会慢慢成长!相信自己,我是可以的!花,总会落;夜,总会来;风,总会吹;人,总会散!我要离开这个城市了,我知道,前面的路是十分艰辛的,布满了荆棘!但是,我不怕,因为我够勇敢!祝我好运!

2012年4月7日

第20篇:工作心得体会

工作心得体会

XXXX年X月X日,我开始了自己的工作生涯,成为了X局XX科的一名科员。一大早,我怀着紧张而激动的心情来到了单位,初到科室就被科室紧张而有序的工作氛围所吸引,看着同事们一个个忙碌的身影,我很想上前去帮忙,却又发觉自己刚到科室,从未接触过科室的工作,无从干起。于是,我暗自下定决心,一定要尽快的融入到工作中去。

时间转眼即逝,来到单位已有一个多月。这段时间里,在单位领导的关心和同事们的帮助下,我迅速的成长起来,不仅对城建科的工作有了清楚的认识,同时在与其他科室接触过程中,我了解了其他科室的工作范畴和具体分工。通过一个多月左右的了解,让我对局内部的工作性质及其职能划分有了一个认识,这对于我今后的工作有很大的帮助。

我刚刚参加工作,在日常的工作中,难免有些工作环节会出现问题,我认识到了自己诸多的不足,针对自身的问题,我努力寻求方法进行解决。

首先,加强自身学习。针对自身劣势,制定出自我学习的具体内容、方式,我充分利用工作之余,重新对《城乡规划法》进行了学习,系统的了解了我国城乡规划的具体分类、详细内容,通过对《城乡规划法》的进一步学习,我对城乡规划的步骤、程序有了更加深刻的了解。结合科室工作,我通过上网查阅、翻阅科室相关资料等方式,对“一书两证”的办理程序有了认识。在这一个月中,我通过自我学习,不仅提高了专业知识,同时也增强了我的业务能力。

其次,平时注意观察,多听多看。初到科室,我对科室的工作不熟悉,平时除了要加强自身学习以外,还要多听多看。在同事们处理科室事务的过程中,我主动去协助完成,站在一旁观察同事们处理问题的方式方法,学习“一书两证”办理的具体步骤以及需要注意的问题,并将重要的地方记录下来,同时与自己学习和查阅的资料进行对比,找出其中的不同之处。通过这样的方式,使我在工作和学习中不断积累经验,自身的的业务水平能够得到完善和提高。

最后,不懂就问,虚心请教他人。以前的我从未接触过工作方面的事情,做起事来欠考虑,面对这些问题,要求我在日常工作中,不仅要加强自身学习,多听多看,更需要我虚心的向科室的老同志们请教。在与同事们平时交流中,才能发现问题,将自己不懂的问题及时的提出,向同事们请教,不断的提高自己。 十几年的埋头苦读,我已经习惯了封闭的学校环境,社会经验相对缺乏,如今刚刚走上工作岗位,面对新的环境存在一些紧张甚至胆怯的心理。面对新的挑战,我虽然愿意尝试并努力去做好,但是一方面自身社会经验缺乏,另一方面刚刚接触工作,对一个问题考虑不够周密严谨,在工作中难免会出现这样那样的一些错误,会受到领导的批评教育,但我觉得人只有干事才会挨批评,不干事永远不会挨批评。领导对我的批评教育,是对我的鞭策,我虚心的接受,争取更大的进步。

以上是我工作一个多月的工作心得体会,请领导审查。

此致

敬礼

光谱工作心得体会
《光谱工作心得体会.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档