人人范文网 其他范文

温度传感器论文(精选多篇)

发布时间:2022-03-09 15:04:12 来源:其他范文 收藏本文 下载本文 手机版

推荐第1篇:基于18B20温度传感器论文

基于单片机18B20的温度计设计

摘要:文章主要介绍有关18B20温度传感器的应用及有关注意事项,经典接线原理图。 1.引言:

温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。

2.DS18B20的主要特征:  * 全数字温度转换及输出。  * 先进的单总线数据通信。  * 最高12位分辨率,精度可达土0.5摄氏度。  * 12位分辨率时的最大工作周期为750毫秒。  * 可选择寄生工作方式。  * 检测温度范围为–55°C ~+125°C (–67°F ~+257°F)  * 内置EEPROM,限温报警功能。  * 64位光刻ROM,内置产品序列号,方便多机挂接。  * 多样封装形式,适应不同硬件系统。 3.DS18B20引脚功能:

•GND 电压地 •DQ 单数据总线 •VDD 电源电压

4.DS18B20工作原理及应用:

DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是:

ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。

5.控制器对18B20操作流程:

1、复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。

2、存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

3、控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指

定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。其主要目的是为了分辨一条总线上挂接的多个器件并作处理。诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别,一般只挂接单个18B20芯片时可以跳过ROM指令(注意:此处指的跳过ROM指令并非不发送ROM指令,而是用特有的一条“跳过指令”)。ROM指令在下文有详细的介绍。

4、控制器发送存储器操作指令:在ROM指令发送给18B20之后,紧接着(不间断)就是发送存储器操作指令了。操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将RAM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。存储器操作指令的功能是命令18B20作什么样的工作,是芯片控制的关键。

5、执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。如执行温度转换指令则控制器(单片机)必须等待18B20执行其指令,一般转换时间为500uS。如执行数据读写指令则需要严格遵循18B20的读写时序来操作。数据的读写方法将有下文有详细介绍。 6.DS28B20芯片ROM指令表

Read ROM(读ROM)[33H] (方括号中的为16进制的命令字) Match ROM(指定匹配芯片)[55H] Skip ROM(跳跃ROM指令)[CCH] Search ROM(搜索芯片)[F0H] Alarm Search(报警芯片搜索)[ECH] 7.DS28B20芯片存储器操作指令表:

Write Scratchpad (向RAM中写数据)[4EH] Read Scratchpad (从RAM中读数据)[BEH] Copy Scratchpad (将RAM数据复制到EEPROM中)[48H] Convert T(温度转换)[44H] Recall EEPROM(将EEPROM中的报警值复制到RAM)[B8H] Read Power Supply(工作方式切换)[B4H] 8.写程序注意事项

DS18B20复位及应答关系

每一次通信之前必须进行复位,复位的时间、等待时间、回应时间应严格按时序编程。

DS18B20读写时间隙:

DS18B20的数据读写是通过时间隙处理位和命令字来确认信息交换的。 写时间隙:

写时间隙分为写“0”和写“1”,时序如图7。在写数据时间隙的前15uS总线需要是被控制器拉置低电平,而后则将是芯片对总线数据的采样时间,采样时间在15~60uS,采样时间内如果控制器将总线拉高则表示写“1”,如果控制器将总线拉低则表示写“0”。每一位的发送都应该有一个至少15uS的低电平起始位,随后的数据“0”或“1”应该在45uS内完成。整个位的发送时间应该保持在60~120uS,否则不能保证通信的正常。 读时间隙:

读时间隙时控制时的采样时间应该更加的精确才行,读时间隙时也是必须先由主机产生至少1uS的低电平,表示读时间的起始。随后在总线被释放后的15uS

中DS18B20会发送内部数据位,这时控制如果发现总线为高电平表示读出“1”,如果总线为低电平则表示读出数据“0”。每一位的读取之前都由控制器加一个起始信号。注意:必须在读间隙开始的15uS内读取数据位才可以保证通信的正确。 在通信时是以8位“0”或“1”为一个字节,字节的读或写是从高位开始的,即A7到A0.字节的读写顺序也是如图2自上而下的。

9.接线原理图:

本原理图采用四位数码管显示,低于100度时,首位不显示示例27.5,低于10度时示例为9.0,低于零度时示例为-3.7。

结束语:基于DS18B20温度测量温度准确,接线简单,易于控制,加以扩展可以应用到各种温度控制和监控场合。

参考文献:

DALLAS(达拉斯)公司生产的DS18B20温度传感器文献

程序:

#include

#define uchar unsigned char #define uint unsigned int

sbit sda=P1^7; sbit dian=P0^7;//小数点显示 uint tem;

uchar h; uchar code tabw[4]={0xf7,0xfb,0xfd,0xfe};//位选 uchar code tabs[12]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff,0xbf};//数码管数据

//

0

4 5 6

8 9

- uchar code ditab[16]= {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09}; //查表显示小数位 ,1/16=0.0625,即当读出数据为3时,3*0.0625=0.1875,读出数据为3时对应1,查表显示1,为4时显2 uchar data temp[2]={0};//高位数据与低位数据暂存 uchar data display[5]={0};//显示缓存

void delay(uchar t)//t为1时延时小于5us { while(t--); } void delay1()//4us {} void delays(uchar m)//1ms { uchar i,j; for(i=0;i

for(j=0;j

while(x)

{

sda=1;

sda=0;

delay(50);//延时500us以上

sda=1;

delay(5);//等待15us-60us

x=sda;

}

delay(45);

x=~sda; }

sda=1; } void write_s(uchar temp)//写入一个字节 { uchar i; for(i=0;i

sda=1;

sda=0;

delay1();

sda=temp&0x01;

delay(6);

temp=temp/2; } sda=1; delay(1); } uchar read_s()//读出一个字节的数据 { uchar m=0,i; for(i=0;i

sda=1;

m>>=1;

sda=0;

delay1();

sda=1;

delay1();

if(sda)

m=m|0x80;

delay(6); } sda=1; return m; } uint read_1820()//读出温度 { reset(); delay(200); write_s(0xcc);//发送命令

write_s(0x44);//发送转换命令

reset(); delay(1); write_s(0xcc);

write_s(0xbe); temp[0]=read_s(); temp[1]=read_s(); tem=temp[1]; tem

P0=tabs[display[i]];

P1=tabw[i];

delays(7);

if(i==1)

dian=0;

P1=tabw[i];

delays(2); } } void convert_t(uint tem)//温度转换{ uchar n=0; if(tem>6348) {

tem=65536-tem;

n=1; } display[4]=tem&0x0f; display[0]=ditab[display[4]];

display[4]=tem>>4;

display[3]=display[4]/100;

display[1]=display[4]%100;

display[2]=display[1]/10;

display[1]=display[1]%10; if(!display[3]) {

display[3]=0x0a; } if(!display[2])

display[2]=0x0a; if(n)

// 取百位数据暂存

// 取后两位数据暂存// 取十位数据暂存

{

n=0;

display[3]=0x0b; } } void main() { delay(0); delay(0); delay(0); P0=0xff; P1=0xff; for(h=0;h

{

display[h]=0; } reset(); write_s(0xcc); write_s(0x44); for(h=0;h

scan_led(); while(1) {

convert_t(read_1820());//读出并处理

scan_led();//显示温度

} }

推荐第2篇:单片机温度传感器论文_图文.

毕业设计(论文)答辩记录表 学生姓名 所学专业 指导老师 答辩教师提问 性 别 论文题目 答辩小 组成员 学生回答问题情况 班 级 答 辩 记 录 指 导 教 师 评 语 指导老师(签名) : 年 月 日 21 初评成绩 (由指导老师填写) 答辩主持人(签名) : 年 月 日 毕业设计(论文)评价表 毕业 设计 (论 文) 评语 答辩 评语 评 定 等 级 答辩成员签名 年 月 日 22 答辩委员会 主任意见 签字 年 月 日 23

推荐第3篇:半导体温度传感器

温度传感器的论文温度传感器设计论文

简述半导体温度传感器设计

摘要:传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。

关键词:半导体 温度传感器

一、温度传感器原理

温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。在半导体技术的支持下,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

1、接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

2、非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬

)对象的表面温度,也可用于测量温度场的温度分布。 非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

二、智能温度传感器发展的新趋势

进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

1、提高测温精度和分辨力 在20世纪90年代中期最早推出的智能温度传感器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到1℃。目前,国外已相继推出多种高精度、高分辨力的智能温度传感器,所用的是9~12位A/D转换器,分辨力一般可达0.5~0.0625℃。

2、增加测试功能 新型智能温度传感器的测试功能也在不断增强。智能温度传感器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率,分辨力及最大转换时间。 智能温度控制器是在智能温度传感器的基础上发展而成的。

3、可靠性及安全性设计 传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很

,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低。

三、半导体温度传感器测温原理及其关键技术

硅基IC电路中,可实现温度传感功能的元器件主要有集成电阻器、二极管、双极晶体管、MOS晶体管。当然,还有各种利用MEMS工艺制造的热敏电阻器、热电偶等,但目前基本上还与CMOS工艺不兼容。

1、双极晶体管温度传感器

二极管的电流包括扩散电流和耗尽层、表面层里的产生复合电流,后者在双极晶体管的基极互相抵消,所以,正向偏置的双极晶体管的集电极电流IC基本上都是纯扩散电流,若利用高精度电流源,令2个匹配晶体管的集电极电流相同,ΔVBE将和绝对温度成正比。但这样得到的温度电压曲线起点是绝对零度,对于-50~150℃的测温范围,电压输出不是0~5V,对于后端A/D来说,需要额外的电平移动电路。通过构造Vf=aVptat-VBE1和Vref=VBE1+aVptat可以得到任意的过零点TZ以及几乎不随温度变化的恒压源。采用BJT的优点是低成本、长期稳定性、高灵敏度、可预测性较高,以及相关温度的时间非依赖性。缺点是受自生成熟、工艺容差的影响,以及热循环后信号有小漂移和小数量级的非线性。为了工艺兼容,需要采用寄生三极管技术实现,主要有2种结构:纵向双极晶体管,横向双极晶体管。

2、CMOS温度传感器

利用CMOS构建温度传感器一般有2种途径。其一是利用MOS管的亚阈值区构造MOS管的PTAT,灵敏度可达1.32mV/℃,但对偏置源的依赖有100mV/V,且高

,因对阈值电压VT依赖大,在高性能要求时,必须有大范围的微调和校准,不具备长期稳定性;另一途径是通过强反型状态下,MOS管的载流子迁移率μ与VT和温度的关系加以测量。基于此有5种设计方案:即只基于μ随温度的改变;只基于VT随温度的改变;同时考虑VT和μ2个变量;利用MOS器件的零温度系数点,以及利用逻辑门延时随温度增加的原理来构建的数字环振。CMOS温度传感器和基于寄生BJT的温度传感器相比的主要优势在于模型精确,受封装影响小,在AC电源下衬底漏电小,且占用芯片面积小等优势,但其主要的缺点是受工艺波动的影响要大于后者,所以,产业界目前仍普遍采用CVBT技术。

3、半导体温度传感器

输出方式采用模拟输出的温度传感器需要外加线性化电路及校准,因此,会使成本增加。而数字化接口或频率输出能使性能更可靠,即使在量产时仍能保持其精确度。频率输出通常采用的方法是做一个环形振荡器或张驰振荡器。前者会受VDD变化的影响,而后者理论上与VDD无关。两者都基于相同的原理,通过对电容器的充放电产生振荡,充放电电流来源于某个温度敏感元件。为了数字接口输出,有通过片上计数器实现,其主要缺点是面积大;另一种方案是采用片上集成A/D,然后,通过I2C等总线协议输出。

结论

温度传感器市场在不断变化的创新之中呈现出快速增长的趋势。该领域的主要技术将在现有基础上予以延伸和提高,随着新一代温度传感器的开发和产业化,竞争也将变得日益激烈。

参考文献

缪家鼎, 徐文娟, 牟同升.光电技术.杭州: 浙江大学出版社

张英,王海容, 蒋庄德.半导体吸收式光纤温度传感器的研究.压电与声光,

Szekely V.Marta C.Kohari Z CMOS sensors for on-line thermal monitoring of VLSI circuits

推荐第4篇:温度传感器课程设计

温度传感器简单电路的集成设计

当选择一个温度传感器的时候,将不再限制在模拟输出或数字输出装置。与你系统需要相匹配的传感器类型现在又很大的选择空间。市场上供应的所有温度感应器都是模拟输出。热电阻,RTDs和热电偶是另一种输出装置,矽温度感应器。在多数的应用中,这些模拟输出装置在有效输出时需要一个比较器,ADC,或一个扩音器。因此,当更高技术的集成变成可能的时候,有数字接口的温度传感器变成现实。这些集成电路被以多种形式出售,从超过特定的温度时才有信号简单装置,到那些报告远的局部温度提供警告的装置。现在不只是在模拟输出和数字输出传感器之间选择,还有那些应该与你的系统需要相匹配的更广阔的感应器类型的选择, 温度传感器的类型:

图一:传感器和集成电路制造商提供的四中温度传感器

在图一中举例说明四种温度感应器类型。一个理想模拟传感器提供一个完全线性的功能输出电压(A)。在传感器(B)的数字I/O类中,温度数据通常通过一个串行总线传给微控制器。沿着相同的总线,数据由温度传感器传到微控制器,通常设定温度界限在引脚得数字输出将下降的时候。当超过温度界限的时候,报警中断微控制器。这个类型的装置也提供风扇控制。

模拟输出温度传感器:

图2 热阻和矽温度传感器这两个模拟输出温度探测器的比较。

热电阻和矽温度传感器被广泛地使用在模拟输出温度感应器上。图2清楚地显示当电压和温度之间为线性关系时,矽温度传感器比热阻体好的多。在狭窄的温度范围之内,热电阻能提供合理的线性和好的敏感特性。许多构成原始电路的热电阻已经被矽温度感应器代替。

矽温度传感器有不同的输出刻度和组合。例如,与绝对温度成比例的输出转换功能,还有其他与摄氏温度和华氏温度成比例。摄氏温度部份提供一种组合以便温度能被单端补给得传感器检测。

在最大多数的应用中,这些装置的输出被装入一个比较器或A/D转换器,把温度数据转换成一个数字格式。这些附加的装置,热电阻和矽温度传感器继续被利用是由于在许多情况下它的成本低和使用方便。 数字I/O温度传感器: 大约在五年前,一种新类型温度传感器出现了。这种装置包括一个允许与微控制器通信的数字接口。接口通常是12C或SMBus序列总线,但是其他的串行接口例如SPI是共用的。阅读微控制器的温度报告,接口也接受来自温控制器的指令。那些指令通常是温度极限,如果超过,将中断微控制器的温度传感器集成电路上的数字信号。微控制器然后能够调整风扇速度或减慢微处理器的速度,例如,保持温度在控制之下。

图3:设计的温度传感器可遥测处理器芯片上的p-n结温度

图4。温度传感器可检测它自己的温度和遥测四个p-n结温度。

图5。风扇控制器/温度传感器集成电路也可使用PWM或一个线性模式的控制方案。

在图4中画是一个类似的装置:而不是检测一个p-n结温度,它检测四个结和它的自己内部的温度。因此内部温度接近周围温度。周围温度的测量给出关于系统风扇是否正在适当地工作的指示。

在图5中显示,控制风扇是在遥测温度时集成电路的主要功能。这个部分的使用能在风扇控制的二个不同的模式之间选择。在PWM模式中,微处理控制风扇速度是通过改变送给风扇的信号周期者测量温度一种功能。它允许电力消耗远少于这个部分的线性模式控制所提供的。因为某些风扇在PWM信号控制它的频率下发出一种听得见的声音,这种线性模式可能是有利的,但是需要较高功率的消耗和附加的电路。额外的功耗是整个系统功耗的一小部分。

当温度超出指定界限的时候,这个集成电路提供中断微控制器的警告信号。这个被叫做过热温度的信号形式里,安全特征也被提供。如果温度升到一个危险级别的时候温控制器或软件锁上,警告信号就不再有用。然而,温度经由SMBus升高到一个水平,过热在没有微控制器被使用去控制电路。因此,在这个非逻辑控制器高温中,过热能被直接用去关闭这个系统电源,没有为控制器和阻力潜在的灾难性故障。

装置的这个数字I/O普遍使用在服务器,电池组和硬盘磁碟机上。为了增加服务器的可靠性温度在很多的位置中被检测:在主板(本质上是在底盘内部的周围温度),在处理器钢模之内,和在其它发热元件例如图形加速器和硬盘驱动器。出于安全原因电池组结合温度传感器和使其最优化已达到电池最大寿命。

检测依靠中心马达的速度和周围温度的硬盘驱动器的温度有两个号的理由:在驱动器中读取错误增加温度极限。而且硬盘的MTBF大大改善温度控制。通过测量系统里面温度,就能控制马达速度将可靠性和性能最佳化。驱动器也能被关闭。在高端系统中,警告能为系统管理员指出温度极限或数据可能丢失的状况。

图6。温度超过某一界限的时候,集成电路信号能报警和进行简单的ON/OFF风扇控制。

图7.热控制电路部分在绝对温标形式下,频率与被测温度成比例的产生方波的温度传感器

图8。这个温度传感器传送它的周期与被测温度成比例的方波,因为只发送温度数据需要一条单一线,就需要单一光绝缘体隔离信道。

模拟正温度感应器

“模拟正量”传感器通常匹配比较简单的测量应用软件。这些集成电路产生逻辑输出量来自被测温度,而且区别于数字输入/输出传感器。因为他们在一条单线上输出数据,与串行总线相对。

在一个模拟正量传感器的最简单例子中,当特定的温度被超过的时候,逻辑输出出错:其它,是当温度降到一个温度极限的时候。当其它传感器有确定的极限的时候,这些传感器中的一些允许使用电阻去校正温度极限。

在图6中,装置显示购买一个特定的内在温度极限。这三个电路举例说明这个类型装置的使用:提供警告,关闭仪器,或打开风扇。

当需要读实际温度时,微控制器是可以利用的,在单线上传送数据的传感器可能是有用的。用微处理器的内部计数器,来自于这个类型温度感应器的信号很容易地被转换成温度的测量。图7传感器输出频率与周围温度成比例的方波。在图8中的装置是相似的,但是方波周期是与周围温度成比例的。

图9。用一条公共线与8个温度传感器连接的微控制器,而且从同一条线上接收每个传感器传送的温度数据。

图9,在这条公共线上允许连接达到八个温度传感器。当微控制器的I/O端口同时关闭这根线上的所有传感器的时候,开始提取来自这些传感器的温度数据。微控制器很快地重新装载接收来的每个传感器的数据,在传感器关闭期间,数据被编码。在特定时间内每个传感器对闸口脉冲之后的时间编码。分配给每个感应器自己允许的时间范围,这样就避免冲突。

通过这个方法达到的准确性令人惊讶:0.8 是典型的室温,正好与被传送方波频率的电路相匹配,同样适用于方波周期的装置。

这些装置在有线电线应用中同样显著。举例来说,当一个温度传感器被微控制器隔离的时候,成本被保持在一个最小量,因为只需要一个光绝缘体。这些传感器在汽车制造HVAC应用中也是很有效,因为他们减少铜的损耗数量。 温度传感器的发展:

集成电路温度传感器提供各式各样的功能和接口。同样地这些装置继续发展,系统设计师将会看见更多特殊应用就像传感器与系统接口连接的新方式一样。最后,在相同的钢模区域内集成更多的电子元件,芯片设计师的能力将确保温度传感器很快将会包括新的功能和特殊接口。

总结

通过这些天的查找资料,我了解了很多关于温度传感器方面的知识。我的大家都知道温度的一些基本知识,温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。利用温度所创造出来的传感器即温度传感器是最早开发,应用最广的一类传感器。并且从资料中显示温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,在本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。

这些天,我通过许多的资料了解到两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称它为“热电偶”。我查找的资料显示数据:不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。

热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。 温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可以用来测量运动物体、小目标还有热容量小或温度变化迅速(瞬变)对象的表面温度,也可以用于测量温度场的温度分布。资料显示,最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体所测温度才是真实温度。如果想测定物体的真实温度,就必须进行材料表面发射率的修正。而材料表面发射率不仅取绝于温度和波长,而且还与表面状态、涂膜和微观组织等有关连,因此很难精确测量。在自动化生产中我发现往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,这样才能提高有效发射系数。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即是介质温度)进行修正而得到介质的真实温度。 现在,我通过这些天的努力,了解了很多温度传感器及其相关的一些传感器的知识。他们在我们生活中的应用及其广泛,我们只有加紧的学习加紧的完成自己所学专业的知识,了解相关的最新信息,我们才能跟上科技前进的步伐。

参考文献:

【1】刘君华.智能传感器系统.西安电子科技大学出版社,1993.3 【2】张富学.传感器电子学.国防工业电子出版社,1992.6 【3】王家桢等.传感器与变送器[M].北京清华出版社1996.5 【4】张正伟.传感器原理与应用[M].中央广播电视大学出版社,1991.3 【5】樊尚春.传感器技术及应用.北京航空航天大学出版社,2004.8 【6】赵负图.现代传感器集成电路.人民邮电出版社,2000.8 【7】谢文和.传感器技术及应用.高等教育出版社,2004.7 【8】赵继文.传感器与应用电路设计[M].科技出版社,2002.6 【9】陈杰,黄鸿.传感器与检测技术.高等教育出版社,2002.3 【10】黄继昌,徐巧鱼,张海贵等.传感器工作原理及应用实例.人民邮电出版社,1998.6

推荐第5篇:温度传感器试验论文程序清单

北京交通大学微机原理与接口技术综合实践说明书

附件一:硬件电路原理图

VCCE110UF/25VU1VCC9R18.2KR144.7KDS321DS18B2031P12P13P14P15P16P171234567889C51RESETP10P11P12P13P14P15P16P17EA/VPP20RDWRALE/PAD1123VCC19C130PCRY11.0592C2RXDPSENT0INT0T1INT11U28155P00P01P02P03P04P05P06P0739383736353433322117163012131415161718197910116X1P25P26P27P21P2218TXDU4A7407U4C7407U4E7407U5A7407236910132U4B7407U4D7407U4F7407VCC4128345612780.1K*7PRADGBCEFAD0AD1AD2AD3AD4AD5AD6AD7IO/MRDWRALETMROUTTMRINCEPB0PB1PB2PB3PB4PB5PB6PB7PA0PA1PA2PA3PA4PA5PA6PA7PC0PC1PC22930313233343536511121222324GLE1FGLE2FGLE3FGLE4FGLE5FAAAAAA874CZZ3BBBBB101010101010326272822232425E2VCC8272837PC038PC139PC2125PC3PC4PC5987698769876987698769ZZZZZFFFFFGFGAGAGAGAGAACpDBBBBBP23P24VCCGND30PX240RESETPC3PC4PC5CpDCpDCpDCpDCpD1415121329111020410UFDDDDD123451234512345123451234512EDEZEZEZEZEZELE1DELE2DELE3DELE4DELE5DCCCC1KU6R22.2KK1U3AR30.1KE34.7UFVCC74LS1412P12PC01275452U12A3LE1775452U12B5LE2275452U13A3LE3LED8U7LED8U8LED8U9LED8U10LED8U11LED8PC16CR10PC2ELE6DVCC1R42.2KK2U3BR50.1KE44.7UFVCCVCCF174LS1434P13PC367U13B5LE4PC412U14A3LE5PC567U14B5LE6754527545275452VCCR62.2KK3U3CR70.1K74LS14E54.7UFVCCR120.1K56P14P16R113KT19013FMQ-3VAD212E747UFC30.1UFC40.01UFC50.01UFR82.2KK4U3DR90.1KE64.7UF74LS1498P15P1713U3F74LS1412L1R130.3KVCC5B6B26GLE6F25

北京交通大学微机原理与接口技术综合实践说明书

源程序清单

TL

EQU 30H

;DS18B20温度传感器的第一个字节

TH

EQU 31H

;DS18B20温度传感器的第二个字节

TEM EQU 32H

;温度值

TMIN

EQU

33H

;温度下限

TMAX EQU

34H

;温度上限

BZ1

BIT

00H

;标志位1

BIT01

EQU

20H

BIT02

EQU

21H

BZ2 EQU

22H

BZ3

EQU

23H

DQ

BIT

P1.0

主程序

ORG

0000H MAIN: MOV SP,#70H

MOV A,#00H

MOV P1,A

MOV TMIN,#0FH

MOV TMAX,#28H

MOV BZ2,#00H

MOV BZ3,#00H

LOOP: LCALL

GET_TEMPER

LCALL

TEMPER

LCALL

KEY

MOV

A,BZ3

JNZ

NEXT

LCALL

WARN

NEXT: LCALL

DISPLAY

LJMP

LOOP

;温度获得程序

ORG

0100H GET_TEMPER:

LCALL INIT

JB

BZ1,S22

LJMP

GET_TEMPER S22: MOV

A,#0CCH

LCALL WRITE

MOV

A,#44H

LCALL WRITE

NOP GET01: LCALL INIT

JB

BZ1, GET02

;标志位2 ;标志位3 ;蜂鸣器发光二极管复位(低电平) ;给上限赋值

;给下限赋值 ;按健1标志位 ;按键4标志位

;读取此时的温度值

;把DS18B20传来温度转化为单个值

;调用键盘程序

;若BZ3为1,则跳转NEXT ;调用报警子程序

;调用显示程序 ;主程序循环 ;若BZ为一,则跳转S22 ;跳过ROMA匹配 ;发启动转换命令 2

北京交通大学微机原理与接口技术综合实践说明书

LJMP GET01 GET02: MOV A,#0CCH

;跳过ROM匹配

LCALL WRITE

MOV A,#0BEH

;发出读温度命令

LCALL WRITE

LCALL READ

;采集温度

RET

;初始化DS18B20

ORG

0200H INIT: SETB

DQ

;定时入口

NOP

CLR

DQ

MOV

R0, #0F0H

DJNZ

R0, $

;480?s复位脉冲(低电平)

SETB

DQ

MOV

R0, #1EH

DJNZ

R0, $

;等待60?s

JNB

DQ, INI1

;检测到低电平则置标志位

LJMP

INI2 INI1: SETB

BZ1

;置标志位,DS18B20存在

LJMP

INI3 INI2: CLR

BZ1

;清标志位,DS1B820不存在

LJMP

INI4 INI3: MOV

R0, #36H

DJNZ

R0, $

;低电平持续108?s INI4: SETB

DQ

RET

写DS18B20

ORG

0300H WRITE: MOV R2,#08H

;循环8次写入一个字节

CLR C WR1: CLR DQ

;数据线变低电平产生写起始信号

MOV R3,#03H

DJNZ R3,$

;低电平持续6s

RRC A

;写入位从A移到Cy

MOV DQ,C

;命令字按位依次送DS18B20

MOV R3,#0FH

DJNZ R3,$

;写过程持续30s

SETB DQ

DJNZ R2,WR1

RET

读DS18B20的程序,从DS18B20中读出两个字节的数据

ORG

0400H

北京交通大学微机原理与接口技术综合实践说明书

READ: MOV R4,#02H

;将温度高位和低位元从DS18B20中读出

MOV R0,#TL

;低位元存入TL,高位存入TH RE00: MOV R2,#08H

;循环8次读一字节 RE01: CLR C

SETB DQ

NOP

NOP

;高电平持续2s

CLR DQ

NOP

NOP

NOP

;数据线低电平3s

SETB DQ

;数据线升高电平产生读起始信号

MOV R5, #04H

DJNZ R5, $

;等待8s

MOV C, DQ

MOV R3, #0CH

DJNZ R3, $

;读周期持续24s

RRC A

;读取数据移入A

DJNZ R2, RE01

MOV @R0, A

;读完1字节数据移入A

INC

R0

DJNZ R4, RE00

;读入2字节

RET

将从DS18B20中读出的温度数据进行转换

ORG

0500H TEMPER: MOV

A, #0F0H

ANL A, TL

;低字节高4位存入A

SWAP A

;A中高低四位互换

MOV TEM, A

MOV A, TL

;TL低四位移入A

JNB ACC.3,TEMPER01 ;去小数部分取整数

INC

TEM

;对小数部分四舍五入 TEMPER01:MOV A, TH

ANL A, #07H

;高字节低四位移入A

SWAP A

;高低四位互换

ORL A, TEM

;实际温度高低四位装配

MOV TEM,A

;把DB18B20采集温度送TEM

RET

;比较子程序

ORG

0600H WARN: CLR

C

MOV A, TEM

SUBB A,TMIN

;把现在的温度与下限比较

北京交通大学微机原理与接口技术综合实践说明书

JC

LIGHT

MOV A, TEM

SUBB

A,TMAX

;把现在的温度与上限比较

JNC ALARM FH: RET ALARM:SETB P1.6

;开启蜂鸣器

SJMP FH LIGHT: SETB P1.7

SJMP FH

按键子程序

ORG

0700H KEY: MOV A, #3FH

MOV P1, A

MOV A,P1

JB

ACC.2,KEY1

JB

ACC.3,KEY2

JB

ACC.4,KEY3

JB

ACC.5,KEY4 DONE: RET KEY1: INC

TMAX

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE KEY2: DEC

TMAX

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE KEY3: INC

TMIN

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE KEY4:DEC

TMIN

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE ;显示子程序

ORG

1000H DISPLAY:MOV DPTR, #0100H

MOV A, #0EH

MOVX @DPTR, A

MOV R5, #0FH

LOOP1: MOV R2, #01H

MOV A, TMAX

ACALL FB

ACALL DIR

;开启二极管发光 ;扫描键盘 ;按健1按下则调用KEY1 ;按健2按下则调用KEY2 ;按健3按下则调用KEY3 ;按健4按下则调用KEY4 ;LED端口地址赋给程序 ;方式控制字送A ;温度循环显示15次 显示温度上限值 5

;北京交通大学微机原理与接口技术综合实践说明书

MOV

A, TEM

;显示当前温度值

ACALL

FB

ACALL

DIR

MOV

A, TMIN ;显示温度下限值

ACALL

FB

ACALL

DIR

DJNZ

R5, LOOP1

RET

;将温度值转换为BCD码

ORG

1100H FB: MOV

B,#0AH

;分半程序

DIV

AB

MOV

BIT01,A

MOV

BIT02,B

RET

ORG

1200H DIR: MOV

R0,#BIT01

MOV

A,R2

MOV

R3,#02H LD0: MOV

DPTR,#0103H ;C口地址送DPTR

MOVX

@DPTR,A

;字位码送C口

MOV

DPTR,#0102H ;B口地址送DPTR

MOV

A,@R0

;地址偏移量送A

ADD

A,#0CH

;修正A地址

MOVC

A,@A+PC

;查字形码表 DIR1: MOVX

@DPTR, A

;字形码送B口

MOV

R7,#02H

;设定延时时间

ACALL DL

;延时1ms

INC

R0

;修正显示缓冲区指针

MOV

A, R2

;字位码送A

RL

A

;显示下一位

MOV

R2, A

DJNZ

R3, LD0

RET DSEG0: DB 3FH, 06H, 5BH, 4FH, 66H, 6DH DSEG1: DB 7DH, 07H, 7FH, 6FH, 77H, 7CH DSEG2: DB 39H, 5EH, 79H, 71H, 73H, 21H DSEG3: DB 31H, 6EH, 40H, 3EH, 00H, 00H DL: MOV

R6, #0FFH DL6: DJNZ

R6, DL6

DJNZ

R7, DL

RET

END

推荐第6篇:温度传感器工作原理

空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。室外盘管NTC制热化霜温度检测,制冷冷凝温度检测。制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。外环温NTC控制室外风机的转速、冬季预热压缩机等。排气NTC使变频压缩机降频,避免外机过热,缺氟检测等。吸气NTC控制制冷剂流量,有步进电机控制节流阀实现。故障分析室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。化霜故障可代换室外盘管NTC或室外化霜板。在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。

推荐第7篇:光纤温度传感器 毕业论文

摘 要

本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。

本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。

本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。

关键词:光纤,光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理

Abstract

1 引言:

光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。

在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。

2 论文要求:

(1)详细分析国内外主要光纤温度测温方法的原理及特点,比较不同方法的温度测量范围和性能指标。

(2)掌握空调器的工作电气原理和基本的热力学过程。

3 毕业论文综述:

70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。 从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境 下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤 遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。

目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是:光纤传感系统;现代数字光纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控;民用研究计划。以上计划仅在1983年就投资12-14亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等28个主要单位。美国光纤传感器开始研制最早,投资最大,己有许多成果申请了专利。

英国政府特别是贸易工业部十分重视光纤传感器技术,早在1982年有该部为首成立了英国光纤传感器合作协会,到1985年为止,共有26个成员,其中包括中央电器研究所、Delta控制公司、帝国化学工业公司、英国煤气公司、

1 Taylor仪器公司、标准电信研究所及几所主要大学。

德国的光纤陀螺的研究规模和水平仅次与美国居世界第二位,西门子公司在1980年就制成了高压光纤电流互感器的实验样机。

日本制定了1979-1986年“光应用计划控制系统”的七年规划,投资达70亿美金。有松下、三菱、东京大学等24家著名的公司和大学从事光纤传感器研究。从1980年7月到1983年6月,申请光纤传感器的专利464件,涉及11个领域。主要应用于大型工厂,以解决强电磁千扰和易燃、易爆等恶劣环境中信息测量、传输和生产全过程的控制问题。

我国光纤传感器的研究工作于80年代初开始,在“七五”规划中提出15 项光纤传感器项目,其中有光纤放射线探测仪、光纤温度传感器及温度测量系统、光纤陀螺、光纤磁场传感器、光纤电流、电压传感器、医用光纤传感器、分析用 传感器、集成光学传感器等。预计“七五”期间的研制成果可达到美、日等国 80年代初、中期水平。

半导体吸收型光纤温度传感器基本上是80年代兴起的,其中以日本的研究最为广泛。在1981年,Kazuo Kyuma等四人在日本三菱电机中心实验室,首次研制成功采用GaA、和Care半导体材料的吸收型光纤温度传感器。由于人们对半导体材料认识的不断深入,以及半导体制造和加工工艺水平的不断提高,使人们对采用半导体材料来制作各种传感器的前景十分看好。在90年代前后, 出现了研究以硅材料作为温度敏感材料的光纤温度传感器。在1988年,Roorkee 大学R.P.Agarwal等人,采用CIrD(化学气象淀积)技术,在光纤端面上淀积多 晶硅薄膜,试制了硅吸收型光纤温度传感器。同年,Isko Kajanto等人采用SOI结构,以光纤反射的方式,制作了单晶硅吸收型温度传感器。目前,以GaAs 和CdTe直接带隙半导体材料的吸收型光纤温度传感器,已接近实用化。

国内对半导体吸收型光纤温度传感器的研究起步较晚,兴起于90年代后期。 主要集中在清华大学,华中理工大学,东南大学等高校。他们对该种类型的传感 器结构,特性和系统结构进行了详细的分析和实践。但大量的研究只集中在GaAs半导体作为感温材料的传感器上,与国外在该领域的研究水平仍有较大差别。

4 光纤温度传感器的特点:

光纤温度传感器与传统的温度传感器相比具有很多优点:光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器件接收.可方便地进行光电或电光转换.易与高度发展的现代电子装置和计算机相匹配.光纤工作频率宽.动态范围大,是一种低损耗传输线,光纤本身不带电.体积小质量轻,易弯曲,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。国外一些发达国家对光纤温度传感技术的应用研究已取得丰富成果.不少光纤温度传感器系统已实用化.成为替代传统温度传感器的商品。所有与温度相关的光学现象或特性.本质上都可以用于温度测量.基于此.用于温度测量的现有光学 技术相当丰富。对于光纤温度传感器的研究占到将近所有光纤传感器研究的20%。光纤温度传感器的研究.除对现有器件进行外场验证、完善和提高外,目前有以下几个发展动向:大力发展测量温度分布的测量技术.即由对单个点的温度测量到对光纤沿线上温度分布.以及大面积表面温度分布的测量:开发包括测量温度在内的多功能的传感器:研制大型传感器阵列.实现全光学遥测。 光纤测温传感器是用光纤来测量温度的。有两种方法可实现。一是利用被测表面辐射能随温度的变化而变化的特点;利用光纤将辐射能量传输到热敏元件上,经

2 过转换再变成可供纪录和显示的电信号。这种方法独特之处就是可以远距离测量;另外一种方法是利用光在光导纤维内传输的相位随温度参数的改变而改变的特点,光信号的相位随温度的变化是由于光纤材料的尺寸和折射率都随温度改变而引起的。

5 光纤传感器的基本原理

在光纤中传输的单色光波可用如下形式的方程表示E=

式中,、频是光波的振幅:w是角频率;为初相角。该式包含五个参数,即强度率w、波长

、相位(wt+)和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。

5.1强度调制

5.1.1 发光强度调制传感器的调制原理

光纤传感器中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来实现对被测对象的检测和控制。其基本原理如图所示。光源S发出的发光强度为的光柱入传感头,在传感头内,光在被测物理量的作用下强度发生变化,即受到了外场的调制,使得输出发光强度产生与被测量有确定对应关系的变化。由光电探测器检测出发光强度的信号,经信号处理解调就得到了被测信号。

5.1.2 发光强度调制的方式 利用光纤微弯效应;

利用被测量改变光纤或者传感头对光波的吸收特性来实现发光强度调制; 通过与光纤接触的介质折射率的改变来实现发光强度调制; 在两根光纤间通过倏逝波的耦合实现发光强度调制;

利用发送光纤和接收光纤作相对横向或纵向运动实现发光强度调制,这是当被测物理量引起接收光纤位移时,改变接收发光强度,从而达到发光强度调制的目的。这种位移式发光强度调制的光纤传感器是一种结构简单,技术较为成熟的光纤传感器。

3

5.1.3 发光强度调制型传感器分类

根据其调制环节在光纤内部还是在光纤外部可以分为功能型和非功能型两种。强度调制式光纤传感器的特点 解调方法简单、响应快、运行可靠、造价低。缺点是测量精度较低,容易产生偏移,需要采取一些自补偿措施。

5.2相位调制 光纤传感器的基本原理

通过被测量的作用,使光纤内传播的光相位发生变化,再利用干涉测量技术把相位转换为光强变化,从而检测出待测的物理量。如图5-40其中图a、b、c分别为迈克尔逊、马赫-泽得和法布里-珀罗式的全光纤干涉仪结构。

5.3 波长调制光纤传感器的基本原理

波长调制传感器的基本结构如图5-41。

6 光纤温度传感器

6.1几种光纤温度传感器的原理和研究现状

光纤温度传感器按其工作原理可分为功能型和传输型两种。功能型光纤温度传感器是利用光纤的各种特性f相位、偏振、强度等)随温度变换的特点,进行温度测定。这类传感器尽管具有”传”、”感”合一的特点.但也增加了增敏和去敏的困难。传输型光纤温度传感器的光纤只是起到光信号传输的作用.以避开测温区域复杂的环境.对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。这类传感器由于存在光纤与传感头的光耦合问题.增加了系统的复杂性,且对机械振动之类的干扰较敏感.下面介绍几种主要的光纤温度传感器的原理和研究现状。

6.1.1分布式光纤温度传感器

分布式光纤测温系统是一种用于实时测量空间温度场分布的传感器系统。分布光纤传感器系统最早是在1981年由英国南安普敦大学提出的.1983年英国的Hartog用液体光纤的拉曼光谱效应进行了分布式光纤温度传感器原理性实验.1985年英国的Dakin在实验

4 室用氩离子激光器作为光源进行了用石英光纤的拉曼光谱效应的分布光纤温度传感器测温实验.同年Hartog和Dakin分别独立地用半导体激光器作为光源,研制了分布光纤温度传感器实验装置:此后。分布光纤温度传感器得到了很大的发展.研究出了多种传感机理.有的还使用了特种光纤。分布式光纤温度传感器是基于瑞利散射、布里渊散射、喇曼散射三种分布式温度传感器。分布式光纤传感器从最初提出的基于光时域散射fOTDRl的瑞利散射系统开始.经历了基于0TDR的喇曼散射系统和基于0TDR的布里渊散射系统.使得测温精度和范围大幅提高。光频域散射fOFDR)的提出也很早,但只有到了近期.伴随着喇曼散射和布里渊散射研究的深入.使OFDR和它们结合才显示出了它的优越性。基于0TDR和OFDR的分布式温度光纤传感器已经显示出了很大的优越性.所以基于OTDR0FDR的分布式温度光纤传感器仍将是研究的热点.尤其是基于OFDR的新的分布式光纤传感器将是一个重要的发展方向。土耳其Gunes Yilmaz研制出10km、温度分辨率为1℃、空间分辨率为1.22m的分布式光纤温度传感器。在国内,中国计量学院、重庆大学、浙江大学等单位根据应用的需要.先后开展了分布式光纤温度传感器的研究。中国计量学院1997年研制了一种用于煤矿、隧道温度自动报警的分布式光纤温度传感器系统,该系统光纤长为2km.测温范围为一50℃~150℃.测温精度为2℃.温度分辨率为O.1℃:2005年设计制造出31km远程分布式光纤温度传感器.测温范围0℃~100℃,温度测量不确定度为2℃.温度分辨率为0.1℃,测量时间为432s.空间分辨率为4m。 6.1.2 光纤光栅温度传感器

光纤光栅温度传感技术主要研究Bmgg光纤传感技术。根据Bragg光纤光栅反射波长会随温度的变化而产生”波长移位”的原理制成光纤光栅温度传感器。1978年.加拿大渥太华通信研究中心的K.O.HiU等人首先发现掺锗石英光纤的光敏效应.采用注入法制成世界上第一只光纤光栅(FBG),1989年,Morev首次报导将其用于传感。英国T.A1lsoD利用椭圆纤芯突变型光纤研制出温度分辨率为O.9℃、曲率分辨率为0.05的长周期光纤光栅曲率温度传感器。意大利A.Iadicicco利用非均匀的稀疏布拉格光纤光栅fThFBGsl同时测量折射率和温度.该传感器的温度分辨率为0.1℃.在折射率1.

45、1.33附近的折射率分辨率分别为10-s、104。中科院上海光机所利用光纤光栅的金属槽封装技术将光纤光栅温度传感器的灵敏度提高到O.02℃:哈尔滨工业大学把光纤光栅粘贴在金属半管上.使其分辨率达到0.04℃:黑龙江大学光纤技术研究所提出了一种光纤光栅fFBGl的Ti合金片封装工艺,使温度灵敏度达到0.05℃。 6.1.3 光纤荧光温度传感器

光纤荧光温度传感器是目前研究比较活跃的新型温度传感器。荧光测温的工作机理是建立在光致发光这一基本物理现象上。所谓光致发光是一种光发射现象.就是当材料由于受紫外、可见光或红外区的光激发.所产生的发光现象。出射的荧光参数与温度有一一对应关系.通过检测其荧光强度或荧光寿命来得到所需的温度的。强度型荧光光纤传感器受光纤的微弯曲、耦合、散射、背反射影响,造成强度扰动,很难达到高精度:荧光寿命型传感器可以避免上述缺点,因此是采用的主要模式.荧光寿命的测量是测温系统的关键。美国密西西比州立大学用一种商用的环氧胶做温度指示f含有多环芳烃化合物:PAHs)。PAHs在用紫外光激发时发荧光.荧光的强度随环氧胶周围温度的升高而减小.该传感器可监测20℃~100℃范围内的温度。日本东洋大学根据Tb:Si0,和Tb:YAG的光致发光(PL)谱与温度有关.将其制成光纤温度传感器。在300~1200K的温度下.Tb:Si0,

5 的PL峰值在540nm时的光强随温度的升高单调减小.Tb:YAG晶体的PL谱的形状随温度变化。韩国汉城大学发现lOcm长的Ybn、E一双掺杂光纤在915nm处.两荧光强度的比值在20℃~300℃间与温度成指数关系.这种双掺杂系统对于测量苛刻环境的温度非常有用。清华大学电子工程系利用半导体GaAs材料对光的吸收随温度变化的原理。研制出测温范围:O℃~150℃;分辨率:0.5℃的光纤温度传感器。燕山大学设计了一种利用荧光波分和时分多路传输技术.通过检测红宝石晶体的荧光强度实现温度测量的系统.该系统的测温范围:30℃~160℃:分辨率:0.5℃。海南大学用激光加热基座法生长出端部掺Cr的蓝宝石荧光光纤传感头.该传感器的测温范围:20℃~450℃:分辨率:1℃。中北大学用一种镀有陶瓷薄膜的蓝宝石光纤作为传感器的瞬态高温测试系统.该系统的测温范围:1200℃~2000℃。分辨率:1℃。 6.1.4 干涉型光纤温度传感器

干涉型光纤温度传感器是一种相位调制型光纤传感器。它是利用温度改变Mach—Zehnder干涉仪、Fabry—Perot干涉仪、Sagnac干涉仪等一些干涉仪的干涉条纹来外界测量温度。英国的Samer K.Abi Kaed Bev用长周期光纤光栅做成Mach—Zehnder干涉型光纤温度传感器.其温度分辨率为O.7℃。燕山大学研制出基于白光干涉的Fabrv—Perot光纤温度传感器.其测温范围为一40℃~100℃.分辨率为0.01℃。哈尔滨工程大学研制出数字式Mach—Zehnder干涉型光纤传感器.其测温范围为35cC~80℃,压力、温度、位移分辨率分别为0.03kPa、0.07℃、2.5斗m。

干涉式光纤温度传感器工作示意图

6.1.5 基于弯曲损耗的光纤温度传感器

基于弯曲损耗的光纤温度传感器利用硅纤芯和塑料包层折射率差随温度变化引起光纤孔径的变化、光纤的突然弯曲引起的局部孔径的变化的原理测量温度。乌克兰采用EBOC伍ngIish—Bickford Optics Com—pany)生产的多模阶跃塑料包层硅纤芯光纤HCN~H,已做出基于弯曲损耗的光纤温度传感器.其测温范围一30℃~70℃.灵敏度达到O.5℃。法国研究出测温范围一20℃~60℃。灵敏度为0。2℃的基于弯曲损耗的光纤温度传感器。国内主要是对光纤的弯曲损耗与入射波长、弯曲半径、弯曲角度、弯曲长度、光纤参量和温度等的关系做了一些研究。实验装置图如图1所示。

6.2 几种光纤温度传感器的特点及各自的研究方向

分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器分别具有独特的优点和一定的不足,因此它们的研究方向不同。 6.2.1 分布式光纤温传感器

分布式光纤温传感器具有其他温度传感器不可比拟的优点。它能够连续测量光纤沿线所在处的温度.测量距离在几千米范围.空间定位精度达到米的数量级。能够进行不问断的自动测量.特别适用于需要大范围多点测量的直用场合。目前对分布式光纤温度传感器研究的重点:实现单根光纤上多个物理参数或化学参数的同时测量:提高信号接收和处理系统的检测能力.提高系统的空间分辨率和测量不确定度:提高测量系统的测量范围.减少测量时间:基于二维或多维的分布式光纤温度传感器网络。 6.2.2 光纤光栅温度传感器

光纤光栅温度传感器除了具有普通光纤温度传感器的许多优点外.还有一些明显优于其它光纤温度传感器的方面。其中最重要的就是它的传感信号为波长调制。这一传感机制的好处在于:测量信号不受光源起伏、光纤弯曲损耗、连接损耗和探测器老化等因素的影响:避免了一般干涉型传感器中相位测量的不清晰和对固有参考点的需要:能方便地使用波分复用技术在一根光纤中串接多个布喇格光栅进行分布式测量:很容易埋人材料中对其内部的温度进行高分辨率和大范围地测量。尽管光纤光栅温度传感器有很多优点.但在应用中还需考虑很多因素:波长微小位移的检测;宽光谱、高功率光源的获得;光检测器波长分辨率的提高;交叉敏感的消除;光纤光栅的封装;光纤光栅的可靠性;光纤光栅的寿命。 6.2.3 光纤荧光温度传感器

光纤荧光温度传感器于其它光纤温度传感器相比有自己独特的优点:由于荧光寿命与温度的关系从本质上讲是内在的.与光的强度无关.这样就可以制成自较准的光纤温度传感器.而一般的基于光强度检测的光纤温度传感器f如辐射型1则因为系统的光传输特性往往与传输光纤和光纤耦合器等相关而需经常校准:测量范围广,特别在高温情况下多用光纤荧光温度传感器。目前国外的研究主要围绕着荧光源的选择.主要为下面几个方面:蓝宝石和红宝石发光、稀土发光及半导体吸收。

6.2.4 干涉型光纤温度传感器

7 干涉型光纤温度传感器的温度分辨率高:动态响应宽:结构灵巧。研究干涉型光纤温度传感器的主要工作放在减小噪声干扰和信号解调上。 6.2.5 基于弯曲损耗的光纤温度传感器

基于弯曲损耗的光纤温度传感器具有结构简单、体积小、成本低、测量方便不需要解调等优点。但是它还存在着很多的不足:测量精度低;由于它是强度调制型光纤传感器,光源的稳定性对其影响很大;使用寿命短等缺点。在今后的研究中主要从光纤的选择、测量条件的提高等方面开展工作。

7 光纤温度传感器的应用

光纤温度传感自问世以来.主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 7.1.1 光纤温度传感器在电力系统有着重要的应用 电力电缆的表面温度及电缆密集区域的温度监测监控;高压配电装置内易发热部位的监测;发电厂、变电站的环境温度检测及火灾报警系统;各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断;火力发电厂的加热系统、蒸汽管道、输油管

道的温度和故障点检测:地热电站和户内封闭式变电站的设备温度监测等等。 7.1.2 光纤温度传感应用于建筑、桥梁上

光纤光栅温度传感器很容易埋人材料中对其内部的温度进行高分辨率和大范围地测量.因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究.并在主要大桥上都安装了桥梁安全监测预警系统。用来监测桥梁的应变、温度、加速度、位移等关键安全指标。1999年夏,美国新墨西哥Las Cmces lO号州际高速公路的一座钢结构桥梁上安装了120个光纤光栅温度传感器.创造了单座桥梁上使用该类传感器最多的记录。

7.1.3 光纤温度传感在航空航天业的应用

航空航天业是一个使用传感器密集的地方.一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等,所需要使用的传感器超过100个.因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲.几乎没有其他传感器可以与之相比。 7.1.4 传感器的小尺寸在医学应用中是非常有意义的 光纤光栅传感器是现今能够做到最小的传感器。光纤光栅传感器能够通过最小限度的侵害方式对人体组织功能进行内部测量。提供有关温度、压力和声波场的精确局部信息。光纤光栅传感器对人体组织的岗厂阴,等:光纤温度传感器的研究和应州损害非常小.足以避免对正常医疗过程的干扰。 7.1.5 光纤光栅传感器永久井下测量的应用

因其抗电磁干扰、耐高温、长期稳定并且抗高辐射非常适合用于井下传感.挪威的Optoplan正在开发用于永久井下测量的光纤光栅温度和压力传感器。

8 空调器的工作电气原理和基本的热力学过程

8.1 空调器基本结构

8 是由制冷(热)、空气循环、电气控制三大系统组成。 制冷系统: 用于制冷剂循环及气/ 液态变换。制冷剂系统的工作与否受控于电气系统。空气循环系统: 用于驱动空气进行循环,过滤室内空气,以及对制冷系统中蒸发器、冷凝器提供空气热交换条件,调节室内的温度等。电气控制系统: 用于控制冷系统与空气循环系统的工作与否。

8.1.1 制冷系统的结构和工作过程制冷系统的结构

由压缩机、冷凝器、过滤器、毛细管、蒸发器等首尾连接组成。其中,制冷剂的循环流通由压缩机负责,制冷剂气态转换由蒸发器负责,制冷剂液态转换由冷凝器负责,制冷剂压力变换由压缩机和毛细管负责,过滤器负责滤除制冷剂中微量脏物。对于制冷而言,其工

作过程以图1 所示窗式空调器为例说明如下:当接通电源后,压缩机及风扇开始运转,蒸发器内的低压气态制冷剂,通过管路被压缩机吸入,并压缩为高压、高温气态,再经过排气管排入冷凝器对室外空气放热自身降温变成液态。液态制冷剂经过滤器、毛细管节流后进入蒸发器,由蒸发器蒸发为气态,并在蒸发过程中自身吸热对室内空气降温,冷却后的空气由离心风扇吹向室内,室内的空气又由风扇的吸气端吸回。这样,空气不断循环,周而复始,室内的空气就得到了降温并维持在一定温度内,实现制冷目的。

8.1.2 制热系统的结构和工作过程制热系统的结构

对于制热而言,其工作过程可用图2 所示的冷暖空调制冷(热)系统来说明。 它是

在单冷空调制冷系统的基础上增加了单换阀和辅助毛细管。制热时除制冷剂走向(箭头)与制冷时相反外,且室外侧热交换器作蒸发器用于吸热,室内侧热交换器作为冷凝器用于放热。

8.1.3 制冷(热)系统各器件的功能与作用 现说明如下:

( 1) 压缩机: 压缩机运转后,产生吸排气功能,并由低压管口(粗)吸气、高压管口(细)排气,推动制冷剂在制冷管路中循环流通。同时对低压管吸入的制冷剂进行压缩变为高压高温后由高压管口排出。

( 2) 冷凝器: 对压缩机排出的高压、高温气态进行制冷,在流经冷凝器的过程中,逐步散热降温而冷凝为液态/中温/高压制冷剂,实现制冷剂从气态到 液态的转换,以把制冷剂携带的热量散发到空气中,实现热量的转移。

( 3) 毛细管; 是一根直径4 mm、长l m左右的细铜管,接于过滤器(或冷暖机单向阀)与蒸发器之间,对冷凝器流出的中温高压液态制冷剂进行节流降压,使蒸发器中形成低压环境。

( 4) 过滤器: 滤除制冷剂中微量脏物,保证制冷剂在制冷管路中的循环流通。 ( 5) 蒸发器: 经毛细管降压节流输出的制冷剂,在流经经蒸发器管路过程中逐步沸腾蒸发为气体,并在蒸发过程吸收外界空气的热量,使周围空气降温。

8.2 空气循环系统的结构和工作过程

图3 是窗机空气循环系统示意图。它由室内侧、室外侧空气循环两部位组成。两者的核心器件均是多绕组风扇电机。风扇电机的转速受控于功能开关(又称主令开关),风速设置不同,功能开关对风扇电机调速绕组抽头供电不同,调速绕组线圈匝数不同,它与运转绕组串联后的匝数不同,从而使风扇转速不同。

8.3 电气控制系统的结构和工作过程

电气控制系统的核心器件是压缩机和风扇电机,如图4 所示。这两个器件的CR 运行绕组在得到交流220 V 电源后,CS 启动绕组瞬间有启动电流流过就开始运转,把电能变换为机械能。压缩机运转产生的机械能带动制冷系统工作以实施制冷(热);风扇电机运转产生的机械能,带动扇叶旋转以实现空气循环。

( 1) 压缩机工作控制

这里,以图4(a)所示的窗机置于高冷状态为例说明。由图可见,这时功能开关1 端

分别与4 端、8 端接通,对压缩机、风扇电机提供供电回路。其中压缩机供电回路如下:交流220 V 电源插头L 端→功能开关1端、8 端→温控器开关的C 端、L 端→F1 过载保护器的1 端、2 端→压缩机的C 端。此时分为两路:一路经R 端→C 启动电容的1 端(运转电流);另一路径S 端子→C 启动电容2 端、1 端(启

动电流),最后至电源插头的N 端。这样,在压缩机接通电源后,就启动运转,空调开始制冷。当制冷达到设置温度时,温控器断开压缩机供电电路,压缩机停止运转,终止制冷。当室内温度上升到高于设置温度时,温控器再次自动接通压缩机供给回路,压缩机再次运转制冷,以后重复上述过程。至于过载保护器,它紧贴在压缩机外壳上以感知压缩机温度。在压缩机启动或运转中,电流过大或压缩机过热时过载保护器会呈现高阻(相当于断开),从而切断压缩机供电回路,达到保护压缩机的目的。

9 毕业设计主要内容和拟采用的研究方案

9.1 光纤温度传感器的设计

根据光纤弯曲损耗的理论分析,光纤温度传感器结构由三大部分组成:温度敏感头、传输与信号处理部分,具体结构示意图如图3 所示。 9.1.1 温度敏感头

温度敏感头是温度传感器中最主要的部件,是将所测量温度转换成直接能够测量的参数,在这里,是转换成光纤的损耗大小,同等状态下,损耗大,探测器接收到的光功率小,反之,接收到功率就大。传感头主要由多模光纤与金属构件组成,如图3 所示,将光纤施加一定的张力后直接加载在多边形金属构件上,固定好后将光纤两端头引出,在引出光纤的两端制作连接器,外加光纤保护措施,传感头主要工序就已经完成了。金属零件随温度高低不同产生形变也不一样,加载在

13 零件上光纤弯曲损耗大小随之改变金属件受到温度越高,形变越大,在光源输出光功率稳定情况下,光纤弯曲损耗增加时,探测器接收到的光功率就会减小,反之,接收到的光功率增大。当传感头处的温度场发生变化时,通过探测器将接收到的不同光信号转换成电信号,进一步处理、计算,输出外界的温度值大小。金属零件在热变形时,其变形量不仅与零件尺寸、组成该形体的材料线膨胀系数α、环境温度t 有关,而且与形体结构因子(取决于几何参数)有关,计算比较复杂,在这里采用传统的公式模拟来计算:

Lt=L[1+α (t-20°C)] (5) 式中,Lt—温度t 时的尺寸;L—20℃时的尺寸;α—线膨胀系数,其数学表达式比较复杂,可选用平均线膨胀系数,经过查表可知。为了提高传感器的灵敏度,温度敏感头金属材料需选用膨胀系数较大的,且膨胀系数在整个温度测量区间要较稳定,有较好重复性;温度敏感头的结构形状也是要考虑的另一个因素,不同的形状,对灵敏度影响很大。要提高传感头对温度的响应时间,需要选用导热系数较高的材料,比热越小越好,在温度突变时,能快速响应。经过课题组反复计算与试验,选用成本较低、加工容易、导热较快,并且满足使用范围的金属材料铝。通过试验,传感器在-40°C~+80°C温度范围内均可精确工作。 9.1.2 传输部分

光纤在这里不仅要作为转换器件使用,同时也作为光信号传输载体,选用对弯曲损耗更敏感的多模光纤,一般地采用62.5/125μm 标准的多模光纤。由于加载光纤时要施加一定的张力控制,使得光纤缠绕在金属零件上,光纤本身就比较容易损坏,敏感头处光纤长时间受到一定内应力作用,必须对光纤的涂层进行加固耐磨处理,增加传感器使用的可靠性。 9.1.3 信号处理部分信号处理部分

主要由发光管、探测器的驱动电路与数字电路处理两部分组成,发光管、探测器的驱动电路技术已经非常成熟。数字电路处理主要使用价廉物美的单片机,CPU使用美国ATMEL 公司生产的AT89C52 单片机,是一块具有低电压、高性能CMOS 8 位单片机,片内含8k bytes 的可反复擦写的只读程序存储器(PEROM)和256bytes 的随机存取数据存储器(RAM),全部采用ATMEL 公司的高密度、非易失性存储技术生产,与标准MCS-51 指令系统及8052 产品引脚兼容,片内置通用8 位中央处理器(CPU)和Flash存储单元,功能强大。A/D 转换采用AD 公司生产的12 位D574A 芯片,转换时间位25μs,数字位数可设定为12 位,也可设为8 位,内部集成有转换时钟、参考电压和三态输出锁存,可以与微机直接接口。为了方便在现场使用,光纤温度传感器扩展了LCD 显示接口,同时还扩展了一个RS-232 通信口,用于同上位机进行通信,将现场采集的数据传送到上位机,进一步分析处理。整个监控程序采用模块化设计,主要的功能模块有:系统初始化,A/D 采样周期设定,数字滤波,数据处理,串行通信,中断保护与处理,显示与键盘扫描程序等。程序采用单片机汇编语言来编写,使用广泛、运算的速度快等特点,有效的利用单片机上有限的RAM 空间,其中,由于温度的变化引起光强的变化不是线性的,因此我们采用查表法对其测量值进行线性补偿。

9.2 试验检验与数据处理

已经制作好的温度敏感头通过试验测试。 第一步,在温度敏感头的一端光纤连接器上加载稳定的短波长的光源,另一端接

14 相匹配的光功率计,将温度敏感头置入恒温槽中; 第二步,设置恒温槽温度,观察光功率计值的变化情况,要满足在测量的整个工作区间光功率都有变化;

第三步,定点测量,设定几个或更多温度点,记录下,温度与光功率对应值,反复多次试验,观察温度敏感头的重复性。光纤温度传感头通过试验测试,将温度与光功率相对应数据制成表格,具体见表1 所示,曲线图见图4。

通过上述试验表明,传感头满足使用要求,重复性非常好,加载发光管与探测器驱动电路以及信号处理电路,整体调试传感器,观察温度与传感器输出的电压值关系,重复操作上述试验第

二、第三步,具体的温度与电压相对应值见表2,曲线图见图5。

通过观察上述两个曲线,形状基本一致,重复性较好,表明传感器整体性能满足要求。将几个特殊点电压值送到单片机进行处理,采用直线插值拟合或者最小二乘法曲线拟合,输出温度值。通过实测检验,与标准温度值误差最大值为±1°C,基于金属热膨胀式的光纤温度传感器设计是成功的,传感器整体测试精度较高。

9.3 设计方案

系统原理如图1 所示,采用可见光将光束直接射入2根经端面处理且并排放置的光纤中,同时为使2 根光纤输出的光强近似相等且最大,采用2 个不同焦距的透镜来增强光的耦合程度。根据马赫2曾德干涉原理,在出口处2 路光纤并排紧密放置,发生干涉。随后由CCD 传感器接收,并 在监视器上观测温度变化时条纹的变化规律。一方面通过温度标定得到温度与条纹数的对应关系, 另一方面使用MATLAB 对采集到的干涉图像进行处理,通过程序自动判别条纹数。从而得到温度的变化值,实现光纤温度传感测量。

1 马赫2泽德干涉型光纤温度传感器装置

9.3.1 实现方法与现象 (1)平台的搭建

为了得到较好的效果,实现中应注意以下问题: ①耦合问题:在光纤传感系统中,各部件采用耦合效率较高的凸透镜耦合,如图2 所示。将激光器放在凸透镜的焦点上,使其为平行光,然后再用另一个凸透镜将平行光聚集到光纤端面上。整个耦合系统调整组装较容易,使用方便。

图2 光路耦合示意图

②光路准直:搭建实验平台时要注意使整个光路平行于平台,这就需要利用光屏十字法来校准光路。首先确定激光束与实验平台平行;其次在光路上分别加上透镜,调整光具座使透镜前后的光斑落在十字的中心位置。并且依据透镜焦距,使光纤的端面尽量位于透镜的焦点上。如 图3 所示。

图3 光路准直示意图

(2) 产生的现象

根据前面论述的方案,通过光路调整等一系列过程,得到干涉图像如图4 所示。通过使光纤的感温部分受热,可以在监视器上观察到条纹的变化。当温度升高时,条纹几近匀速地向右移动;当温度降低时,条纹向相反的方向移动。这样的变化较为规律,但是对于温度检测电路来说,要求温度变化可测,从而得到定量的关系;对于图像检测而言,条纹要尽量清晰,明暗对比强烈,才能在图像处理时减少不必

要的误差。

图4 干涉条纹图像

9.3.2 信号检测及处理 1 温度标定

(1) 方案: 为使感温部分的光纤均匀受热,选择2 个5 cm的薄铜片将光纤夹入其中。使用电烙铁为其加热,使其温度变化范围加大,条纹移动明显。对于其他不感温光纤,将其固定在绝热平台上,减小热源的影响。

(2) 电路设计:本文使用热敏电阻标定温度与干涉条纹数之间关系,由于热敏电阻随温度变化呈指数规律,即其非线性是十分严重的。当进行温度测量时,应考虑将其进行线性化处理。测温电路如图5 所示。

图5 测温电路

本系统中所用的热敏电阻为负温度系数。其特性可

以表示为:Rt = Rt0 exp B1T-1T0(1)式中: Rt、Rt0分别为温度T 和T0 时的电阻值。根据式(1)以及压阻变换关系可以得到下面这个最终的根据电压的变化从而测得温度变化的表达式:1T=1BlnUtUt0+1T0(2) (3) 数据处理

在测量过程中,为找到合适的电压测量点,选择时间为参考因素,以60 s 为一个阶段,测量一次热敏电阻两端电压,记录电压值,并根据公式得对应的温度,求得Δt。同时记录在这些点间的条纹移动数量,记为Δn。根据Δt 和Δn 可得到温度与条纹之间的函数关系。 (4) 结果分析

设条纹变化数为Δy ,温度变化数为Δx ,则根据实验数据可以得到这样一个近似线性的函数关系式:Δy = 8.30Δx。即温度升高1 ℃,条纹移动8.30 个。如果标定起始温度,根据这一关系,即可得到变化后的温度值。 9.3.3 干涉条纹图像采集与处理

采用MVPCI 专业图像采集卡采集干涉条纹图像,采集程序如图6 所示。并对图像做如下处理(见图7) : 对CCD 采集下来的图像(见7 (a) ) 需调用imfilter 函数进行图像滤波(滤波结果见图7 ( b) ) 。并使用阈值操作将图像转换为二值图像(见图7 (c) ) ,从而很好地将对象从背景中分离出来。通常温度的判断基于处理后的条纹图像,因此需采用边缘检测来提取图像的特征。在MATLAB 中使用专门的边缘检测edge 函数,调用Sobel 算子进行检测。结果如图7 (d) 所示。

采集流程图

图7 干涉条纹图像采集与处理

9.3.4 条纹记数程序设计

(1) 设计思路:根据边缘检测后条纹的图像质量,提取图像质量较好的横坐标为80 的一行元素的像素值,对其进行扫描,得到像素值为1 的位置,即条纹边缘的位置;由于边缘提取得到的条纹是原来条纹的轮廓,所以2 个边缘构成一个亮或暗条纹。因此需要将提取出来的边缘位置与原图像进行对比,从而对条纹精确定位;判定离标定位置最近的亮条纹的分布情况,找到条纹移动规律;计算条纹移动周期,借鉴光学测量中的相位展开原理,将图像变换为近似线性的曲线,从而得到条纹移动过总的像素值,除以周期,即得条纹移动个数。程序模块流程图如图8 所示。

(2) 结果分析:通过上面的程序计算,得到距离标志位32 最近的亮条纹位置R 的变化情况(见图9) 。可看出, R 的值是有规律地在变化,表明R 存在周期性。通过程序中得到的r (条纹边缘像素) 计算周期,即T = 22 。根据相位展开的相关原

图8 条纹记数程序流程图

理,把像素值小于32 ,且与其前相邻一个像素的差大于某一值时,将其加上一个周期,转换为类似线性的函数,如图10 所示。由图(10) 可以得到移动条纹总的像素值M = 820 ,除以展开周期T = 22 , 即可以判别移动条纹个数N =M/ T = 37 。由于确定的判别像素间距,程序在条纹小范围左右徘徊的状态时难以判别,会产生误差。因此,程序计算得到的数据与前面测温时数出来的条纹个数41~46 (120 s)近似,说明此程序的处理较为正确。此时,根据前面温度检测得到的结果,即条纹数与温度变化的关系Δy = 8.30Δx ,得到温度变化值Δx =Δy/ 8.30 = N/ 8.30 = 4.46 ℃,对照前面热敏电阻计算的温度变化值5.27 ℃,结果较为一致。说明此程序可以用来判定条纹个数,对应温度变化与条纹数的关系,就可以得到温度变化值,从而实现光纤温度传感测量。

20 图9 距标定位最近的亮条纹分布图

图10 展开后的图像

10 结束语

11 毕业设计(论文)参考文献

[1]张志鹏, W A.Gambling,著,光纤传感器原理,中国计量出版社,1991 [2]王玉田.光电子学与光纤传感器技术[M] .北京: 国防工业出版社, 2003.[5]廖延彪.光纤光学[M] .北京:清华大学出版社,2000.[6]许忠保, 叶虎年, 叶 梅.半导体吸收式光纤温度传感器[J ] .半导体光电, 2004 , 25 (1) : 62264.[7]赵仲刚, 杜柏林, 逢永秀, 等.光纤通信与光纤传感[M] .上海: 上海科学技术文献出版社, 1993.[8]张福学,传感器应用及其电路精选.电子工业出版社,1991 [9]强锡富,传感器,哈尔滨工业大学,2001.5 [11]关荣峰,等,半导体光纤温度传感器特性研究,光电工程,V61240997 [13]王廷云,罗承沐,申烛,半导体吸收式光纤温度传感器,清华大学学 报(自然科学版),2001 [14]黄玲.无线传感器网络简述 [J] [15]传感器世界.2005.11(10)

[16]UDD E , SEIM J .Fiber optic sensor for inf rast ructure applications [ Z ] .Final Report SPR 374 , February 1998 ,Oregon Department of Transportation :53286.

21

推荐第8篇:航空机载温度传感器振动特性分析论文

摘要:文章采用有限元仿真分析软件ANSYS对某型航空机载温度传感器在随机振动载荷下的应力状态进行有限元分析,从而完成对结构的可靠性评估。根据有限元和随机振动相关理论,结合仿真分析结果,该型温度传感器在承受规定的随机振动载荷时,安全系数高,该结构具有足够的抗振强度,结构可靠性稳定。

关键词:温度传感器;随机振动;有限元仿真;ANSYS

1概述

航空机载传感器所经受的工作环境极为恶劣,在相当短的时间内会经受相当大的随机振动载荷,从而引起很大的交变应力,振动疲劳损伤非常严重[1]。因此,在产品设计阶段,采用随机振动理论对产品及各零部件结构进行振动特性仿真分析,找出各设计参数对产品性能的影响规律,并采取相应的改进措施,优化产品的结构,提高产品的结构稳定性,保证传感器在整个任务阶段不出现疲劳破坏。文章针对某型航空机载温度传感器进行了基于ANSYS的有限元振动疲劳仿真分析。通过计算随机振动的峰值应力值来对结构的可靠性进行考察,通过在共振频率点的应力响应来计算随机振动的峰值应力,比较峰值应力与材料的屈服极限的大小来考察结构的可靠性[2],判断结构的抗振强度及薄弱位置,以确定结构设计方案的优劣,为结构进行改进和提高结构的可靠性提供依据。

2温度传感器产品概述

2.1产品功能

传感器安装在燃油控制装置壳体内,用于测量流经燃油控制装置内的计量燃油温度,并将燃油温度信号转变为电信号输送到电子控制器。

2.2产品组成

传感器主要由感温元件(1)、外壳(2)、套管(3)和盖(4)等构成。

3振动特性仿真分析

3.1有限元计算前处理

3.1.1有限元模型的建立

根据温度传感器的设计图纸、装配关系和CAD数字样机建立有限元模型,对不影响产品结构强度的刻字、导线、装配螺纹等特征进行简化,对其他特征进行详细建模。传感器几何形状较为复杂,为保证足够的分析精度,重要部位尽量细化网格,共划分了41023个单元,72901个节点。

3.1.2传感器材料参数的设定

传感器的套管、外壳、盖等零件材料为不锈钢1Cr18Ni9Ti。

3.1.3传感器约束设定

根据实际安装情况,传感器通过外壳零件上的安装螺纹与燃油控制装置壳体上的安装孔相连,因此需对安装螺纹面施加固支约束。

3.2有限元计算结果及分析

3.2.1模态分析

模态分析用于确定设计中结构或部件的振动特性,即计算固有频率及振型。它是瞬态动力学分析、谐响应分析、谱分析等更详细的动力学分析的起点。文章基于有限元法的线性振动理论,应用ANSYS软件模态分析中的子空间法(SubspaceMethod)[3],对传感器结构的前6阶振动特性进行分析,计算结果如表2所示。从总体来看,传感器的固有频率较高,各阶固有频率均在2000Hz以上,即当产品所承受的振动载荷频率在2000Hz以内的振动载荷时,不会因发生共振而导致结构破坏。

3.2.2随机振动分析

随机振动分析也称功率谱密度分析(PSD),属于一种概率统计分析。功率谱密度是结构对随机动力载荷响应的概率统计,后处理结果为功率谱密度-频率关系曲线。有限元随机振动分析就是建立在对结构进行振动分析得到结构的各阶振型和固有频率的基础上,进一步根据所给的加速度功率谱求出结构在这些随机激励下的位移响应和应力响应。文章利用ANSYS软件对传感器进行随机振动特性进行仿真计算[4],通过对响应的分析为结构可靠性设计提供理论依据.

4结束语

文章利用仿真分析软件ANSYS对某型温度传感器的振动特性进行了分析和校核,以确定产品结构的可靠性,得到以下结论:

(1)传感器的固有频率较高,前6阶固有频率均在2000Hz以上,因此当产品所承受的振动载荷频率在15Hz~2000Hz以时,不会因为共振而产生结构失效的可能。

(2)传感器按功能振动谱承受沿三轴向的随机振动载荷时,其应力水平和变形量都非常低,屈服安全系数均在44以上,振动载荷对传感器结构可靠性影响不大,因此该结构具有足够的强度。

参考文献:

[1]姚起杭.姚军防止结构振动疲劳的设计技术[J].飞机工程,2006,3:9-11.

[2]郭建平,任康,杨龙,等.基于MSC.Fatigue的电子设备随机振动疲劳分析[J].航空计算技术,2008,28(4):48-50.

[3]黄康,仰荣德.基于ANSYS的汽车横向稳定杆疲劳分析[J].机械设计,2008,25(12):66-68.

[4]徐灏.疲劳强度[M].北京:高等教育出版社,1988.

推荐第9篇:基于NRF2401的无线温度传感器的设计论文

摘要:为了解决传统的温度传感器多点温度测量时的繁杂的布线问题,设计了一种基于单片机技术和无线通讯技术的无线温度传感器。采用无线收发芯片NRF2401和数字温度计DSl8820构成硬件平台,通过EnhancedShockBurstTM收发模式实现对温度数据的传输,采用高增益天线使覆盖区域达到200m范围。

关键词:NRF2401;DSl8820;无线温度传感器

为了解决传统的温度传感器多点温度测量时的繁杂的布线问题,从传统的温度传感器人手,设计了一种基于单片机技术和无线通讯技术的无线温度传感器,本文详细介绍系统的实现。

1系统的设计与实现

1.1总体结构框架

无线温度传感器的系统的总体结构主要包括两个部分:一是温度采集电路,其作用是测量温度并将测量到的温度数据发射给主机;另外一部分是温度信息处理电路,其作用是收集所有的温度信息,处理并显示出这些信息,同时还可以将这些数据传输到PC机上。

1.2数字温度计DS18820

DS18820是一种分辨率可编程设置的单总线数字温度计,它的测温区间从-55℃~+125℃。温度输出位数从9bit~12bit,用户可以通过程序来控制,将温度转化成12bit的数字字节的最大耗时仅需750ms。每一片DSl8820都有唯一的64位序列码,从而允许多片DS18820共存于同一根单总线上,因此用一块单片机可以控制一片区域的温度采集。DSl8820外观和接口如图1和图2所示:

它有3个引脚,1脚为GND电源地;2脚为DQ数字信号输入输出引脚,DS18820通过1根数据总线与单片机进行双向通讯;3脚为VDD外接供电电源输入端。DS18820的供电方式有两种:一种是通过数据线提供寄生电源,此时3脚接地;另一种是直接在VDD上提供电源,供电电压范围为3.0V~5.5V。

1.3单片机的选择

本系统中在温度采集电路和温度信息处理电路中都需要用到单片机,而且单片机是做为系统控制核心。在温度采集电路中对单片机的功耗要求较高而在信息处理电路中对单片机的处理速度有一定的要求。基于价格和电路设计方便的考虑,采用华邦W78E052,它的指令和引脚序列与MCS51兼容,编程简单方便。它最大支持40MHz时钟,供电电压范围宽(2.4V~5.5V),采用3.3V供电,它的10口可以很方便的与DSl8820和NRF2401直接连接。W78E052内部包含2个外部中断、3个定时计数中断和看门狗计时器,用在本系统中具有相当高的性价比。

1.4无线收发模块

NRF2401是一款工作在2.4GHz~2.5GHz的集接收和发送于一体的单片无线通讯芯片。它的无线收发器由频率发生器、增强型模SchockBurstTM式控制器、功率放大器、晶体振荡器、调制器、解调器等部分组成。可以通过SPI接口来设置协议、功率输出和频道选择。它具有较低的电流消耗,供电电压1.9V~3.6V。

2软件的设计

2.1温度采集

DSl8820是以12位输出的,此时的测温分辨率是0.0625。输出的数据是二进制补码格式,低4位为小数位,最高位为符号位。如果是正温度,读出的数据乘以0.0625便是当前的温度值;负温度得转化为正值再相乘。12位输出的耗时是750ms,如果需要提高转换速度,可以选择减少输出位数(如9位最大耗时仅约94ms),但是测温精度有所下降。如果是单片的DSl8820工作,在启动温度转换和度暂存存储器操作命令时可以跳过64位ROM地址匹配。

2.2无线收发

NRF2401有4种工作模式,分别是收发模式,配置模式,空闲模式和关机模式,这四种模式可由PWR_UP寄存器、PRIM_RX寄存器和CE引脚决定。其中收发模式又有EnhancedShockBurstTM、ShockBurstTM和直接收发模式3种,收发模式由配置字来决定。使用EnhancedShockBurstTM收发模式系统编程相对简单,在这种模式下只需改变一个字节的内容便可以实现接收和发送模式的切换,而且稳定性较高。

2.3系统软件框架

温度采集模块的主要工作是采集温度数据并将数据发送给温度信息处理模块,温度采集模块每2s采集并且发送一次。温度信息处理模块可以工作在两种模式:单机模式和联机模式,这两种模式可以通过按键来设定。单机模式下,将各个温度采集模块上采集过来的温度实时显示出来,预先設定的数据进行比较,如果某一处超过警界值,则启动相应的处理措施并发出报警。而在联机模式下,模块则将采集到的数据通过RS232发给上位机,并执行上位机发出的命令。

3结语

本系统的温度测量误差在±0.1℃以内。用板载天线在空旷地的数据传输距离可达40m,如果采用高增益天线可以将通讯距离增大到100m以上,这样覆盖区域可达到200m的范围,从而避免了繁杂的布线的问题。如果要将通讯距离进一步加大,可以在发射端增加功率放大器模块,在接收端加低噪声放大器模块,这样可以大大提升通讯距离。

推荐第10篇:CMOS集成温度传感器设计

CMOS数字集成温度传感器设计

1.CMOS数字集成温度传感器设计

CMOS数字集成温度传感器设计包括感温电路、温度调理电路和基准电压产生电路,其中温度调理电路采用最流行的Σ-Δ转换型结构,并结合占空比调制型输出特点而设计,并以电流型数字输出,电路结构如图1所示。

Iptat感温电路Ictat1.2V带隙基准电压电路Σ-Δ调制(1位数字量)Vout0.6V阻抗变换缓冲输出电路

图1 CMOS数字集成温度传感器结构图

2.1

感温电路和带隙基准电路设计

2.1.2

带隙基准原理

Fig.1 Conventional bandgap reference

图1 传统带隙基准电路

传统带隙基准源电路如图1所示,由一个运放、两个双极型晶体管和若干电阻组成[7]。在标准CMOS工艺中,双极型晶体管采用纵向PNP晶体管[8,9],使其工作在二极管状态,因此,双极型晶体管的β值要求不高。其发射极电流为

IIS(eqVBE/kT1)

(1)

其中,IS是饱和电流,VBE是基极-发射极正偏电压。 当VBE>>kT/q时,有IISeqVBE/kT,于是有

VBEVTln(I/IS)

(2)

其中,VTkT/q。在图1电路中,运算放大器的作用是在电路处于深度负反馈的情

况下,使A、B两点的电压相等。即VA=VB,由于I1R1=I2R2,并满足

VBE1VBE2I2R

3 (3)

由式(2)得

VBE1VTln(I1/IS1)

(4) VBE2VTln(I1/IS2)

(5)

由此得

I1I2V1(VBE1VBE2)Tln(I1IS2/I2IS1)

(6) R3R3在纵向PNP晶体管设计中,Q2发射结面积为Q1发射结面积的n倍。所以Q2饱和电流也是Q1饱和电流的n倍。即IS2/IS1=n,则

VrefVBE1I1R1VBE1VTR1Rln(2n)

(7) R3R1其中,VBE1是Q1晶体管基极-发射极正偏电压,是一个负温度系数的量,而VT是一个正温度系数的量,通过适当选取电阻R1与R

2、R3 的比值和n的大小,就可以使Vref表达式中的正温度系数和负温度系数的作用相互抵消,即获得零温度系数。使Vref不随温度变化,这就是带隙基准原理。

感温电路是根据衬底PNP双极型晶体管E-B结压降VEB的负温度特性[2]和两管E-B结压降差ΔVEB的正温度特性[3],并利用带隙基准原理将两管E-B结压降差ΔVEB加在电阻上,得到随温度成正比的电流信号[4],其核心电路如图2所示的带隙基准电路。图中晶体管Q0~Q8和Q9~Q16为相同尺寸完全匹配的二极管连接形式的CMOS衬底PNP双极型晶体管,M20与M

9、M10匹配,M21与M

12、M13匹配,电阻R2与R1匹配,由M1~M8构成的二级运放采用共源共栅电流镜结构,Q0和Q1~Q8的E-B结压降直接作为运放的偏置,自偏置大大降低了电路的工作电流,并节省了元件,使输出更加稳定.由于二级运放处于深度负反馈,很容易推导得

VR1VbVcVEB0VEB1kTln8

(1) q

IR1kTln8

(2) qR1该电流信号通过完全相同的MOS晶体管M10和M20影射到R2,得到

VrefR2kTln8VEB9

(3) R1q式(2)中第一项为正温度系数量,第二项VEB9近似为负温度系数量,因此只需选取适当的R2与R1的比值即可获得稳定的基准电压Vref。将感温电路与带隙基准电路进行一体化设计,既降低功耗、减少芯片面积,又提高电源抑制比PSRR(Power Supply Rejection Ratio)。为了保证电路正常开启而设计了启动电路(由M15~M19构成)

图2 带隙基准电路原理图

2.3 一阶Σ-Δ ADC电路改进设计

本设计的温度传感器工作温度范围为-40°C~+140°C,温度变化范围大,而CMOS工艺下数字输出Σ-Δ转换器在获得中等精度的同时具有功耗低\\占用芯片面积小以及温度变化范围大等特点而适合于本设计中[5],但由于传统的Σ-Δ转换器中比较器的上下门限电平是一

,个随温度变化较大的量,需要复杂的电路进行补偿[67],因此利用比较器输出信号加反相器获得互补信号分别控制两对开关以实现对电容C1的充放电和对比较器的两路基准电压进行切换,即控制其高低比较电平切换。 开关采用N沟道增强型MOS开关管, 互补信号作为栅极开启电压.电路结构如图3所示.由图可知,该电路中需要提供正温度系数电流Iptat(Proportional To Absolute Temperature)和负温度系数电流Ictat(Complementary To Absolute Temperature)以及两个基准电压Vref1和Vref2.

图3 改进后的Σ-Δ调制电路结构图

2.3.1 PTAT电流产生电路设计

由带隙基准电路原理图2可知,M10上的电流为IR1kTln8为正温度系数电流,由qR1于M20与M

9、M10匹配,M21与M

12、M13匹配,因此将该电流影射到M20和M21,即M14上的电流也是正温度系数电流。为了节省元件、减少芯片面积、降低功耗,而采用 3

PTAT电流电路与带隙基准电路一体化设计,只要用两个NMOS管M11和M14分别代替M20和M21即可。PTAT电路原理图如图4所示。该PTAT电流进入下一级Σ-Δ调制电路中。

图4 PTAT电流产生电路

2.3.2 CTAT电流产生电路设计

CTAT电流产生电路如图5所示。电路中运放的同向输入端输入信号为来自于带隙基准电路的双极型晶体管(Q9~Q16)二极管连接形式的VEB正向电压降信号,运放由M22~M29构成,M

23、M24为PMOS差分输入对管,电流镜M

25、M26为NMOS管作为输入级负载,同时实现单端化;M29为源跟随输出,其输出信号驱动电阻负载R3(由温度系数小的poly电阻实现),同时连接于运放反向输入端实现电压跟随器功能,则流经电阻R3的电流IR3=VEB9/R3即为CTAT电流,该电流通过折叠电流镜(M

27、M30;M

28、M31构成)作为与温度相关的信号进入下一级Σ-Δ调制电路中。

图5 CTAT电流产生电路

2.3.3 基准源缓冲输出电路设计

带隙基准缓冲输出电路如图6所示,采用NMOS管作为差分输入管是由于作为单级放大器NMOS管能获得比PMOS管更高的增益(n型载流子迁移率大于p型载流子迁移率, 4

约为3~4倍),由M

44、M45组成;M

42、M43为电流镜负载同时实现差分运放双端输入转单端输出;M46为源跟随输出管作为缓冲器;M

41、M47构成了运放的偏置电路,同时M47与M48形成电流镜作为运放的电流沉。运放反相输入端与输出缓冲器M46输出端短接构成电压跟随器结构,因此同向输入端电压Vref(来自于带隙基准电压源)通过电压跟随器后在电阻R

4、R

5、R6上分压获得我们所需的1.2V和 0.6V输出基准电压,并送入下一级Σ-Δ调制电路中。

图6 基准源缓冲输出电路原理图

其整体电路如图7所示。

图7 CMOS数字集成温度传感器总体电路图

3. 仿真结果

利用Cadence Spectre仿真工具,在华晶上华0.6μm CMOS工艺下对带隙基准电压电路进行仿真,电路工作电源电压为5V,25°C时输出为1.248V,电路工作电流小于20µA,功耗小于100µW。图8为基准电压发生器电路在三种不同corner下的输出基准电压随温度变化的趋势。在TT corner ,5V电源下,当温度变化范围为-50°C~150°C时,输出变化小于1.14mV(

图8 输出基准电压随温度变化仿真结果

图9 输出基准电压随电源电压变化仿真结果

通过对基准源缓冲器电路进行仿真,其运放作为电压跟随器,闭环增益基本等于1,并且随温度变化时输出对输入基准电压有良好的复制,当温度在-50°C~150°C变化时,输入输出之间误差小于10μV,如图4.15所示,这个数值的误差可以完全忽略不计。

图4.15 缓冲器输入输出随温度变化的跟随曲线

通过对PTAT电流和CTAT电流电路进行仿真,仿真结果如图11所示。由图可知,PTAT输出电流随温度变化约为9.2nA/°C,受工艺影响,三种corner(TT、SS、FF)下电流偏移在±0.76nA之内变化,如图11(a)所示,由于受corner影响较小,图中三条曲线几乎重叠,25°C时,当电源电压由4.5V变化到5.5V时输出电流摆动小于0.7nA,如图11(c)所示。 CTAT输出电流随温度的变化约为23nA/°C,如图11(b)所示,三种corner下电流偏移在±2.5nA内变化,由于受corner影响较小,图中三条曲线也几乎重叠。25°C时,当电源电压由4.5V变化到5.5V时输出电流摆动小于4.6nA,如图11(d)所示。由以上数据可知,工艺和电源电压在PTAT电路中对测温精度的影响小于0.25°C,工艺和电源电压在CTAT电路中对测温精度的影响小于0.31°C。PTAT电流产生电路工作电流小于20µA,CTAT电流产生电路工作电流小于25µA。在5V电源下工作,两电路功耗小于225µW。因此,所设计的温度传感器在-40°C~+140°C的温度范围内具有0.5°C的测温精度和500µW的最小功耗。

参考文献 (c)

(d)

图3.8 (a)三种corner下PTAT电流在-50°C~150°C变化

(b)三种corner下CTAT电流在-50°C~150°C变化 (c)25°C时电源电压在4.5V~5.5V变化时PTAT电流的变化 (d)25°C时电源电压在4.5V~5.5V变化时CTAT电流的变化 (a)

(b)

1、R.A.Bianchi, F.Vinci Dos Santos, J.M.Karamet al.CMOS-Compatible Smart Temperature Sensors.Microelectronics Journal,1998, 29:627-636

2、陈贵灿 , 程军 ,张瑞智 。.模拟CMOS集成电路设计,西安:西安交通大学出版社,2002,309-321

3、刘恩科,朱秉升,罗晋升.半导体物理学,北京: 国防工业出版社,1997, 33-47

4、Michiel A.P.Pertijs,Gerard C.M.Meijer and Johan H.Huijsing.Precision Temperature Measurement Using CMOS Substrate PNP Transistors.IEEE Sensor Journal,2004, 4(3):294-300

5、Cailin Davis and Ivars Finvers.A 14-Bit High-Temperature ΣΔ Modulator in Standard CMOS IEEE Journal of Solid State Circuits,2003,38:976-986

6、Giuseppe Ferri and Pierpaolo De Laurentiis.A Novel Low Voltage Low Power Oscillator as a Capacitive Sensor Interface for Portable Applications.Sensor and Actuators,1999,76:437-441

7、Olmos.A Temperature Compensated Fully Trimmable On-Chip IC Oscillator.SBCCI,2003, 181-186

第11篇:数字温度传感器的应用

数字温度传感器 DS1820(DS18B20)的应用

DSl820 数字温度计提供 9 位(二进制)温度读数 指示器件的温度 信息经过单线接口送入 DSl820 或从 DSl820 送出 因此从主机 CPU 到DSl820 仅需一条线(和地线) DSl820 的电源可以由数据线本身提供而不需要外部电源 因为每一个 DSl820 在出厂时已经给定了唯一的序号 因此任意多个 DSl820 可以存放在同一条单线总线上 这允许在许多不同的地方放置温度敏感 DSl820 的测量范围从-55 到+125 增量值为 0.5 可在 l s(典型值)内把温度变换成数字.每一个 DSl820 包括一个唯一的 64 位长的序号 该序号值存放在 DSl820 内部的 ROM(只读存贮器)中 开始8 位是产品类型编码(DSl820 编码均为(10H)接着的48位是每个器件唯一的序号最后8位是前面 56位的CRC(循环冗余校验)码DSl820 中还有用于贮存测得的温度值的两个 8 位存贮器 RAM 编号为 0 号和 1号1号存贮器存放温度值的符号,如果温度为负,则 1 号存贮器 8 位全为 1,否则全为 0, 0 号存贮器用于存放温度值的补码,LSB(最低位)的1表示0.5将存贮器中的二进制数求补再转换成十进制数并除以 2 就得到被测温度值(-550 125 ),DSl820 的引脚如图 2 26-l 所示 。每只 DS18b20 都可以设置成两种供电方式 :即数据总线供电方式和外部供电方式 ,采取数据总线供电方式可以节省一根导线 ,但完成温度测量的时间较长;采取外部供电方式则多用一根导线,但测量速度较快.

温度计算

1、DS18b20用9位存贮温度值,最高位为符号位。下图为 18b20 的温度存储方式,负温度

S=1,正温度 S=0,如00AAH 为+85 ,0032H 为 25, FF92H 为55

2、Ds18b20 用 12 位存贮温值度,最高位为符号位 ,下图为18b20的温度存储方式,负温度S=1,正温度 S=0。如0550H 为+85,0191H 为25.0625 ,FC90H 为-55

二DSl820 工作过程及时序 DSl820 工作过程中的协议如下

初始化RoM 操作命令 存储器操作命令 处理数据 1初始化

单总线上的所有处理均从初始化开始

2 ROM 操作品令

总线主机检测到 DSl820 的存在便可以发出 ROM 操作命令之一 代码

指令 Read ROM(读 ROM)

[33H] Match ROM(匹配 ROM)

[55H] Skip ROM(跳过 ROM]

[CCH] Search ROM(搜索 ROM)

[F0H] Alarm search(告警搜索)

[ECH] 3存储器操作命令

代码

指令

这些命令如

Write Scratchpad(写暂存存储器)

[4EH] Read Scratchpad(读暂存存储器)

[BEH] Copy Scratchpad(复制暂存存储器)

[48H] Convert Temperature(温度变换)

[44H] Recall EPROM(重新调出)

[b8H] Read Power supply(读电源)

[b4H] 4 时序

主机使用时间隙(time slots)来读写 DSl820 的数据位和写命令字的位 (1)初始化

时序见图 2.25-2主机总线 to 时刻发送一复位脉冲(最短为 480us 的低电平信号)接着在 tl 时刻释放总线并进入接收状DSl820 在检测到总线的上升沿之后 等待 15-60us接DS1820 在 t2 时刻发出存在脉冲(低电平持续 60-240 us)如图中虚线所示以下子程序在 MCS51 仿真机上通过其晶振为 12M.初始化子程序

RESET PUSH B

;保存 B 寄存器 PUSH A

;保存 A 寄存器 MOV A,#4

;设置循环次数 CLR P1.0

;发出复位脉冲 MOV B,#250

;计数 250 次

DJNZ B,$

;保持低电平500us SETB Pl.0

;释放总线

MOV B,#6

;设置时间常数 CLR C

;清存在信号标志 WAITL: JB Pl.0,WH

;若总线释放 跳出循环

DJNZ B,WAITL

;总线低 等待

DJNZ ACC,WAITL

;释放总线等待一段时间 SJMP SHORT WH: MOV B,#111 WH1: ORL C,P1.0 DJNZ B,WH1

;存在时间等待 SHORT: POP A POP B RET (2)写时间隙

当主机总线 t o 时刻从高拉至低电平时 就产生写时间隙 见图 2 25 3图 2 254从 to 时刻开始 15us 之内应将所需写的位送到总线上DSl820 在 t后 15-60us 间对总线采样 若低电平写入的位是 0见图 2 25 3若高电平写入的位是 1见图 2 25 4连续写 2 位间的间隙应大于 1us

写位子程序(待写位的内容在 C 中)

WRBIT: PUSH B

;保存 B MOV B,#28 ;设置时间常数

CLR P1.0 ;写开始

NOP

;1US

NOP

;1US NOP

;1US NOP

;1US NOP

;1US MOVPl.0,C

;C 内容到总线

WDLT:

DJNZ B,WDLT

;等待 56Us POP B SETB Pl.0

;释放总线

RET

;返回 写字节子程序(待写内容在 A 中): WRBYTB: PUSH B

:保存 B MOV B #8H

;设置写位个数

WLOP: RRC A

;把写的位放到 C ACALL WRBIT

;调写

1 位子程序 DJNZ B WLOP ; 8 位全写完? POP B RET (3)读时间隙

见图 2 25 5主机总线 to 时刻从高拉至低电平时,总线只须保持低电平l 7ts。之后在 t1 时刻将总线拉高, 产生读时间隙, 读时间隙在 t1 时刻后 t 2 时刻前有效。z 距 to 为 15捍 s,也就是说,t z 时刻前主机必须完成读位 ,并在 t o 后的 60 尸 s 一 120 fzs 内释放总线。读位子程序(读得的位到 C 中)

RDBIT:

PUSH B

;保存 B

PUSH A

;保存 A MOV B,#23

;设置时间常数

CLR P1.0

;读开始 图 2 25 5 的 t0 时刻

NOP

;1US

NOP

;1US

NOP

;1US

NOP

;1US

SETB Pl.0

; 释放总线

MOV A,P1 ; ; P1 口读到 A MOV C,EOH

;P1.0 内容 C NOP

;1US NOP

;1US NOP

;1US NOP

;1US RDDLT:

DJNZ B,RDDLT SETB P1.0 POP A POP B

;等待 46us RET 读字节子程序(读到内容放到 A 中)

RDBYTE: PUSH B

;保存 B RLOP MOV B,#8H

;设置读位数 ACALL RDBIT ;调读 1 位子程序

RRC A

;把读到位在 C 中并依次送给 A DJNZ B,RLOP ;8 位读完? POP B

;恢复B RET

三、多路测量

每一片 DSl820 在其 ROM 中都存有其唯一的 48 位序列号,在出厂前已写入片内 ROM中, 主机在进入操作程序前必须逐一接入 1820 用读 ROM(33H)命令将该 l 820 的序列号读出并登录。当主机需要对众多在线1820的某一个进行操作时,首先要发出匹配 ROM 命令(55H,)紧接着主机提供 64 位序列(包括该 1820 的 48 位序列号),之后的操作就是针对该 1820 的 。而所谓跳过 ROM 命令即为 之后的操作是对所有 1820 的。 框图中先有跳过 ROM,即是启动所有 1820 进行温度变换,之后,通过匹配 ROM,再逐一地读回每个 1820 的温度数据。在1820组成的测温系统中,主机在发出跳过ROM 命令之后,再发出统一的温度转换启动码 44H,就可以实现所有 1820的统一转换, 再经过 1s 后,就可以用很少的时间去逐一读取。这种方式使其 T 值往往小于传统方式(由于采取公用的放大电路和 A D 转换器,只能逐一转换。)显然通道数越多这种省时效应就越明显。

四、实际应用

1 ds1820 序列号获得

;|--------------|

;|

读出 ds1820 序列号应用程序,P1.6 接 ds1820

| ;|--------------| ORG 0000H

AJMP MAIN

ORG 0020H

MAIN: MOV SP,#60H

CLR EA

;使用 ds1820 一定要禁止任何中断产生

LCALL INT

;初始化 ds1820

MOV A,#33H

LCALL WRITE

;送入读 ds1820 的 ROM 命令

LCALL READ

;开始读出当前 ds1820 序列号

MOV 40H,A

INT:

WRITE: LCALL READ MOV 41H,A LCALL READ MOV 42H,A LCALL READ

MOV 43H,A

LCALL READ

MOV 44H,A

LCALL READ

MOV 45H,A

LCALL READ

MOV 46H,A

LCALL READ

MOV 47H,A

SETB EA

SJMP $

CLR EA

L0:CLR P1.6

MOV R2,#200 L1:CLR P1.6

DJNZ R2,L1

SETB P1.6

MOV R2,#30 L4:DJNZ R2,L4

CLR C

ORL C,P1.6

JC L0

MOV R6,#80 L5:ORL C,P1.6

JC L3

DJNZ R6,L5

SJMP L0 L3:MOV R2,#240 L2:DJNZ R2,L2

RET

CLR EA

MOV R3,#8

;初始化 ds1820 子程序

;ds1820 总线为低复位电平

;总线复位电平保持 400us

;释放 ds1820 总线

;释放 ds1820 总线保持 60us

;清存在信号

;存在吗?不存在则重新来

;向 ds1820 写操作命令子程序

;写入 ds1820 的 bit 数,一个字节 8 个 bit

WR1:SETB P1.6

MOV R4,#8

RRC A

;把一个字节 data(A)分成 8 个 bit 环移给 C CLR P1.6

;开始写入 ds1820 总线要处于复位(低)状态

WR2: DJNZ R4,WR2

;ds1820 总线复位保持 16us

MOV P1.6,C

;写入一个 bit

MOV R4,#20 WR3: DJNZ R4,WR3

;等待 40us

DJNZ R3,WR1

;写入下一个 bit

SETB P1.6

;重新释放 ds1820 总线

RET

READ:

CLR EA

MOV R6,#8

;连续读 8 个 bit RE1:

CLR P1.6

;读前总线保持为低

MOV R4,#4

NOP

SETB P1.6

;开始读 总线释放

RE2:

DJNZ R4,RE2

;持续 8us

MOV C,P1.6

;从 ds1820 总线读得一个 bit RRC A

;把读得的位值环移给 A

MOV R5,#30 RE3:

DJNZ R5,RE3

;持续 60us

DJNZ R6,RE1

;读下一个 bit

SETB P1.6

;重新释放 ds1820 总线

RET 2 温度转换和读取

;|-|

;|

获取单个 ds1820 转化的温度值的应用程序,P1.6 接 ds1820

| ;|-|

ORG 0000H

AJMP MAIN

ORG 0020H MAIN:

MOV SP,#60H

LCALL GET_TEMP

SJMP $ GET_TEMP:

CLR PSW.4

SETB PSW.3

;设置工作寄存器当前所在的区域

CLR EA

;使用 ds1820 一定要禁止任何中断产生

LCALL INT

;调用初使化子程序

MOV A,#0CCH

LCALL WRITE

;送入跳过 ROM 命令

MOV A, #44H

LCALL WRITE

;送入温度转换命令

LCALL INT

;温度转换完全,再次初使化 ds1820

MOV A,#0CCH

LCALL WRITE

;送入跳过 ROM 命令

MOV A,#0BEH

LCALL WRITE

;送入读温度暂存器命令

INT:

WRITE:

LCALL READ

MOV R7,A

;读出温度值低字节存入 R7

LCALL READ

MOV R6,A

;读出谩度值高字节存入 R6

SETB EA

RET

;初始化 ds1820 子程序

CLR EA

L0: CLR P1.6

;ds1820 总线为低复位电平

MOV R2,#200

L1: CLR P1.6

DJNZ R2,L1

;总线复位电平保持 400us

SETB P1.6

;释放 ds1820 总线

MOV R2,#30

L4: DJNZ R2,L4

;释放 ds1820 总线保持 60us

CLR C

;清存在信号

ORL C,P1.6

JC L0

;存在吗?不存在则重新来

MOV R6,#80

L5: ORL C,P1.6

JC L3

DJNZ R6,L5

SJMP L0

L3: MOV R2,#240

L2: DJNZ R2,L2

RET

;向 ds1820 写操作命令子程序

CLR EA

MOV R3,#8

;写入 ds1820 的 bit 数,一个字节 8 个 bit WR1: SETB P1.6

MOV R4,#8

RRC A

;把一个字节 data(A)分成 8 个 bit 环移给 C

CLR P1.6

;开始写入 ds1820 总线要处于复位(低)状态

WR2:DJNZ R4,WR2

;ds1820 总线复位保持 16us

MOV P1.6,C

;写入一个 bit

MOV R4,#20 WR3 :DJNZ R4,WR3

;等待 40us

DJNZ R3,WR1

;写入下一个 bit

SETB P1.6

;重新释放 ds1820 总线

RET

READ:

CLR EA

MOV R6,#8

;连续读 8 个 bit RE1:CLR P1.6

MOV R4,#4

NOP

SETB P1.6

RE2:DJNZ R4,RE2

MOV C,P1.6

RRC A

MOV R5,#30 RE3:DJNZ R5,RE3

DJNZ R6,RE1

SETB P1.6

RET

END

;读前总线保持为低

;开始读 总线释放

;持续 8us

;从 ds1820 总线读得一个 bit ;把读得的位值环移给 A

;持续 60us

;读下一个 bit

;重新释放 ds1820 总线

第12篇:DS18B20温度传感器设计报告

传感器课程设计

专 业: 计算机控制技术

---数字温度计

年 级: 2011 级 姓 名: 樊 益 明

学 号: 20113042

指导教师: 刘 德 春

阿坝师专电子信息工程系

1.引

1.1.设计意义

在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。其缺点如下:

● 硬件电路复杂; ● 软件调试复杂; ● 制作成本高。

本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

2 设计要求

2.1基本要求 1) 用LCD12232实现实时温度显示温度和自己的学号。 2) 采用LED数码管直接读显示。 2.2扩展功能

温度报警,能任意设定温度范围实现铃声报警;

33.1单片机89C52模块

单片机89C52是本设计中的控制核心,是一个40管脚的集成芯片构成。引脚部分:单片机引脚基本电路部分与普通设计无异,40脚接Vcc+5V,20脚接地。X1,X2两脚接12MHZ的晶振,可得单片机机器周期为1微秒。RST脚外延一个RST复位键,一端通过10K电阻接Vcc,一端通过10K电阻接地。AT89S52是一种低功耗、高性能的8位CMOS微控制器,具有8K的可编程Flash 存储器。使

资料准备 用高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O 口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。P 0口接一个470的上拉电阻。P0口0~8脚接4位共阳数码管的段选,P2口0~4脚接4位共阳数码管的位选,P3.7接DS18B20采集信号。

3.2 DS18B20简介

DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持 “一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 “一线总线”数字化温度传感器 同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为± 2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20、DS1822 的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822与 DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。3.3 温度传感器的工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。 DS18B20测温原理:低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值,即为所测温度。

3.4 DS18B20中的温度传感器对温度的测量

高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在 高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后。

温度数据值格式

下表为12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。 例如+125℃的数字输出为07D0H,

实际温度=07D0H*0.0625=2000*0.0625=125℃。

例如-55℃的数字输出为FC90H,则应先将11位数据位取反加1得370H(符号位不变,也不作运算), 实际温度=370H*0.0625=880*0.0625=55℃。

可见其中低四位为小数位。

DS18B20温度与表示值对应表

3.5 DS18B20的内部结构

DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下:

DQ为数字信号输入/输出端;

GND为电源地;

VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

1) 64位的ROM 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

2) DS18B20温度传感器的存储器

DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。第

六、

七、八个字节用于内部计算。第九个字节是冗余检验字节。

3.6 DS18B20的时序

由于DS18B20采用的是单总线协议方式,即在一根数据线实现数据的双向传输,而对89C51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

1) DS18B20的复位时序

2)DS18B20的读时序

对于DS18B20的读时序分为读0时序和读1时序两个过程。

对于DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。DS18B20在完成一个读时序过程,至少需要60us才能完成。

3) DS18B20的写时序

对于DS18B20的写时序仍然分为写0时序和写1时序两个过程。

对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。

4系统框架设计如下图所示:

按照系统设计功能的要求数字温度计总体电路结构框图如下图所示

5硬件设计

温度计采用AT89C51单片机作为微处理器,温度计系统的外围接口电路由晶振、LCD显示电路、复位电路、温度检测电路、LCD驱动电路。

温度计的工作过程是:初始化其接收需要检测的温度,并一直处于检测状态,并将检测到的温度值读取,并转化为十进制数值,通过LCD显示出来,再显示温度,方便用户来读数使用记录数据。

温度计系统的的硬件电路图如下图所示。

DS18B20测温和学号显示

6系统程序的设计

6.1主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量温度值。温度测量每1s进行一次。

主程序流程图如图4.1.1所示。

初始化调用显示子程序1s到?YN初次上电?N读出温度值温度计算处理显示数据刷新Y发温度转换开始命令

主程序流程图

6.2读出温度子程序

读出温度子程序的主要功能是读出RAM中的9字节。在读出时须进行CRC校验,校验有错时不进行温度数据的改写。

读出温度子程序流程图如图4.2所示。

发DS18B20复位信号发跳过ROM命令CRC校验正确?发读取温度命令Y移入温度暂存器读取操作,CRC校验YNN结束9字节完?

6.3温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令。当采用12位分辨率时,转换时间大约为750ms。在本程序设计中,采用1s显示程序延时法等待转换的完成。 温度转换命令子程序图如图4.3所示。

发DS18B20复位uml发跳过ROM命令发温度转换开始命令

结束

6.4计算温度子程序

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值的正负判断。

计算温度子程序流程图如图4.4所示。

开始计算小数位温度BCD值温度零下?N计算整数位温度BCD值Y置“+”标志温度值补码置“—”标志结束

6.5显示数据刷新子程序

显示数据刷新子程序主要是对显示缓冲器中得显示数据进行刷新操作,当最高数据显示位为0时,将符号显示位移入下一位。

显示数据刷新子程序流程图如图4.5所示。

7 设计总结

本设计利用89S51芯片控制温度传感器DS18B52,再辅之以部分外围电路实现对环境温度的控制,性能稳定,精度较高,而且扩展性很强。由于DS18B20支持单总线协议,我们可以将多个DS18B52并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B52通信,占用较少的微处理器的端口就可以实现多点测温监控系统。

我们在老师的指导下完成了基于DS18B20的数字温度计的设计和制作。在进行实验的过程中,我们了解并熟悉DS18B20、AT89C2051以及74LS244的工作原理和性能。并且通过温度计的制作,我们将电子技能实训课堂上学到的知识进行运用,并在实际操作中发现问题,解决问题,更加增加对知识的认识和理解。

第13篇:汽车检测与维修毕业设计(论文)温度传感器检测与维修精品

吉 林 交 通 职 业 技 术 学 院

毕业论文

温度传感器检测与维修

系 别: 汽车工程系 专 业: 汽车检测与维修 班 级: 汽检09373 学 号: 姓 名: 指导教师:

2011年12月23日 吉林交通职业技术学院2013届毕业论文

摘要

发动机控制系统用传感器是整个汽车传感器的心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、空气流量传感器、气体浓度传感器和爆震传感器等。这些流量传感器向发动机的电子控制单元( ECO )提供发动机的工作状况信息,供 ECU 对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和惊醒故障检测。

关键词: 发动机、温度传感器、压力传感器、位置和转速传感器

1 吉林交通职业技术学院2013届毕业论文

目录

第一章 绪论 .............................................................................................................3 第一章 温度传感器工作原理..................................................................................4

2.1 温度传感器简介 .......................................................................................4 第三章 温度传感器常见故障分析与检测(或者:典型温度传感器故障分析与排除) .......................................................................................................................6 第四章 总结 .............................................................................................................7 致

谢 .......................................................................................................................8 参考文献 ...................................................................................................................9

2 吉林交通职业技术学院2013届毕业论文

第一章 绪论

随着电子技术的发展,汽车电子化程度不断提高,传统的机械系统已经难以解决某些与汽车功能要求有关的问题,因而将逐步被电子控制系统代替。传感器作为汽车电控系统的关键部件,其优劣直接影响到系统的性能。目前,普通汽车上大约装有几十到近百只传感器,豪华轿车上则更多,这些传感器主要分布在发动机控制系统、底盘控制系统和车身控制系统中。下面我们主要分析一下各个传感器的控制。

绪论是对要写内容及相关内容的论述,包含发展历史、现状、发展前景等。

3 吉林交通职业技术学院2013届毕业论文

第一章 温度传感器工作原理

2.1 温度传感器简介

主要检测发动机温度,吸入气体温度、冷却水温度、燃油温度、催化温度等,将它们转变成电信号,从而控制喷油嘴针阀开启时刻和持续时间,以保证供给发动机最佳混合气并达到排气净化效果等。实际应用的温度传感器主要有线绕电阻式、热敏电阻式和热电偶式。线绕电阻式温度传感器的精度较高,但响应特性差;热敏式传感器灵敏度高,响应特性较好,但线性差,适用温度较低;热电偶式传 感器的精度高,测温范围宽,但需考虑放大器和冷端处理问题。温度传感器又分为 接触式度传感器和非接触式温度传感器。如图2-1

图2-1温度传感器

4 吉林交通职业技术学院2013届毕业论文

2.1.1、温度传感器功用

温度传感器的功用包含 1.2.3.

2.1.2、温度传感器分类

温度传感器分为三类 2.1.3、温度传感器结构

2.1.4温度传感器工作原理

5 吉林交通职业技术学院2013届毕业论文

第三章 温度传感器常见故障分析与检测(或者:典型温度传感器故障分析与排除)

6 吉林交通职业技术学院2013届毕业论文

第四章 总结

对所写内容进行总结。

7 吉林交通职业技术学院2013届毕业论文

本论文是在某某老师的指导下完成的。我熟知老师专业知识的渊博,不管是理论课还是实训课,我们都是在一种心情愉悦的状态下去接受,不能不说是老师那种略带幽默的讲课方式带来的,可以说,老师或多或少都对我造成一些影响,至少改变了我对那些课程的学习态度,让我学习到了一些专业知识,并且学到很多处事道理,很感激老师谢谢我论文导师王贵荣老师,老师在我写论文的过程中为我提出许多宝贵意见,指正了我论文中的许多不足,使我的论文得以顺利完成,在此对导师的细心指导表示衷心感谢!

8 吉林交通职业技术学院2013届毕业论文

参考文献

[1] 王刚.汽车构造.北京:人民交通出版社,1997 (五号字,宋体)

9 吉林交通职业技术学院2013届毕业论文

Summary

Introduction With the development of electronic technology, automotive-increasingly, traditional mechanical systems have been difficult to solve some iues related to the functional requirements with cars, which will be gradually replaced by electronic control system.。Sensor as a key component of automotive electronic control system, its advantages and disadvantages of direct impact to system performance。At present, probably equipped with dozens of to nearly one hundred sensors on the ordinary car, luxury cars are more, these sensors are mainly distributed in engine control system, chais control system and automobile body control system.Next, we focused on the control of each sensor.

10 吉林交通职业技术学院2013届毕业论文

译文:

第14篇:毕业设计(论文)基于专用温度传感器的温度检测系统

摘 要 在现代工业领域温度检测系统是指用某种方式显示出当前的环境温度。传 统使用PTC或NTC电阻作为温度传感器的方式在使用过程中存在着很多不足之 处比如所采集温度的精度比较低、系统的可靠性差、设计难度较大、整体设计 成本较高等缺点已经无法满足现代工业生产中高精度温度控制的需求。而采用 专用温度传感器则可以在克服以上缺点很大程度上提高温度检测系统的性能。 本文阐述了一个基于专用温度传感器AD590的 高精度温度检测系统的设计

和实现过程。整个设计包括使用AD590的模拟温度采集传感器专用仪表放大 器AD620的信号处理系统由ADC0804构成的模数转换电路采用AT89C52组 成的单片机系统数码管显示系统和整机所需的供电系统。

关键字温度检测系统AD590AT89C52

Ⅰ www.daodoc.com Abstract The temperature check system in modern industry is that uses some special method to proce and display the environmental temperature.Tradition uses PTC or NTC resistance to be using proce to there be existing much defects as the temperature sensor way, supposes that what be detected the temperature has a bad accuracy, systematic reliability is bad, has much difficulties to design, and the cost of e ntire system is expensive.To use this method already unable satisfied modern industry produces the need being hit by the high-accuracy temperature under the control.Use the special temperature transducer could improve the systematic function of temperature detecting. This article elaborated the high-accuracy temperature having set forth a because of special temperature transducer AD590 checks the main body of a book systematically designing and realizing proce.Entire design is included: Use the AD590 temperature transducer to detect the analog temperature, instrumentation amplifier AD620 signal proce system, change the analog signal to digital signal circuit of ADC0804, the AT89C52 MUC system and the power system.

Key wordtemperature check systemAD590AT89C52

Ⅱ www.daodoc.com 目

录 摘 要.............................................................Ⅰ

Abstract............................................................Ⅱ 目 录.............................................................Ⅲ 1 绪论..............................................................1 1.1简介..........................................................2 1.2 温度控制系统的国内外现状......................................2 1.3 温度控制系统方案..............................................2 1.4 论文的主要任务和所做的工作....................................2 2设计方案以及论证..................................................4 2.2 温度传感部分..................................................4 2.3 A/D转换部分..................................................5 2.4数字显示部分..................................................6 3 电路设计.........................................................8 3.1 硬件电路设计.................................................8 3.1.1 温度采集电路...............................................8 3.1.2 AD转换电路.................................................8 3.1.3 单片机电路.................................................10 3.1.4 显示电路...................................................14 3.1.5 电源电路...................................................16 3.2 软件系统设计.................................................16 3.2.1 主程序设计.................................................16 3.2.2 AD转换程序.................................................17 3.2.3 温度采样...................................................18 3.2.4温度标度转换算法...........................................19 3.3 特殊元器件介绍..............................................22 4 总结.............................................................24 参考文献.........................................................25 附录.............................................................26

www.daodoc.com 1 绪论

1.1 简介 当代社会温度检测系统被广泛应用于社会生产、生活的各个领域。业、环境检测、医疗、家庭等多方面均有应用。同时单片机在电子产品中的应用 已经越来越广泛。

在很多电子产品中也将其用到温度检测和温度控制。目前温度测量系统种类 繁多功能参差不齐。有简单的应用于家庭的如空调电饭煲、太阳能热水器 电冰箱等家用电器的温度进行检测和控制。采用AT89C51单片机来对温度进行 控制不仅具有控制方便、组态简单和灵活性大等优点而且可以大幅度提高被 控温度的技术指标从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点为自动化和各个测控领域中广

在工 泛应用的器件在日常生活中成为必不可少的器件尤其是在日常生活中发挥的 作用也越来越大。因此单片机对温度的控制问题是一个日常生活中经常会遇到 的问题。

本论文以上述问题为出发点设计实现了温度实时测量、显示、控制系统。 以AD590为采集器AT89S51为处理器空调相应电路为执行器来完成设计任务 提出的温度控制要求。设计过程流畅所设计的电路单元较为合理。该设计在硬 件方案设计单元电路设计元器件选择等方面较有特色。 1.2 温度控制系统的国内外现状 通过网上查询、翻阅图书了解到目前国内外市场以单片机为核心的温度控制

系统很多而且方案灵活且应用面比较广可用于工业上的加热炉、热处理炉、反应炉在生活当中的应用也比较广泛如热水器室温控制农业中的大棚温 度控制。以上出现的温度控制系统产品根据其系统组成、使用技术、功能特点、技术指标。选出其中具有代表性的几种如下

1.虚拟仪器温室大棚温度测控系统在农业应用方面虚拟仪器温室大棚温度

测控系统是一种比较智能经济的方案适于大力推广改系统能够对大棚内的 温度进行采集然后再进行比较通过比较对大棚内的温度是否超过温度限制进 行分析如果超过温度限制温度报警系统将进行报警来通知管理人员大棚内 的温度超过限制大棚内的温控系统出现故障从而有利于农作物的生长提高 产量。本系统最大的优点是在一台电脑上可以监测到多个大棚内的温度情况从

而进行控制。该系统LabVIEW虚拟仪器编程通过对前面板的设置来显示温室大www.daodoc.com 棚内的温度并进行报警进而对大棚内温度进行控制。该系统有单片机温度

传感器串口通信和计算机组成。计算机主要是进行编程对温度进行显示、报警和控制等温度传感器是对大棚内温度进行测量显示单片机是对温度传 感器进行编程去读温度传感器的温度值并把半温度值通过串口通信送入计算 机串口通信作用是把单片机送来的数据送到计算机里起到传输作用。 2.电烤箱温度控制系统

该方案采用美国TI公司生产的FLASH型超低功耗16位单片机MSP430F123 为核心器件通过热电偶检测系统温度用集成温度传感器AD590作为温度测量 器件利用该芯片内置的比较器完成高精度AD信号采样根据温度的变化情况 通过单片机编写闭环算法从而成功地实现了对温度的测量和自动控制功能。其 测温范围较低,大概在0-250之间具有精度高相应速度快等特点。 3.小型热水锅炉温度控制系统

该设计解决了北方冬季分散取暖采用人工定时烧水供热耗煤量大浪费人

力温度变化大的问题。设计方案硬件方面采用MCS-51系列8031单片机为核心 扩展程序存储器2732 AD590温度检测元件测量环境温度和供水温度ADC0809 进行模数转换同向驱动器740

7、光电耦合器及9103的功放完成对电机的控制。软件方面建立了供暖系统的控制系统数学模型。本系统硬件电路简单,软件程序 易于实现。它可用于一台或多台小型取暖热水锅炉的温度控制,可使居室温度基 本恒定,节煤,节电,省人力。 1.3 温度控制系统方案 结合本设计的要求和技术指标通过对系统大致程序量的估计和系统工作速

度的估计考虑价格因素。选定AT89S51单片机作为系统的主要控制芯片8 位模数转换器AD0804采用AD509进行温度采集温度设定范围为-10℃~ 45℃ 通过温度采集系统对温度进行采集并作A/D转换再传输给单片机。以空调 机为执行器件通过单片机程序完成对室内温度的控制。 1.4 论文的主要任务和所做的工作 本论文主要是完成一种低成本、低价格、功能齐全、及温度测量、温度显示、温度控制于一体的单片机温度控制系统的理论设计。包括硬件电路和主要的软件 设计。

研究的关键问题是室温的精确测量温度采集器AD590温度控制电路设 计单片机与A/D转换电路、显示电路以及软件设计。

根据本设计所要完成的任务本论文完成了如下工作 www.daodoc.com 1介绍了研究和设计的背景和意义调查并综述了当前温度控系统市场的国内外 现状

2 提出了符合设计要求的高精度温度控制系统方案并阐述了其工作原理。 3 完成了硬件电路的设计它包括温度采集系统电路包含89S51单片机模数 转换器ADC0804等芯片的接口电路通过AD590实现的温度控制采集电路; 键盘接口和LED显示电路。

4 基本完成了软件部分设计它包括主程序流程图A/D转换子程序显示子程 序主程序清单。 2设计方案以及论证

2.1设计方案 经过查阅国内外相关资料现代工业控制的温度采集系统虽然传感器种类不 同但总体框架比较类似。通过仔细比较绘制出整体框架图如下

www.daodoc.com 2.2 温度传感部分 方案1 基于PTC或NTC电阻的设计

热敏电阻是开发早、种类多、发展较成熟的敏感元器件。热敏电阻由

半导体陶瓷材料组成 利用温度引起电阻变化。若电子和空穴的浓度分别 为n、p迁移率分别为μn、μp则半导体的电导为

σ=qnμn+pμp

因为n、p、μn、μp都是依赖温度T的函数所以电导是温度的函数 因此可由测量电导而推算出温度的高低并能做出电阻-温度特性曲线这 就是半导体热敏电阻的工作原理

热敏电阻包括正温度系数PTC和负温度系数NTC热敏电阻以 及临界温度热敏电阻CTR。

使用热敏电阻设计而成的温度检测系统利用“惠更斯”电桥提取出 温度的变化然后通过高共模抑制比的仪表放大器将信号放大把模拟信 号信号送入模数转换电路进行模拟到数字信号的转变从而将信号送入单 片机进行处理最终由数码管显示出当前的温度值。整体框图如下 但热敏电阻精度、重复性、可靠性较差不适用于检测小于1 ℃的信号而

且线性度很差不能直接用于A/D转换应该用硬件或软件对其进行线性化补偿。

方案2

采用集成温度传感器如常用的AD590和LM35。

AD590是电流型温度传感器。这种器件是以电流作为输出量指示温度其典 型的电流温度敏感度是1μA/K.它是二端器件使用非常方便作为一种高阻电 流源他不需要严格考虑传输线上的电压信号损失噪声干扰问题因此特别适合 作为远距测量或控制用。另外AD590也特别适用于多点温度测量系统而不必 考虑选择开关或CMOS多路转换开关所引起的附加电阻造成的误差。

由于采用了一种独特的电路结构并利用最新的薄膜电阻激光微调技术校 准使得AD590具有很高的精度。并且应用电路简单便于设计。

方案选择选择方案2。理由电路简单稳定可靠无需调试与A/D连接 方便。 2.3 A/D转换部分 模/数转化器是一种将连续的模拟量转化成离散的数字量的一种电路或器件www.daodoc.com 模拟信号转换为数字信号一般需要经过采样保持和量化编码两个过程。针对不同

的采样对象有不同的A/D转换器ADC可供选择其中有通用的也有专用的。 有些ADC还包含有其他功能在选择ADC器件时需要考虑多种因素除了关键参 数、分辨率和转换速度以外还应考虑其他因素如静态与动态精度、数据接口 类型、控制接口与定时、采样保持性能、基本要求、校准能力、通道数量、功耗、使用环境要求、封装形式以及与软件有关的问题。ADC按功能划分可分为直接 转换和非直接转换两大类其中非直接转换又有逐次分级转换、积分式转换等类 型。

A/D转换器在实际应用时除了要设计适当的采样/保持电路、基准电路和

多路模拟开关等电路外还应根据实际选择的具体芯片进行模拟信号极性转换等 的设计。

方案1采用分级式转换器这种转换器采用两步或多步进行分辨率的闪烁 式转换进而快速地完成“模拟-数字”信号饿转换同时可以实现较高的分辨 率。例如在利用两步分级完成n位转换的过程中首先完成m位的粗转换然后 使用精度至少为m位的数/模转换器ADC将此结果转换达到1/2的精度并且与 输入信号比较。对此信号用一个k位转换器k+m

方案2采用积分型A/D装换器如ICL7135等。双积分型A/D转换器转换 精度高但是转换速度不太快若用于温度测量不能及时地反应当前温度值 而且多数双击分型A/D转换器其输出端多不是而二进制码而是直接驱动数码管 的。所以若直接将其输出端接I/O接口会给软件设计带来极大的不方便。 方案3采用逐次逼近式转换器对于这种转换方式通常是用一个比较输 入信号与作为基准的n位DAC输出进行比较并进行n次1位转换。这种方法类 似于天平上用二进制砝码称量物质。采用逐次逼近寄存器输入信号仅与最高位 MSB比较确定DAC的最高位DAC满量程的一半。确定后结果0或1 被锁存同时加到DAC上以决定DAC的输出0或1/2。

逐次逼近式A/D转换器如ADC080

4、AD574等其特点是转换速度快精 度也比较高输出为二进制码直接接I/O口软件设计方便。由于ADC0804 设计时考虑到若干种模/数转换技术的优点所以该芯片非常适合于过程控制、微控制器输入通道的结合口电路、智能仪器和机床控制等应用场合并且价格低 廉降低设计成本。

方案选择选择方案3。理由用ADC0804采样速度快配合温度传感器应 用方便价格低廉降低设计成本。 www.daodoc.com 2.4 数字显示部分 通常用的LED显示器有7段或8段“米”字段之分。这种显示器有共阳极和

共阴极两种。共阴极LED显示器的发光二极管的阴极连接在一起通常此公共阴 极接地。当某个发光二极管的阳极为高电平时发光二极管点亮相应的段被显 示。同样共阳极LED显示器的工作原理也一样。 方案1采用静态显示方式。在这种方式下各位LED显示器的共阳极或 共阴极连接在一起并接地或电源正每位的段选线分别与一8位的锁存器 输出相连各个LED的显示字符一旦确定相应锁存器的输出将维持不变直到 显示另一个字符为止正因为如此静态显示器的亮度都较高。若用I/O口接口 这需要占用N*8位I/O口LED显示器的个数N。这样的话如果显示器的个数 较多那使用的I/O接口就更多因此在显示位数较多的情况下一般都不用静 态显示。

方案2采用动态显示方式。当多位LED显示时通常将所有位的段选线相应 的并联在一起由一个8位I/O口控制形成段选线的多路复用。而各位的共阳 极或共阴极分别有相应的I/O口线控制实现各位的分时选通。其中段选线占用 一个8位I/O口而位选线占用N个I/O口N为LED显示器的个数。由于各 位的段选线并联段码的输出对各位来说都是相同的因此同一时刻如果各 位选线都处于选通状态的话那LED显示器将显示相同的字符。若要各位LED 能显示出与本为相同的字符就必须采用扫描显示方式即在某一时刻只让某 一位的位选线处于选通状态而其他各位的位选线处于关闭状态同时段选线 上输出相应位要显示字符的段码。

方案选择选择方案2。理由非常节约I/O口亮度高节约CPU的使用 率。 3 电路设计

3.1 硬件系统设计 3.1.1 温度采集电路

温度采集系统主要由AD590、AD620组成如图所示 www.daodoc.com 选用温度传感器AD590AD590具有较高精度和重复性重复性优于0.1℃ 其良好的非线形可以保证优于0.1℃的测量精度利用其重复性较好的特点通

过非线形补偿可以达到0.1℃测量精度。由AD590采集到的温度信号通过AD620, 一款低功耗、高进度的仪表放大器进行线性放大在AD620的外部只需要通过 一只电阻即可将放大倍数从1-1000倍进行调整。在本电路系统中我们需要将 输出最大值和最小值调整在0-5V之间便于A/D进行转换以提高温度采集电 路的可靠性。

集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵 敏度一般为10mV/K温度0℃时输出为0温度25℃时输出为2.982V。电流输 出型的灵敏度为1 μA/K。这样便于A/D转换器采集数据。 3.1.2 AD转换电路 在学习和实验过程当中对于AD转换芯片通常使用美国国家半导体公司

生产的AD0809芯片进行模拟信号到数字信号的转换。AD0809相关资料齐全 使用广泛但是对于本设计略显奢侈AD0809可以同时转换8路模拟输入但 本设计中只需要转换一路模拟输入。因此我放弃使用AD0809转而使用美国 国家半导体公司的同类产品AD0804一款与AD0809同类型的模数转换芯片。 在达到系统要求的同时降低了电路的成本减小了电路的体积简化了电路的 复杂程度。 www.daodoc.com 用单片机控制ADC时多数采用查询和中断控制两种方式。查询法是在单片

机把启动命令送到ADC之后执行别的程序同时对ADC的状态进行查询以检 查ADC变换是否已经完成如查询到变换已结束则读入转换完毕的数据。中断 控制是在启动信号送到ADC之后单片机执行别的程序。当ADC转换结束并向单 片机发出中断请求信号时单片机响应此中断请求进入中断服务程序读入转 换数据并进行必要的数据处理然后返回到原程序。这种方法单片机无需进行 转换时间管理CPU效率高所以特别适合于变换时间较长的ADC。本设计采用 查询方式进行数据收集。由于ADC0804片内无时钟故运用8051提供的地址锁 存使能信号ALE经D触发器二分频后获得时钟。因为ALE信号的频率是单片机时 钟频率的1/6如果时钟频率为6MHz,则ALE信号的频率为1MHz经二分频后为 500kHz与AD0804时钟频率的典型值吻合。由于AD0804具有三态输出锁存器 故其数据输出引角可直接与单片机的总线相连。并将A/D的ALE和START脚连在 一起以实现在锁存通道地址的同时启动ADC0804转换。启动信号由单片机的写 信号和P2.7经或非门而产生。在读取转换结果时用单片机的读信号和P2.7 经或非门加工得到的正脉冲作为OE信号去打开三态输出锁存器。根据所选用的 是查询、中断、等待延时三种方式之一的条件去执行一条输入指令读取A/D 转换结果。

ADC0804是一个8位逐次逼近的A/D转换器。AD0804的转换时间为100μs。 在CPU启动A/D命令后便执行一个固定的延时程序延时时间应略大于A/D 的转换时间延时程序一结束便执行数据读入指令读取转换结果。本设计选 用Motorola公司的基准源TL431产生参考电压2.50V即一位数字量对应10mV 即1℃。所以用起来很方便。具体电路如下

www.daodoc.com 3.1.3 单片机电路 单片微型计算机简称单片机。它在一块芯片上集成了各种功能部件中央处

理器CPU、随机存取存储器RAM、只读存储器ROM、定时器/计数器和各 种输入/输出I/O接口如并行I/O口、串行I/O口和A/D转换器等。它们 之间相互连结构成一个完整的微型计算机。

单片机的发展经历了四个阶段第一阶段19711974年主要是美国INTEL 公司从早先的第一台MCS-4微型计算机到后来功能较强的8位微处理器

Intel8008和FAIRCHILD公司的F8微处理器。这些微处理器虽说还不是单片机 但从此拉开了研制单片机的序幕。第二阶段19741978初级单片机阶段 以INTEL公司的MCS-48为代表。这个系列的单片机内集成有8位CPU并行I/O 口8位定时器/计数器寻址范围不大于4K且无串行口。第三阶段1978 1983高性能单片机阶段。在这一阶段的单片机普遍带有串行口多级中断处 理系统和16位定时器/计数器。片内ROMRAM容量加大且寻址范围可达64K 字节有的片内还带有A/D转换器接口。这类单片机有INTEL公司的MCS-51 MOTOROLA公司的6801和ZILOG公司的Z8等。其中MCS-51系列产品由于其优 良的性能价格比特别适合我国的国情MCS-51系列单片机有可能稳定相当一

段时期。现在国内的MCS-51热正在升温随着我国经济建设步伐的加大MCS-51 系列单片机必将在各个领域大显身手。第四阶段1983现在8位单片机巩 固发展及16位单片机推出阶段。此阶段主要特征是一方面发展16位单片机及专

用单片机另一方面不断完善高档8位单片机改善其结构以满足不同用户的www.daodoc.com 需要。

MCS-51系列属高档单片机近年来INTEL公司在提高该系列产品性能方面 做了不少工作相继推出了不少新产品8052/8752/80

32、低功耗的CHMOS工艺 芯片80C51/87C51/80C

31、具有高级语言编程的芯片8052AH-BASIC、高性能的 C252系列等。在本次设计中我们采用了MCS -51系列中的89C51来完成产品的CPU 的功能。

89C51是一种带4K字节闪烁可编程可擦除只读存储器FPEROM—Falsh Programmable and Erasable Read Only Memory的低电压高性能CMOS8位微 处理器俗称单片机。89C2051是一种带2K字节闪烁可编程可擦除只读存储器 的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL 高密度非易失存储器制造技术制造与工业标准的MCS-51指令集和输出管脚相 兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中ATMEL的89C51 是一种高效微控制器89C2051是它的一种精简版本。89C单片机为很多嵌入式 控制系统提供了一种灵活性高且价廉的方案。

89C51的主要特性有与MCS-51 兼容4K字节可编程闪烁存储器寿命

1000写/擦循环数据保留时间10年全静态工作0Hz-24Hz三级程序存储 器锁定128*8位内部RAM32可编程I/O线两个16位定时器/计数器5个

中断源可编程串行通道低功耗的闲置和掉电模式片内振荡器和时钟电路。 下面按其引脚功能分为四部分叙述这40条引脚的功能 1 主电源引脚VCC和GND VCC40脚接+5V电压。GND20脚接地。

2 外接晶体引脚XTAL1和XTAL2 www.daodoc.com XTAL1 和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器 ,就构成了内部

振荡方式。由于单片机内部有一个高增益反相放大器当外接晶振后就构成了 自激振荡器并产生振荡时钟脉冲。

3 控制或与其它电源复用引脚RST/VPD、ALE/PROG、PSEN和EA/VPP RST/VPD当振荡器运行时在此引脚上出现两个机器周期的高电平将使单 片机复位。在此引脚与VSS引脚之间连接一个约10KΩ的下拉电阻与VCC引 脚之间连接一个约10μF的电容可以保证可靠地复位。VCC掉电期间此引脚 可接上备用电源以保持内部RAM的数据不丢失。当VCC主电源下掉到低于 规定的电平而VPD在其规定的电压范围5土0.5V内VPD就向内部RAM 提供备用电源。ALE/PROG当访问外部存储器时ALE允许地址锁存的 输出用于锁存地址的低位字节。即使不访问外部存储器ALE端仍然以不变的 频率周期性地出现正脉冲信号此频率为振荡器频率的1/6。因此它可用作对 外输出的时钟或用于定时目的。然而要注意的是每当访问外部数据存储器时 将跳过一个ALE脉冲。ALE端可以驱动吸收或输出电流8个LS型的TTL 输入电路。对于EPROM型的单片机如8751在EPROM编程期间此引脚 用于输入编程脉冲PROG。PSEN此脚的输出是外部程序存储器的读选通 信号。在从外部程序存储器取令或常数期间每个机器周期两次PSEN有效。

但在此期间每当访问外部数据存储器时这两次有效的PSEN信号将不出现。PSEN同样可以驱动吸收或输出8个LS型的TTL输入。EA/VPP当EA端

保持高电平时访问内部程序存储器但在PC程序计数器值超过0FFFH对 8051/8751/80C51或1FFFH对3052时将自动转向执行外部程序存储器内 的程序。当EA保持低电平时则只访问外部程序存储器不管是否有内部程序 存储器。对于常用的8031来说无内部程序存储器所以EA脚必须常接地 这样才能只选择外部程序存储器。对于EPROM型的单片机如8751在EPROM 编程期间此引脚也用于施加21伏的编程电源VPP。 4 输入/输出I/0引脚P0、P

1、P

2、P3共32根 P0口39脚--32脚是双向8位三态I/O口在外接存储器时与地址总 线的低8位及数据总线复用能以吸收电流的方式驱动8个LS TTL负载。P1 口l脚--8脚是8位准双向I/O口。由于这种接口输出没有高阻状态输入 也不能锁存故不是真正的双向I/O口。能驱动吸收或输出电流4个LS TTL 负载。对80

52、8032 P1.0引脚的第二功能为T2定时/计数器的外部输入P1.1 引脚的第二功能为T2EX捕捉、重装触发即T2的外部控制端。对EPROM编

程和程序验证时它接收低8位地址。P2口21脚--28脚是8位准双向I/O 口。在访问外部存储器时它可以作为扩展电路高8位地址总线送出高8位地址。

在对EPROM编程和程序验证期间它接收高8位地址。P2可以驱动吸收或www.daodoc.com 输出电流4个LS TTL负载。P3口l0脚--17脚是8位准双向I/O口在 MCS-51中这8个引脚还用于专门功能是复用双功能口。P3能驱动吸收或 输出电流4个LS TTL负载。作为第一功能使用时就作为普通I/O口用功 能和操作方法与P1口相同。作为第二功能使用时各引脚的定义如表3.1所示。 值得强调的是P3口的每一条引脚均可独立定义为第一功能的输入输出或第二 功能。 P3口的第二功能定义 口线

引脚 第二功能 P3.0 10 RXD串行输入口 P3.1 11 TXD串行输入口 P3.2 12 INT0外部中断 0

P3.3 13 1 INT外部中断1 P3.4 14 T0 定时器0外部输入 P3.5 15 T1 定时器1外部输入

P3.6 16 WR外部数据存储器写脉冲

P3.7 17 RD外部数据存储器读脉冲

www.daodoc.com

3.1.4 显示电路

显示电路采用锁存器74HC573和数码管组合的方式进行显示温度数值。 数码管是单片机应用电路中常用的显示器件。每个数码管由8个发光二极管组 成。数码管有共阴极和共阳极两种类型。共阴极数码管内部8个二极管的阴极被 连接在一起和引脚com相接在使用是引脚应接低电平当数码管其余的某个引 脚接高电平则相应的发光二极管被点亮。共阳极数码管com端应接高电平当 数码管其余的某个引脚接低电平则相应的发光二极管被点亮。在使用过冲当中 我们需要在每个数码管的每一位段选上串联电阻限制导通电流来保证发光二极 管不被烧坏。本设计中选用共阳极数码管。 a共阴数码管原理图 b共阳数码管原理图 www.daodoc.com 1 2 3 4 5 6 7a b c d e f g8dp9GND a bf c g d e dp a bf c g d e VCC1 2 3 4 5 6 7a b c d e f g8dp dp9 c共阴数码管电路符号图 d共阳数码管电路符号图 锁存器

74HC573是一款高速低功耗TTL锁存器它能够锁存8位数据最高锁存17ns 变化的数据。本设计中使用一组I/O口用来传送数码管的段选同时使用该组 I/O口的高四位传送位选。这样一来可以大大提高I/O口的使用效率。同时 使用另外两个I/O口控制两个锁存器的锁存端是能段来控制锁存器的工作。 关于74HC573的锁存使用说明如下图

显示总体电路如下

www.daodoc.com 3.1.5 电源电路

一个优秀系统中的电源电路极为重要电源的好坏可以直接影响整机的工 作。本设计中采用线性稳压系统提供信号处理电路所需的正负15V电压和单片 机、数字电路、数码管所需的5V电压。电源系统的设计原理是通过工频变压器 将市电220V 50Hz的交流电变为双13V 50Hz的低压交流电再通过全桥整流变 为脉动的正电压经过电容滤波、7

8、79系列线性稳压芯片稳压最终输出稳 定的+15V、-15V和+5V直流电压供系统相应电路模块使用。 电源部分电路图如下所示

3.2 软件系统设计 本系统的单片机程序使用C语言编写相比汇编语言C语言具有使用灵

活、移植性强、易于上手、方便使用、可完成高级功能等特点。 3.2.1 主程序设计 程序启动后首先清理系统内存然后进行采集并通过A/D转换后传输

到单片机再由单片机控制显示设备显示现在的温度然后系统进入待机状态 等待再次检测温度。

www.daodoc.com

3.2.2 AD转换程序

89S51给出一个脉冲信号启动A/D转换后ADC0809对接受到的模拟信号进 行转换这个转换过程大约需要100μs,系统采用的是固定延时程序所以在预 先设定的延时后89S51直接从ADC0809中读取数据。

主程序开始 采集温度 查询温度 调A/D程序

调显示程序 要控制温度

键盘输入设定值 和设定值比较 启动加热/降温

温度采集和比较 与设定值相等

是 N 否 是

否 www.daodoc.com

3.2.3 温度采样

采样子程序流程图如图所示。

A/D入口 启动

A/D转换 查询EOC 读取转换数据 压缩BCD码 作未压缩处理

整理好的十位和个位 分别存入某地址单元

子程序结果 www.daodoc.com

3.2.4温度标度转换算法

A/D转换器输出的数码虽然代表参数值的大小但是并不代表有量纲的参数

值必须转换成有量纲的数值才能进行显示标度转换有线性转换和非线性转换 两种本设计使用的传感器线性好在测量的量程制内基本能与温度成线性关系。 温度标度转换程序TRAST目的是要把实际采样的二进制值转换的温度值

转换成BCD形式的温度值。对一般的线性仪表来说标度转换公式为 AX=0A+) AA0 mNN NN0 m 0X

式中0A为一次仪表的下限 Am为一次量程仪表的上限为实际测量值工程量为仪表下限所对应的数字量 Nm为仪表上限所应的数字量 NX为测量所得数字量。例如若某热处理仪表量程为200—800℃在某一时刻计算机采样得到的 二进制值U(K)=CDH则相应的温度值为 采样值起始地址送 R0 采样次数送R2 启动AD590 延时

A/D完成 所有采样结束 返回 Y N N www.daodoc.com AX=0A+) AA0 mNN NN0 m 0X=200+800-200255205=682℃

根据上述算法只要设定热电偶的量程则相应的温度转换子程序TARST

N0 很容易编写只要把这一算式变成程序将A/D转换后经数字滤波处理后的值代 入即可计算出真实的温度值。具体算法如图所示。 www.daodoc.com 保护现场 R0←Am, R1 ←0A 计算 NX-N0 R0←Nm, R1 ←N0 计算 Am-0A 计算) AA0 m/NN0m R0←NX, R1 ←N0 计算 Nm-N0 计算) AA0 mNN NN0 m 0X

R2—0A AX=0A+) AA0 mNN NN0 m 0X

DATA←AX 返 回 www.daodoc.com 3.3 特殊元器件介绍 温度传感器AD590 简介

AD590温度传感器是一种已经IC化的温度传感器它会将温度转换为电流 其规格如下

1、温度每增加1℃它会增加1μA输出电流

2、可测量范围为-55℃至150℃ 3、供电电压范围为+4V至+30V AD590的输出电流值说明见表。

其输出电流是以绝对温度零度-273℃为基准温度每增加1℃它会增

加1μA输出电流因此在室温25℃时其输出电流Iout=273+25=298μA。 AD590温度与电流的关系 温度与电流的关系 摄氏温度 AD590电流 经10KΩ电压 0℃ 273.2 uA 2.732V 10℃ 283.2 uA 2.832 V 20℃ 293.2 uA 2.932 V 30℃ 303.2 uA 3.032 V 40℃ 313.2 uA 3.132 V 50℃ 323.2 uA 3.232 V 60℃ 333.2 uA 3.332 V 100℃ 373.2 uA 3.732 V 主要特性如下

1 流过器件的电流mA等于器件所处环境的热力学温度开尔文度 数

2AD590的测温范围为-55℃+150℃。

3AD590的电源电压范围为4V30V。电源电压可在4V6V范围变化 电流变化1mA相当于温度变化1℃。AD590可以承受44V正向电压和20V反向 电压因而器件反接也不会被损坏。 4输出电阻为710MΩ。

5精度高。AD590共有I、J、K、L、M五档其中M档精度最高在-55℃ +150℃范围内非线性误差为±0.3℃。 www.daodoc.com AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均

温度的具体电路广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好常用于测温和热电偶的冷端补 AD590实际应用电路举例 分析

1AD590的输出电流I=273+TμAT为摄氏温度因此测量的电压 V为273+TμA×10K=2.73+T/100V。为了将电压测量出来又务须使输出 电流I不分流出来我们使用电压跟随器其输出电压V2等于输入电压V。 2由于一般电源供应教多器件之后电源是带杂波的因此我们使用齐 纳二极管作为稳压组件再利用可变电阻分压其输出电压V1需调整至2.73V 3接下来我们使用差动放大器其输出Vo为100K/10K×V2-V1=T/10 如果现在为摄氏28℃输出电压为2.8V输出电压接AD转换器那么AD转换 输出的数字量就和摄氏温度成线形比例关系。

AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均

温度的具体电路广泛应用于不同的温度控制场合。由于AD590精度高、价格低、

不需辅助电源、线性好常用于测温和热电偶的冷端补偿。 4 总结 AT89C51单片机体积小重量轻抗干扰能力强对环境要求不高价格

低廉可靠性高灵活性好本文的温度控制系统只是单片机广泛应用于各行www.daodoc.com 各业中的一例。

设计实现了温度实时测量、显示。本设计温度控制电路具有较高的抗干扰性 实时性方案具有较高的测量精度温度控制实时性更高。在设计过程中首先 在老师的指导下熟悉了系统的工艺进行对象的分析按照要求确定方案。然后 进行硬件和软件的设计。通过设计使我掌握了微型机控制系统I/O接口的使用方 法模拟量输入/输出通道的设计常用显示程序的设计方法数据处理及线性 标度技术基本算法的设计思想。

在做毕业设计之前我对单片机的基本知识了解甚少而C语言虽是接触过 可是没有具体的设计和编辑过所以花了大量的时间去做准备工作。在老师的指 导和帮助下克服了一系列困难终于完成了本设计基于本人能力有限该设计 还有许多不足之处有待改进。

www.daodoc.com 参考文献 [1]钱聪.电子线路分析与设计[M].西安:陕西人民出版社,2000.[2]谈文心,钱聪,宋云娴.模拟集成电路原理与应用[M].西安:西安交通大学出版 社,1994.[3]孙肖子

,邓建国,陈南钱聪.电子设计指南[M].西安:高等教育出版社,2006.[4]HAN Zhi-jun Liu Xin-min.DIGITAL TEMPERATURE SENSOR DS18B20 AND ITS APPLICATION [J].Nanjing: Journal of Nanjing Institute of Technology(Natural Science Edition).2003 [5]SHEN Li-li,CHEN Zhong-rong.Design of Multi-Channel Test System of Measuring Temperature for Grain Storage Based on CPLD and DS18B20[J].Nanjing: Nanjing University of Information Science & Technology.2008 [6]You Guanjun Hu Yihua Liu Shenlong Zhao Tianxiang.THE CIRCUITRY OF AD590 IC TEMPERATURE SENSOR AND THE APPLICATION IN TEMPERATURE MEASUREMENT AND CONTROL[J].COLLEGE PHYSICAL EXPERIMENT,2000.[7]张国勋.缩短ICL7135A/D采样程序时间的一种方法[J].电子技术应用 1993第一期.[8]高峰.单片微型计算机与接口技术[M].北京:科学出版社2003 [9]刘伟,赵骏逸,黄勇.一种基于C8051单片机的SOC型数据采录的设计与实现 [A].天津:天津市计算机协会单片机分会编 2003 [10]何立民.单片机高级教程[M].北京:北京航空航天大学出版社,2000 [11]李元.数字电路与逻辑设计[M].南京:南京大学出版社,1997 [12]苏丽萍.电子技术基础[M].西安:西安电子科技大学,2006 [13]徐江海.单片机实用教程[M]:机械工业出版社,2003 [14]谢文和.传感器技术及其应用[M]:高等教育出版社,2004 [15]孟立凡,蓝金辉.传感器原理与应用[M].电子工业出版社,2000 [16]江晓安.模拟电子技术 第二版[M].西安:西安电子科技大学出版社,2004

www.daodoc.com 附录 单片机应用程序 #include #define uchar unsigned char #define uint unsigned int sbit wela=P3^0; sbit dula=P3^1; sbit wr=P3^6; sbit rd=P3^7; sbit cs=P3^5; uchar num; uint a1,b1,c1; uchar table1[]= {0xff,0xf9,0xa4,0xb0,0x99,0x92,0x82,0x86}; uchar table2[]= {0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0x86}; uchar table3[]= {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x86}; void delay(uint z); uchar ad(); void display(uint,uint,uint); void main() { while(1) { switch(ad()) { case 0x00: a1=0,b1=0,b1=0; break; case 0x01: a1=0,b1=0,c1=3; break; case 0x02: www.daodoc.com a1=0,b1=0,c1=7; break; case 0x03: a1=0,b1=1,c1=1; break; case 0x04: a1=0,b1=1,c1=5; break; case 0x05: a1=0,b1=1,c1=9; break; case 0x06: a1=0,b1=2,c1=3; break; case 0x07: a1=0,b1=2,c1=7; break; case 0x08: a1=0,b1=3,c1=1; break; case 0x09: a1=0,b1=3,c1=5; break; case 0x0a: a1=0,b1=3,c1=9; break; case 0x0b: a1=0,b1=4,c1=2; break; case 0x0c: a1=0,b1=4,c1=6; break; case 0x0d: a1=0,b1=5,c1=0; break; case 0x0e: a1=0,b1=5,c1=4; break; case 0x0f: a1=0,b1=5,c1=8; break; case 0x10: a1=0,b1=6,c1=2; break; case 0x11: a1=0,b1=6,c1=6; break; case 0x12: a1=0,b1=7,c1=0; break; www.daodoc.com case 0x13: a1=0,b1=7,c1=4; break; case 0x14: a1=0,b1=7,c1=8; break; case 0x15: a1=0,b1=8,c1=2; break; case 0x16: a1=0,b1=8,c1=5; break; case 0x17: a1=0,b1=8,c1=9; break; case 0x18: a1=0,b1=9,c1=3; break; case 0x19: a1=0,b1=9,c1=7; break; case 0x1a: a1=1,b1=0,c1=1; break; case 0x1b: a1=1,b1=0,c1=5; break; case 0x1c: a1=1,b1=0,c1=9; break; case 0x1d: a1=1,b1=1,c1=3; break; case 0x1e: a1=1,b1=1,c1=7; break; case 0x1f: a1=1,b1=2,c1=1; break; case 0x20: a1=1,b1=2,c1=5; break; case 0x21: a1=1,b1=2,c1=8; break; case 0x22: a1=1,b1=3,c1=2; break; case 0x23: www.daodoc.com a1=1,b1=3,c1=6; break; case 0x24: a1=1,b1=4,c1=0; break; case 0x25: a1=1,b1=4,c1=4; break; case 0x26: a1=1,b1=4,c1=8; break; case 0x27: a1=1,b1=5,c1=2; break; case 0x28: a1=1,b1=5,c1=6; break; case 0x29: a1=1,b1=6,c1=0; break; case 0x2a: a1=1,b1=6,c1=4; break; case 0x2b: a1=1,b1=6,c1=8; break; case 0x2c: a1=1,b1=7,c1=2; break; case 0x2d: a1=1,b1=7,c1=5; break; case 0x2e: a1=1,b1=7,c1=9; break; case 0x2f: a1=1,b1=8,c1=3; break; case 0x30: a1=1,b1=8,c1=7; break; case 0x31: a1=1,b1=9,c1=1; break; case 0x32: a1=1,b1=9,c1=5; break; case 0x33: a1=1,b1=9,c1=9; break; www.daodoc.com case 0x34: a1=2,b1=0,c1=3; break; case 0x35: a1=2,b1=0,c1=7; break; case 0x36: a1=2,b1=1,c1=1; break; case 0x37: a1=2,b1=1,c1=4; break; case 0x38: a1=2,b1=1,c1=8; break; case 0x39: a1=2,b1=2,c1=2; break; case 0x3a: a1=2,b1=2,c1=6; break; case 0x3b: a1=2,b1=3,c1=0; break; case 0x3c: a1=2,b1=3,c1=4; break; case 0x3d: a1=2,b1=3,c1=8; break; case 0x3e: a1=2,b1=4,c1=2; break; case 0x3f: a1=2,b1=4,c1=6; break; case 0x40: a1=2,b1=5,c1=0; break; case 0x41: a1=2,b1=5,c1=3; break; case 0x42: a1=2,b1=5,c1=7; break; case 0x43: a1=2,b1=6,c1=1; break; case 0x44: www.daodoc.com a1=2,b1=6,c1=5; break; case 0x45: a1=2,b1=6,c1=9; break; case 0x46: a1=2,b1=7,c1=3; break; case 0x47: a1=2,b1=7,c1=7; break; case 0x48: a1=2,b1=8,c1=1; break; case 0x49: a1=2,b1=8,c1=5; break; case 0x4a: a1=2,b1=8,c1=9; break; case 0x4b: a1=2,b1=9,c1=3; break; case 0x4c: a1=2,b1=9,c1=6; break; case 0x4d: a1=3,b1=0,c1=0; break; case 0x4e: a1=3,b1=0,c1=4; break; case 0x4f: a1=3,b1=0,c1=8; break; case 0x50: a1=3,b1=1,c1=2; break; case 0x51: a1=3,b1=1,c1=6; break; case 0x52: a1=3,b1=2,c1=0; break; case 0x53: a1=3,b1=2,c1=4; break; case 0x54: a1=3,b1=2,c1=8; break; www.daodoc.com case 0x55: a1=3,b1=3,c1=2; break; case 0x56: a1=3,b1=3,c1=5; break; case 0x57: a1=3,b1=3,c1=9; break; case 0x58: a1=3,b1=4,c1=3; break; case 0x59: a1=3,b1=4,c1=7; break; case 0x5a: a1=3,b1=5,c1=1; break; case 0x5b: a1=3,b1=5,c1=5; break; case 0x5c: a1=3,b1=5,c1=9; break; case 0x5d: a1=3,b1=6,c1=3; break; case 0x5e: a1=3,b1=6,c1=7; break; case 0x5f: a1=3,b1=7,c1=1; break; case 0x60: a1=3,b1=7,c1=5; break; case 0x61: a1=3,b1=7,c1=8; break; case 0x62: a1=3,b1=8,c1=2; break; case 0x63: a1=3,b1=8,c1=6; break; case 0x64: a1=3,b1=9,c1=0; break; case 0x65: www.daodoc.com a1=3,b1=9,c1=4; break; case 0x66: a1=3,b1=9,c1=8; break; case 0x67: a1=4,b1=0,c1=2; break; case 0x68: a1=4,b1=0,c1=6; break; case 0x69: a1=4,b1=1,c1=0; break; case 0x6a: a1=4,b1=1,c1=4; break; case 0x6b: a1=4,b1=1,c1=8; break; case 0x6c: a1=4,b1=2,c1=1; break; case 0x6d: a1=4,b1=2,c1=5; break; case 0x6e: a1=4,b1=2,c1=9; break; case 0x6f: a1=4,b1=3,c1=3; break; case 0x70: a1=4,b1=3,c1=7; break; case 0x71: a1=4,b1=4,c1=1; break; case 0x72: a1=4,b1=4,c1=5; break; case 0x73: a1=4,b1=4,c1=9; break; case 0x74: a1=4,b1=5,c1=3; break; case 0x75: a1=4,b1=5,c1=7; break; www.daodoc.com case 0x76: a1=4,b1=6,c1=0; break; case 0x77: a1=4,b1=6,c1=4; break; case 0x78: a1=4,b1=6,c1=8; break; case 0x79: a1=4,b1=7,c1=2; break; case 0x7a: a1=4,b1=7,c1=6; break; case 0x7b: a1=4,b1=8,c1=0; break; case 0x7c: a1=4,b1=8,c1=4; break; case 0x7d: a1=4,b1=8,c1=8; break; case 0x7e: a1=4,b1=9,c1=2; break; case 0x7f: a1=4,b1=9,c1=6; break; case 0x80: a1=5,b1=0,c1=0; break; case 0x81: a1=5,b1=0,c1=3; break; case 0x82: a1=5,b1=0,c1=7; break; case 0x83: a1=5,b1=1,c1=1; break; case 0x84: a1=5,b1=1,c1=5; break; case 0x85: a1=5,b1=1,c1=9; break; case 0x86: www.daodoc.com a1=5,b1=2,c1=3; break; case 0x87: a1=5,b1=2,c1=7; break; case 0x88: a1=5,b1=3,c1=1; break; case 0x89: a1=5,b1=3,c1=5; break; case 0x8a: a1=5,b1=3,c1=9; break; case 0x8b: a1=5,b1=4,c1=3; break; case 0x8c: a1=5,b1=4,c1=6; break; case 0x8d: a1=5,b1=5,c1=0; break; case 0x8e: a1=5,b1=5,c1=4; break; case 0x8f: a1=5,b1=5,c1=8; break; case 0x90: a1=5,b1=6,c1=2; break; case 0x91: a1=5,b1=6,c1=6; break; case 0x92: a1=5,b1=7,c1=0; break; case 0x93: a1=5,b1=7,c1=4; break; case 0x94: a1=5,b1=7,c1=8; break; case 0x95: a1=5,b1=8,c1=2; break; case 0x96: a1=5,b1=8,c1=5; break; www.daodoc.com case 0x97: a1=5,b1=8,c1=9; break; case 0x98: a1=5,b1=9,c1=3; break; case 0x99: a1=5,b1=9,c1=7; break; case 0x9a: a1=6,b1=0,c1=1; break; case 0x9b: a1=6,b1=0,c1=5; break; case 0x9c: a1=6,b1=0,c1=9; break; case 0x9d: a1=6,b1=1,c1=3; break; case 0x9e: a1=6,b1=1,c1=7; break; case 0x9f: a1=6,b1=2,c1=1; break; case 0xa0: a1=6,b1=2,c1=5; break; case 0xa1: a1=6,b1=2,c1=8; break; case 0xa2: a1=6,b1=3,c1=2; break; case 0xa3: a1=6,b1=3,c1=6; break; case 0xa4: a1=6,b1=4,c1=0; break; case 0xa5: a1=6,b1=4,c1=4; break; case 0xa6: a1=6,b1=4,c1=8; break; case 0xa7: www.daodoc.com a1=6,b1=5,c1=2; break; //65.2 default: a1=7,b1=10,c1=10;break; } display(a1,b1,c1); } }

uchar ad() { cs=1; wr=1; cs=0; wr=0; delay(1); wr=1; cs=1; rd=1; delay(3); cs=0; rd=0; num=P1; delay(1); rd=1; cs=1; delay(50); return num; } void display(uint a,uint b,uint c) { P2=0x00; wela=1; P2=0x80; wela=0; www.daodoc.com P2=0xff; dula=1; P2=table1[a]; dula=0; delay(10); //第一位 P2=0x00; wela=1; P2=0x40; wela=0; P2=0xff; dula=1; P2=table2[b]; dula=0; delay(10); //第二位 P2=0x00; wela=1; P2=0x20; wela=0; P2=0xff; dula=1; P2=table3[c]; dula=0; delay(10); //第三位 P2=0x00; wela=1; P2=0x10; wela=0; P2=0xff; dula=1; P2=0xc6; dula=0; delay(10); //第四位 P2=0x00; www.daodoc.com wela=1; P2=0x00; wela=1; delay(10); } void delay(uint z) { uint t1,y; for(t1=z;t1>0;t1--) for(y=10;y>0;y--); } www.daodoc.com

第15篇:温度传感器响应特性创新实验报告

温度传感器响应特性创新实验

研究报告

学生:宋玉力 指导教师:王辉林

测控与精仪实验室 二00六年十二月

目 录

第一章 系统组成及检测原理„„„„„„„„„„„„„„„„„„„„2 第二章 检测工艺参数设计„„„„„„„„„„„„„„„„„„„„„5 第三章 检测步骤与实验数据处理„„„„„„„„„„„„„„„„„„6第一章

系统组成及检测原理

传统的温度测量实验只是观察数值准不准,对于响应时间、特性曲线、补偿方法等不了解,本研究依托温度实训系统,对自制的K型的热电偶的主要技术参数响应时间、特性曲线、误差等全面检测。

自制K型的热电偶

智能化的自动检定智能化的检定装置以国家最新检定规程为依据,结合计量工作的实际经验以及先进的微机技术,实现了检定过程自动化,数据处理微机化的理想目标。

一、主要技术指标

数字多用表分辨力 电压 0.1μV 电阻 0.0001Ω 数字多用表准确度 电压 0.005%RD+10字

电阻 0.01%RD+10字 低电势扫描开关寄生电势 ≤0.4μV

二、依据的检定规程

JJG141-2000 工作用贵金属热电偶检定规程 JJG351-1998 工作用廉金属热电偶检定规程

JJG668-1997 工作用铂铑10-铂、铂铑13-铂短型热电偶检定规程 JJG229-1998 工作用铂、铜热电阻检定规程 JJG75-1995 工作用铂铑10-铂热电阻检定规程 JJG167-1995 工作用铂铑13-铂铑6热电偶检定规程

三、性能特点

软件基于Windows平台,微机最低配置:奔腾Ⅲ 1G、128内存、多媒体。 该装置可以开展K、E、J、N、B、S、R、T等各种型号的热电偶的检定。工作基准可以达到检定一等标准热电偶的要求。

该装置可以开展Pt100、Pt

10、Cu50、Cu100等各种工作用热电阻的检定。尤其对三线制热电阻作了专门处理,使得测试工作十分简便易行。 检定工程严格按国家检定规程进行,按温指标严格控制符合检定规程。依据检定工作实际需要设立接线盒,接线简单清楚,更便于操作。

四、主要优点

软件具有语音提示错误、操作指导功能,硬件自我测试功能,用户可方便查找故障点。 升温曲线直观显示,原始记录数据自动处理、判断、自动打印证书。被检电偶、电阻采用多组检定,检定对象可达

三、四十支,以提高劳动效率。工况环境较好的情况下,检定炉可采用微机控温;干扰强烈的环境中可使用外部高精度温控仪表控温,提高抗干扰能力。检定炉控温采用智能PID参数,各检定炉采用不同PID控制,各温度检定点可任意设置PID参数,实现控温指标的优化。软件具有设备管理数据库,可任意选择各热电偶卧式检定炉、标准器等设备。使用过程中修改、调入方便。

热电偶检定具有冷端自动补偿功能。系统采用同名极法检定标准电偶,达到高精度测量,可为各省地计量所提示服务。三线电阻检定采用人工换线与自动换线两种方法,满足不同用户需要。系统具有独立的温度超温保护装置,可避免超温事故的发生。 五、系统原理框图

系统的核心部分是由微机、打印机、数字多用表、低电势扫描开关、温控配电箱或高精密智能温控器等构成。

外围恒温设备由标准恒温油槽、冰点槽、热电偶检定炉、冷端补偿器等构成,如下图: 第二章 检测工艺参数设计

一、热电偶检定的工作过程

1、热电偶检定的过程

标准及被检热电偶应捆扎成束,放入检定炉。其冷端接补偿导线后插入冷端补偿器。打开检定软件,信息输入完毕后,点击“启动”按钮,则微机控制扫描开关工作,并从数字多用表读取相关数据。微机在对线路进行有无开路、短路、接反等检查后,开始送加热信号给温控配电箱,配电箱送出相应的加热功率至热电偶检定炉。加热过程中,微机始终通过读取标准热电偶的电压值来监控炉温,并根据算法自动调整加热量,直至炉温稳定在我们所需要的设定温度值上。使用高精密智能控制器的用户,炉温由其直接控制。当炉温在绝对偏差及稳定度均符合要求时,微机控制扫描开关及数字多用表,完成对标准及被检热电偶的多遍检测。微机对测得的数据进行扫描,如认为稳定性达到要求,则开始控制系统进行下一个点的控温、检测。全部设定点检测完毕后,在微机上可预览原始数据及运算结果,需要时可输出至打印机。 2.热电阻检定的过程

标准及被检电阻置于冰点槽或恒温油槽内,待温度稳定后,操作微机开始检测读数,读数完成后,如发现读数的稳定性未达到要求,可等待一段时间后重新进行该点的检定,请按提示将原来的数据覆盖。实现自动判断读数时机的用户,可以通过微机自动判断是否已经满足读数要求,自动读数。检定完毕后保存数据,原始数据及运算结果可在微机上预览,需要时打印输出。

二、系统各部分的工艺参数设置

1.计算机

计算机是整个系统的核心,主要功能:

它是软件运行的平台,提示用户输入各种参数,显示温度曲线,进行数据处理。控制扫描开关的工作,使标准及被检七路信号逐一进入数字多用表,完成模数转换。通过RS232接口与数字多用表进行数据通讯,控制数字多用表进行功能转换,并读取由各路信号转换而成的数字量,送微机进行处理。将采集到的温度信号与设定值进行比较,并根据相应的算法运算处理,得出加热量送温控配电箱,控制检定炉的温度。 2.低电势转换开关

功能切换:进行测量状态的转换。

信号采集:采用我公司特殊设计的低电势转换开关,完成测量信号的调理及多路采集。 状态指示:进行电阻测试时,绿色指示灯代表检测电流的方向,灯亮表示正向,灯灭表示反向;进行电偶测试时,触发输出端有直流电压输出。 3.数字多用表

数字多用表接受来自计算机的指令,按要求进行功能转换,并将信号对应的数字量送入微机。数字表是系统中关系到量值传递准确性的核心仪器,它直接决定了检定数据的可靠性。本系统推荐使用美国产KEITHLEY2700数字多用表,它性能稳定,分辨率高,满足国家规程中相应的指标。 4.打印机

完成原始记录及检定证书的输出。原则上对打印机并无特殊要求,只要能正常工作即可。但考虑到打印效果的差别及检定工作的重要性,使用激光打印机。 5.温控配电箱

温控配电箱用来完成对检定炉的加热控制及温度超限保护。计算机输出的加热控制量由配电箱内部的固态继电器执行功率调节,加热电流直接送往检定炉,控制炉温达到检定要求。配电箱内部装有一块带上限保护继电器的温控表,用户可自行设定上限保护温度。当由于某种原因造成温度上冲时,温控表继电器跳开,随之配电箱内接触器也跳开,切断电流回路,以免发生事故。保护用测温电偶(一般为K型)应正确从检定炉另一端插入到炉管中心位置,并确认接线正确可靠。 6.热电偶检定炉

为热电偶检定提供300℃以上检定温度环境;通常使用长度为600mm的管式检定炉;检定短型热电偶时使用长度为300mm的检定炉;检定双铂铑热电偶时使用特殊高温检定炉; 检定炉温场应符合规程要求。检定炉应具有较厚的保温层及较小的电感效应,以免引起温度及电信号的跳动。 7.恒温油槽

提供300度以下检定温度环境。应选取搅拌性能良好,控温性能快速且稳定的恒温油槽。检定时的温场均匀性及稳定度应符合规程要求。 8.高精密智能温控器

采用日本原装进口仪表,运行稳定且温度过冲小,控温精度高,可用来控制检定炉及恒温槽,并有串口与微机相联。 第三章 检测步骤与实验数据处理

一、各部件的连接、软件安装与维护

1.计算机与扫描开关的连接

将显示器、键盘、鼠标等外部设备连接到主机上。取出我公司提供的USB软件加密狗,插在USB插口内。将主机、显示器、打印机、扫描开关、数字多用表的电源插头插入带有可靠接地的电源插座中。取扫描开关的通讯电缆,辨别插头针与孔的区别,一端连接计算机串口,另一头插入扫描开关通讯口。 2.计算机与数字表的连接

从数字表的包装盒中取出RS232通讯电缆,辨别插头针与孔的区别,一端连接计算机串口,另一端连接数字多用表通讯口。 3.扫描开关与温控配电箱的连接

扫描开关的触发输出接温控配电箱的触发输入,正负勿接反。 4.扫描开关后面板、接线盒与测试线的连接

扫描开关后面板与测试线按标号、颜色连接,如1号绿色测试线接扫描开关后面板被检1的绿色接线柱,接线盒与测试线同样按标号、颜色连接,检查无误后,将接线盒安装在靠近工作区的墙壁上。 5.数字表与扫描开关的连接

将数字表的两组测试线分别插入数字表电压端两个插孔及电流端两个插孔,测试线的另一端接扫描开关对应的电压端插孔及电流端插孔。 6.温控配电箱与热电偶检定炉的连接

检定炉的加热电源由温控配电箱提供,温控配电箱的电源输出端接检定炉的电源端。 注意:为保证人身安全,必须保证检定炉及温控配电箱均可靠接地! 7.软件的安装及维护

本软件为绿色软件,不需要安装,将本软件所有内容复制到硬盘即可运行使用。 保证系统安全可靠的运行,我公司要求:

推荐使用Windows2000操作系统,专机专用,专用的用户名登录,否则存在使用权限的问题。请勿在微机上安装游戏软件,不联接网络,以防病毒侵入。备份温度检定软件的参数设置,并不要轻易调整温度检定软件的各种设置,在经过咨询后方可调整。经过一段时间的运行,如发现温度检定软件或操作系统出现不正常现象,以至影响检定工作的正常进行则应进行软件的重新复制。如仍不能解决问题,则需要重新安装操作系统。

二、开机步骤

1.打开数字多用表电源开关,预热数字多用表(按要求预热45分钟以上);2.打开低电势扫描开关电源开关; 3.打开微机显示器及主机电源开关; 4.开展热电偶检定时打开温控配电箱电源; 5.启动检定软件; 6.操作软件进行工作。

三、软件程序使用

1、附件安装

运行热电偶检定软件;驱动安装-工具->安装附件->安装加密狗驱动程序;数字表多用表驱动安装-工具->安装附件->安装数字表驱动程序,选择用户所使用数字表型号的驱动;扫描开关驱动安装-工具->安装附件->安装扫描开关驱动程序,选择扫描开关的驱动;中文语音引擎-工具->安装附件->安装中文语音引擎。

注意:不安装加密狗或未安装加密狗驱动,软件运行时会提示“未安装加密狗驱动”,软件上方显示测试版,此时软件无法正常使用。

2、设备设置

可通过主程序菜单:文件->设备,打开设备对话框。注:设备参数设置不完整的情况下退出设置,请点击“删除”,再点击“退出”。

设置数字表:选择左边栏的数字表,然后按“添加”,出现如下的数字表设置页面,

新添加数字表以吉时利2010数字多用表为例,数字表默认名字为“新数字表”,您可以改成更易于辨别的名字,如2010,然后从“数字表型号”下拉框中选择您的数字表型号KEI2010.目前系统支持的数字表有:吉时利2000、2010和华易2003。然后为该数字表选择一个串口。也可以连接好数字表通讯线并打开其电源开关,然后按下“自动检测”按键让系统检测该数字表接的串口,检测过程中请等待,计算机会逐个测试。数字表设置完毕后,可通过点击“测试”按键测试读数是否正常。

设置扫描开关:点击展开左边的扫描开关,选择T04,出现下面的设置画面。

选择好扫描开关的串行口,也可以连接好扫描开关通讯线并打开其电源开关,然后按下“自动检测”按键让系统检测该扫描开关接的串口。

测试扫描开关:选中“进入测试状态”复选框,然后点击定位、步进等按钮,测试扫描开关走步是否正确;点击正向导通、反向导通进行换向的测试;在最下方空白处输入0-100数字,点击输出可以进行加热的测试。测试完毕,再次点击“进入测试状态”复选框,退出测试状态。注:必须退出测试状态,设备管理器设置才能正常退出。

设置标准器:标准器是标准计量器具,选中左边栏标准器,然后按“添加”,添加一支新的标准器。标准器的主要信息如下图:选择标准器的类型,根据不同的标准器类型填充数据。

例如:对一等标准铂铑10-铂热电偶,应根据此标准器的最新证书值填充它在锌、铝、铜三个点的电势值。

设置恒温装置:恒温装置是指检定炉或油槽、水槽。添加一个检定炉,并按下图设定检定炉的参数,并可为该检定炉设置其在不同温度点的PID控温参数。

设置外部控温器:如果您买的设备配备了外部控温器,您可通过下面的页面设置外部控温器,以取代微机控温。外部控温器目前支持SR93,输入温控器名称,选择型号SR93,选择通讯口,如不知道通讯口的设置则打开高精密智能温度控制器电源,并连接好其通讯线, 点击“自动检测”,自动检测出通讯口.最后点击“测试”,读数正确便可。

3、参数设置

文件->选项,打开选项对话框。点击控制标签,稳定参数设置—温度偏差、温度波动度,合格判定参数设置—温度偏差、温度波动度,选择PID模式,设置稳定时间和调节周期。点击数字表标签,读取检定数据设置--读数速度、滤波次数、读数延时时间。点击其它标签,设置背景音乐。

四、热电偶的检定数据处理

1、建立检定文件

通过主菜单 文件->新建检定文件,系统将提示您输入检定文件的名称,根据您输入的名称生成一个检定文件。

2、填充检定参数,如下图

选择被检偶型号 选择偶丝直径

选择检定方法—工业用电偶一般采用双极法、标准偶检定一般采用同名极法

选择标准器--根据\"设备\"窗口中设置的标准器信息,系统会自动获取该标准器的数据 选择使用的恒温装置(即检定炉) 选择使用的数字表 选择使用的扫描开关

使用高精度控制器的用户则点击“高级”标签,以确认使用外部控制器控温 输入各检定点

输入各接线端子上对应被检偶的信息(其中仪器编号必须输入,否则认为该端子上没有接被检偶)

设置冷端温度,如果您不指定冷端的温度,扫描开关应接一支四线铂电阻,以自动检测冷端的温度。

输入完毕后点击“保存”,信息保存后,点击“启动”按钮,系统自动控温、读数等检定过程。

3、技巧

输入检定点时,输完温度点后按回车键,系统会自动给出所选标准器对应电势值。 如果您按下检定点表格左上角的“自动”按钮,系统会根据您选择的标准器和被检偶直径,按规程自动给出标准检定温度点及对应电势值。 被检仪器的生产厂家等信息相同的情况下,只输入被检1的信息,双击生产厂家即可,仪器名称、送检单位、单位地址设置用相同的方法即可。

打开一份文件,前面的温度点已经有检定数据,只需要检定后面的温度点,双击不需要检定温度点前的序号,跳过此温度点。

升温曲线区域无升温曲线时,双击升温曲线区域显示当前升温曲线。 热电偶控温及读数

热电偶检定开始后,系统将切换到下面的检定画面。

这时系统首先会检查各电偶的开路、短路、是否接反等情况,并会在出现异常时提示您改正,您可以在改正后选择“重试”或选择“忽略”略过该错误。这些检测结束后,系统就进入正常的控温过程。

在控温过程中,系统会自动进行智能PID控温,如果需要,您也可以通过按下“自动”按钮,将输出切换到手动状态,这时您可以在按钮上方的文字框中输入要输出的数值并回车,以人工控制加热输出量。在此要注意,输出的数值应在0-100之间,并且需按回车才能生效。

图示窗口在控温过程中会显示当前炉内的温度、设定值、冷端温度及加热输出量,并会画出升温曲线。黄线为温度设定值,红线为实际温升曲线。

一个检定点完成后,会出现一提示框,询问继续下一点检定或继续本点检定,数据理想的情况下,选中继续下一点检定,点击“确定”;数据不理想的情况下,选中继续本点检定,点击“确定”;数据异常的情况下请点击“等待”,查明原因后,再进行选择。

4、热电偶原始记录及检定

每个温度点检定完成后,系统会把数据输出到原始记录窗口中,并自动保存。 所有温度点检定完成后,系统会根据规程自动判断是否合格。如果贵单位认为自己的使用环境对仪表的要求可以宽于国家检定规程的要求,可以选取校准选项,系统将只进行数据运算,不进行结果判断,用户自行决定该仪器是否合格。

原始记录可以直接打印,如果您有特殊的格式要求,也可以将数据输出到Excel中(计算机需预装Excel),自定义您的打印格式。具体技术细节可与我们联系。

第16篇:机器人传感器论文

机器人技术基础论文

学校: 班级: 学生:

机器人传感器

摘要:

机器人的控制系统相当于人类大脑,执行机构相当于人类四肢,传感器相当于人类的五官。因此,要让机器人像人一样接收和处理外界信息,机器人传感器技术是机器人智能化的重要体现。 Abstract:

Robot control system is equivalent to the human brain, actuators equivalent to human limbs, sensor is equivalent to the human facial features.Therefore, to make robots like people receive and proce information from outside, robot sensor technology is the important embodiment of intelligent robots.关键词:机器人 传感器 内部 外部

正文:

传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应用的目的和使用范围不同,可分为内部传感器和外部传感器。

内部传感器用于检测机器人自身状态(如手臂间角度、机器人运动工程中的位置、速度和加速度等);外部传感器用于检测机器人所处的外部环境和对象状况等,如抓取对象的形状、空间位置、有没有障碍、物体是否滑落等。

机器人用内、外传感器分类

传感器 位置 速度 加速度 检测内容 位置、角度 速度 加速度 接触 把握力 荷重

触觉 分布压力 多元力 力矩 滑动 接近

接近觉 间隔 倾斜平面位置

视觉 距离 形状 缺陷

听觉 嗅觉 味觉 声音 超声波 气体成分 味道

检测器件

电位器、直线感应同步器 角度式电位器、光电编码器 测速发电机、增量式码盘 压电式加速度传感器 压阻式加速度传感器 限制开关

应变计、半导体感压元件 弹簧变位测量器

导电橡胶、感压高分子材料 应变计、半导体感压元件 压阻元件、马达电流计 光学旋转检测器、光纤

应用

位置移动检测 角度变化检测 速度检测 加速度检测 动作顺序控制 把握力控制

张力控制、指压控制 姿势、形状判别 装配力控制 协调控制 滑动判定、力控制

光电开关、LED、红外、激光 动作顺序控制 光电晶体管、光电二极管 电磁线圈、超声波传感器 摄像机、位置传感器 测距仪 线图像传感器 画图像传感器 麦克风 超声波传感器

气体传感器、射线传感器 离子敏感器、PH计

障碍物躲避

轨迹移动控制、探索 位置决定、控制 移动控制 物体识别、判别 检查,异常检测 语言控制(人机接口) 导航 化学成分探测

机器人传感器的要求和选择

机器人传感器的选择取决于机器人工作需要和应用特点,对机器人感觉系统的要求时选择传感器的基本依据。 机器人传感器的选择的一般要求:

 精度高、重复性好;  稳定性和可靠性好;  抗干扰能力强;

 重量轻、体积小、安装方便。

内部传感器

位移传感器

按照位移的特征,可分为线位移和角位移。

线位移是指机构沿着某一条直线运动的距离,角位移是指机构沿某一定点转动的角度。 (1)电位器式位移传感器

电位器式位移传感器由一个线绕电阻(或薄膜电阻)和一个滑动触点组成。其中滑动触点通过机械装置受被检测量的控制。当被检测的位置量发生变化时,滑动触点也发生位移,从而改变了滑动触点与电位器各端之间的电阻值和输出电压值,根据这种输出电压值的变化,可以检测出机器人各关节的位置和位移量。 (2)直线型感应同步器

直线感应同步器的组成是由定尺和滑尺组成。定尺和滑尺间保证与一定的间隙,一般为0.25mm左右。在定尺上用铜箔制成单项均匀分布的平面连续绕组,滑尺上用铜箔制成平面分段绕组。绕组和基板之间有一厚度为0.1mm的绝缘层,在绕组的外面也有一层绝缘层,为了防止静电感应,在滑尺的外边还粘贴一层铝箔。定尺固定在设备上不动,滑尺则可以再定尺表面来回移动。 (3)圆形感应同步器

圆形感应同步器主要用于测量角位移。它由钉子和转子两部分组成。在转子上分布着连续绕组,绕组的导片是沿圆周的径向分布的。在定子上分布着两相扇形分段绕组。定子和转子的截面构造与直线型同步器是一样的,为了防止静电感应,在转子绕组的表面粘贴一层铝箔 绝对速度传感器

绝对速度传感器,图4-11为国产CD-1型绝对速度传感器的结构图。途中磁钢6借铝架5固定在壳体4内,并通过壳体形成磁回路。线圈2和阻尼环3安装在芯杆2上,芯杆用弹簧1和8支承在壳体内,构成传感器的活动部分。当传感器的壳体与振动物体一起振动时,如振动的频率较高,由于芯杆组件的质量很大,故产生的惯性力也大,可以阻止芯杆随壳体一起运动。当振动频率高到一定程度时,可以认为芯杆组件基本不动,只是壳体随被测物体振动。这时,线圈以物体的振动速度切割磁力线而在线圈两端产生感应电压。并且线圈输出的电压与线圈相对可替代运动速度成正比。当振动速度高到一定程度时,线圈与壳体的相对速度就是被测振动物体的绝对速度。 加速度传感器

电动式速度传感器的结构它由轭铁。永久磁铁、线圈及支承弹簧所组成。由电磁感应定律可知,穿过线圈的磁通量随时间变化时,在线圈两端将产生与磁通量中减少速率成正比的电压U,可表示为:

Ud dt如果线圈沿着与磁场垂直的方向运动,在线圈中便可产生与线圈速度成正比的感应电压,通过测量电路测得其电压的大小,便可得出速度的大小。 压电式加速度传感器

它也称为压电式加速度计,他是利用压电效应制成的一种加速度传感器。常见的结构形式有基于压电元件厚度变形的压缩式加速度传感器、基于压电元件剪切变形的剪切式和复合型加速度传感器。

机器人外部传感器

力或力矩传感器

机器人在工作时,需要有合理的握力,握力太小或太大都不合适。 力或力矩传感器的种类很多,有电阻应变片式、压电式、电容式、电感式以及各种外力传感器。力或力矩传感器通过弹性敏感元件将被测力或力矩转换成某种位移量或变形量,然后通过各自的敏感介质把位移量或变形量转换成能够输出的电量。机器人常用的力传感器分以下三类。 i.装在关节驱动器上的力传感器,称为关节传感器。它测量驱动器本身的输出力和力矩。用于控制中力的反馈。 ii.装在末端执行器和机器人最有一个关节之间的力传感器,称为腕力传感器。它直接测出作用在末端执行器上的力和力矩。

装在机器人手爪指(关节)上的力传感器,称为指力传感器,它用来测量夹持物体时的受力情况。 触觉传感器 人的触觉包括接触觉、压觉、力觉、冷热觉、滑动觉、痛觉等。 在机器人中,使用触觉传感器主要有三方面的作用: i.使操作动作使用,如感知手指同对象物之间的作用力,便可判定动作是否适当,还可以用这种力作为反馈信号,通过调整,使给定的作业程序实现灵活的动作控制。这一作用是视觉无法代替的。 ii.识别操作对象的属性,如规格、质量、硬度等,有时可以代替视觉进行一定程度的形状识别,在视觉无法使用的场合尤为重要。 iii.用以躲避危险、障碍物等以防事故,相当于人的痛觉。

接近觉传感器

接近觉是指机器人能感觉到距离几毫米到十几厘米远的对象物或障碍物,能检测出物体的距离、相对倾角或对象物表面的性质。这就是非接触式感觉。 滑觉传感器

机器人要抓住属性未知的物体时,必须确定自己最适当的握力目标值,因此需检测出握力不够时所产生的物体滑动。利用这一信号,在不损坏物体的情况下,牢牢抓住物体。为此目地设计的滑动检测器,叫做滑觉传感器。 视觉传感器

每个人都能体会到,眼睛对人来说多么重要。有研究表明,视觉获得的信息占人对外界感知信息的80%。人类视觉细胞数量的数量级大约为106,时听觉细胞的300多倍,时皮肤感觉细胞的100多倍。 人工视觉系统可以分为图像输入(获取)、图像处理、图像理解、图像存储和图像输出几个部分,实际系统可以根据需要选择其中的若干部件。 听觉传感器

智能机器人在为人类服务的时候,需要能听懂主人的吩咐,需要给机器人安装耳朵,首先分析人耳的构造。

声音是由不同频率的机械振动波组成,外界声音使外耳鼓产生振动,中耳将这种振动放大、压缩和限幅、并抑制噪声。经过处理的声音传送到中耳的听小骨,再通过卵圆窗传到内耳耳蜗,由柯蒂氏器、神经纤维进入大脑。内耳耳蜗充满液体,其中有30000各长度不同的纤维组成的基底膜,它是一个共鸣器。长度不同的纤维能听到不同频率的声音,因此内耳相当于一个声音分析器。智能机器人的耳朵首先要具有接受声音信号的器官,其次还需要语音识别系统。

在机器人中常用的声音传感器主要有动圈式传感器和光纤声传感器。 味觉传感器

味觉是指酸、咸、甜、苦、鲜等人类味觉器官的感觉。酸味是由氢离子引起的。比如盐酸、氨基酸、柠檬酸;咸味主要是由NaCl引起的;甜味主要由蔗糖、葡萄糖等引起的,苦味是由奎宁、咖啡因等引起的;鲜味是由海藻中的谷氨酸钠、鱼和肉中的肌酐酸二钠、蘑菇中的鸟苷酸二钠等引起的。 在人类的味觉系统中,舌头表面味蕾上的味觉细胞的生物膜可以感受味觉。味觉物质被转换为电信号,经神经纤维传至大脑。味觉传感器与传统的、只检测某种特殊的化学物质的化学传感器不同。目前某些传感器可以实现对味觉的敏感,如PH计可以用于酸度检测、导电计可用于碱度检测、比重计或屈光度计可用于甜度检测等。但这些传感器智能检测味觉溶液的某些物理、化学特性,并不能模拟实际的生物味觉敏感功能,测量的物理值要受到非味觉物质的影响。此外,这些物理特性还不能反应各味觉之间的关系,如抑制效应等。

实现味觉传感器的一种有效方法是使用类似于生物系统的材料做传感器的敏感膜,电子舌是用类脂膜作为味觉传感器,能够以类似人的味觉感受方式检测味觉物质。从不同的机理看,味觉传感器大致分为多通道类脂膜技术、基于表面等离子体共振技术、表面光伏电压技术等,味觉模式识别是由最初神经网络模式发展到混沌识别。混沌是一种遵循一定非线性规律的随机运动,它对初始条件敏感,混沌识别具有很高的灵敏度,因此应用越来越广。目前较典型的电子舌系统有新型味觉传感器芯片和SH—SAW味觉传感器。

总结:

传感器对于机器人有着至关重要的作用,通过对各种机器人传感器的学习和了解,我对机器人各种传感器有了一个新的认识,使我获益匪浅,为我以后这方面的学习打下了坚定的基础。

参考文献: (1)《机器人技术基础》,刘极峰

(2)《机器人传感器及其应用》,高国富,谢少荣 (3)《传感器及其应用》,谢文和

第17篇:传感器设计论文

传感器 课 程 论 文

课程名称:论文题目:学 院:系 别:专 业:学 号:学生姓名:指导教师:日 期: 传感器技术 温度的传感器设计

合肥通用职业技术学院

机械工程系

机电一体化 机电1301 11130156 张印

邢老师 2015 年 1 月 4日

第 一 页

传感器的应用、发展前景及其目前的发展趋势

近年来,国内外温度传感器研发领域取得了很大的进步。温度传感器正从结构复杂、功能简单向集成化、智能化、多参数检测的方向迅速发展,为开发新一代温湿度测控系统创造了有利条件,也将温度测量技术提高到新的水平。国内数字温度仪测量温湿度采用的主要方法有:“温—阻”法,即采用电阻型的温度传感器,利用其阻值随温度的变化测量空气的温度。受传感器灵敏度的限制,这类温湿度仪的精度不是很高,一般条件下还可以满足需要,但是在环境实验设备等对精度要求较高的场合就难以满足要求了。

随着信息产业的发展及工业化的进步,温度不仅仅表现在以上几个方面直接或间接影响着人类基本生活条件, 还表现在对工生物制品、医药卫生、科学研究、国防建设等方面的影响。针对以上情况,研制可靠且实用的温度控制器显得非常重要。常用温度传感器的非线性输出及一致性较差,使温度的测量方法和手段相对较复杂,且给电路的调试带来很大的困难。传统的温度测量多采用模拟小信号传感器,不仅信号调理电路复杂,且温度值的标定过程也极其复杂,并需要使用昂贵的标定仪器设备。因此对于温湿度控制器的设计有着很大的现实生产意义。

随着光学技术在传感器领域的应用,出现了开关式温度测量器、辐射式温度测量器等温度测量器,使得温度测量精度和范围都有较大的提高,其中应用激光技术测温打破了传统的近距测温,可以针对远程温度测量[4-5]。

随着电子技术和自动化的发展,研究开发出数字式集成温度传感器。这种传感器是将温度和数字电路集成在一起,内部包含了温度传感器、A/D转换器、信号处理器、接口电路等,有的还有单片机的中央处理器、随即存取存储器和只读存储器集成在一起,成功的实现了温度传感器的数字化结构。数字式温度传感器的采集精度高、测试的可靠性高、又很强的抗干扰能力,这些都是模拟式温度传感器不能达到的,由于引入了数字式的温度反馈,有效地改善了比较器的失调和零点漂移对温度精度的影响。目前,数字温度传感器已经结合了总线技术、等接口和主机进行通信,这种数字化、集成化的传感器是将温度传感器的一个新的发展方向。

温度传感器的工作原理

热敏电阻温度测量传感器所采用的材料为铂金,该传感器应用了激光调阻和溅射成膜等技术制作形成的。选用铂电阻的原因是因为其电阻值可以随着温度的变化而近似线性的变化,且具有良好的温度重现性和良好的测试稳定性。

本文设计所使用的是铂膜温度传感器,该传感器零度时的阻值为1000Ω,该电阻的变化率为0.3851Ω/℃,在测量中薄膜铂电阻具有体积小,响应快,寿命长,测温范围宽,在氧化介质中性能稳定,线性度及精确度高等优点,很适合在便携式测量仪中使用。

由于热电阻随温度变化而引起电阻的变化值较小,如铂电阻 Pt1000 在零温度时的阻值

R0=1000,因此,在传感器与测量仪器之间的引线过长会引起较大的测量误差,在实际应用时,通常是热电阻与仪器或放大器采用两线或四线制的接线方式。两线制的引线电阻:铂电阻不超过 R0的 0.1%,铜电阻不超过 R0的 0.2%。采用四线制可消除连线过长而引起的误差。

第 二 页

电桥输出电压 V0为

V0=I /2×2R(Rt-Rr) /(2R+Rt+Rr)当 R>>Rt、Rr时,V0=I /(Rt-Rr) 其中

Rr为温漂很小的铂电阻 Rt为可变电阻 R 为固定电阻

I 为恒流源提供的电流 V0为输出电压。

传感器的动态特性

根据本文的设计,图1-1为所测得在0℃~ 100℃温度范围内铂电阻的阻值和温度的关系曲线。并且该图为传感器的动态特性。

图1-1铂电阻与温度关系曲线

由图1-1可以看出,随着温度升高铂电阻的的组织也随之升高,曲线呈近似线性变化。

传感器的静态特性

温度传感器探头采用的材料为铂金,应用激光调阻和溅射成膜等工艺技术制成。铂电阻的阻值能够随着温度的变化而近似线性变化,具有良好的温度重现性和测试稳定性。本文采用的是温度传感器探头如图1-2所示。

第 三 页

图1-2温度传感器探头图

常用的铂膜温度传感器

图1-3 温度传感器探头图

第 四 页

铂膜温度传感器技术指标

铂膜温度传感器的技术指标见下表 1.铂电阻的技术指标

2.热响应时间

在温度出现阶跃变化时,铂电阻的输出变化至量程变化50%所需要的时间成为热响应时间,用T0.5表示。

3.铂电阻绝缘电阻

常温绝缘电阻的试验电压可取直流 10~100V 任意值,环境温度在15~35℃范围内,相对湿度应不大于 80%,常温绝缘电阻值应大于 100M 。

4.铂电阻允许通过电流

通过铂电阻的测量电流最大不应超过 1mA。 5.公称压力

一般是指在长温下,保护管所能承受的不至于破裂的静态外压,承压数值的大小同保护管的材料,直径,壁厚,焊接强度等密切相关。

温度传感器是指检测外界温度的传感器,它将所测环境中的温度信号转换为便于处理,显示,记录的电(频率)信号等,在很多领域都有普遍的应用。

温度传感器从使用角度大致可分为接触式和非接触式两大类。前者是让温度传感器直接与待测物体接触,来检测被测物体温度的变化,而后者是使温度传感器与待测物体离开一定的距离。检测从待测物体放射出的红外线,从而达到测温的目的。在接触式和非接触式两大类温度传感器中,相比之下运用较多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用。它是利用转换元件电磁参数随温度变化的特性,对温度和与温度有关的参量进行检测的装置,其中将温度变化转换为电阻变化的称热电阻传感器,金属热电阻式传感器简称热电阻,半导体热电阻式传感器简称热敏电阻,将温度变化转换为电动势变化的称为热电偶传感器。

温度检测采用的最基本的是热电偶式和热敏电阻式。热电偶式应用广泛,价格便宜而且耐用,种类多,能够覆盖非常宽的温度范围,最高温度可达到2000℃。所以本文设计选择热敏电阻,该传感器主要随温度的变化阻值发生变化,主要测量范围为-200℃~ 500℃温度范围内测量。其温度系数大而且稳定,反应速度快,工艺价格低,测温环境稳定。

第 五 页

传感器的内部结构

在传感器中间沉积了过渡层氧化镍,同时为了提高铂薄膜的焊接连接特性,在镍薄膜上面又沉积了铜薄膜作为导线层,最后在最外层沉积了三氧化二铝薄膜作为保护膜,起到绝缘保护的作用,其膜系结构设计如图所示:

由于三氧化二铝的绝缘特性和高硬度、高稳定性等特点,可以避免传感器层和铜导线层的氧化,同时也可以保证传感器的耐腐蚀和耐冲击,从而保证传感器长期稳定地工作。

设计小结

利用铂薄膜的温度电阻特性以及磁控溅射镀膜技术设计并制备了薄膜热阻型温度传感器,得到的薄膜传感器在-200到600摄氏度之间有极高的线性度和稳定性,并且通过对不同工艺参数的分析得到了最佳的制备铂薄膜的工艺参数:工作压强0.6 Pa,靶基距60 mm,电源功率120 W。通过对退火温度的对比分析得到了铂薄膜最佳的退火温度为400℃,退火时间为2 h,这些都为制备更为稳定精度更高的铂薄膜温度传感器奠定了良好的基础。

第 六 页

第18篇:数字温度传感器DS18B20控制接口设计

数字温度传感器DS18B20控制接口设计

摘 要: DS18B20是一款经典的单总线数字温度传感器芯片,较传统的温度传感器具有结构简单、体积小、功耗小、抗干扰能力强、使用简单、可组网实现多点温度测量等优点。本设计简要介绍了数字温度传感器DS18B20 的特性及工作原理,着重论述了用FPGA实现对此传感器的控制,并将测到的温度在LED数码管上显示出来。

关键词:DS18B20;温度传感器;FPGA;LED数码管

Abstract: DS18B20 is a claic single-bus digital temperature sensor chip, the more traditional temperature sensor has a simple structure, small size, low power consumption, and anti-interference ability, easy to use networking to achieve multi-point temperature measurement.The design brief describes the features and working principle of the digital temperature sensor DS18B20, focuses on the control of this sensor using FPGA, and the measured temperature is displayed on the LED digital tube.Keywords: DS18B20; temperature sensor; FPGA; LED digital tube

1 引言

传统的温度传感器系统大都采用放大、调理、A/ D 转换, 转换后的数字信号送入计算机处理, 处理电路复杂、可靠性相对较差, 占用计算机的资源较多。DS18B20 是一线制数字温度传感器, 它可将温度信号直接转换成串行数字信号送给微处理器, 电路简单, 成本低, 每一只DS18B20 内部的ROM 存储器都有唯一的64位系列号, 在1 根地址/ 信号线上可以挂接多个DS18B20, 易于扩展, 便于 组网和多点测量。

随着科技的发展 ,温度的实时显示系统应用越来越广泛 ,比如空调遥控器上当前室温的显示、热水器温度的显示等等。实现温度的实时采集与显示系统有很多种解决方案 ,本文使用全数字温度传感器DS18B20来实现温度的实时采集FPGA作为控制中心与数据桥梁;LED数码管作为温度实时显示器件。其中DS18B20作为FPGA的外部信号源,把所采集到的温度转换为数字信号,通过接口 (113脚)传给FPGA,FPGA启动ROM内的控制程序驱动LED数码管,通过IO口和数据线把数据传送给LED数码管,将采集到的温度实时显示出来。该设计结构简单、测温准确,成本低,工作稳定可靠,具有一定的实际应用价值。

2 DS18B20数字温度传感器介绍

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:

2.1 DS18B20的性能特点

1独特的单线接口仅需要一个端口引脚进行通信; ○2多个DS18B20可以并联在惟一的三线上,实现多点组网功能; ○3无须外部器件; ○4可通过数据线供电,电压范围为3.0~5.5V; ○5零待机功耗; ○6温度以9或12位数字; ○7用户可定义报警设置; ○8报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件; ○9负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;○ 2.2 DS18B20的内部结构图

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2-1所示。

图2-1 DS18B20内部结构框图 图2-2 DS18B20字节定义

64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。高速暂存RAM的结构为8字节的存储器,结构如图2-2所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。该字节各位的定义如图3-4所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分率。 2.3 DS18B20测温原理

DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一个频率稳定的计数脉冲。

高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。初始时,温度寄存器被预置成-55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。 初始时,计数器1预置的是与-55℃相对应的一个预置值。以后计数器1每一个循环的预置数都由斜率累加器提供。为了补偿振荡器温度特性的非线性性,斜率累加器提供的预置数也随温度相应变化。计数器1的预置数也就是在给定温度处使温度寄存器寄存值增加1℃计数器所需要的计数个数。

DS18B20内部的比较器以四舍五入的量化方式确定温度寄存器的最低有效位。在计数器2停止计数后,比较器将计数器1中的计数剩余值转换为温度值后与0.25℃进行比较,若低于0.25℃,温度寄存器的最低位就置0;若高于0.25℃,最低位就置1;若高于0.75℃时,温度寄存器的最低位就进位然后置0。这样,经过比较后所得的温度寄存器的值就是最终读取的温度值了,其最后位代表0.5℃,四舍五入最大量化误差为±1/2LSB,即0.25℃。

温度寄存器中的温度值以9位数据格式表示,最高位为符号位,其余8位以二进制补码形式表示温度值。测温结束时,这9位数据转存到暂存存储器的前两个字节中,符号位占用第一字节,8位温度数据占据第二字节。

DS18B20测量温度时使用特有的温度测量技术。DS18B20内部的低温度系数振荡器能产生稳定的频率信号;同样的,高温度系数振荡器则将被测温度转换成频率信号。当计数门打开时,DS18B20进行计数,计数门开通时间由高温度系数振荡器决定。芯片内部还有斜率累加器,可对频率的非线性度加以补偿。测量结果存入温度寄存器中。一般情况下的温度值应该为9位,但因符号位扩展成高8位,所以最后以16位补码形式读出。 2.4 DS18B20供电方式

DS18B20有两种供电方式,一种是寄生电源强上拉供电方式,一种是外部供电方式,如下图:

图2-3 寄生电源强上拉供电方式电路图

在寄生电源供电方式下,DS18B20 从单线信号线上汲取能量:在信号线 DQ 处于高电平期间把能量储存在内部电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。为了使 DS18B20 在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2 存储器操作时,用 MOSFET 把 I/O 线直接拉到 VCC 就可提供足够的电流,在发出任何涉及到拷贝到 E2 存储器或启动温度转换的指令后,必须在最多 10μS 内把 I/O 线转换到强上拉状态。在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺点就是要多占用一根 I/O 口线进行强上拉切换。

图2-4 外部电源供电方式电路图

在外部电源供电方式下,DS18B20 工作电源由 VDD 引脚接入,此时 I/O 线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度,同时在总线上理论可以挂接任意多个 DS18B20 传感器,组成多点测温系统。在外部供电的方式下,DS18B20的GND引脚不能悬空,否则不能转换温度,读取的温度总是 85℃。 3 设计需求

1温度测量范围:-55℃~+125℃ ○2可编程为9位~12位A/D转换精度 ○3测温分辨率可达0.0625℃ ○4 LED数码管直读显示 ○4 设计方案

4.1 硬件设计

将[DF2C8]FPGA 核心板和[EB-F2]基础实验板连接在一起,同时使能DS18B20 模块和数码管模块:数码管使能:用“短路帽”将实验板上的JP4和JP5全部短接。DS18B20 温度传感器使能跳线JP10 全部短接,元件安装示意如下图4-1和4-2(注意方向,半圆形的一边朝板子内部,平面朝外,和板上的图示一致)。

图 4-1:数码管使能图示 图 4-2:温度传感器安装和使能图示

4.1.1 温度传感器 DS18B20 电路

基础实验板上提供了一个由DS18B20构成的温度测量模块,其原理如图4-3所示。该电路选择外部供电方式。外部电源供电方式工作稳定可靠, 抗干扰能力强。

图4-3 单线制温度传感器 DS18B20 电路图

DS18B20与[DF2C8]FPGA核心板的连接关系如表4-1所示

表 4-1:DS18B20与[DF2C8]FPGA核心板连接时的管脚对应关系

4.1.2 数码管显示电路

基础实验板上具有2个共阳极的位七段数码管,构成8位构,其电路如图4-4 所示。

图 4-4:七段数码管显示电路图

数码管的控制引脚由两个跳线JP4和JP5使能(如图4-1所示) R10~R17是段码上的限流电阻,位码由于电流较大,采用了PNP三极管驱动。当位码驱动信号为低电平(0)时,对应的数码管才能操作;当段码驱动信号为低电平(0)时,对应的段码点亮。数码管不核心板连接时的管脚对应如表4-2所示:

表 4-2:数码管与[DF2C8]FPGA核心板连接时的管脚对应关系

4.2 HDL编码 4.2.1 时序

(1)复位: 使用DS18B20 时, 首先需将其复位, 然后才能执行其它命令。复位时, 主机将数据线拉为低电平并保持480Ls~ 960Ls, 然后释放数据线, 再由上拉电阻将数据线拉高15~ 60Ls, 等待DS18B20 发出存在脉冲, 存在脉冲有效时间为60~ 240Ls, 这样, 就完成了复位操作。其复位时序如图4-5所示。

图4-5:初始化时序

图4-6:写时序

(2)写时隙: 在主机对DS18B20 写数据时, 先将数据线置为高电平, 再变为低电平, 该低电平应大于1us。在数据线变为低电平后15us 内, 根据写“1”或写“0” 使数据线变高或继续为低。DS18B20 将在数据线变成低电平后15us~ 60us 内对数据线进行采样。要求写入DS18B20 的数据持续时间应大于60us 而小于120us, 两次写数据之间的时间间隔应大于1us。写时隙的时序如图4-6 所示

(3)读时隙 :当主机从DS18B20 读数据时, 主机先将数据线置为高电平, 再变为低电平, 该低电平应大于1us, 然后释放数据线, 使其变为高电平。DS18B20 在数据线从高电平变为低电平的15us 内将数据送到数据线上。主机可在15us 后读取数据线。读时隙的时序如图4-7 所示。

图4-7 :读时隙

4.2.2 DS18B20 的操作命令

主机可通过一线端口对DS18B20 进行操作, 其步骤为: 复位( 初始化命令) ->ROM 功能命令->存储器功能命令->执行/ 数据, DS18B20 的ROM 命令有5个( 见表1) , 存储器命令有6个( 见表2) 。命令的执行都是由复位、多个读时隙和写时隙基本时序单元组成。因此, 只要将复位、读时隙、写时隙的时序了解清楚, 使用DS18B20 就比较容易了, 时序如上文所述。

表4-3: 存储器命令操作表 表4-4:ROM命令功能操作表

4.2.3 Verilog HDL编码

详细Verilog HDL代码参见工程文件:DF2C8_13_DS18B20 工程文件中含有三个v 文件,LED_CTL.v 是数码管显示功能模块,DS18B20_CTL.v 是温度传感器的控制模块,TEMP.v 为顶层模块,实例化了前面两个模块,并将采集的温度值送至数码管中进行显示。其中最主要的温度传感器的控制模块,DS18B20_CTL.v。该程序对DS18B20 进行控制, 不仅可以简化程序, 还可以缩短1 次温度转换所需的时间.这样的话, 1 次温度转换和数字温度值输出循环所涉及到的控制命令、数据交换和所需时隙如图4-8所示。

.

图4-8:1次温度转换的控制命令和时隙

5 仿真测试结果

5.1 仿真波形

温度测量模块仿真结果如图6-1所示:

图5-1:仿真波形

5.2 结果显示

下载配置文件后,可在数码管上观察到带一位小数的温度数值。如果用手捏住传感器,会发现显示的温度在升高。如下图:

图5-2 测温效果图示

参考文献:

[1] 沙占友 集成传感器的应用[M].中国电力出版社.[2] 罗钧,童景琳.智能传感器数据采集与信号处理[M].化学工业出版社

[3] 周月霞,孙传友.DS18B20硬件连接及软件编程[J].传感器世界,2001,12.[4] 王晓娟,张海燕,梁延兴.基于DS18B20的温度实时采集与显示系统的设计与实现[J]., 2007:38-41.[5] 党 峰, 王敬农, 高国旺.基于DS18B20 的数字式温度计的实现[ J] .山西电子技术, 2007( 3) [6] 金伟正.单线数字温度传感器的原理与应用[ J] .仪表技术与传感器, 2000( 7) : 42- 43.[7]DS18B20 Datasheet [ EB/ OL] .Dalla s: Dallas Semico nductor Cor po r atio n, 2005.

第19篇:温度传感器的特性及应用设计

08电子李建龙081180241061 温度传感器的特性及应用设计

集成温度传感器是将作为感温器件的晶体管及其外围电路集成在同一芯片上的集成化温度传感器。这类传感器已在科研,工业和家用电器等方面、广泛用于温度的精确测量和控制。

一、目的要求 1. 2. 测量温度传感器的伏安特性及温度特性,了解其应用。

利用AD590集成温度传感器,设计制作测量范围20℃~100℃的数字

显示测温装置。 3. 4. 对设计的测温装置进行定标和标定实验,并测定其温度特性。 写出完整的设计实验报告。

二、仪器装置

AD590集成温度传感器、变阻器、导线、数字电压表、数显温度加热设备等。

三、实验原理图

AD590

R=1KΩ

E=(0-30V)

四、实验内容与步骤

㈠测量伏安特性――确定其工作电压范围 ⒈按图摆好仪器,并用回路法连接好线路。

⒉注意,温度传感器内阻比较大,大约为20MΩ左右,电源电压E基本上都加在了温度传感器两端,即U=E。选择R4=1KΩ,温度传感器的输出电流I=V/R4=V(mV)/1KΩ=│V│(μA)。

⒊在0~100℃的范围内加温,选择0.0、10.0、20.0……90.0、100.0℃,分别测量在0.0、1.0、2.0……25.0、30.0V时的输出电流大小。填入数据表格。

⒋根据数据,描绘V~I特性曲线。可以看到从3V到30V,基本是一条水平线,说明在此范围内,温度传感器都能够正常工作。

⒌根据V~I特性曲线,确定工作电压范围。一般确定在5V~25V为额定工作电压范围。

㈡测量温度特性――确定其工作温度范围

⒈按图连接好线路。选择工作电压为10V,输出电流为I=V/R4=V(mV)/1KΩ=│V│(μA)。

⒉升温测量:在0~100℃的范围内加热,选择0.0、10.0、20.0……90.0、100.0℃时,分别同时测量输出电流大小。将数据填入数据表格。

注意:一定要温度稳定时再读输出电流值大小。由于温度传感器的灵敏度很高,大约为k=1μA/℃,所以,温度的改变量基本等于输出电流的改变量。因此,其温度特性曲线是一条斜率为k=1的直线。 ⒊根据数据,描绘I~T温度特性曲线。

⒋根据I~T温度特性曲线,求出曲线斜率及灵敏度。

⒌根据I~T温度特性曲线,在线性区域内确定其工作温度范围。 ㈢实验数据: ⒈温度特性

结论:

由IT特性曲线可知:AD590的灵敏度为:K=1 μΑ/ ℃; 工作温度范围大于20 ℃ ~100 ℃ 。 ⒉伏安特性

由V~I特性曲线可知:温度传感器工作电压从3V到30V。(一般确定为:5V~30V)

四、探索与设计

㈠利用温度传感器,设计一个数码显示温度计

用AD590集成温度传感器制作一个热力学温度计,画出电路图,说明调节方法。

原理图 ⒈按图摆好仪器,并用回路法连接好线路。

⒉绝对零度定标:将电源负极C端认为是绝对零度T0=-273.15℃,将电路B端认为是0℃,则从C到B,温度每变化1℃,压变化1mV,所以,UBC=273.15mV。因此,调整R

2、R3电阻大小,使UBC=273.15mV。这就是绝对零度定标。 ⒊室温TS定标:同理,将温度传感器放置于室温为TS的水中,认为电路A端是TS℃。因此,应当有UAB=│TS│mV。调整R4电阻大小,使UAB=│TS│mV。这就是室温TS定标。

⒋升温测量:如将表头分度值标定为1℃,就从0℃开始,每升高1℃测量一次输出电压(电流)大小。如将表头分度值标定为5℃,就从0℃开始,每升高5℃测量一次输出电压(电流)大小。

⒌将升降温的数据填入数据表格,准备数据处理。

⒍根据数据,描绘(电压~温度)V~T特性曲线。根据V~T特性曲线,将数字式(或指针式)电压表重新标定为温度表。

⒎温度计的改装

: 根据左图V~T特性曲线,将电压表重新标定为温度计,间隔为5 ℃

㈡利用温度传感器设计温差温度计 ⒈原理图:

⒉温差温度计的调节方法: 按A图用回路法接好电路

绝对零度定标:将C端认为是绝对零度-273.15 ℃,将B端认为是0 ℃.调整R2,R3电阻的大小(实验如图标记),使UBC=273.15mV 室温TS定标:将两个传感器置于室温TS的水中,认为A、D端是TS=20 ℃.调整R

4、R5的大小(实验如图标记),使UAB= UDB =20mV 再按B图接好电路

升温测量:将D端温度保持室温(20 ℃),A端每升高5 ℃测量一次输出电压 根据数据,绘制V~T特性曲线,将电压表重新标定为温差温度计 ⒊温差温度计的改装: 改装: 根据左图V~T特性曲线,将电压表重新标定为温差温度计,间隔为5 ℃㈢创新设计的优缺点: 优点: AD590互换性好,抗干扰能力强,温度与电压呈良好的线性关系,精度高

加热设备采用水浴加热,可以防止极间短路;试管中加入煤油,保证AD590与杜瓦瓶中水之间有良好的热传递 缺点: AD590的灵敏度可能不是严格的1 μA/ ℃,使温度计误差增大 升温测量中,温度不好控制

由于条件限制,温度计只能从室温开始测温 温度计表头分度值为5 ℃,灵敏度比较小

温差温度计的升温测量的间隔温度为5 ℃,灵敏度比较小

第20篇:温度传感器在工业中的应用

红外温度传感器在工业中的应用

随着工业生产的发展,温度测量与控制十分重要,温度参数的准确测量对输出品质、生产效率和安全可靠的运行至关重要。目前,在热处理及热加工中已逐渐开始采用先进的红外温度计等非传统测温传感器,来代替传统的热电偶、热电阻类的热电式温度传感器,从而实现生产过程或者重要设备的温度监视和控制。

基本原理

温度传感器 基本原理,最常用的非接触式温度传感器基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。

在水泥制造生产中的应用

红外温度传感器在水泥制造生产中有着广泛的应用。据调查目前我国每年因红窑事故造成的直接经济损失达2000万元,间接损失达3亿元。用常规的方法很难对非匀速旋转的水泥胴体进行测温,国际上先进的办法是在窑尾预热平台上安装一套红外扫描测温仪,系统的软件部分主要由数据采集滤波、同步扫描控制、数据通讯处理等,红外辐射测温仪按预定的扫描方式,实现对窑胴体轴向每一个测量段成的温度的测量,在一个扫描周期内,红外温度传感器将在扫描装置的驱动下,将每一个测量元表面的红外辐射转换成温度相关的电信号,送进数据采集装置作为数据采集,同步装置保证数据采集与回转窑的旋转保持严格同步,要让测量的温度值与测量元下确对应,测温仪由扫描起点扫描到终点后,即对窑胴体表面各测量元完成了一次逐元温度检测后,立即快速返回扫描起点,开始下一扫描周期的检测,数据经微机处理后,给出反映窑内状况的图像,文字信息,必要时可以发射声光报警。 为保证测量的精度,定要考虑物体的发射率,周围环境影响。红外测温仪要垂直对准窑胴体的表面,因因水汽,尘埃,烟雾的影响,要采取加装水冷,风吹扫装置。 意义: 1.生产过程中对产品的质量监控与监视,只要温度控制在设定值内,产品质量会有保证,过低过高都浪费能源; 2.在线安全的检测可以起到保护人以及设备安全; 3.降低能耗,节约能源。

在热处理行业中的应用

红外温度传感器可以广泛的应用于钢铁生产过程中,对生产过程的温度进行监控,对于提高生产率和产品质量至重要。红外温度传感器可精确地监视每个阶段,使钢材在整个加工过程中保持正确的冶金性能。红外温度传感器可以帮助钢铁生产过程中提高产品质量和生产率、降低能耗、增强人员安全、减少停机时间等。

红外温度传感器在钢铁加工和制造过程中主 要应用在连铸、热风炉、热轧、冷轧、棒材和线材轧制等过程中。

红外温度传感器传感头有数字和模拟输出两种,发射率可调。 —这对于发射率变化金属材料尤其重要。要生产出优质的产品和提高生产率,在炼钢的全过程中,精确测温是关键。连铸将钢水变为扁坯、板坯或方坯时,有可能出现减产或停机,需精确的实时温度监测,配以水嘴和流量的调节,以提供合适的冷却,从而确保钢坯所要求的冶金性能,最终获得优质产品、提高生产率和延长设备寿命。所选传感头的型号由生产过程和传感头安放位置决定。如安装在恶劣的环境中,视线受到灰尘、水雾或蒸汽的阻挡,光纤双色传感头和一体化 比色测温探头是最佳选择。 如需要铸坯边缘到边缘的温度分布图,可使用行扫描式红外测温仪。热轧的类型以及轧制过程中轧机的数量和类型随所加工的产品的类型而变化。 为了消除控制冷却区内蒸汽和灰尘对测温的影响,使用比色测温仪即使在目标的能量被阻挡95%的情况下仍可准确测温。在热轧过程中,通常冷却的钢板由卷取机卷成钢卷,以便运输至冷轧或其它设备处。为保持层流冷却区合理冷却,在卷取机处需要准确测温。该点的温度是至关重要的,因为其决定成卷前的钢材是否被合理的冷却。 否则不合理的冷却可能改变钢材的冶金性能以致造成废品。由于该点温度较低且钢材以 75~100 英尺/秒的速度在运行,因此就需要一种具有快速响应时间的低温系列的红外测温仪。有些轧钢厂成卷方法是在粗轧之后热钢成卷,运到工厂的 其它地方。然后热轧开卷,并送入精轧,经冷却,然后在卷取机上重新成卷。在热轧开卷之处,准确测量及监视温度非常重要,因为操作人员依此正确设置精轧 机轧辊的参数。经常在完成精轧冷却之后进行成卷,钢卷被运至本厂另一个厂区冷轧或运至其它工厂。冷轧使钢材成为更薄而更平整的产品,这时钢材是在大约94℃轧制或在环境温度下完成的。在各精轧机之间安装的测温仪使操作员根据检测的温度变化来对轧机进行调整。

在有些生产过程中,如高速轧制和振动的细棒或线材产品的温度测量是很困难的,高性能红外双色测温仪就可以解决这个问题。当目标偏离视场或局部受阻挡(灰尘、蒸汽、障碍物等)的情况下,双测温仪仍能精确测温。热风炉为高炉提供高温稳定的热风,为了安全操作,需监测热风炉拱顶温度。目前,我国热风炉拱顶温度测量大多采用热电偶。由于热电偶的使用环境(高温,高压)和结构的 限制,在温度波动大、振动及安装方式等诸多因素的影响下,造成热电偶寿命短、测量准确度不稳定、维护麻烦等缺点。一种专用于热风炉拱顶温度测量的红外测温保护装置可以取代热电偶测温方法以避免由此方法所带来的诸多缺点,用户使用结果证明该装置运行稳定、可靠、效果良好。

在电力方面的作用

1.连接器-电连接部位会逐渐放松连接器,由于反复的加热(膨胀)和冷却(收缩)产生热量、或者表面脏物、炭沉积和腐蚀。非接触式红外测温探头HE-155K可以迅速确定表明有严重问题的温升。

2.电动机-为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。3.电动机轴承-检查发热点,在出现的问题导致设备故障之前定期维修或者更换。 4.电动机线圈绝缘层-通过测量电动机线圈绝缘层的温度,延长它的寿命。

5.各相之间的测量-检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同。6.变压器-空冷器件的绕组可直接用非接触式红外测温探头HE-155K测量以查验过高的温度,任何热点都表明变压器绕组的损坏。

7.不间断电源-确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。 8.备用电池-检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。 9.镇流器-在镇流器开始冒烟之前检查出它的过热。

在生活中的具体应用

1.冰箱中的温度传感器。当冰箱内的温度高于设定值时,制冷系统自动启动;而当温度低于设定值时,制冷系统又会自动停止 冰箱温度的控制是通过温度传感器实现的。 2..汽车中的温度传感器。 车用传感器是汽车电子设备的重要组成部分,担负着信息收集的任务。在汽车电喷发动机系统、自动空调系统中,温度是需测量和控制的重要参数之一。发动机热状态的测量、气体及液体温度的测量,都需要温度传感器来完成。因而车用温度传感器是必不可少的。 由于发动机工作在高温(发动机表面温度可达150℃、排气歧管可达650℃)、振动(加速度30g)、冲击(加速度50g)、潮湿(100%RH,-40℃-120℃)以及蒸汽、盐雾、腐蚀和油泥污染的恶劣环境中,因此发动机控制系统用传感器耐恶劣环境的技术指标要比一般工业用传感器高1-2个数量级,其中最关键的是测量精度和可靠性。否则,由传感器带来的测量误差将最终导致发动机控制系统难以正常工作或产生故障。 温度传感器主要用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。温度用传感器有线绕电阻式、热敏电阻式和热偶电阻式三种主要类型。三种类型传感器各有特点,其应用场合也略有区别。线绕电阻式温度传感器的精度高,但响应特性差;热敏电阻式温度传感器灵敏度高,响应特性较好,但线性差,适应温度较低;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。 已实用化的产品有非接触式红外温度传感器(通用型0℃~500℃,精度1%,响应时间500ms;高温型300℃~1600℃,精度0.5%,响应时间100ms)等。

3..家用电器中的温度传感器。温度传感器广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机冰箱、冷柜、热水器、饮水机、洗碗机、消毒柜、洗衣机、烘干机以及中低温干燥箱、恒温箱等场合的温度测量与控制等)、医用/家用体温计,便携式非接触红外温度测温仪等等许多方面。

红外温度传感器的益处工业用红外温度传感器的益处

便捷!红外温度传感器可快速提供温度测量, 红外温度传感器为一体化集成式红外测温仪,传感器、光学系统与电子线路共同集成在金属壳体内;。另外由于红外测温仪坚实、轻巧,时代瑞资HE-155k易于安装,金属壳体上的标准螺纹可与安装部位快速连接;同时HE-155k还有各型选件(例如吹扫保护套、90°可调安装支架、数字显示表等)以满足各种工况场合要求。

精确!红外温度传感器的另一个先进之处是精确,通常精度都是1度以内。这种性能在你做预防性维护时特别重要,如监视恶劣生产条件和将导致设备损坏或停机的特别事件时。因为大多数的设备和工厂运转365天,停机等同于减少收入,要防止这样的损失,通过扫描所有现场电子设备-断路器、变压器、保险丝、开关、总线和配电盘以查找热点。用红外测温仪,你甚至可快速探测操作温度的微小变化,在其萌芽之时就可将问题解决,减少因设备故障造成的开支和维修的范围。

安全!安全是使用红外温度传感器最重要的益处。不同于接触测温仪,非接触测温是红外测温仪的最大的优点,使用户可以方便的测量难以接近或移动的目标,你可以在仪器允许的范围内读取目标温度。非接触温度测量还可在不安全的或接触测温较困难的区域进行,像蒸汽阀门或加热炉附近,他们不需接触测温时一不留神就烧伤手指的风险。高于头顶25英尺的供/回风口温度的精确测量就象在手边测量一样容易。HE-155k红外测温仪有激光瞄准,便于识别目标区域。有了它你的工作变的轻松多了。

出红外线。红外温度传感器通过红外探测器将物体辐射的功率信号转换成电信号后,成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。

温度传感器论文
《温度传感器论文.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档