人人范文网 其他工作总结

磁场知识点总结(精选多篇)

发布时间:2022-06-23 18:01:44 来源:其他工作总结 收藏本文 下载本文 手机版

推荐第1篇:磁场的知识点总结

磁场是物理教学中的一个重点,相关的知识点又有哪一些呢?下面就随小编一起去阅读磁场的知识点总结,相信能带给大家启发。

一、磁现象的电本质

1.罗兰实验

正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2.安培分子电流假说

法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

二、磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

三、磁场

磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

四、磁感线

1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点

(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极

(2)磁感线是闭合曲线

(3)磁感线不相交

(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强

3.几种典型磁场的磁感线

(1)条形磁铁

(2)通电直导线

a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;

b.其磁感线是内密外疏的同心圆

(3)环形电流磁场

a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。

b.所有磁感线都通过内部,内密外疏

(4)通电螺线管

a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;

b.通电螺线管的磁场相当于条形磁铁的磁场

五、磁通量

1.定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量。

2.定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)

3.单位:韦伯(Wb)

4.物理意义:表示穿过磁场中某个面的磁感线条数。

5.B=φ/S,所以磁感应强度也叫磁通密度

六、磁感应强度

1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度l的乘积Il的比值叫做通电导线处的磁感应强度。

2.定义式:

3.单位:特斯拉(T), 1T=1N/A.m

4.磁感应强度是矢量,其方向就是对应处磁场方向。

5.物理意义: 磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电流强度的大小、导线的长短等因素无关。

6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2面积上的磁感线条数跟那里的磁感应强度一致。

7.匀强磁场

(1) 磁感应强度的大小和方向处处相等的磁场叫匀强磁场

(2) 匀强磁场的磁感线是均匀且平行的一组直线。

七、安培力

1.磁场对电流的作用力叫安培力

2.安培力大小

安培力的大小等于电流I、导线长度L、磁感应强度B以及I和B间的夹角的正弦sinθ的乘积,即

F=BIlsinθ。

注意:公式只适用于匀强磁场。

3.安培力的方向

安培力的方向可利用左手定则判断

左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力方向。安培力方向一定垂直于B、I所确定的平面,即F一定和B、I垂直,但B、I不一定垂直。

推荐第2篇:恒定电流和磁场知识点总结

恒定电流

一、电流:电荷的定向移动行成电流。

1、产生电流的条件: (1)自由电荷; (2)电场;

2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;

注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;

3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A (3)常用单位:毫安mA、微安uA;

二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;

1、定义式:I=U/R;

2、推论:R=U/I;

3、电阻的国际单位时欧姆,用Ω表示;

三、闭合电路:由电源、导线、用电器、电键组成;

1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示;

2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;

3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;

4、电源的电动势等于内、外电压之和;

E=U内+U外 U外=RI E=(R+r)I

四、闭合电路的欧姆定律:

闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;

1、数学表达式:I=E/(R+r)

2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;

3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;

补充:

1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。

R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。

二极管:单向导电性;正极与电源正极相连。 2.串联特点:①总电压等于各部分电压之和。

②电流处处相等

③总电阻等于各部分电阻和

④总功率等于各部分功率和 3.并联特点:①总电压等于各支路电压

②总电流等于各支路电流和

③总电阻的倒数等于各支路电阻倒数之和

④总功率等于各支路功率和 4.伏安法:(1)限流式;(2)分压式。 5.电动势:(1)定义:非静电力对电荷所做的功与被移送的电荷量之比。

(2)物理意义:反映电源提供电能的本领。

(3)公式:E电动势=W其/q

E=U外+U内 (4)电动势只与电源性质有关

(5)电动势、内阻是电源性质的衡量指标。电动势以大为好,内阻以小为好。 6.闭合电路欧姆定律:

7.外阻与路端电压成正比。

8.测量电源电动势与内阻的方法:伏安法、伏箱法、安箱法。

9.外接、内接的原则:观察分压、分流效果哪个明显。小外偏小、大内偏大。

10.表头改装电压表须串联大电阻,表头改装电流表须并联小电阻

11.纯电阻电路:电能全部转化为热能的电路。

12.电源总功率:EI=IU外+IU内

13.I=Q/t=nqvS………………………S指电荷通过的截面;V指电荷定向移动的速度

磁场

一、磁场:

1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;

2、磁铁、电流都能能产生磁场;

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

1、磁感线是人们为了描述磁场而人为假设的线;

2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3、磁感线是封闭曲线;

三、安培定则:

1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL

2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3、磁感应强度的国际单位:特斯拉 T, 1T=1N/A·m

六、安培力:磁场对电流的作用力;

1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

2、定义式F=BIL(适用于匀强电场、导线很短时)

3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

七、磁铁和电流都可产生磁场;

八、磁场对电流有力的作用;

九、电流和电流之间亦有力的作用: (1) 同向电流产生引力; (2) 异向电流产生斥力;

十、分子电流假说:所有磁场都是由电流产生的;

一、磁性材料:能够被强烈磁化的物质叫磁性材料:

(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁; 十

二、磁场对运动电荷的作用力,叫做洛伦兹力

1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力F一定和B、V决定的平面垂直。 (2)洛仑兹力只改变速度的方向而不改变其大小 (3)洛伦兹力永远不做功。

2、洛伦兹力的大小

(1)当v平行于B时:F=0 (2)当v垂直于B时:F=q·v·B

推荐第3篇:高中物理磁场部分知识点总结

2016高中物理―磁场部分知识点总结

2016高中物理―磁场部分知识点总结

2016.03

一、磁场

磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。

电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。

磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。

与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。

1.地磁场

地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布

与条形磁铁周围的磁场分布情况相似。 3.指南针

放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角

地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。

说明:

①地球上不同点的磁偏角的数值是不同的。

②磁偏角随地球磁极缓慢移动而缓慢变化。

③地磁轴和地球自转轴的夹角约为11°。

二、磁场的方向

在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。

规定:

在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。

确定磁场方向的方法是:

将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。

磁体磁场:

可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。

1

2016高中物理―磁场部分知识点总结

电流磁场:

利用安培定则(也叫右手螺旋定则)判定磁场方向。

三、磁感线

在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。

(1)磁感线上每一点切线方向跟该点磁场方向相同。

(2)磁感线特点

(1)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。

(2)磁感线上每一点的切线方向就是该点的磁场方向。

(3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。

以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场

说明:

①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。

②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。

四、几种常见磁场

1通电直导线周围的磁场

(1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。

(2)磁感线分布如图所示:

2

2016高中物理―磁场部分知识点总结

说明:

①通电直导线周围的磁感线是以导线上各点为圆心的同心圆,实际上电流磁场应为空间图形。

②直线电流的磁场无磁极。

③磁场的强弱与距导线的距离有关,离导线越近磁场越强,离导线越远磁场越弱。

④图中的“×”号表示磁场方向垂直进入纸面,“·”表示磁场方向垂直离开纸面。 2.环形电流的磁场

(1)安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指的方向就是环形导线轴线上磁感线的方向。

(2)磁感线分布如图所示:

(3)几种常用的磁感线不同画法。

说明:

①环形电流的磁场类似于条形磁铁的磁场,其两侧分别是N极和S极。

②由于磁感线均为闭合曲线,所以环内、外磁感线条数相等,故环内磁场强,环外磁场弱。

③环形电流的磁场在微观上可看成无数根很短的直线电流的磁场的叠加。

3.通电螺线管的磁场

(1)安培定则:用右手握住螺线管,让弯曲时四指的方向跟电流方向一致,大拇指所指的方向就是螺线管中心轴线上的磁感线方向。

(2)磁感线分布:如图所示。

(3)几种常用的磁感线不同的画法。

3

2016高中物理―磁场部分知识点总结

说明:

①通电螺线管的磁场分布:外部与条形磁铁外部的磁场分布情况相同,两端分别为N极和S极。管内(边缘除外)是匀强磁场,磁场分布由S极指向N极。

②环形电流宏观上其实就是只有一匝的通电螺线管,通电螺线管则是由许多匝环形电流串联而成的。因此,通电螺线管的磁场也就是这些环形电流磁场的叠加。

③不管是磁体的磁场还是电流的磁场,其分布都是在立体空间的,要熟练掌握其立体图、纵截面图、横横面图的画法及转换。 4.匀强磁场

(1)定义:在磁场的某个区域内,如果各点的磁感应强度大小和方向都相同,这个区域内的磁场叫做匀强磁场。

(2)磁感线分布特点:间距相同的平行直线。

(3)产生:距离很近的两个异名磁极之间的磁场除边缘部分外可以认为是匀强磁场;相隔一定距离的两个平行放置的线圈通电时,其中间区域的磁场也是匀强磁场,如图所示:

五、磁感应强度

1、磁感应强度

为了表征磁场的强弱和方向,我们引入一个新的物理量:磁感应强度。描述磁场强弱和方向的物理量,用符号“B”表示。

通过精确的实验可以知道,当通电直导线在匀强磁场中与磁场方向垂直时,受到磁场对它的力的作用。对于同一磁场,当电流加倍时,通电导线受到的磁场力也加倍,这说明通电导线受到的磁场力与通过它的电流强度成正比。而当通电导线长度加倍时,它受到的磁场力也加倍,这说明通电导线受到的磁场力与导线长也成正比。对于磁场中某处来说,通电导线在该处受的磁场力F与通电电流强度I与导线长度L乘积的比值是一个恒量,它与电流强度和导线长度的大小均无关。在磁场中不同位置,这个比值可能各不相同,因此,这个比值反映了磁场的强弱。

(1)磁感应强度的定义

电流元

①定义:物理学中把很短一段通电导线中的电流I与导线长度L的乘积IL叫做电流元。

②理解:孤立的电流元是不存在的,因为要使导线中有电流,就必须把它连到电源上。

(2)磁场对通电导线的作用力

①内容:通电导线与磁场方向垂直时,它受力的大小与I和L的乘积成正比。

②公式:

说明:

①B为比例系数,与导线的长度和电流的大小都无关。 ②不同的磁场中,B的值是不同的。

③B应为与电流垂直的值,即式子成立条件为:B与I垂直。

4

2016高中物理―磁场部分知识点总结

磁感应强度

定义:在磁场中垂直于磁场方向的通电直导线,受到的安培力的作用F,跟电流I和导线长度L的乘积IL的比值,叫做通电直导线所在处的磁场的磁感应强度。

公式:B=F / IL。 (2)磁感应强度的单位

在国际单位制中,B的单位是特斯拉(T),由B的定义式可知:

1特(T)=

(3)磁感应强度的方向

磁感应强度是矢量,不仅有大小,而且有方向,其方向即为该处磁场方向。小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。B是矢量,其方向就是磁场方向,即小磁针静止时N极所指的方向。

2、磁通量

磁感线和电场线一样也是一种形象描述磁场强度大小和方向分布的假想的线,磁感线上各点的切线方向即该点的磁感应强度方向,磁感线的密疏,反映磁感应强度的大小。为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。

(1)磁通量的定义

穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。

物理意义:穿过某一面的磁感线条数。

(2)磁通量与磁感应强度的关系

按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。

若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。

当平面S与磁场方向平行时,φ=0。 公式

(1)公式:Φ=BS。

(2)公式运用的条件:

a.匀强磁场;b.磁感线与平面垂直。

(3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。

此时效面积”。 ,式中

即为面积S在垂直于磁感线方向的投影,我们称为“有

5

2016高中物理―磁场部分知识点总结

(3)磁通量的单位

在国际单位中,磁通量的单位是韦伯(Wb),简称韦。磁通量是标量,只有大小没有方向。

(4)磁通密度

磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量——磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,B =Φ/S。

六、磁场对电流的作用

1.安培分子电流假说的内容

安培认为,在原子、分子等物质微粒的内部存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。

2.安培假说对有关磁现象的解释

(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。

(2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。 磁现象的电本质

磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。

说明:

①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。但是现在,“假设”已成为真理。

②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是由运动的电荷产生的。 安培力

通电导线在磁场中受到的力称为安培力。 3.安培力的方向——左手定则

(1)左手定则

伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。

(2)安培力F、磁感应强度B、电流I三者的方向关系:

①直。

6 ,,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂

2016高中物理―磁场部分知识点总结

②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。

③若已知B、I方向,则

方向确定;但若已知B(或I)和

方向,则I(或B)方向不确定。

4.电流间的作用规律

同向电流相互吸引,异向电流相互排斥。 安培力大小的公式表述

(1)当B与I垂直时,F=BIL。

(2)当B与I成角时,

,是B与I的夹角。

和沿电流方向的

推导过程:如图所示,将B分解为垂直电流的,B对I的作用可用B

1、B2对电流的作用等效替代,

5.几点说明

(1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。

(2)B对放入的通电导线来说是外磁场的磁感应强度。

(3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式

仅适用于很短的通电导线(我们可以把这样的直线电流称为直线电流元)。

(4)式中的L为导线垂直磁场方向的有效长度。如图所示,半径为r的半圆形导线与磁场B垂直放置,当导线中通以电流I时,导线的等效长度为2 r,故安培力F=2BIr。

七、磁电式电流表 1.电流表的构造

磁电式电流表的构造如图所示。在蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以转动的铝框,在铝框上绕有线圈。铝框的转轴上装有两个螺旋弹簧和一个指针,线圈的两端分别接在这两个螺旋弹簧上,被测电流经过这两个弹簧流入线圈。

7

2016高中物理―磁场部分知识点总结

2.电流表的工作原理

如图所示,设线圈所处位置的磁感应强度大小为B,线圈长度为L,宽为d,匝数为n,当线圈中通有电流I时,安培力对转轴产生力矩:为:F=nBIL。故安培力的力矩大小为M1=nBILd。

,安培力的大小

当线圈发生转动时,不论通过电线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变。

当线圈转过角时,这时指针偏角为角,两弹簧产生阻碍线圈转动的扭转力矩为M2,对线圈,根据力矩平衡有M1=M2。

设弹簧材料的扭转力矩与偏转角成正比,且为M2=k。

由nBILd=k得。

其中k、n、B、I、d是一定的,因此有

由此可知:电流表的工作原理是指针的偏角的值可以反映I值的大小,且电流表刻度是均匀的,对应不同的在刻度盘上标出相应的电流值,这样就可以直接读取电流值了。

8

推荐第4篇:高二物理知识点:磁场

高二物理知识点:磁场

查字典物理网高中频道为各位同学整理了高二物理知识点:磁场,供大家参考学习。更多内容请关注查字典物理网高中频道。

一、磁场

磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

二、磁现象的电本质

1.罗兰实验

正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2.安培分子电流假说

法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

三、磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

四、磁感线

1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点

(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。

(2)磁感线是闭合曲线。

(3)磁感线不相交。

(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。

3.几种典型磁场的磁感线

(1)条形磁铁

(2)通电直导线

a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;

b.其磁感线是内密外疏的同心圆。

(3)环形电流磁场

a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。

b.所有磁感线都通过内部,内密外疏。

(4)通电螺线管 a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;

b.通电螺线管的磁场相当于条形磁铁的磁场。

以上就是小编为大家整理的高二物理知识点:磁场。

推荐第5篇:初三物理8.2 电流的磁场知识点总结

8.2 电流的磁场知识点

1. 物体能够吸引、、等物质的性质叫做 。具有

2. 磁体上磁性 的部分叫做磁极。条形磁铁 磁性最弱。

3. 同名磁极之间相互 ,异名磁极之间相互 。

4. 生力的作用。磁体之间的相互作用是通过 磁场 进行的。

5. 磁场是

6. 磁感线可以形象而方便地表示磁体周围各点的方向。磁体外部(周围)的磁感线,总是从磁体的极。而磁体内部的磁感线是从的磁感线连在一起,构成 封闭 的曲线。

7.。在磁体外部,磁极附近的磁感线最密,所以磁场最

8.地球是一个巨大的 N极在地理 极附近,S极在地理角的科学家是沈括 。

9. 1820年,丹麦的物理学家 在静止的磁针上方拉一根与磁针平行的导线,给导线通电时,磁针立刻偏转一个角度,这个实验表明:电流周围存在磁场(或 通电导线周围存在磁场)。我们把这一现象叫做 电流的磁效应。把这一实验叫做 奥斯特实验

10.通电螺线管对外相当于一个

11.磁场是客观 存在的 ;而磁感线是 不存在的。物理学中引入磁感线采用的科学研究方法是:理想模........型法。

12.确定通电螺线管磁极性质的定则叫做 , 其方法是:用 手握住通电螺线管,让弯曲的四指指向 电流方向,那么大拇指 的指向就是通电螺线管内部的磁场方向, (即 大拇指 所指的那端就是通电螺线管的极)。

推荐第6篇:高中物理知识点总结:专题复习三_电场、电路、磁场

专题复习三 电场、电路、磁场

一.本周教学内容:专题复习三 电场、电路、磁场 【典型例题】

例1.如图所示,P、Q是两个电量相等的正的点电荷,它们连线的中点是O,A,B是中垂线上的两点,OA<OB。用EA、EB、UA、UB分别表示A、B两点的场强和电势,则( )

A.EA一定大于EB,UA一定大于UB B.EA不一定大于EB,UA一定大于UB C.EA一定大于EB,UA不一定大于UB D.EA不一定大于EB,UA不一定大于UB 解析:等量同号点电荷电场分布,沿OA方向电势降低,场强先增大后减小,但由于不能确定场强最大值出现在哪儿,故选B。

例2.如图所示,虚线a、b和c是某静电场中的三个等势面,它们的电势分别是Ua、Ub、Uc,且Ua>Ub>Uc,一个带正电的粒子射入电场中,其运动轨迹如实线KLMN所示,由图可知( )

A.ab间电路通,cd间电路不通 B.ab间电路不通,bc间电路通 C.ab间电路通,bc间电路不通 D.bc间电路不通,cd间电路通 解析:Uad=220V,Ubd=220V,说明ab间通,由Uad=220V,Uac=220V,说明cd间通,由于无电流,故只能bc间断,选CD。

例4.如图所示,在粗糙水平面上固定一点电荷Q,在M点无初速度释放一带有恒定电量的小物块,小物块在Q的电场中运动到N点静止,则从M点运动到N点的过程中( )

A.小物块所受电场力逐渐减小 B.小物块具有的电势能逐渐减小 C.M点的电势一定高于N点的电势

D.小物块电势能变化量的大小一定等于克服摩擦力做的功

解析:小物块在库仑斥力和摩擦力作用下从M至N,先加速后减速,加速度变化是先减小后增大。但库仑斥力一直做正功,电势能减小。由于小物块远离Q,电场力逐渐减小。对小物块由M点至N点运用动能定理,W电-Wf=0-0,故W电=Wf。由于不知Q的电性,故M、N 点电势无法比较。选 ABD。

例5.目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内能直接转化为电能。如图所示为它的发电原理。将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,从整体来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块面积为S,相距为d的平行金属板与外电阻R相连构成一电路。设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流强度I及电流方向为( )

解析:

放电电流方向A→R→B,选D。

例6.在如图所示的电路中,当可变电阻R的阻值增大时( )

A.AB两点间的电压U增大 B.AB两点间的电压U减小 C.通过R的电流I增大 D.回路中的总电功率增大

解析:当可变电阻R增大时,R外增大故闭合电路总电流I减小,电源两端电压U端增

例7.如图所示,虚线框abcd内为一矩形匀强磁场区域,ab=2bc,磁场方向垂直纸面;实线框a\'b\'c\'d\'是一正方形导线框,a\'b\'与ab边平行,若将导线框匀速地拉离磁场区域,以W1表示沿平行于ab的方向拉出过程中外力所做的功,W2表示以同样速率沿平行于bc的方向拉出过程中外力所做的功,则()

例8.电磁流量计如图所示,用非磁性材料制成的圆管道,外加一匀强磁场。当管中导电液体流过此区域时,测出管道直径两端的电势差U,就可以得知管中液体的流量Q,即单位时间内流过管道横截面的液体的体积(m3/s)。若管道直径为D,磁感应强度为B,则Q=_____________。

A.保持K接通,减小两极板间的距离,则两极板间电场的电场强度减小 B.保持K接通,在两极板间插入一块介质,则极板上的电量减小 C.断开K,减小两极板间的距离,则两极板间的电势差减小 D.断开K,在两极板间插入一块介质,则两极板间的电势差增大

解析:K接通,电容器电压不变,减小板间距d,则电场强度增大。在两板插入介质,

例11.如图所示,光滑绝缘半球槽的半径为R,处在水平向右的匀强电场中,一质量为m的带电小球从槽的右端A处无初速沿轨道滑下,滑到最低位置B时,球对轨道的压力为2mg。

例12.汤姆生在测定阴极射线的荷质比时采用的方法是利用电场、磁场偏转法,即通过测出阴极射线在给定匀强电场和匀强磁场中穿过一定距离时的速度偏转角来达到测定其荷质比的目的。利用这种方法也可以测定其它未知粒子的荷质比,反过来,知道了某种粒子的荷质比,也可以利用该方法了解电场或者磁场的情况。

假设已知某种带正电粒子(不计重力)的荷质比(q/m)为k,匀强电场的电场强度为E,方向竖直向下。先让粒子沿垂直于电场的方向射入电场,测出它穿过水平距离L后的速度偏转角θ(θ很小,可认为θ≈tanθ)(见图甲);接着用匀强磁场代替电场,让粒子以同样的初速度沿垂直于磁场的方向射入磁场,测出它通过一段不超过1/4圆周长的弧

解析:

例13.如图所示,空间分布着场强为E的匀强电场和匀强磁场B

1、B2,且磁感强度大小B1=B2=B,磁场B2的区域足够大,电场宽度为L。一带电粒子质量为 m,电量为q。不计重力,从电场边缘A点由静止释放该粒子经电场加速后进入磁场,穿过磁场B1区域(图中虚线为磁场分界线,对粒子运动无影响。)进入磁场 B2,粒子能沿某一路径再次返回A点,然后重复上述运动过程。求:

(1)粒子进入磁场时的速度大小v。 (2)磁场B1的宽度D。

(3)粒子由A点出发至返回A点需要的最短时间t。

解析:

例14.如图所示为示波管的原理图,电子枪中炽热的金属丝可以发射电子,初速度很小,可视为零。电子枪的加速电压为U0,紧挨着是偏转电极YY\'和XX\',设偏转电极的极板长均为

求:(1)若只在YY\'偏转电极上加电压UYY\'=U1(U1>0),则电子到达荧光屏上的速度多大?

(2)在第(1)问中,若再在XX\'偏转电板上加上UXX\'=U2(U2>0),试在荧光屏上标出亮点的大致位置,并求出该点在荧光屏上坐标系中的坐标值。

解析:(1)

(2)电子在y电场中偏移距离:

根据相似三角形

同理在xx\'方向

根据相似三角形

(1)试分析说明带电小球被抛出后沿竖直方向和水平方向分别做什么运动。 (2)在图中画出带电小球从抛出点O到落与O在同一水平线上的O\'点的运动轨迹示意图。 (3)带电小球落回到O\'点时的动能。

解析:(1)竖直方向:重力向下,初速v0向上,做匀减速直线或上抛运动 水平:电场力向右,初速度为0,匀加速直线 (2)竖直:小球向上运动和向下运动时间相等。

【模拟试题】 卷I

14.下列说法正确的是(

A.1 kg 0℃水的内能比1kg0℃冰的内能小 B.气体膨胀,它的内能一定减少 C.已知阿伏加德罗常数、某气体的摩尔质量和密度,就可估算出该气体中分子的平均距离

D.对于一定质量的理想气体,当分子热运动变剧烈时,压强必变大

15.如图所示,一列简谐横波在介质中沿水平方向传播,实线是在 时的波形图,虚线是在

A.(1)(2) B.(3)(4) C.(1)(3) D.(2)(4)

16.如图所示,带箭头的直线表示电场线,虚线表示等势面,弯曲实线表示一个带电粒子在电场力作用下由A运动到B的径迹。粒子在A点的加速度为动能为 ,则( )

A.粒子带正电,

B.粒子带正电,

17.氢原子从第五能级跃迁到第三能级时氢原子辐射的光子的频率为

(3)氢原子从第二能级向第一能级跃迁时产生的光子,一定能使金属A产生光电效应现象 (4)氢原子从第五能级向第四能级跃迁时产生的光子,一定不能使金属A产生光电效应现象

在这四种判断中,正确的是( ) A.(1)(3) B.(2)(4)

C.(1)(2)(3) D.(1)(3)(4)

18.汽车在平直公路上以速度 匀速行驶,发动机功率为P。快进入闹市区时,司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶。设汽车行驶过程中所受阻力大小不变,则下面四个图象中,哪个图象正确表示了从司机减小油门开始,汽车的速度与时间的关系( )

19.如图所示,某空间存在着沿水平方向指向纸里的匀强磁场,磁场中固定着与水平面夹角为α的光滑绝缘斜面。一个带电小球,从斜面顶端由静止开始释放,经过时间t,小球离开了斜面。则有( )

A.液滴仍保持静止状态 B.液滴做自由落体运动 C.电容器上的带电量减小 D.电容器上的带电量增大

21.如图所示中的虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度ω匀速转动。设线框中感应电流方向以逆时针为正方向,那么在下图中能正确描述线框从下图所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是( )

卷II 22.(18分)

(1)在实验室中用螺旋测微器测量金属丝的直径,螺旋测微器的读数部分如下面左图所示,由图可知,金属丝的直径是______________。

(2)在“把电流表改装为电压表”的实验中,给出的器材有:

①电流表(量程为 ,内阻约200Ω);

②标准电压表(量程为2V); ③电阻箱(0~999Ω); ④滑动变阻器(0~200Ω);

⑤电位器(一种可变电阻,其原理与滑动变阻器相当)(0~47⑥电源(电动势2V,有内阻); ⑦电源(电动势6V,有内阻); ⑧电键两只;导线若干。

);

首先要用半偏法测定电流表的内阻。如果采用如图所示的电路测定电流表A的内电阻并且要想得到较高的精确度,那么从以上给的器材中,可变电阻;

C.观察 的阻值调至最大;

D.调节 竖直向上做匀加速直线运动( 为地面附近的重力加速度),已知地球半径为R。

(1)到某一高度时,测试仪器对平台的压力是刚起飞时压力的 求此时火箭离地面的高度h。

,(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为

,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G)

24.(18分)

如图所示,在求: ,不计粒子的重力和粒子间的相互作用。(1)带电粒子的比荷 与带电粒子在磁场中的运动时间 之比

25.(18分)

如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为;木板右端放着一个小滑块,小滑块质量为

(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?

(2)其它条件不变,若恒力

【试题答案】

14.C 15.C 16.D 17.A 18.C 19.C 20.D 21.A 22.(1)0.920mm (2)⑤,③,⑦

①C,②A,③D,④B,⑤E,⑥F 200,小 串,19800 23.(1)

(2)

(2)

25.(1)F>20N (2)

推荐第7篇:高三物理期末考试磁场思维导图知识点总结归纳

中高级教师1对1

中小学在线辅导http://www.daodoc.com

磁场部分是高中物理的必考点,也是重点,经常会与电学或者力学挂钩出大题。三好网一对一老师整理了磁场思维导图知识点,希望对大家有帮助。

一、磁现象的电本质

1.罗兰实验

正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 中高级教师1对1

中小学在线辅导http://www.daodoc.com

2.安培分子电流假说

法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

二、磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

三、磁场 中高级教师1对1

中小学在线辅导http://www.daodoc.com

磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

四、磁感线

1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点

(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极

(2)磁感线是闭合曲线

(3)磁感线不相交 中高级教师1对1

中小学在线辅导http://www.daodoc.com

(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强

3.几种典型磁场的磁感线

(1)条形磁铁

(2)通电直导线

a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;

b.其磁感线是内密外疏的同心圆

(3)环形电流磁场

a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。

b.所有磁感线都通过内部,内密外疏

(4)通电螺线管 中高级教师1对1

中小学在线辅导http://www.daodoc.com

a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;

b.通电螺线管的磁场相当于条形磁铁的磁场

五、磁通量

1.定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量。

2.定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)

3.单位:韦伯(Wb)

4.物理意义:表示穿过磁场中某个面的磁感线条数。

5.B=φ/S,所以磁感应强度也叫磁通密度

六、磁感应强度

1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度l的乘积Il的比值叫做通电导线处的磁感应强度。中高级教师1对1

中小学在线辅导http://www.daodoc.com

2.定义式:

3.单位:特斯拉(T), 1T=1N/A.m

4.磁感应强度是矢量,其方向就是对应处磁场方向。

5.物理意义: 磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电流强度的大小、导线的长短等因素无关。

6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2面积上的磁感线条数跟那里的磁感应强度一致。

7.匀强磁场

(1) 磁感应强度的大小和方向处处相等的磁场叫匀强磁场

(2) 匀强磁场的磁感线是均匀且平行的一组直线。

七、安培力

1.磁场对电流的作用力叫安培力 中高级教师1对1

中小学在线辅导http://www.daodoc.com

2.安培力大小

安培力的大小等于电流I、导线长度L、磁感应强度B以及I和B间的夹角的正弦sinθ的乘积,即

F=BIlsinθ。

注意:公式只适用于匀强磁场。

3.安培力的方向

安培力的方向可利用左手定则判断

左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力方向。安培力方向一定垂直于B、I所确定的平面,即F一定和B、I垂直,但B、I不一定垂直。

推荐第8篇:城市磁场

曼谷

都市缝隙的奇花异草

数年前的泰国经济走向,意志勇往直前,羡煞了周围脚步慢下来的其他国家。曼谷城市中心人气旺盛,虽然马路交通仍旧挤得水泄不通,上班人士与游客现在至少可以轻骑半空中的“捷运”而滑过万重山而去,不必像多年前停停复行行地在交通阻塞的汽车对中望天打卦。

公共交通脉络打通之后的“天使之城”四通八达,并且自信心骤增。当年的丑小鸭摇身一变,落水而出的是朵比无灿烂的百瓣莲花,国际大都会————最摩登的公寓大楼林立,最巨行的百货商场开业,最舒适的旅馆登场。

国际名牌在东京,上海往北绕一圈之后再度南下,但是泰国韬光养晦的数年间,还冒出了一群自己的设计师,现代化的泰式美学有当地的幽默与风格,可以直接批美国及水平。

重整过的曼谷市光鲜了不少,男的旧有的路边摊子并没有因此消失掉。早晨我们从旅店横街走至捷运的大马路,一路上擦身而过的大小摊子有卖面食的,卖烧鱼的,卖饭菜的,卖水果的,卖饮料的,卖糕点的,卖鲜花的,卖便当的,或随地摆摊,或架在轮子上推来,各就各位都有自己国定的顾客,专售早餐稀饭的摊位还在人行道上张开几张桌椅经营生意,路过的行人似乎毫不介意,这些已是生活的一部分。

从城市缝隙里自行生长出来的这些民间行业像奇花异草,生命力强,并由他们自己的个性,反应了亚洲社会各行各业有彼此包容的默契,更带独特的美德:卖西瓜黄梨的泰国小姐,不仅削水果在行,也熟悉午后太阳直射晒的方向,小摊位侧边撑开三四把不同色泽的阳伞,原本灰蒙蒙的闹市里,骤然冒出了几抹颜色,煞是好看。水果摊撑开的红阳伞,为繁忙的都市添加了几分娇美,却毫不造作。

流动性的贩卖队伍有自行遵守的岗位和时间表,无牌佳肴当地人都知晓。夜降了,店铺关了门的街巷,五香十色的小摊也随着退出来了,像极了舞台上的换景,气氛生动活泼。电线串联的电灯泡照亮了露天摊位的人流与活力——好比巴黎的露天咖啡店,坐在当中吃着热气腾腾的一万叉烧蟹肉汤面,非常有情调。

推荐第9篇:磁场说课稿

《磁场》说课稿

邮 编:426100

单位名称:湖南省祁阳县下马渡镇中心校 姓 名:周柏宇 职 称:中学二级 联系电话:13787657678

《磁场》是人教版义务教育课程标准实验教科书八年级物理第九章第二节的教学内容。因其内容是电磁学的基础和重点,再加之磁场这种物质看不见、摸不着,十分抽象,难于理解,成为教学中的一处难点。为了更好地帮助学生把握本节内容,我从以下五环节进行解说:

一、教材的分析和处理;

二、三维目标的确立及依据;

三、教学方法和手段的确立;

四、学法的指导;

五、教学流程。

一、教材的分析和处理:

磁场是继磁现象之后的内容,又是后面学习电生磁、电磁铁等知识的基础,起承上启下的作用。

小磁针放在磁体附近不再指南北,而会发生偏转→磁场(磁体周围存在一种看不见、摸不着的物质)→磁场的性质和方向→磁感线→地磁场→沈括发现磁偏角→科学世界《动物罗盘》.

教材的这样编排,突出了物理教学以实验探究为基础的特点,激发了学生的学习兴趣和求知欲望,遵循了循序渐进、由浅入深的原则.于是我通过小磁针偏转演示实验,还通过风吹彩条纸带,地理季风风向图等,引导学生由感性到理性,层层深入;此外还充分地利用教材中科学世界《动物罗盘》的内容来扩展学生的知识视野,沈括第一个发现磁偏角等知识来增强学生的民族自豪感.

二、三维目标的确立及依据

我知道八年级学生心理年龄特征:具有强烈的求知欲,好奇心强,喜欢动手进行实验;具有一定的探究能力和动手能力,但缺乏计划性和有目的地观察,概括能力还比较欠缺,再加之 “场”是物理学中一个重要概念,“磁场”看不见、摸不着,难以感觉到它的存在,所以学起来既抽象,又难以理解。基于这些学情的实际情况,我在吃透教材的基础上,认真制定本节课的

三维教学目标:

1、三维目标: (1)知识与技能

①知道磁体周围存在磁场。知道磁在日常生活、工业生产和科研中有着重要应用。

②知道磁感线可以用来形象地描述磁场,知道磁感线的方向是怎样规定的。

③知道地球周围有磁场以及地磁场的南、北极。 (2)过程与方法

①观察磁体之间的相互作用,感知磁场的存在。

②经历实验观察、总结类比的过程。学习从物理现象和实验中归纳规律,初步认识科学研究方法的重要性。

(3)情感、态度与价值观

①使学生经历分析、观察的过程中体会到学习探究的乐趣。

②通过了解我国古代对磁的研究方面取得的成就,增强学生的民族自豪感,进一步提高学习物理的兴趣。

2、重点与难点

重点:磁场的存在,用磁感线描述磁场的分布。

难点:如何认识磁场的存在,明确引入磁感线的实际意义。 3、教具

条形磁体、蹄形磁体、小磁针、磁感线平面演示模型和立体演示模型、地球仪、电风扇、薄彩带等。

三、教学方法和手段的确立

依照本节的教学任务,结合学科特点以及学生实际。我主要采取以下的教学方法:

1、实验探究教学法

通过实验探究和学生思考、回答相结合,培养学生的分析概括能力和思维能力。

2、类比法

把生活实际中认识“风”的方法、手段“迁移”到物理课堂上,通过磁场与风的类比进行教学,使学生认识磁场的存在,找到形成磁场概念的途径,

最大限度地参与到教学活动过程中来,得到科学思维方法的启迪。

四、学法指导

“教是为了不教,学是为了会学。”教给学生正确的学习方法比教给学生知识更为重要。根据学生好奇心强,求知欲旺的心理特征及学生认识事物的规律和思维特点,本节课主要指导学生掌握以下学习方法:

1、实验观察法

通过观察演示实验和自己动手实验相结合,学会透过实验现象,揭示事物本质的方法。

2、类比法

通过磁场与风的类比来认识磁场的存在,找到形成磁场概念的途径。

3、科学探究法

通过提出问题、猜想、观察收集证据、交流归纳形成共识等科学探的部分环节,学会遇到新问题时解决的方法。

五、教学流程

(一)引入新课

复习:磁体、磁极、磁极间的相互作用规律、磁体的指向性、磁化。 演示:小磁针静止时指南北,让学生判断教室的南北方向。把小磁针放在讲台上,磁针发生偏转,不再指南北。让学生猜测,教师接着揭开纸让学生观察原来周围有一个磁体。

从而产生疑问:磁体周围空间与其它空间有什么不同呢?引起学生的思考,从而导入课题。

(二)新课教学

1、磁场

结合刚才的现象归纳出磁场的概念——磁场周围存在一种看不见、摸不着物质。

让学生观察磁体周围的磁场是什么样子的,引发学生陷入学习困境。 教师启发,我们身边有哪些物质像磁场一样也是看不见摸不着的,但是我们却能很容易地对它进行研究——风。

演示实验:用薄彩带放在转动的风扇前,薄彩带随风飘扬。

如何形象地把这一现象描述出来呢?用什么方法更好些呢? 让学生根据个人的经验发表意见。(用带有箭头的曲线)

类比迁移:磁 体———————转动的风扇

↓ ↓

磁 场———————风

↓(推动) ↓(吹动) 小磁针——————薄彩带

风吹动薄彩带,磁场推动小磁针。磁场能够对小磁针发生影响,我们就可以通过小磁针来认识磁场。

通过类比让学生确信:看不见、摸不着的物质是有办法被认识的,我们可以根据它们所产生的效应来认识它们,从而达到渗透科学的思维方法,让学生感受到科学的力量。说明这种方法是物理研究常用的方法之一——转换法。

归纳得出磁场的基本性质:对放入其中的磁体产生力的作用。 演示实验:把小磁针放在不同点,发现磁针的指向不一样,说明磁场具有方向性。把不同的小磁针放在同一点上,发现小磁针的指向不变,说明磁场中某一点的方向具有唯一性。

物理学中规定磁场的方向:把能够自由转动的小磁针在磁场某点处静止时北极(N极)所指的方向规定为该点的磁场方向。

让学生通过实验确定磁体周围某些点的磁场方向并画下来。

2、磁感线

让学生利用他所画出各点磁场的方向并结合右图的实验现象以及描述风的图案,尝试通过作图的方式来描述磁场的分布情况.演示实验: ①把条形磁体放入杂乱的铁屑中,轻轻敲击后观察发生的现象,再对刚才的图形进行确认或修改。

②把条形磁体分别放入磁感线平面演示模型和磁感线立体演示模型中,让学生观察被磁化后的小铁片的分布排列情况,并对前面所画的图形进行必要的修正。

交流得出结论:⒈何为磁感线? ⒉磁感线的方向?⒊条形磁体的磁感线

再让学生用蹄形磁体、小磁针、铁屑等进行实验,动手画出蹄形磁体的

磁感线

教师结合刚才的实验现象说明磁感线是假想的物理模型,实际并不存在,引入的目的是为了方便、形象地描述磁场的分布情况,而且磁感线布满磁体周围的整个空间。

然后测评题让学生明确画磁感线时任意两条都不能相交。

师生共同归纳得出磁感线的特点:强调磁场是客观存在的,而磁感线是假想的,不存在的。

随堂测评:

⑴、根据小磁针的N、S极,在图中标出磁体的极性,并画出磁体周围的磁感线的分布。

⑶、根据小磁针的N、S极,在图中标出磁体的极性,并画出磁体周围的磁感线的分布。

3、地磁场

提出问题:磁针转动是磁场作用的结果,那么磁针在世界各地都能够指南北又是谁的磁场在施加作用呢?

学生讨论、交流:确认地球本身是个巨大的磁体,周围存在着磁场。 利用小磁针和地球仪,让学生根据小磁针静止时总是指南北的性质画出地磁场的磁感线。根据磁感线确定地磁场的S、N极。

实际上地理两极与地磁两极并不重合。地磁N极在地理南极附近,地磁S极在地理北极附近。这一现象现代科学界叫做“磁偏角”现象。我国宋代学者沈括是世界上第一个准确地记载了这一现象的人,比西方哥伦布的发现早了四百多年。结合时机增强学生的民族自豪感。

通过下面这段话来激发学生的探索欲望:地磁场是怎样产生的,这个问

5 ⑵、画出同名导名磁极之间的磁感线:

题科学家们研究了好久,但至今没有一个好的答案。同学们,让我们努力学习争取早一天把地磁场这个问题弄明白,把许许多多的未解之谜搞清楚。同学们,努力吧,未来属于你们。

组织学生阅读《动物罗盘》:鸽子和绿海龟都是靠地磁场进行导航的。

(三)结尾教学

小结:让学生说出本节课学习中所掌握的知识、方法及自身的感受,学生之间互相补充。教师视情况作必要补充。

布置作业:教材P67 第

1、4题

存疑伏笔:物体的磁化是通过磁场来发生的,在上一节学习时我们知道物体的磁化也可以通过电流的作用来获得,那么电流与磁场是否存在着某种联系呢?利用这个问题把课堂教学延伸到课后的学生自主探索,又为下一内容的教学做好了铺垫。

板书设计:

二 磁 场

一、磁场(客观存在):磁体周围存在的物质。

基本性质:磁场对放入其中的磁体产生力的作用。

方向(规定):把能够自由转动的小磁针在磁场某点处静止时N极所指的方向规定为该点的磁场方向。

二、磁感线(假想的):沿在磁场中静止的小磁针N极所指的方向画出一些带有箭头的曲线。

方向:从磁体N极出来,回到S极。

三、地磁场

1、地球是个巨大的磁体,周围存在着磁场。

2、地磁N极在地理南极附近,地磁S极在地理北极附近。

3、磁偏角——沈括。

四、研究物理的方法:转换法。

推荐第10篇:磁场教案

磁场教案

通过上节课的研究,我们已经对磁现象有了一定的了解,下面,请利用你们手中的小磁针辨别教室里的南北方向。看看哪面是北,哪面是南? 指定学生回答

问题:你是怎么判断的?

在上节课里,我们已经知道,磁体具有指向性,根据磁体的指向性,我们可以来辨别方向,指南针就是利用这个原理来工作的。

现在,我把手放在小磁针的旁边,注意,小磁针还继续指示南北方向吗?放这只呢? 问:这是为什么呢?

学生诧异,教师缓缓把手伸开, 问:大家发现了什么? 学生:发现手里有一个磁体。

教师:原来啊,就是这个磁体在作怪。

提出问题:小磁针在刚才的那个空间里能够指示南北,但到了磁体周围的空间里就不再指示南北了,这一现象说明磁体周围的空间与其他的空间有所不同,那么,有什么不同呢?带着这个问题,我们来学习今天的课程,《磁场》。 板书:二 磁场

大家阅读课本第一自然段,找出磁体周围的空间与其他空间的不同之处!

原来啊,在磁体周围的空间里存在着一种我们看不见,也摸不到的物质,我们叫它磁场。磁极间的相互作用,就是通过磁场施加的。磁场是真实存在,那么我们怎么就知道它是真实存在呢?请同学们思考这样一个问题:在现实生活中风也是看不见、摸不到的,大家请看!(拿出吹风机,插上电源,吹风。)我们怎么证实有风存在呢?

(学生把一个纸条放在风口上,纸条被吹动了。)这就说明了有风存在。

由这个现象,我们可以想到:磁场虽然看不见、摸不到,但我们可以像认识风一样借助其它物体来证实它的存在,借助什么呢? 小磁针

是我们可以把小磁针放在磁场中,通过观察小磁针的运动情况,来证实磁体周围存在磁场。 接下来大家做一个实验:将条形磁体的一端靠近小磁针,观察小磁针的运动情况.问:你们有什么发现?(询问不同组的情况)

教师总结:有的组出现了吸引现象,有的组出现了排斥现象,总之,小磁针受到了力的作用,

这就说明在磁体周围有磁场存在.教师:那为什么是借助小磁针这种具有磁性的物体而不是其他物体呢? 原来啊,磁场有一种基本性质

磁场的性质:磁场对放入其中的磁体有力的作用。

所以我们可以把小磁针放在磁场中,通过观察小磁针的运动情况,来认识磁体周围的磁场。像这种借助其它物体认识磁场的方法叫转换法。

老师:接下来,同学们,请跟我一起用转换法来研究磁场。请看实验要求: (1)把不同的小磁针放在磁场中的同一个点上,仔细观察; 老师:请同学们把你观察到的现象说出来。

生:把不同的小磁针放在磁场中同一个点上的时候,小磁针的指向是一样的。 (2)把同一个小磁针放在磁场中不同的点,仔细观察。

生:把同一个小磁针放在磁场中不同的点上的时候,小磁针的指向是不一样的。

老师:同学们观察得很认真,以上实验说明了磁场是有方向的,物理学中把小磁针静止时北极所指的方向定为那点的磁场方向。

通过以上研究,谁能给老师总结一下磁场方向的特点呢 学生总结结论:磁场中,同一位置磁场的方向相同

磁场中,不同位置磁场的方向相一般不同

老师:好,总结得很好,给点掌声,接下来,同学们请思考这样一个问题:既然磁场中各点的方向不一样,那么我们如何把磁场中各点的方向都能很好地描绘出来呢?

生:如果在磁场中的各点都放上小磁针,那么磁场中各点的磁场方向都能很好地描绘出来。 教师:很好,在磁场中的各点都放上小磁针,那么磁场中各点的磁场方向都能很好地描绘出来了。

教师:磁场是看不见,摸不到的物质,那么磁体周围的磁场是如何分布的呢?下面,来看一个实验。

边说边做:在桌面上放上一张纸,在纸的上面放上一块条形磁铁,在磁铁的上面放上一块玻璃板,在玻璃板上面,撒上一些铁粉。轻敲玻璃板,观察铁粉形状的变化) 老师:同学们,你们看,这些铁粉的形状是不是发生了变化? 老师:那为什么铁粉会形成这样的形状呢?

学生:放在磁场中的铁粉,它们被磁化后成了一个个的小磁体,这些小磁体之间由于同名磁极相互排斥,异名磁极之间相互吸引。所以就形成了这些美丽的图案。

这个图案就是条形磁体周围磁场分布的一个平面图,以上我们看到的是条形磁体的磁场分布,

接下来,我们换用蹄形磁铁重做实验。(学生动手做实验,教师展现)

师:同学们,由以上这样的图案大家想一想,我们怎么样就能把这些图案展现在书面上,用来体现磁场分布呢?

生:我们可以把图中的这些线画下来,用来描绘磁场。

师:这描绘出来的仅仅是磁场的形状,可是磁场是有方向的,那又该怎么办呢?

生:我们给这些线,画上方向。

师:怎么画?

学生:给这些线上标上箭头,表示方向 教师:那这个方向该怎么标呢?

生:在这些线上,我们放上小磁针,观察一下小磁针的指向。标出N极指向,

教师:哎,那这些线就形成了一条条带有箭头的曲线,箭头指向磁针N极指向,这样就可以形象地描绘磁场了,物理学中把这样的曲线叫做磁感线。 接下来,大家试着画出条形磁体和蹄形磁体的磁感线分布情况。 课件显示条形磁体、蹄形磁铁的磁感线分布情况

那同名磁极、异名磁极间的磁感线分布又是怎样的呢?大家试着把它画一下。

教师:磁感线是为了研究磁场的方便,人为引进的一种物理模型,实际上它并不存在。大家回忆一下,在前面的学习过程中,我们曾今也学习过一种人为引进的物理模型,那它是什么呢? 生:光线

教师:好,很好,就是光线,它也是人为引进的一种物理模型,实际上,光线并不存在。 好接下来,大家纵观磁体的磁感线分布,它有什么特点?? 生:磁体两极处的磁感线最密集,中间的最稀疏。 生:磁性最强,中间最弱

教师:那也就是说,磁感线不仅仅可以表示磁场分布,磁场方向,还可以表示磁场强弱。 除此之外,你还发现了什么?

生:磁体的磁感线总是从N极出发,回到S极。 生:磁感线永不相交,

生:磁感线布满磁体周围的整个空间,是立体的

教师:对,任何磁体的磁感线都是从N极出发,回到S极的。 教师总结磁感线的特点:

教师:通过以上研究,我们发现,磁针在磁场中受力转动是磁场的作用,那么,磁针在世界

各地都能指示南北方向又是谁的磁场在施加作用呢? 生:地球

教师:对,就是地球,地球是一个巨大的磁体,在它周围就有磁场,地球的磁场我们把它叫做地磁场。 板书:地磁场

阅读课本地磁场,回答以下问题 1地磁场的形状与生命相似?

2、地磁场的方向与地理的南北极位置有什么关系?

地理的南极是地磁场的北极,地理的北极是地磁的南极,地理的南北极与地磁的南北极不重合,他们之间有偏差。

3、我国最早提出地磁场存在的科学家是谁?

第11篇:总结知识点

1、How is Amy feeling now? 艾米现在觉得怎么样?

2、How are you feeling now?你现在觉得怎么样?I ’m feeling better now.我现在觉得好多了。

3、You are 1 year 你比我年长1岁。

4、I’m 我比你高得多。(much意思:很多、大量的。用于比较级)

5、How heavy are you! 你有多重?

6、How big are your feet?你的脚有多大?I wear size 18.我穿18号鞋。

7、How long are your legs? 你的腿有多长?(用____cm来答)

8、How large is your room?

9、How long is your bed?

10、tooth的复数是teech

11、The strow man has a headache.(稻草人头疼。注释:The strow man是单数,因此have 变成三单形式has)

12、What’s the matter with them /you.(他们(你们)怎么了。注释:with 是介词,所以后面的他们用宾格。)

13、Imy leg .我弄伤了我的腿。

14、My leg /nose (注释:leg nose 为单数,因此动词hurt 变三单形式为hurts)

15、How 注释:丽萨觉得怎么样?)

16、How are you ,sarah?( (注释:萨拉你好吗)

17、I failed the math test.(我数学考试不及格)

18、I’m sorry to hear that.(我听到那件事很难过)

19、We are going to have a football math.I’m very happy.20、I got a new picture-book.I’m very happy

21、My mother is going to buy me a new skirt.I’m very happy.22、I failed my Chinese test.I feel very sad.

23、My mom is going on a trip without me .I’m very sad.一般过去式短语、句子: ’s home 走着去迈克的家 我的风筝飞到了湖里

went to a park 去公园。 狗跳进了湖里 他游向它。

5分钟后

He returned the kite to me 他把风筝归还给我。

I was very grateful to him 我非常感谢他。

Like +动词ingLike to+动词原形

颜色心情:bluesad

redangry

blackvery very sad

pinkhealthy(健康)

第12篇:知识点总结

知识点总结

第2章 声现象

一、声音的产生:

1、声音是由物体的振动产生的;(人靠声带振动发声、蜜蜂靠翅膀下的小黑点振动发声,风声是空气振动发声,管制乐器考里面的空气柱振动发声,弦乐器靠弦振动发声,鼓靠鼓面振动发声,钟考钟振动发声,等等);

2、振动停止,发生停止;但声音并没立即消失(因为原来发出的声音仍在继续传播);

3、发声体可以是固体、液体和气体;

4、声音的振动可记录下来,并且可重新还原(唱片的制作、播放);

二、声音的传播

1、声音的传播需要介质;固体、液体和气体都可以传播声音;声音在固体中传播时损耗最少(在固体中传的最远,铁轨传声),一般情况下,声音在固体中传得最快,气体中最慢(软木除外);

2、真空不能传声,月球上(太空中)的宇航员只能通过无线电话交谈;

3、声音以波(声波)的形式传播;

注:由声音物体一定振动,有振动不一定能听见声音;

4、声速:物体在每秒内传播的距离叫声速,单位是m/s;声速的计算公式是v=;声音在空气中的速度为340m/s;

三、回声:声音在传播过程中,遇到障碍物被反射回来,再传入人的耳朵里,人耳听到反射回来的声音叫回声(如:高山的回声,夏天雷声轰鸣不绝,北京的天坛的回音壁)

1、听见回声的条件:原声与回声之间的时间间隔在0.1s以上(教师里听不见老师说话的回声,狭小房间声音变大是因为原声与回声重合);

2、回声的利用:测量距离(车到山,海深,冰川到船的距离);

四、怎样听见声音

1、人耳的构成:人耳主要由外耳道、鼓膜、听小骨、耳蜗及听觉神经组成;

2、声音传到耳道中,引起鼓膜振动,再经听小骨、听觉神经传给大脑,形成听觉;

3、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋);

4、骨传导:不借助鼓膜、靠头骨、颌骨传给听觉神经,再传给大脑形成听觉(贝多芬耳聋后听音乐,我们说话时自己听见的自己的声音);骨传导的性能比空气传声的性能好;

5、双耳效应:生源到两只耳朵的距离一般不同,因而声音传到两只耳朵的时刻、强弱及步调亦不同,可由此判断声源方位的现象(听见立体声);

五、声音的特性包括:音调、响度、音色;

1、音调:声音的高低叫音调,频率越高,音调越高(频率:物体在每秒内振动的次数,表示物体振动的快慢,单位是赫兹,振动物体越大音调越低;)

2、响度:声音的强弱叫响度;物体振幅越大,响度]越强;听者距发声者越远响度越弱;

3、音色:不同的物体的音调、响度尽管都可能相同,但音色却一定不同;(辨别是什么物体法的声靠音色)

注意:音调、响度、音色三者互不影响,彼此独立;

六、超声波和次声波

1、人耳感受到声音的频率有一个范围:20Hz~20000Hz,高于20000Hz叫超声波;低于20Hz叫次声波;

2、动物的听觉范围和人不同,大象靠次声波交流,地震、火山爆发、台风、海啸都要产生次声波;

七、噪声的危害和控制

1、噪声:(!)从物理角度上讲物体做无规则振动时发出的声音叫噪声;(2)从环保的角度上讲,凡是妨碍人们正常学习、工作、休息的声音以及对人们要听的声音产生干扰的声音都是噪声;

2、乐音:从物理角度上讲,物体做有规则振动发出的声音;

3、常见招生来源:飞机的轰鸣声、汽车的鸣笛声、鞭炮声、金属之间的摩擦声;

4、噪声的等级:表示声音强弱的单位是分贝。符号dB,超过90dB会损害健康;0dB指人耳刚好能听见的声音;

5、控制噪声:(1)在生源处较弱(安消声器);(2)在传播过程中(植树。隔音墙)(3)在人耳处减弱(戴耳塞)

八、声音的利用

1、超声波的能量大、频率高用来打结石、清洗钟表等精密仪器;超声波基本沿直线传播用来回声定位(蝙蝠辨向)制作(声纳系统)

2、传递信息(医生查病时的“闻”,打B超,敲铁轨听声音等等)

3、声音可以传递能量(飞机场帮边的玻璃被震碎,雪山中不能高声说话,一音叉振动,未接触的音叉振动发生)

第3章 物态变化

一、温度:

温度:温度是用来表示物体冷热程度的物理量;

注:热的物体我们说它的温度高,冷的物体我们说它的温度低,若两个物体冷热程度一样,它们的温度亦相同;我们凭感觉判断物体的冷热程度一般不可靠;

2、摄氏温度:

(1)温度常用的单位是摄氏度,用符号“C”表示;

(2)摄氏温度的规定:把一个大气压下,冰水混合物的温度规定为0℃;把一个标准大气压下沸水的温度规定为100℃;然后把0℃和100℃之间分成100等份,每一等份代表1℃。

(3)摄氏温度的读法:如“5℃”读作“5摄氏度”;“-20℃”读作“零下20摄氏度”或“负20摄氏度”

二、温度计

1、常用的温度计是利用液体的热胀冷缩的原理制造的;

温度计的构成:玻璃泡、均匀的玻璃管、玻璃泡总装适量的液体(如酒精、煤油或水银)、刻度;

温度计的使用:

使用前要:观察温度计的量程、分度值(每个小刻度表示多少温度),并估测液体的温度,不能超过温度计的量程(否则会损坏温度计)

测量时,要将温度计的玻璃泡与被测液体充分接触,不能紧靠容器壁和容器底部;

读数时,玻璃泡不能离开被测液、要待温度计的示数稳定后读数,且视线要与温度计中夜柱的上表面相平。

三、体温计:

用途:专门用来测量人体温的;

测量范围:35℃~42℃;分度值为0.1℃; 体温计读数时可以离开人体;

体温计的特殊构成:玻璃泡和直的玻璃管之间有极细的、弯的细管(缩口);

物态变化:物质在固、液、气三种状态之间的变化;固态、液态、气态在一定条件下可以相互转化。物质以什么状态存在跟物体的温度有关。

四、熔化和凝固:物质从固态变为液态叫熔化;从液态变为固态叫凝固。 物质熔化时要吸热;凝固时要放热; 熔化和凝固是可逆的两物态变化过程; 固体可分为晶体和非晶体;

晶体:熔化时有固定温度(熔点)的物质;非晶体:熔化时没有固定温度的物质; 晶体和非晶体的根本区别是:晶体有熔点(熔化时温度不变继续吸热),非晶体没有熔点(熔化时温度升高,继续吸热);(熔点:晶体熔化时的温度);

晶体熔化的条件: 温度达到熔点;(2)继续吸收热量; 晶体凝固的条件:(1)温度达到凝固点;(2)继续放热; 同一晶体的熔点和凝固点相同;

2 晶体的熔化、凝固曲线:

注意:

1、物质熔化和凝固所用时间不一定相同,这与具体条件有关;

2、热量只能从温度高的物体传给温度低的物体,发生热传递的条件是:物体之间存在温度差;

五、汽化和液化

1、物质从液态变为气态叫汽化;物质从气态变为液态叫液化;

2、汽化和液化是互为可逆的过程,汽化要吸热、液化要放热;

3、汽化可分为沸腾和蒸发;

(1)蒸发:在任何温度下都能发生,且只在液体表面发生的缓慢的汽化现象;

注:蒸发的快慢与(A)液体温度有关:温度越高蒸发越快(夏天洒在房间的水比冬天干的快;在太阳下晒衣服快干);(B)跟液体表面积的大小有关,表面积越大,蒸发越快(凉衣服时要把衣服打开凉,为了地下有积水快干,要把积水扫开);(C)跟液体表面空气流动的快慢有关,空气流动越快,蒸发越快(凉衣服要凉在通风处,夏天开风扇降温);

沸腾:在一定温度下(沸点),在液体表面和内部同时发生的剧烈的汽化现象; 注:(A)沸点:液体沸腾时的温度叫沸点;(B)不同液体的沸点一般不同;(C)液体的沸点与压强有关,压强越大沸点越高(高压锅煮饭)(D)液体沸腾的条件:温度达到沸点还要继续吸热;

沸腾和蒸发的区别和联系:

(A)它们都是汽化现象,都吸收热量;(B)沸腾只在沸点时才进行;蒸发在任何温度下都能进行;(C)沸腾在液体内、外同时发生;蒸发只在液体表面进行;(D)沸腾比蒸发剧烈;

(4)蒸发可致冷:夏天在房间洒水降温;人出汗降温;发烧时在皮肤上涂酒精降温; (5)不同物体蒸发的快慢不同:如酒精比水蒸发的快;

4、液化的方法:(1)降低温度;(2)压缩体积(增大压强,提高沸点)如:氢的储存和运输;液化气;

六、升华和凝华

1、物质从固态直接变为气态叫升华;物质从气态直接变为固态叫凝华,升华吸热,凝华放热;

2、升华现象:樟脑球变小;冰冻的衣服变干;人工降雨中干冰的物态变化;

3、凝华现象:雪的形成;北方冬天窗户玻璃上的冰花(在玻璃的内表面)

七、云、霜、露、雾、雨、雪、雹、“白气”的形成

1、温度高于0℃时,水蒸汽液化成小水滴成为露;附在尘埃上形成雾;

2、温度低于0℃时,水蒸汽凝华成霜;

3、水蒸汽上升到高空,与冷空气相遇液化成小水滴,就形成云,大水滴就是雨;云层中还有大量的小冰晶、雪(水蒸汽凝华而成),小冰晶下落可熔化成雨,小水滴再与0℃冷空气流时,凝固成雹;

4、“白气”是水蒸汽与冷液化而成的

第4章

光的传播

一、光源:能发光的物体叫做光源。光源可分为

1、冷光源(水母、节能灯),热光源(火把、太阳);

2、天然光源(水母、太阳),人造光源(灯泡、火把);

3、生物光源(水母、斧头鱼),非生物光源(太阳、灯泡)

二、光的传播

1、光在同种均匀介质中沿直线传播;

2、光的直线传播的应用:

(1)小孔成像:像的形状与小孔的形状无关,像是倒立的实像(树阴下的光斑是太阳的像) (2)取直线:激光准直(挖隧道定向);整队集合;射击瞄准;

(3)限制视线:坐井观天(要求会作有水、无水时青蛙视野的光路图);一叶障目; (4)影的形成:影子;日食、月食(要求知道日食时月球在中间;月食时地球在中间)

3、光线:常用一条带有箭头的直线表示光的径迹和方向;

三、光速

1、真空中光速是宇宙中最快的速度;

2、在计算中,真空或空气中光速c=3×108m/s;

3、光在水中的速度约为c,光在玻璃中的速度约为c;

4、光年:是光在一年中传播的距离,光年是长度单位;1光年≈9.46×1015m;

注:声音在固体中传播得最快,液体中次之,气体中最慢,真空中不传播;光在真空中传播的最快,空气中次之,透明液体、固体中最慢(二者刚好相反)。光速远远大于声速,(如先看见闪电再听见雷声,在100m赛跑时声音传播的时间不能忽略不计,但光传播的时间可忽略不计)。

四、光的反射:

1、当光射到物体表面时,有一部份光会被物体反射回来,这种现象叫做光的反射。

2、我们看见不发光的物体是因为物体反射的光进入了我们的眼睛。

3、反射定律:在反射现象中,反射光线、入射光线、法线都在同一个平面内;反射光线、入射光线分居法线两侧;反射角等于入射角。

(1)、法线:过光的入射点所作的与反射面垂直的直线;

(2)入射角:入射光线与法线的夹角;反射角:法射光线与法线间的夹角。(入射光线与镜面成θ角,入射角为90°-θ,反射角为90°-θ)

(3)入射角与反射角之间存在因果关系,反射角总是随入射角的变化而变化而变化,因而只能说反射角等于入射角,不能说成入射角等于反射角。(镜面旋转θ,反射光旋转2θ)

(4)垂直入射时,入射角、反射角等于多少?答:垂直入射时,入射角为0度,反射角亦等于0度。

4、反射现象中,光路是可逆的(互看双眼)

5、利用光的反射定律画一般的光路图(要求会作): (1)、确定入(反)射点:入射光线和反射面或反射光线和反射面或入射光线和反射光线的交点即为入射(反射)点

(2)、根据法线和反射面垂直,作出法线。 (3)、根据反射角等于入射角,画出入射光线或反射光线

5、两种反射:镜面反射和漫反射。

(1)镜面反射:平行光射到光滑的反射面上时,反射光仍然被平行的反射出去; (2)漫反射:平行光射到粗糙的反射面上,反射光将沿各个方向反射出去;

(3)镜面反射和漫反射的相同点:都是反射现象,都遵守反射定律;不同点是:反射面不同(一光滑,一粗糙),一个方向的入射光,镜面反射的反射光只射向一个方向(刺眼);而漫反射射向四面八方;(下雨天向光走走暗处,背光走要走亮处,因为积水发生镜面反射,地面发生漫反射,电影屏幕粗糙、黑板要粗糙是利用漫反射把光射向四处,黑板上“反光”是发生了镜面反射)

五、平面镜成像

1、平面镜成像的特点:像是虚像,像和物关于镜面对称(像和物的大小相等,像和物对应点的连线和镜面垂直,到镜面的距离相等;像和物上下相同,左右相反(镜中人的左手是人的右手,看镜子中的钟的时间要看纸张的反面,物体远离、靠近镜面像的大小不变,但亦要随着远离、靠近镜面相同的距离,对人是2倍距离)。

2、水中倒影的形成的原因:平静的水面就好像一个平面镜,它可以成像(水中月、镜中花);对实物的每一点来说,它在水中所成的像点都与物点“等距”,树木和房屋上各点与水面的距离不同,越接近水面的点,所成像亦距水面越近,无数个点组成的像在水面上看就是倒影了。(物离水面多高,像离水面就是多远,与水的深度无关)。

3、平面镜成虚像的原因:物体射到平面镜上的光经平面镜反射后的反射光线没有会聚二是发散的,这些光线的反向延长线(画时用虚线)相交成的像,不能呈现在光屏上,只能通过人眼观察到,故称为虚像(不是由实际光线会聚而成)

注意:进入眼睛的光并非来自像点,是反射光。要求能用平面镜成像的规律(像、物关于镜面对称)和平面镜成像的原理(同一物点发出的光线经反射后,反射光的反向延长线交于像点)作光路图(作出物、像、反射光线和入射光线);

六、凸面镜和凹面镜

1、以球的外表面为反射面叫凸面镜,以球的内表面为反射面的叫凹面镜;

2、凸面镜对光有发散作用,可增大视野(汽车上的观后镜);凹面镜对光有会聚作用(太阳灶,利用光路可逆制作电筒)

七、光的折射

1、光从一种介质斜射入另一种介质时,传播方向发生偏折。

2、光在同种介质中传播,当介质不均匀时,光的传播方向亦会发生变化。

3、折射角:折射光线和法线间的夹角。

八、光的折射定律

1、在光的折射中,三线共面,法线居中。

2、光从空气斜射入水或其他介质时,折射光线向法线方向偏折;光从水或其它介质斜射入空气中时,折射光线远离法线(要求会画折射光线、入射光线的光路图)

3、斜射时,总是空气中的角大;垂直入射时,折射角和入射角都等于0°,光的传播方向不改变

4、折射角随入射角的增大而增大

5、当光射到两介质的分界面时,反射、折射同时发生

6、光的折射中光路可逆。

九、光的折射现象及其应用

1、生活中与光的折射有关的例子:水中的鱼的位置看起来比实际位置高一些(鱼实际在看到位置的后下方);由于光的折射,池水看起来比实际的浅一些;水中的人看岸上的景物的位置比实际位置高些;夏天看到天上的星斗的位置比星斗实际位置高些;透过厚玻璃看钢笔,笔杆好像错位了;斜放在水中的筷子好像向上弯折了;(要求会作光路图)

2、人们利用光的折射看见水中物体的像是虚像(折射光线反向延长线的交点)

十、光的色散:

1、太阳光通过三棱镜后,依次被分解成红、橙、黄绿、蓝、靛、紫七种颜色,这种现象叫色散;

2、白光是由各种色光混合而成的复色光;

3、天边的彩虹是光的色散现象;

4、色光的三原色是:红、绿、蓝;其它色光可由这三种色光混合而成,白光是红、绿、蓝三种色光混合而成的;世界上没有黑光;颜料的三原色是品红、青、黄,三原色混合是黑色;

5、透明体的颜色由它透过的色光决定(什么颜色透过什么颜色的光);不透明体的颜色由它反射的色光决定(什么颜色反射什么颜色的光,吸收其它颜色的光,白色物体发射所有颜色的光,黑色吸收所有颜色的光)

例:一张白纸上画了一匹红色的马、绿色的草、红色的花、黑色的石头,现在暗室里用绿光看画,会看见黑色的马,黑色的石头,还有黑色的花在绿色的纸上,看不见草(草、纸都为绿色)

十一、看不见的光:

太阳光谱:红、橙、黄、绿、蓝、靛、紫这七种色光按顺序排列起来就是太阳光谱;

(从左往右其波长逐渐减小;散射逐渐增强;人眼辨别率依次降低)应用傍晚太阳是红的,晴天天是蓝的,汽车的雾灯是黄光。

红外线:红外线位于红光之外,人眼看不见;

一切物体都能发射红外线,温度越高辐射的红外线越多;(打仗用的夜视镜) 红外线穿透云雾的本领强(遥控探测) 红外线的主要性能是热作用强;(加热)

紫外线:在光谱上位于紫光之外,人眼看不见; 紫外线的主要特性是化学作用强;(消毒、杀菌) 紫外线的生理作用,促进人体合成维生素D(小孩多晒太阳),但过量的紫外线对人体有害(臭氧可吸收紫外线,我们要保护臭氧层)

荧光作用;(验钞)

地球上天然的紫外线来自太阳,臭氧层阻挡紫外线进入地球;

第5章

透镜及其应用

一、透镜、至少有一个面是球面的一部分的透明玻璃元件(要求会辨认)

1、凸透镜、中间厚、边缘薄的透镜,如:远视镜片,照相机的镜头、投影仪的镜头、放大镜等等;

2、凹透镜、中间薄、边缘厚的透镜,如:近视镜片;

二、基本概念:

1、主光轴:过透镜两个球面球心的直线,用CC/表示;

2、光心:同常位于透镜的几何中心;用“O”表示。

3、焦点:平行于凸透镜主光轴的光线经凸透镜后会聚于主光轴上一点,这点叫焦点;用“F”表示。

4、焦距:焦点到光心的距离(通常由于透镜较厚,焦点到透镜的距离约等于焦距)焦距用“f”表示。如下图:

注意:凸透镜和凹透镜都各有两个焦点,凸透镜的焦点是实焦点,凹透镜的焦点是虚焦点;

三、三条特殊光线(要求会画):

1、过光心的光线经透镜后传播方向不改变,如下图:

2、平行于主光轴的光线,经凸透镜后经过焦点;经凹透镜后向外发散,但其反向延长线必过焦点(所以凸透镜对光线有会聚作用,凹透镜对光有发散作用)如下图:

3、经过凸透镜焦点的光线经凸透镜后平行于主光轴;射向异侧焦点的光线经凹透镜后平行于主光轴;如下图:

四、粗略测量凸透镜焦距的方法:使凸透镜正对太阳光(太阳光是平行光,使太阳光平行于凸透镜的主光轴),下面放一张白纸,调节凸透镜到白纸的距离,直到白纸上光斑最小、最亮为止,然后用刻度尺量出凸透镜到白纸上光斑中心的距离就是凸透镜的焦距。

五、辨别凸透镜和凹透镜的方法:

1、用手摸透镜,中间厚、边缘薄的是凸透镜;中间薄、边缘厚的是凹透镜;

2、让透镜正对太阳光,移动透镜,在纸上能的到较小、较亮光斑的为凸透镜,否则为凹透镜;

3、用透镜看字,能让字放大的是凸透镜,字缩小的是凹透镜;

六、照相机:

1、镜头是凸透镜;

2、物体到透镜的距离(物距)大于二倍焦距,成的是倒立、缩小的实像;

投影仪:

1、投影仪的镜头是凸透镜;

2、投影仪的平面镜的作用是改变光的传播方向;注意:照相机、投影仪要使像变大,应该让透镜靠近物体,远离胶卷、屏幕。

3、物体到透镜的距离(物距)小于二倍焦距,大于一倍焦距,成的是倒立、放大的实像;

八、放大镜:

1、放大镜是凸透镜;

2、放大镜到物体的距离(物距)小于一倍焦距,成的是放大、正立的虚像;注:要让物体更大,应该让放大镜远离物体;

探究凸透镜的成像规律:器材:凸透镜、光屏、蜡烛、光具座(带刻度尺) 注意事项:“三心共线”:蜡烛的焰心、透镜的光心、光屏的中心在同一直线上;又叫“三心等高”

凸透镜成像的规律(要求熟记、并理解):

成像条件物距(u) 成像的性质 像距(v) 应用

U﹥2f 倒立、缩小的实像 F﹤v﹤2f 照相机

U=2f 倒立、等大的实像 v=2f

F﹤u﹤2f 倒立、放大的实像 v﹥2f 投影仪

U=f 不成像

0﹤u﹤f 正立、放大的虚像 V﹥f 放大镜

口诀:一焦分虚实、二焦分大小;虚像同侧正,实像异侧倒;物远实像小,虚像大。

注意:

1、实像是由实际光线会聚而成,在光屏上可呈现,可用眼睛直接看,所有光线必过像点;

2、虚像不能在光屏上呈现,但能用眼睛看,由光线的反向延长线会聚而成;注意:凹透镜始终成缩小、正立的虚像;

十一、眼睛的晶状体相当于凸透镜,视网膜相当于光屏(胶卷);

十二、近视眼看不清远处的物体,远处的物体所成像在视网膜前,晶状体曲度过大,需戴凹透镜调节;

十三、远视眼看不清近处的物体,近处的物体所成像在视网膜后面,晶状体曲度过小,需戴凸透镜调节;

显微镜和望远镜

十四、显微镜由目镜和物镜组成,物镜、目镜都是凸透镜,它们使物体两次放大;

十五、望远镜由目镜和物镜组成,物镜使物体成缩小、倒立的实像,目镜相当于放大镜,成放大的像;

第13篇:知识点总结

一、计算机网络概述:

计算机网络通常定义为:将地理位置不同并且具有独立功能的多个计算机系统通过通信线路和通信设备相互连接在一起,由网络操作系统、网络协议软件进行管理,以实现资源共享和相互通信的系统。

1、通信子网包括传输线路、网络设备和网络控制中心等硬软件设施

2、资源子网包括接入网络的用户主机,以及面向应用的外设(如终端)、软件和可共享的数据(如公共数据库)等

3、计算机网络分为通信子网和资源子网

4、根据网络的传输技术分类:分为点对点式网络和广播式网络。

5、根据覆盖范围分类:局域网、城域网、广域网。

6、计算机网络的拓扑结构:星型、环型、总线型、总线-星型、树型、网状型。

7、网络的传输介质:同轴电缆、双绞线、光纤、微波。

8、数据通信是指在两点或多点之间以二进制形式进行信息传输与交换的过程。

9、OSI(协议)参考模型:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。

10、TCP/IP协议分层:网络接口层、网际层、传输层、应用层。

11、局域网的组成:

1、服务器

2、工作站

3、网络接口设备

12、局域网常用的拓扑结构有总线、环形、星形三种

13、LAN中使用的传输方式有基带和宽带两种。

14、虚拟局域网:VLNA , 无线局域网:WLAN

15、端口:

FTP:定义了文件传输协议,使用21端口

Telnet:它是一种用于远程登陆的端口

SMTP:定义了简单邮件传送协议,服务器开放的是25号端口

POP3:它是和SMTP对应,POP3用于接收邮件,所用的是110端口

HTTP:超文本传输协议,80号端口

DNS:用于域名解析服务,53号端口

SNMP:简单网络管理协议,使用161号端口

16、网络协议的定义:为计算机网络中进行数据交换而建立的规则、标准或约定的集合。

17、数据处理:指对各种数据进行收集、存储、加工和传播的一系列活动总和。

18、数据管理:指对数据进行分类、组织、编码、存储、检索和维护,它是数据处理的中心问题。

19、数据库系统是指在计算机系统中引入数据库后的系统,一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员(DBA)和用户构成

第14篇:学习高中物理“磁场”教学研究的总结

学习高中物理“磁场”教学研究的总结

通过学习高中物理“磁场”教程,使我更加清楚的认识了场是电磁学的核心概念之一,而磁场中的相关概念和规律又是电磁学中重要的知识,也是高中物理的教与学的难点。因此,探索有效地教学策略显得非常重要。

通过学习高中物理“磁场”教程,下面我谈谈自己的几点看法:

1、注重循序渐进,先宏观后微观,注重知识的生成。比如,学习“磁感应强度的几种定义” 时,(1) 用一段通电直导线受到的磁场力来定义:通电直导线在磁场中受到力的作用,这种力叫做安培力。这种定义方法是用一小段通电导线作为检测物体,安培力能够演示,形象直观,便于学生接受。但是这种方法确定的是一小段通电导线所在范围内磁感应强度 B 的平均值,只有对匀强磁场,给出的才是各点的 B 。(2) 用通电矩形线圈受到的力矩来定义:由于线圈等效于一个小磁针,线圈在磁场中受到的作用力相当于小磁针受到的作用力。所以用线圈作为检测物体来研究磁场,与历史上对磁场的认识过程比较一致,但是由于线圈总有一定的大小, 所确定的也是线圈范围内的磁感应强度 B 的平均值,不能严格地确定磁场中各个点的 B 。(3) 用运动电荷受到的磁场力来定义 :运动电荷在磁场中要受到力的作用,这个力叫做洛伦兹力。通过磁场对运动电荷的作用力来引入磁感应强度 B。但这种定义方法比较抽象,要求学习者有较高的抽象思维能力和推理能力。在这个过程中注意了先简单、直观、易操作理解,逐步加深,有点到面,有特殊到一般,从宏观到微观,完全符合学生的认知规律。让学生不仅学到了新的知识,而且培养了学生的抽象思维能力和推理能力。

2、注意物理学思想与方法的渗透。许多物理定论都是科学家们凭着勇敢大胆的假设猜想,再通过一次又一次的实验,去发现、创新的;在表象、概念的基础上能进行抽象、模拟、分析、综合、判断、推理、总结等认识活动,最终得出让世人刮目的结论。例如,牛顿运动三定律中的第

一、惯性定律就是在伽利略的工作基础上由牛顿总结出来的,重在物理思想的体现,例如:首先让学生明白两种特殊情况。从磁感应强度大小的定义式变形,很容易得到电流与磁场方向垂直时,安培力 F=BIL 。另外,让学生明确当电流和磁场方向平行时,安培力为 0.再引导学生根据等效替代关系,对磁感应强度进行矢量分解,把磁感强度 B 沿平行于电流和垂直于电流两个方向分解为 B2 和 B1 。则 B2 分量对电流的安培力为零,所以磁场对电流的安培力为 B1分量对电流的安培力。

多处运用类比的方法,比如电磁感应强度的大小、方向;安培力的大小、方向;洛伦兹力的大小、方向。提出问题,做好演示实验,引导学生认真观察记录、分析实验现象,得出结论,练习巩固。整个过程既激发了学生的学习兴趣、学到新知,又培养了学生空间思维能力。

比较法也是物理学中常用的思想方法。比如电场力和洛伦兹力的比较 ⑴.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用。⑵.电场力的大小 F = Eq ,与电荷的运动的速度无关;而洛伦兹力的大小 f=Bqvsinα, 与电荷运动的速度大小和方向均有关。⑶.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直。⑷.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小 ⑸.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能。⑹.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧. 这种方法避免了学生对不同的混淆。

这次的学习收获很多,在以后的教学中我会把学到的新方法新理念应用实践中去。

第15篇:高中物理“磁场”教学研究

专题讲座

高中物理“磁场”教学研究

张宇(北京市育英中学,高级教师)

一、磁场主题的学科知识的深层次理解

(一)《磁场》的知识结构

本主题内容按如下的线索展开:

磁场概念的建立和描述——磁场对电流和运动电荷的作用——安培力和洛仑兹力的应用。这样安排,知识的逻辑结构比较清晰,也符合学生的认知规律。

本主题可以分为三个单元。第一单元主要内容为:通过演示实验使学生对磁场有了一定的感性认识,在此基础上,利用科学的方法来描述磁场。本单元可以分为三节课。第 1 节在初中相关知识的基础上,通过磁体间的作用、小磁针指南北的性质和奥斯特实验等现象认识到在磁体、地球和电流周围存在磁场,认识到磁体与磁体、磁体与电流、电流与电流之间的作用力是通过磁场发生的。第 2、3 两节学习了磁场的描述。磁场具有强弱和方向,磁场的这种性质可以用磁感应强度进行定量描述,也可以用磁感线定性描述。第二单元学习磁场的一个性质:磁场对通电导线的作用力——安培力。第三单元学习磁场的另一个性质:磁场对运动电荷的作用力——洛伦兹力,以及带电粒子在匀强磁场中的运动,里面穿插了洛仑兹力的应用,尤其是在现代高新科技中的应用。 这样安排,从初中知识讲起,注重了循序渐进,先宏观后微观,注重了知识的依次生成。

(二)《磁场》在学科知识体系中的地位及相互关系

学生在初中已经学习了简单的磁现象,头脑中初步建立了磁场的概念。在本模块我们刚刚学习了静电场,对于磁场,可以通过和电场类比进行教学。比如磁感应强度与电强场度类比;磁感线与电场线类比;安培力、洛伦兹力和电场力类比。类比是一种重要的学习方法,它不单单是从旧知识发展新知识的生长点,同时通过对比,使学生辩析两者的不同,从而对知识的理解更深入。另外,通过类比学习,也可以发展学生的求同思维和变异思维,培养学生的思维能力。

本主题内容对学生的空间想象能力比较高,电流周围的磁场、安培力和洛伦兹力等内容都涉及到不同物理量之间的空间关系。在教学中注意通过立体图和平面图(三视图)之间的转化来培养学生的空间思维能力。

带电粒子在磁场中的运动轨迹是圆周,解决这类问题,对平面几何中圆的知识应用较多,通过习题训练,可以培养学生应用数学知识解决物理问题的能力。

本主题涉及到很多实际应用,课本中涉及到磁电式电流表、电视显像管、回旋加速器、质谱仪等,课后习题涉及到电流天平、速度选择器、磁流体发电、电磁流量计等。通过这些内容可以激发学生的学习兴趣,可以使学生树立理论联系实际的意识,还可以训练学生把实际问题转化成物理模型的能力。

注意物理学思想与方法的渗透。新课标教材首次引入“电流元”这个物理量,就像质点、点电荷、试探电荷一样,电流元也是一个理想化模型。另外,电流元还涉及到“微元法”这一物理思想。其实我们在引导学生分析电流在非匀强磁场受力时,需要用到微元法,这次课改把微元法纳入教材内容,提醒我们在课堂上应该有意识、有步骤地渗透物理思想和方法。

本主题的教学内容,对后续知识的学习是重要的基础。比如选修 3-2 中电磁感应、交流电和选修 3-4 中的电磁场和电磁波。

(三)对磁感应强度概念的深入理解 1.磁感应强度的几种定义

磁感应强度是描述磁场的基本物理量 ,已知一个磁场的磁感应强度的分布,就可以确定运动电荷、电流在磁场中受到的作用力。磁感应强度 B 是和静电场的电场强度 E 相对应的物理量。静电场对电荷有作用力,静电场可以用检验电荷在电场中各点受到的力来研究,电场强度 E 定义为 E=F/q 。研究 磁场也要引进一个检测的物体,由于磁场对运动电荷、电流有作用力,对通电线圈有力矩的作用,所以可以采用这三种物体作为检测磁场的物体,采用不同的检测物体,也就相应地给出了磁感应强度 B 的不同定义。

2.下面介绍常见的磁感应强度的三种定义方法。

(1) 用一段通电直导线受到的磁场力来定义

通电直导线在磁场中受到力的作用,这种力叫做安培力。实验表明,如果直导线的长度为 L ,电流为 I ,垂直放在匀强磁场中,作用在导线上的安培力大小为 F=ILB 。由此可以定义磁感应强度 B ,即 B=F/(IL) 。

这种定义方法是用一小段通电导线作为检测物体,安培力能够演示,形象直观,便于学生接受。中学教科书多采用这种定义方法,在中学物理实验室用来测量 磁感应强度的电流天平就是根据这个原理设计的。但是这种方法确定的是一小段通电导线所在范围内磁感应强度 B 的平均值,只有对匀强磁场,给出的才是各点的 B ;对于非匀强磁场,不能给出各点的 B ,因此,对学生建立磁感应强度的概念有不利之处。

(2) 用通电矩形线圈受到的力矩来定义

面积为 S 的小矩形线圈,通以电流 I ,当线圈平面跟磁场平行时,线圈所受磁场力的力矩为 M=BIS ,由此可给出 B 的定义式,即 B=M/(IS) 。

由于线圈等效于一个小磁针,线圈在磁场中受到的作用力相当于小磁针受到的作用力。所以用线圈作为检测物体来研究磁场,与历史上对磁场的认识过程比较一致,某些普通物理教科书中有采用这种定义方法的,但是由于线圈总有一定的大小, 所确定的也是线圈范围内的磁感应强度 B 的平均值,不能严格地确定磁场中各个点的 B 。

(3) 用运动电荷受到的磁场力来定义

实验表明,运动电荷在磁场中要受到力的作用,这个力叫做洛伦兹力。运动电荷 在磁场中某点所受磁场力的大小跟电荷量 q、运动速度 v 以及该点的磁感应强度 B 有关系,还跟运动方向与磁场方向间的夹角有关系,当电荷运动的方向垂直于磁场时所受的磁场力最大,且 F=qvB ,由此可给出磁感应强度 B 的定义式,即 B=F/(vq) 。

电磁学是研究电磁场与电荷间相互作用及运动规律的,电磁场对电荷有作用 力,通过电场对电荷的作用力引入了电场强度 E ,与此对应,通过磁场对运动电荷的作用力来引入磁感应强度 B 。从理论上讲,这种定义 B 的方法也比较本质、严谨,所以许多教科书中采用这种定义方法, 但这种定义方法比较抽象,要求学习者有较高的抽象思维能力和推理能力。

磁感应强度还有一个名称叫做磁通密度,即它在数值上等于通过与磁场方向垂直的单位面积的磁通量大小,反映了该处磁感线的疏密情况。这种定义方法可以把描述磁场的两种方法磁感应强度和磁感线有机地结合起来,便于学生理解。

3.《磁场》知识的拓展

磁的应用非常广泛,随着传感器技术的不断发展,和磁有关的霍尔元件得到广泛应用,我们下面主要介绍霍尔效应及其应用。

霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔 (A.H.Hall,1855—1938 )于 1879 年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应也是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

在半导体薄片两端通以控制电流 I ,并在薄片的垂直方向施加磁感应强度为 B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为 U H 的霍尔电压。

根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。

如果把霍尔元件按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号就可以传感出该运动物体的位移。若测出单位时间内发出的脉冲数,则可以确定其运动速度。

2010 年北京高考就考察了霍尔效应及其应用,题目如下:

23.( 18 分)利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。 本题在题干中介绍了霍尔效应的现象和产生机理等相关知识,考察学生联系实际,建立物理模型,应用所学知识解决实际问题的能力。在第 3 问还提出一个开放性问题 “利用霍尔测速仪可以测量汽车行驶的里程。除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。”本设问给学生提供了一个对问题进一步探索研究的空间和平台,引导学生学以致用、关注社会、关注身边的生活。应该说,这样设问,体现了课程改革的基本理念,对提高学生的科学素养、对中学物理教学起到了良好的导向作用。

二、《磁场》主题的教学策略

《磁场》主题的教学重点是,第一,学生在认识磁场的基础上正确理解磁场的描述方法,即理解磁感应强度这个概念以及磁感线的物理意义。第二,磁场对通电导线或运动电荷的作用力,即安培力和洛伦兹力。本主题的难点是应用磁场对运动电荷的作用规律来分析粒子在磁场中的运动,以及和磁场有关的实际应用。

(一)《磁感应强度》教学策略

磁感应强度是电磁学的基本概念之一,是本主题的重点。磁感强度概念的引人、方向的规定、大小的定义都可以通过和电场强度类比来学习,通过学习,可以让学生体验类比这种科学研究方法。但磁感强度方向的规定用小磁针 N 极的受力方向,磁感强度的大小利用电流受力来定义,这又比电场强度定义更复杂,往往使学生产生混淆。

有的教材中引人电流元这个理想模型,就像质点、点电荷、试探电荷一样,电流元也是一个理想化模型。另外,电流元还涉及到“微元法”这一物理思想。在用 V-t 图像求位移时,学生已经接触过微元法,电流元的引人可以让学生进一步体悟“微元法”这一物理思想。

磁感应强度是用比值定义法来定义的。比值定义法 是物理中最常用的定义物理量的方法,类比电场强度,结合微元法,使学生进一步巩固比值定义法。

《磁感应强度》教学案例

1.磁感应强度的方向

小磁针在磁场中静止时,它的 N、S的指向是唯一确定的,拨动它,它将发生转动,但当它重新静止时,又回到原来的指向。所以物理学中就把小磁针静止时 N 极所指的方向规定为该点的磁场方向,即磁感应强度的方向。或者说,小磁针N极的受力方向或S极受力的反方向为该点的磁感应强度的方向。

2.磁感应强度的大小

问题:小磁针确定磁场的方向非常方便,但无法确定N、S 极在磁场中的受力大小,怎么确定磁场的强弱呢?

磁场除了对磁体有力的作用外,还对通电导线有力的作用。我们可以根据通电导线在磁场中的受力情况来描述磁场的强弱。请学生猜想磁场对电流的作用力和哪些因素有关?

做好如图所示的定性演示实验:

( 1 )磁场力大小和悬线的偏角正相关,为了现象明显,悬线不能太短。演示时注意装置的摆放,让学生便于观察偏角的大小。

( 2 )当偏角不同时,要慢慢移动磁体使导线相对于磁体的位置不变。 ( 3 )分别接通

1、2和

1、4 ,改变导线通电部分的长度,保持电流大小相同,比较偏角大小。

( 4 )保持通电部分长度不变,改变电流的大小,比较偏角的大小。

定量实验表明:当通电导线和磁场垂直时,它受力的大小与导线的长度 L 成正比,又与导线中的电流 I 成正比。即 F ∝ IL 。或者 F/IL= 定值 。这个定值的大小可以反映磁场的强弱,定值越大,表明磁场越强。

为了反映磁场中各点的磁场强弱,在物理学中,把很短一段通电导线中的电流 I 与导线长度 L 的乘积 IL 叫做电流元。电流元和质点、点电荷一样都属于理想化模型。有了电流元这个模型,我们就可以定义 磁场中每一点磁场的强弱 , 即磁感应强度的大小。

定义:当导线和磁场垂直时,若电流元 IL 在该点所受磁场力为 F ,则磁感应强 度 B 的大小大小等于 F 与 IL 的比值。

对于该定义,应该强调以下几点:

• 磁感强度 B 的单位特斯拉 T 由定义式确定, 1T=1NAm • 定义的前提条件是导线和磁场垂直。

• 在磁场中同一点,F/IL= 定值。即某点磁感应强度 B 与电流元 IL、及其受力 F 无关。

• 磁感应强度 B 的方向并非 F 的方向,二者互相垂直,B 的方向为小磁针 N 极的受力方向。

作为对磁感应强度这个概念的的复习巩固,可对比磁场和静电场,比较磁感应强度和电场强度的异同。两者都用比值法定义物理量,其基础是力与电荷量、电流元成正比,比值反映了场的强弱;二者也有明显不同,从方向看,静电力与电场强度的方向总是相同或相反,而磁场对通电导线的作用力方向与磁感强度的方向总垂直。从大小看,某试探电荷在电场中某位置受静电力的大小是一定的,而某电流元在磁场中受的磁场力大小还与通电导线如何放置有关,定义式的成立条件是磁场和导线垂直。

(二)《磁感线》教学策略

用磁感线描述磁场的强弱和方向,由于有初中基础和前面电场线的学习,理解起来并不困难。但由于磁感线的分布是空间的,而不是平面的,应该通过演示实验来加深认识,教学中应注意培养学生学习的空间想象力。可以采取 “一图多画”的办法,即对于同一个物

-1 -1理情景,从不同的角度用图形来描绘,可以先画出立体图,然后转化成不同的平面图,像正视图、侧视图和俯视图。

《磁感线》教学案例

1.磁感线

明确曲线上每一点的切线方向跟这点的磁感应强度方向一致,或者说与静止于该点的小磁针 N 极所指的方向一致。

可以用铁屑在磁场中的分布情况来模拟磁感线的形状。这是因为细铁屑在磁场中磁化成小磁针,轻敲玻璃板,铁屑就会有规则地排列起来,模拟出磁感线的形状。

明确磁感线只是为了研究问题方便而假想的一系列曲线,磁体周围并不真正存在磁感线。

引人磁感线后,让学生对比电场线和磁感线,并明确: • 两者都用切线方向描述场的方向,用疏密描述场的强弱;

• 电场线是不闭合的,始于正电荷,终于负电荷;磁感线是闭合的,没有起点和终点。 学生明确了用磁感线来描述磁场的强弱和方向后,可以引导学生研究几种常见的磁场,加深理解,同时也为进一步学习提供具体的磁场形式。

学生在初中已经学习过条形磁体、蹄形磁体、同名磁极间、异名磁极间的磁感线。比较熟悉通电螺线管周围的磁场。高中阶段我们在复习以上磁场的基础上,应该把通电直导线和环形电流的磁场作为重点。

首先用细铁屑模拟出通电直导线的磁感线,使学生认识到通电直导线周围的磁感线是以导线上各点为圆心的同心圆。然后用小磁针来确定磁感线的方向。把实验现象用图形表示出来,和学生共同总结出安培定则。

为了培养学生的空间想象能力,可以引导学生做一做图形转换,先画出通电直导线周围磁场的立体图,然后转换出平面图。首先让学生识记两个表示方向的符号 × 和 · 的意义,然后带领学生画出纵剖图,图中的符号 × 和·表示磁感线的方向。接着再让学生画出俯视图和仰视图,图中的符号 × 和·表示电流的方向。引导学生比较仰视图和俯视图,两图描述同一磁场的磁感线,一个是逆时针,而另一个是顺时针,所以我们描述环形磁场方向的时候,必须明确观察的角度。 由于磁感线的分布是空间的,而不是平面的,所以我们有必要演示磁场的空间分布情况,图中的实验装置给学生看一看,学生马上有豁然开朗的感觉。

对于环形电流的磁场,从磁感线的描述、磁场方向的确定到安培定则的得出,由于有直导线的磁场作为铺垫,教师只要做好演示实验,归纳和总结大可让学生完成,一方面是给学生一个练习的机会,另一方面也可以培养学生的思维能力和科学表述能力。

最后,教师可以引导学生把环形电流和通电直导线以及通电螺线管的磁场做一做分析对比。我们可以把环形电流分割成无数个电流元,每一个电流元可以看成是一个通电直导线,环形电流的磁场可以认为是这些电流元的磁场进行矢量叠加得到的。从另一个角度看,环形电流也可以看作只有一匝的通电螺线管,从磁场分布情况看,通电螺线管可以等效成一个条形磁体,环形电流可以等效成一个小磁针。通过这样的类比,使学生对电流的磁场形成一个统一的认识,另外等效思想也为学生分析具体问题提供了一个非常方便的办法。比如下面问题:

如图所示,两个完全相同的闭合导线环挂在光滑绝缘的水平横杆上,当导线环中通有同向电流时 ( 如下图 ) ,两导线环的运动情况是 ( ) A.互相吸引,电流大的环其加速度也大 B.互相排斥,电流小的环其加速度较大 C.互相吸引,两环加速度大小相同 D.互相排斥,两环加速度大小相同

尽管学生还没有学习左手定则,但我们可以用等效方来分析本题,把两个环形电流等效成一对小磁针,靠近的两端为异名磁极相互吸引,所以两个导线环互相吸引,又由于牛顿第三定律,相互作用力大小相等,而两环完全相同,由牛顿第二定律可知,两环加速度大小相同。所以正确答案为 C 。本题也可以把环形电流分割成无数的电流元,每两个相对的电流元电流方向相同,相互吸引。

2.分子电流假说

安培分子电流假说,尽管教学要求不高,但对培养学生的物理思维有非常重要的价值,使学生感受物理理论的和谐、统一。进一步理解磁现象的电本质,使学生体会由事物的表面现象挖掘其本质原因的思维过程,培养思维的深刻性。

有必要让学生知道,“假说”是用来说明某种现象但未经实践证实的命题。在物理规律和物理理论建立的过程中,假说常常起着很重要的作用。它是在一定的观察和实验的基础上概括和抽象出来的。安培分子电流就是在“通电螺线管磁场与条形磁铁的磁场极为相似”这一事实的启发下,结合环形电流磁场的特点,经过思维发展而产生出来的,这种从表面现象的简单相似到本质的内在联系的发展,体现了物理学深刻而又简洁之美。

安培电流假说把电流的磁场和磁体产生的磁场很好地统一起来,利用它可以很好地解释磁化和消磁这两种物理现象。

(三)《磁场对通电导线的作用力》教学策略

对于安培力的大小,在前面定义磁感应强度的大小时学生对磁场和导线垂直的情况已经了解,通过公式变形,很容易得到安培力大小的公式。这里需要学生理解当导线和磁场不垂直的情景,安培力大小如何确定。安培力、电流和磁感强度三者方向的空间关系是教学难点。教学中首先做好演示实验,学生在实验现象的基础上,建立三维坐标系,标清三者的方向,正确理解三者之间的空间关系,并得出左手定则。

安培力、电流和磁感强度三者方向的空间关系是培养学生空间想象能力的好题材,要使学生能够看懂立体图,并能熟悉地转化成平面图,如各个角度的侧视图、俯视图和剖面图。让学生养成作图分析问题的良好思维习惯,需要一定量的习题来训练和巩固。

学习安培力后,可以把安培力和静力学及平衡状态进行综合命题,培养学生的综合能力。通过练习,使学生树立电磁学问题转换为力学问题、把陌生问题转换成熟悉问题的转换意识。这类问题,把三维立体情景转化为同一平面内的共点力平衡,做好平面受力图,养成受力分析的好习惯,是解决这类问题的关键。

《磁场对通电导线的作用力》教学案例

1.安培力的方向

做好演示实验,引导学生认真观察记录、分析实验现象。记录和分析的过程本身就是培养学生空间思维能力的过程,要很好地把握。如图,把实验结果用三维坐标图记录下来;并学习教材介绍的左手定则验证实验现象。分别改变磁场方向和电流方向,先让学生用左手定则预测安培力的方向,然后用实验验证。为了让学生熟练掌握左手定则,这时可以安排练习让学生熟悉左手定则的应用。比如下题。

在下列各图中,分别标出了磁场 B 的方向,电流 I 方向和导线所受安培力 F 的方向,其中正确的是

当然本题也可以改编为电流、磁感线、安培力三个方向,知道其中两个,判断第三个物理量的方向。

对于导线和磁感线方向不垂直的情况,往往学生感到困难,先让学生观察演示实验,转动磁极,使磁感线和导线方向夹角不是 90 度,学生通过悬挂导线的偏转认识到,安培力的方向不变,大小减小。然后作图分析。比如图中的情形,磁感线和电流方向不垂直,由实验结果知安培力的方向垂直纸面向里。这里,可以和学生一起复习立体几何的一个定理:如果一条直线垂直于平面内两条相交的直线,则该直线和平面垂直。可见,不管电流和磁感线夹角如何,安培力一定既垂直于电流,也垂直于磁感线,即垂直于电流和磁感线所确定的平面。这种情形也可以用左手定则来判断安培力的方向,但注意磁感线是倾斜穿过掌心。如图所示的情形,安培力应该垂直纸面向里。分析下面习题:

关于左手定则的使用,下列说法中正确的是( )

A.在电流、磁感应强度和安培力三个物理量中,知道其中任意两个量的方向,就可以确定第三个量的方向

B.知道电流方向和磁场方向,可以唯一确定安培力的方向 C.知道磁场方向和安培力的方向,可以唯一确定电流的方向 D.知道电流方向和安培力的方向,可以唯一确定磁场方向

我们知道,不管电流与磁场夹角如何,安培力方向不变,所以知道电流方向和磁场方向,可以唯一确定安培力的方向。所以正确选项是B。

左手定则涉及三个物理量的方向,三维图的立体感强,具有直观、形象、逼真等特点,而学生的空间想象力还不强,教学中要重视对三维图形的识读训练。2009 年北京高考第 23 题以电磁流量计为背景命题,很多考生就是因为对电磁流量计的立体图读不懂而导致丢分。但三维图在表达方向、夹角和力的图示等方面不如二维图形表达得清楚、准确,因此,有效地训练如何恰当地用用侧视图、俯视图和剖面图等表达很有必要。比如让学生练习把图示的立体情景转换为平面图。 2.安培力的大小

首先让学生明白两种特殊情况。从磁感应强度大小的定义式变形,很容易得到电流与磁场方向垂直时,安培力 F=BIL 。另外,让学生明确当电流和磁场方向平行时,安培力为 0.再引导学生根据等效替代关系,对磁感应强度进行矢量分解,把磁感强度 B 沿平行于电流和垂直于电流两个方向分解为 B2 和 B1 。则 B2 分量对电流的安培力为零,所以磁场对电流的安培力为 B1分量对电流的安培力。

这里应该让学生体会由特殊到一般的研究思路以及等效替代的物理思想。 明确了安培力的大小和方向,应该引导学生把安培力和电场力做对比:电荷在电场中某点受到的静电力是一定的,方向与电场强度的方向同向或反向。而电流在磁场中受到的安培力大小和电流与磁感线的夹角有关,方向与磁感强度的方向垂直。

安培力的规律学完后,我们可以和学生分析两根平行通电导线之间力的作用,作为安培力知识的应用。以习题的形式给出以下问题让学生分析:

两根平行的通电导线,其电流方向如图所示,请分析: (1) I1 在 I2 处产生磁场 B1 方向? (2) I2 受到 I1 磁场的作用力如何? (3) I1 受到 I2 磁场的作用力如何?

分析时注意引导学生做出平面图,可以画出正视图(剖面图);也可以画出俯视图来分析。课堂上让学生把两个图都画一画,对培养学生的空间思维能力是很有帮助的。

磁电式电流表是安培力的一个重要应用。学生在实验中多次使用过电流表和电压表,也知道它们都是由表头改装而成。有进一步学习表头的结构和原理的动机和兴趣。如果条件允许的话,先让学生观察实物,找到磁体、极靴、铝框、铁质圆柱、线圈、螺旋弹簧、指针等构件。了解它们之中哪些是固定的,哪些是可动的。然后利用结构图引导学生进行分析。

a.在线框转动范围内,线框所在的B的大小和方向如何?

由于极靴的作用,极靴与铁质圆柱间的磁场都沿半径方向,而且在同一圆周上,磁感强度 B 的大小相等。

b.线框转动过程磁力大小变化否? 线圈无论转动到什么位置,线圈平面都跟磁感线平行,左右两边受到的磁力大小不变。 c.在线框转动时,螺旋弹簧阻力如何变化?

随着线圈转动,螺旋弹簧形变变大,弹簧阻力变大。进一步研究表明,弹簧阻力和线圈转过的角度成正比。

d.电流与指针偏角的关系?

当线圈停止转动时,安培力和阻力对线圈产生的转动效果相当,可见电流越大,指针偏角越大,指针偏角和电流大小成正比,所以电流表刻度均匀。

(四)《磁场对运动电荷的作用力》教学策略

关于洛伦兹力的方向教学,在安培力知识的基础上,通过提出问题、进行猜想和假设,然后通过实验验证、分析论证,使学生经历一次实验探究过程。对于洛伦兹力的大小,引导学生由安培力的表达式推导出洛伦兹力的表达式,使学生经历一次理论探究过程。

阴极射线管的实验,当学生看到磁体使亮线发生弯曲时,觉得非常新奇、刺激,可以大大激发起学生的好奇心和求知欲,因此做好这个实验非常重要。

《磁场对运动电荷的作用力》教学案例

1.洛伦兹力的方向

提出问题:安培力是磁场对电流的作用力,电流是电荷定向移动形成的,那么安培力的实质是否是磁场对运动电荷的作用力呢?

猜想和假设:如果安培力的实质是磁场对运动电荷的作用力,那么它们应该遵循同样的物理规律 —— 左手定则。

实验验证:介绍阴极射线管,让学生明白电子流的运动方向。介绍磁体如何放置,让学生明确磁场的方向,然后让学生运用左手定则来预言,电子流将向哪边偏转。当学生看到亮线弯曲,而且和自己的预言完全吻合时,会感到非常兴奋。

分析论证:我们把运动电荷受到的力叫做洛伦兹力,运动电荷和电流在磁场中受力都遵循左手定则,可以推断,安培力是洛伦兹力的宏观表现。 知道了安培力和洛伦兹力的关系,接下来通过类比学习,明确洛伦兹力既垂直于带电粒子的运动方向,也垂直于磁场方向,即垂直于运动方向和磁场方向所确定的平面。当运动方向和磁场方向垂直时,洛伦兹力最大;当运动方向和磁场方向平行时,洛伦兹力为零。

如果运动电荷为负电荷,电流方向和电荷运动方向相反,这种情况,学生很容易弄错,需要用习题来强化,比如练习1 ,知道磁场方向、运动方向和受力方向,让学生判断运动粒子的电性。像练习2 这样的题目其实并不严谨,因为磁场并不是唯一确定的,它可以是在竖直平面内和运动方向夹角不为零的任意方向。

与学习安培力的方向一样,培养学生的空间想象能力同样是本节课的重要任务,比如我们可以结合三维坐标来让学生分析磁场方向、电荷运动方向和洛伦兹力方向三者关系。比如练习3.同时本题还用到电场力,学生在完成练习的同时,也在进行二者的对比:洛伦磁力的方向和磁场垂直,电磁力的方向和电场平行。

2.洛伦兹力的大小

首先让学生理解推导洛伦兹力大小公式的思路。先明确推导的出发点:安培力实际是洛伦磁力的宏观表现,即一段导线所受安培力等于该段导线内所有电荷定向移动所受洛伦兹力的合力;其次建立推导的物理模型:长为 L 的静止的通电导线,它受到的安培力除以导体内定向移动的带电粒子数目,即为每个运动电荷所受到的洛伦兹力。再分析电流强度和电荷定向移动之间的关系,让学生回顾电流的微观表达式。抓住了上述线索,思考和讨论就有了方向。

即使明确了推导思路,推导过程对大部学生来说还是有一定难度的,教学中 可以采取“搭梯子”的办法。比如通过思考题的办法给学生进行逐步提示:

思考:

( l )如何用(单位体积内含的运动电荷数 n ,每个电荷电量为 q ,电荷的平均定向移动速率是 v ,导线的横截面积是 S ) n、q、v、S 来表示通电导线中的电流强度 I ?

( 2 )如何从合力的观点出发用洛仑兹力 f 来表达安培力 F 的值?(当通电导线垂直于磁场时)

F = IBL = Nf ( N 为导线中电荷总数)

( 3 )如何求得 N ? ( 4 )能否根据上面的关系,推出一个运动电荷垂直于磁场方向运动时受到的洛仑兹力的大小。

( 5 )适用条件是什么?

洛伦兹力的计算公式 F=qvB 是在导线与磁场垂直的情况下导出的,这个公式只适用于电荷运动方向与磁场垂直的情况。如果电荷的运动方向和磁场不垂直,应该如何处理,教师提出问题后,应该让学生独立完成。对于有困难的学生,可以让他们参照上一节电流和磁场不垂直的情况来处理。

洛伦兹力对运动电荷不做功,是带电粒子在磁场中运动的重要特点。可以引导学生分析讨论得到。比如让学生思考下面几个问题:洛伦兹力一定垂直于粒子的运动方向,它对粒子的速度有何影响?当一个力和物体的运动方向总是垂直的,它是否做功?带电粒子在磁场中运动时,它的动能如何变化?在此基础上,让学生完成以下练习:

电子以速度 V ,垂直进入磁感强度为 B 的匀强磁场中,则( ) A、磁场对电子的作用力始终不变 B、磁场对电子的作用力始终不做功 C、电子的动量始终不变 D、电子的动能始终不变

用力学规律来分析洛伦兹力和粒子的运动的关系,使学生意识到带电粒子的运动规律和宏观物体的一样,分析电学问题的总的思路就是把它转换成力学问题。

可以启发学生也可以利用运动电荷所受的洛伦兹力来定义磁感强度,这样不仅拓宽了学生的视野,更重要的是揭示了磁现象的电本质,把 B=F/(qB) 与 E=F/q 相比较,它们都是用比值的方法定义物理量。然后让学生对电场和磁场、静电力和洛伦兹力进行对比。

• 电场力和洛伦兹力的比较

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用。

2.电场力的大小 F = Eq ,与电荷的运动的速度无关;而洛伦兹力的大小 f=Bqvsinα, 与电荷运动的速度大小和方向均有关。 3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直。

4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小

5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能。

6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.(学完《带电粒子在磁场中的运动》补充)

3.电视显像管的工作原理

这部分内容体现了物理知识与科学技术的联系,培养学生理论联系实际的作风。对于实际应用问题,不必深究技术细节,重点是理解其应用的物理原理,从实际问题中抽象出物理模型。

电子显像管中,电子枪利用了热电子发射和加速电子的原理,这一点和示波管是相同的。而显像管的偏转线圈应用了磁场对运动电荷的洛伦兹力作用,即磁偏转;而示波管用电场来控制电子的运动轨迹,即电偏转,由于磁偏转可以使偏转角为任意值,所以显像管的屏幕面积更大。

电子技术中的扫描应用的物理原理是速度的合成,学生只要明白电子的水平运动是竖直方向的磁场控制的,而电子的竖直分运动是水平方向的磁场控制的即可。

(五)《带电粒子在匀强磁场中的运动》教学策略

《磁场》主题的教学难点是带电粒子在磁场中的运动,尽管在课程标准中没有明确要求,但作为洛伦兹力的应用,对培养学生的分析能力和应用能力有重要的作用。

因为粒子的运动对学生来说比宏观物体的运动抽象,学生缺乏感性材料。可以采用了先实验探究,再理论分析推导的顺序。带着实验得到的感性材料,再用学过的知识进行理论分析,从理论的高度推导出实验现象的必然性,这样先实验观察再理论论证比较符合一般的认知过程。也降低了学习的难度。如果学生整体水平比较高,也可以采用先理论分析,再实验验证的顺序,给学生提供高强度思维训练的材料。 作为带电粒子在匀强磁场中运动的知识在现代科学技术中的应用实例,质谱仪和回旋加速器也是本节课的重要内容,可以培养学生的综合运用力学知识和电学知识的能力。

《带电粒子在匀强磁场中的运动》教学案例

首先让学生了解洛伦兹力 演示仪的结构和原理。电子枪产生的电子射线可以使玻璃泡内的稀薄气体发出辉光,显示电子的运动轨迹。电子运动速度的大小可以通过加速电压来调节。两个相隔一定间距的环形线圈(亥姆霍玆线圈)之间产生匀强磁场,磁场的方向和两线圈中心的连线平行,即与电子运动方向垂直。磁感应强度的大小可以通过调节励磁线圈的电流来调节。

实验演示:

1.不加磁场观察电子射线的轨迹。

2.加上和电子运动方向垂直的匀强磁场,观察电子射线的轨迹。

3.保持电子速度不变,通过调节励磁电流改变磁感应强度,观察圆形轨迹如何变化。4.保持磁感强度不变,通过调节加速电压改变电子运动速度,观察圆形轨迹的半径变化。

理论推导:

垂直射入匀强磁场的电子,它的初速度和所受洛伦兹力都在垂直于磁场的同一平面内,没有其他作用使粒子离开这个平面。洛伦兹力始终垂直于粒子的运动方向,只能改变速度的方向,而不能改变速度的大小,它的效果就是粒子做匀速圆周运动的向心力。

1.洛伦兹力提供向心力 qvB=mv/R 2.所以轨道半径 R=mv/qB 根据轨道半径的表达式,分析粒子的速度和磁感强度对轨道半径的影响,和刚才的实验现象相印证。

进一步提出问题:若增大粒子运动的速度,由刚才分析知轨道半径会增大,它运动一周所需的时间(周期)如何变化?

2有学生认为速度变大,周期变小;也有的认为速度v增大,圆的周长变大,周期变小。这两种想法考虑的都不全面,提示学生必须推导出周期的数学表达式进行分析。由此培养学生利用数学知识分析物理问题的意识和能力。

1.圆周的周长为 S=2πR 2.周期为 T=2πR/v 3.把轨道半径 R=mv/qB 代入得 T=2πm/(qB) 由周期的表达式可知,周期和粒子的运动速度及轨道半径无关,周期大小取决于磁感强度和粒子的比荷。

对于带电粒子在磁场中的运动,要求学生明确两种情况: 1.若带电粒子的运动方向与磁场方向平行 v∥B,f = 0 ,→ 匀速直线

2.若带电粒子的运动方向与匀强磁场方向垂直 v ┴ B ,f ┴ v ,f = C ,匀速圆周运动。

三、学生学习中常见的错误与问题分析与解决策略

(一)前知识引起的负迁移,导致学生对新知识理解性错误

对于磁场,可以通过和电场类比进行教学。类比学习,可以让学生由旧知识很快迁移到新知识上。但是随着学习的深入,往往有同学不去注意电场和磁场两者的区别,造成理解上的错误。因此我们更应该注意新旧知识之间的差别,防止出现负迁移。

1.关于磁场的产生

我们知道,在电荷或带电体周围存在电场;根据麦克斯韦理论我们知道,变化的磁场也可以产生电场。但磁场的来源比电场就复杂的多,对此,学生往往容易引起混乱。教师在恰当的时机应该进行归纳和概括,以澄清学生的错误认识。

我们知道,磁体周围存在磁场,电流周围也存在磁场,学习完安培电流假说,我们知道二者在本质上是一致的,即磁现象的电本质,而电流是电荷定向移动形成的,总而言之,运动电荷的周围产生磁场。历史上有一个著名的实验叫罗兰实验,在带电的绝缘圆盘附近设置一个小磁针,起初小磁针由于地磁作用指向南北方向,但是,当圆盘转到起来,小磁针有了新的指向,说明转动的圆盘周围产生了磁场,其实质是圆盘上的电荷随圆盘发生定向移动从而产生磁场。但是我们刚才所进行的是不完全归纳,如果有同学概括归纳为:一切磁场都是由于电荷运动而产生的,这就是错误的。因为我们后面还会学习到麦克斯韦理论,变化的电场产生磁场,变化的磁场产生电场,可见电场和磁场还可以互相感生,可以脱离电荷而存在。所以在教学中,我们既要引导学生对知识进行归纳和总结,提炼出最本质、最简洁的统一规律,又要注意理论的严谨,为以后的学习留下知识的增长点。

2.关于磁感应强度概念

由电场强度过渡到磁感应强度,因为其物理思想相同,所以学生接受起来非常容易。但磁感应强度的方向和大小的定义并不是根据同一个物理事实,这一点往往造成学生的错误理解。所以学完以后,一定要注意引导学生比较磁感应强度和电场强度这两个概念的异同。

两者的相同点:都用比值法定义物理量,其依据是力与电荷量或电流元成正比,比值反映了场的强弱;但是我们更应该引导学生分析两者的区别,从方向看,静电力与电场强度的方向总是相同或相反,而电流或运动电荷所受的磁场力方向与磁感强度的方向总垂直,因为磁感强度的方向是用小磁针 N 极的受力方向来定义的。从大小看,某试探电荷在电场中某位置受静电力的大小是一定的,而某电流元在磁场中受的磁场力大小还与通电导线如何放置有关,磁感应强度定义式的成立条件是磁场和导线垂直。对于这些区别,学生很容易混淆,我们可以通过一些辨析题来加深理解:

(1) 磁场中某处的磁感应强度大小,就是通以电流 I ,长为 L 的一小段导线放在该处时,所受的磁场力 F 与 I、L 乘积的比值。

错误原因:学生机械地记忆公式,不注重物理公式的成立条件。电流在磁场中受的磁场力大小与导线如何放置有关,磁感应强度定义式的成立条件是磁场和导线垂直。

(2) 一小段通电导线放在某处不受磁场力的作用,则该处一定没有磁场。 错误原因:没有正确地区分电场力和磁场力。试探电荷在电场中某位置受电场力的大小是一定的,若电场力为零,则该处的电场强度一定为零;但是,磁场不同,当导线和磁场方向同向时,即使磁感强度不为零,也不受到磁场力的作用。

(3) 垂直于磁场而放置的通电导线的受力方向就是磁感应强度的方向。

错误原因:概念掌握不准确,磁感应强度的定义中,大小和方向从不同的角度来定义。磁感强度的方向是用小磁针 N 极的受力方向来定义的,而磁场力方向与磁感强度的方向总垂直。 (4) 一小段通电导线放在磁场中 A 处时受磁场力比放在 B 处大,则 A 处磁感应强度比 B 处的磁感应强度大。

错误原因:由于电场强度产生的负迁移,对于电场,场强大,同一电荷受力大。而通电导线受到的磁场力和该导线如何放置有关。

(5) 因为 B=F/IL ,所以某处磁感应强度的大小与放在该处的电流元 IL 的乘积成反比。

错误原因:不理解比值定义法,垂直放在某处的电流元,所受的磁场力和电流元 IL 的乘积成正比,即比值不变,这个比值就是磁感应强度。所以磁感应强度和电流元 IL 的乘积无关。

(二)对磁场力认识模糊,导致分析错误

磁体和电流周围都存在磁场;磁体和磁体之间、磁体和电流之间、电流和电流之间都存在相互作用的磁力;对于种类繁多的磁场力,往往容易引起学生混乱。如何判断磁体受到的磁力方向?初学者往往找不到明确的思路。他们往往根据 同名磁极相互排斥,异名磁极相互吸引来判断,就可能得到错误的结论;而对于电流对磁体的作用方向更是无从下手。其实问题的根源还在学生没有深入理解磁感应强度的概念,我们把小磁针N极的受力方向规定为该处磁感应强度的方向,由此我们可知,磁体的N极受力方向就是该处的磁场方向,而S极受力方向是该处磁场的反方向。从场的角度认识和分析磁场力才是科学的思维方法。分析下面例题来澄清学生的模糊认识:

1.如图所示,弹簧秤下挂一条形磁铁,其中条形磁铁 N 极的一部分位于未通电的螺线管内,下列说法正确的是

① 若将 a 接电源正极,b 接负极,弹簧秤示数减小 ② 若将 a 接电源正极,b 接负极,弹簧秤示数增大 ③ 若将 b 接电源正极,a 接负极,弹簧秤示数增大 ④ 若将 b 接电源正极,a 接负极,弹簧秤示数减小 A ①② B ①③ C ②③ D ②④

常见错误:根据同名磁极相互排斥,异名磁极相互吸引,若将 a 接电源正极,b 接负极,通电螺线管下端是 S 极,而条形磁体下端是 N 极,相互吸引,所以弹簧秤示数增大。出现这样的错误,说明学生对磁场的认识还不到位,还是停留在磁体间相互作用的感性认识水平。

解决这个问题,应该让学生认识到 磁体和电流周围都存在磁场;磁体和磁体之间、磁体和电流之间、电流和电流之间都存在相互作用的磁力;它们间的作用力是通过磁场而发生的。而磁场力的方向取决于磁场的方向。对于磁体受到的磁场力,磁体 N 极受力方向和磁场方向相同;S 极受力方向和磁场方向相反。对于电流或运动电荷在磁场中的受力方向,根据左手定则来判断。本题中弹簧秤的示数变化取决于磁体受到的磁场力,首先要根据安培定则判断通电螺线管内部磁场的方向。 若将 a 接电源正极,b 接负极,螺线管内部磁场方向向上,所以磁体 N 极受力方向向上,S 极受力方向向下,但 N 极受到的磁场力大于 S 极受到的磁场力,合力方向向上,弹簧秤示数变小。所以本题正确答案为 B 。

2.条形磁铁放在水平桌面上,它的上方靠近S 极一侧悬挂一根与它垂直的导电棒,如图所示 ( 图中只画出棒的截面图 ) .在棒中通以垂直纸面向里的电流的瞬间,可能产生的情况是

A .磁铁对桌面的压力减小 B .磁铁对桌面的压力增大 C .磁铁受到向左的摩擦力

D .磁铁受到向右的摩擦力

常见问题:很多同学碰到这个问题,首先想到去分析通电导线对磁体的作用力,他先画出导线周围的磁感线分布情况,再分析磁体的 N 极和 S 极的受力情况,这样分析,把问题复杂化,导致无法求解。

解决这类问题,要启发学生应用逆向思维。由于牛顿第三定律同样适用于电磁力,我们可以先分析磁体对通电导线的作用力,先画出磁体周围的磁感线,再根据左手定则判断出通电导线所受磁场力的方向,应用牛顿第三定律就可以判断磁体受到的磁场力。再对磁体进行受力分析,可以判断正确答案为 AC 。

(三)对洛仑兹力方向判断有误,导致分析问题出错

洛仑兹力的方向判断也用到左手定则,四指所指的方向应该是正电荷运动的方向或负电荷运动的反方向,出错往往是由于学生不注意运动电荷的电性正负,或运动方向的变化而导致洛仑兹力方向分析错误。请看下例:

3.如图所示,厚度为 h ,宽度为 d 的金属导体板放在垂直于它的磁感应强度为 B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面 A 和下侧面 A'之间会产生电势差,这种现象称为霍尔效应。设电流 I 是由于电子的定向移动形成的,请分析达到稳定状态时,比较导体板上侧面 A 的电势与下侧面 A'的电势的高低。

常见错误:在磁场中定向移动时所受洛仑兹力的方向判断错误,或者没有意识到电子带负电,电势高低判断错误。

本题首先要正确判断电子所受磁场力的方向,根据左手定则,四指指向电流的方向(或者说电子定向移动的反方向),可以判断洛仑兹力方向向上。上侧面聚集了多余的电子,下侧面缺少电子,由于电子带负电,所以下侧面带正电电势高。这样在导体内部又建立了电场,当电子所受的磁场力和电场力平衡时,就达到了稳定状态,上下两个侧面的电势差保持不变。

如果本题中的导电材料是半导体,靠空穴的定向移动形成电流,那么上下两个侧面哪个电势高呢?我们知道空穴带正电荷,由于磁场方向和电流方向不变,空穴定向移动所受磁场的方向也不变,即空穴所受洛仑兹力方向向上。所以上侧面聚集了带正电的空穴,上侧面电势更高。可见,对于不同导电材料,在磁场和电流方向相同的情况下,霍尔电势差的正负和载流子有关。 洛仑兹力的方向随着电荷运动方向的变化而变化,当电荷运动反向时,洛仑兹力的方向随之而反向,很多学生因为思维定势,而导致出错。

4.如图所示,用长为 L 的细线把小球悬挂起来做一单摆,球的质量为 M ,带电量为 - q ,匀强磁场的磁感应强度方向垂直纸面向里,大小为 B 。小球始终在垂直于磁场方向的竖直平面内往复摆动,其悬线和竖直方向的最大夹角是 60。试计算小球通过最低点时对细线拉力的大小。

0

常见错误:

解:小球从静止开始运动到最低点的过程中,利用动能定理 mgL(1—cos60)=mv/2 得 v=√gL 当小球从左向右通过最低点时 T1—qvB—mg=mv/L 得 T1 =2mg+qB√gL 。

本题出现错误是由于学生没有注意到当带电粒子的运动方向相反时,所受洛仑兹力的方向反向。造成答案不完整,反映了学生思维的严密性需要进一步加强。所以在动力学问题中如果出现洛仑兹力,一定要注意当粒子运动方向变化时,洛仑兹力方向随之而变化。补全另一种情况:当小球从右向左通过电低点时,洛仑兹力反向,有

T2 + qvB — mg = mv /L 得 T1=2mg—qB√gL 。

(四)粒子在场中的运动分析不透彻导致错误

明确了粒子在电场和磁场中的受力特点,就可以根据动力学规律确定粒子在电场或磁场中的运动。学生必须综合应用电磁学和力学知识来进行分析推理,从而解决问题。这里面涉及到的知识点多,对学生逻辑思维能力要求比较高,学习过程中很多学生会出现困难。

要解决这个问题,就要培养学生良好的思维习惯。从受力分析入手,判断带电粒子的运动形式,再根据该种运动所遵循的物理规律来进行演绎推理。

5.如图所示,在竖直虚线 MN 和 M′N′ 之间区域内存在着相互垂直的匀强电场和匀强磁场,一带电粒子(不计重力)以初速度 v0 由 A 点垂直于 MN 进入这个区域,带电粒

220

2子沿直线运动,并从 C 点离开场区。如果撤去磁场,该粒子将从 B 点离开场区;如果撤去电场,该粒子将从 D 点离开场区。则下列判断正确的是

A .该粒子由 B、C、D 三点离开场区时的动能相同 B .该粒子由 A 点运动到 B、C、D 三点的时间均不相同

C .匀强电场的场强 E 与匀强磁场的磁感应强度 B 之比

D .若该粒子带负电,则电场方向竖直向下,磁场方向垂直于纸面向外

常见错误及错误原因分析:错选A:不能正确理解洛伦兹力对运动电荷不做功,或者不会用动能定理分析粒子的动能变化。错选B:只是浅层次地根据三种情况下粒子的运动轨迹不同来猜测,没有根据各自的运动特点通过推理来确定不同情况下的运动时间。错选D:不能正确找出带电粒子所受电场力和磁场力的方向与电场和磁场方向之间的关系。

本题目既要求学生对磁场力和电场力的知识清晰,又要求学生会根据动力学规律来进行分析推理,对学生的分析综合能力要求较高。通过练习,使学生树立把电磁学问题转换为力学问题、把陌生问题转换成熟悉问题的转换意识。对于这类问题,养成受力分析的好习惯,根据受力情况和初始状态确定粒子的运动形式,再根据不同运动的物理规律进行推理分析,是解决这类问题的关键。

由题意,当电场和磁场同时存在时,带电粒子做匀速直线运动,电场力和磁场力二力平衡,它俩大小相等 , qv0B=Eq, 可见B选项正确。若粒子带负电,电场方向竖直向下,则电场力竖直向上,磁场力与此相反,则磁场方向应该垂直于纸面向里,排除D。

若撤掉电场,只受磁场力,粒子做匀速圆周运动,运动时间应该等于弧AD的长度除以速度V0,又因为洛伦磁力不做功,动能不变。若撤掉磁场,只受电场力作用,粒子将做类平抛运动,在水平方向上的分运动仍为匀速直线运动,运动时间等于线段AC的长度除以速度V0,和电磁场同时存在时运动时间相同。所以运动时间应该为tD >tB =tC 。平抛运动过程中,电场力对粒子做正功,由动能定理可知,粒子动能增大。所以EKB >EKC= EKD。

四、《磁场》学习目标的检测

根据课标要求,磁场主题的主要检查的知识点为磁感强度的定义以及磁感线,通电导线和运动电荷在磁场中的受力规律。但新课标更加注重学生能力的培养,“课程总目标”中明确提出,学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决问题。 所以测试命题时应该以能力立意,在考察知识的基础上,更主要的是考察学生的理解能力、分析能力和应用能力。

1.两个粒子 , 带电量相等 , 在同一匀强磁场中只受磁场力而作匀速圆周运动。则 A.若速率相等, 则半径必相等 ; B.若速率相等, 则周期必相等 ; C.若动量大小相等, 则半径必相等 ; D.若动能相等, 则周期必相等 。

尽管带电粒子在磁场中的运动没有在《课程标准》中专门提出,但作为洛伦兹力的应用,学生应该熟练掌握。本题综合应用洛伦兹力和匀速圆周运动的知识,推导出带电粒子在匀强磁场中运动的半径和周期表达式,再利用表达式来分析。其中又涉及到动能和动量的概念。

分析:洛伦兹力提供向心力,有 qvB=mv/R, 得半径R= mv/(qB), 周期T=2πm/(qB), 由题干知,电量q和磁感应强度B相同,要想周期相同,只需要粒子质量m相同,周期T和粒子速率v无关。要使半径R相同,应该是粒子的质量m和速率v的乘积相同,即动量大小相同。所以正确答案为C。

本题属于容易题,在掌握相关知识的基础上,经过简单的推理,就可以得出正确结论。

2.一束混合的离子束,先径直穿过正交匀强电场和匀强磁场,再进入一个磁场区域后分裂成几束,如图所示,若粒子的重力不计,则分裂是因为(

2 A .带电性质不同,有正离又有负离子 B .速率不同

C .质量和电量的比值不同 D .以上答案均不正确

本题难度较大,学生必须熟练掌握相关知识,并具有一定的分析和推理能力。首先根据粒子束在磁场中的偏转,应用左手定则来判断带电性。然后根据“径直穿过正交匀强电、磁场”这个条件分析出速度相同的结论。再根据粒子在磁场中轨道半径的不同来确定荷质比。本题实际是质谱仪的 物理模型,正交的匀强电、磁场是速度选择仪。

粒子都能沿直线穿过正交的电磁场,说明电场力和磁场力二力平衡,即qvB=Eq,速度v=E/B ,所以几种粒子的速率都相同。进入右端的磁场后做匀速圆周运动,洛伦兹力提供向心力,根据左手定则,几种粒子都带正电。但它们的半径不同,由导出的结论R=mv/(qB) ,在速率v和磁场B相同的条件下,m /q 比值越大,半径R越大。所以正确选项为C。

3 .如图 , 用丝线吊一个质量为 m 的带电 ( 绝缘 ) 小球处于匀强磁场中 , 空气阻力不计 , 当小球分别从 A 点和 B 点向最低点 O 运动且两次经过 O 点时 ( )

A 小球的动能相同 B 丝线所受的拉力相同 C 小球所受的洛伦兹力相同 D 小球的向心加速度不相同

本题综合性较强,对学生分析解决问题的能力要求较高。首先它的受力情况复杂,运动也不是简单的匀速圆周运动,涉及到的概念有功、动能、向心加速度以及矢量和标量,物理规律有机械能守恒以及圆周运动的规律。 首先根据洛伦兹力对运动电荷不做功的特点,丝线拉力也不做功,只有重力做功,由机械能守恒的条件,可以判断小球往返经过 O 动能相同。根据圆周运动向心加速度公式,a=v 2 /R,小球往返经过O点时向心加速度大小相同,方向都竖直向上,也相同,所以D选项错误。 BC选项学生很容易错选,往往由于定势思维,忽略小球往返经过 O 时洛伦兹力方向相反。因为力是矢量,所以C选项错误。又因为经过此位置向心力相同,即重力、拉力和洛伦兹力的合力相同,洛伦兹力变向,拉力显然不同,B选项错误。所以正确答案为A。

4.如图所示,质量为 m ,带电量为 +q 的粒子,从两平行电极板正中央垂直电场线和磁感线以速度 v 飞入,已知两板间距为 d ,磁感强度为 B ,这时粒子恰能沿直线穿过电场和磁场区域 (不计重力) 。今将磁感强度增大到某值,则粒子将落到某极板上。当粒子落到极板上时动能为 ____________________ 。

分析粒子在电场或磁场中的运动,关键是把电学问题转化成力学问题。把粒子的受力分析清楚后,判断粒子做什么形式的运动,然后用动力学规律来解决问题。本题需要用到动能定理来解决问题,这里需要明确洛伦兹力不做功,以及电场力对粒子的做功情况。

根据“粒子恰能直线穿过电场和磁场区域”可知此时电场力和磁场力平衡,即电场力的大小就等于qvB,“今将磁感强度增大到某值”,粒子将向磁场力方向偏转而做曲线运动,这种曲线运动既不是圆周运动,也不是平抛运动,求它的末动能我们可以根据动能定理。接下来分析各力的做功情况:洛伦兹力不做功,而电场力做负功,因为电场力是恒力,功的大小就等于电场力和沿电场线的位移d/2 的乘积。由动能定理 -qvBd/2=E k -mv /2 ,所以当粒子落到极板上时动能为 mv/2-qvBd/2

5.如图所示为电磁流量计示意图。直径为 d 的非磁性材料制成的圆形导管内,导电液体从左向右流动,磁感强度为 B 的匀强磁场垂直液体流动的方向而穿过一段圆形管道。则 a 点电势 b 点电势;若测得管壁内 a、b 两点间的电势差为 U ,则管中液体的流量 Q = ___________ 。(单位时间内流过导管横截面的液体体积叫做流量) 

新课程目标明确指出,学习终身发展必备的物理基础知识和技能,了解这些知识与技能在生活、生产中的应用,关注科学技术的现状及发展趋势。能运用物理知识和科学探究方法解决一些问题。 电磁流量计在实际中获得广泛应用,而它的基本原理我们用磁场的知识就可以解决。

导电液体中有大量的自由离子,当液体从左向右流动时,自由离子随之而发生定向移动,在磁场中将会受到洛伦兹力的作用。由左手定则可知,正电荷受磁场力向上,负电荷受力向下,这样a处有多余的正电荷,b处有多余的负电荷,所以a点电 势高。这样ab间就建立了电场,电场线由a指向b,因此自由离子同时又受电场力的作用。当电场力和磁场力平衡时,ab间电势差恒定,为U。设液体流动速度为v,有qvB=qU/d,而流量Q为单位时间内流过导管横 截面的液体体积,即流量Q等于流速v和导管横截面积的乘积,Q=vπd/4=πUd/(4B)

6.如图,两光滑的平行金属轨道与水平面成θ 角,两轨道间距为 L ,一金属棒垂直两轨道水平放置。金属棒质量为 m ,电阻为 R ,轨道上端的电源电动势为 E ,内阻为2r 。为使金属棒能静止在轨道上,可加一方向竖直向上的匀强磁场,求该磁场的磁感应强度

B 应是多大?

本题综合性较强,需要运用闭合电路欧姆定律、安培力和平衡条件等知识点来求解。总的思路是把电学问题转换成力学问题。做这类题的关键是做好受力分析,画出同一平面内的受力图。这要求学生能看懂三维立体图,明确磁感强度 B 垂直于导线。

沿斜面方向合力为零,

则有 mg sin θ = F B cos θ (1) 由安培力公式 F B = BIL (2) 由全电路欧姆定律 I = E /( R + r ) (3) 联立 (1)、(2)、(3)可得

B = mg ( R + r )tan θ / EL

第16篇:磁场微教案

《磁场》微教案

临朐县冶源镇冶源初中

孙中福

学习目标:

知识目标:

1.知道磁体周围存在磁场;

2.知道磁感线可用来形象地描述磁场,知道磁感线的方向是怎样规定的; 3.知道地球周围有磁场及地磁场的南、北极。

能力目标:

1.通过观察磁体间的相互作用,提高学生的实验操作能力,观察、分析能力及概括能力;

2.通过感知磁场的存在,提高学生分析问题和抽象思维能力,使学生认识磁场的存在,渗透科学的思维方法。

情感目标:

1.通过了解我国古代对磁的研究方面取得的成就,进一步提高学习物理的兴趣;

2.通过感知磁场的存在,知道磁感线和地磁场,使学生养成良好的科学态度和求是精神,帮助学生树立探索科学的志向。 学习重点

知道什么是磁场、磁感线、地磁场的基本知识。 学习难点

1.磁场和磁感线的认识;

2.被磁化的钢针磁极的判断。

教具:条形、蹄形磁体,铁、钴、镍片,铁屑,钢针,投影仪,投影片,挂图,微机,大头针,铁架台,细线,有关磁性材料的实物,图片(有些实验器材可布置学生自己准备),小磁针。

教学过程:

一、创设情境,引入新课 郑和下西洋

二、进入新课,科学探究

(一)磁场

1.概念:在磁体周围存在的一种人眼看不到的物质,它虽然看不见,摸不到,但确实是实际存在的。

2.磁场的基本性质:磁场对放入其中的磁体产生磁力的作用。

3.磁场方向:在物理学中,把小磁针静止时北极所指的方向定为那点磁场的方向。 4.磁场的分布

(二)磁感线

【磁感线的概念】为了形象地描述磁场,在物理学中,用一些有方向的曲线把磁场的分布情况描述下来,这些曲线就是磁感线。

【磁感线方向】为了让磁感线能反映磁场的方向,我们把磁感线上都标有方向,并且磁感线的方向就是磁场方向。

(三)地磁场:地磁的南极在地理的北极附近;地磁的北极在地理的南极附近。

三、达标检测:

1.关于磁场和磁感线,下列说法中正确的是( ). A.只有磁铁周围才有磁场

B.磁感应线是由铁屑组成的

C.在磁场中某点小磁针静止时,南极所指的方向就是该点磁场的方向 D.磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极

四、小结

这节课我们学习了磁场及地磁场的知识。磁场和磁感线都比较抽象,磁场是实际存在的,磁感线不存在,它是为描述磁场的分布情况而假设出来的,磁感线方向就是磁场方向,也是磁场中的小磁针的北极所指的方向,三者永远是一致的。而地磁场是磁场的一个特例,它的磁场方向是由南到北的。 板书设计:

第二节

磁场

一、磁场:磁体周围存在的一种人眼看不到的物质。1.概念;2.基本性质;3.方向。

二、磁感线

1.概念;2.条形、蹄形磁休的磁场分布;3.注意的问题。

三、地磁场

1.方向;2.应用。

第17篇:磁场法制教育教案

磁 场

教学目标

1、知道磁场的基本特性是对处在它里面的磁极或电流有磁场力的作用

2.知道磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场发生相互作用的

3.知道什么叫磁感线

4.知道条形磁铁、蹄形磁铁、直线电流、环形电流和通电螺线管的磁感线分布情况.

5.会用安培定则判定直线电流、环形电流和通电螺线管的磁场方向 法制教学目标:通过对本节内容的学习,渗透有关金融、计算机、出版等方面的法律法规。 重点难点

重点:知道磁场的基本性质,掌握安培定则.

难点:用磁感线对磁场分布的形象描述. 教学过程:

我国是世界上最早发现磁现象的国家,早在战国末年就有磁铁的记载,我国古代的四大发明之一的指南针就是其中之一.指南针的发明为世界的航海业做出了巨大的贡献.在现代,磁现象与日常生活、科技密切相关,认识磁现象,我们先从认识磁场开始

(一)磁场

1.磁场:磁场是存在于磁体或电流周围的一种客观存在的物质.

【演示】两个磁极间发生相互作用,电流对小磁针的作用.表明磁场不仅存在于磁体周围,还存在于电流周围.

2.磁场的基本性质:对处在它里面的磁极或电流有磁场力的作用(这种性质叫做磁场具有力的性质).

【演示】磁场对电流发生作用,电流之间通过磁场发生相互作用.

(1)同名磁极相互排斥,异名磁极相互吸引;同向电流间相互吸引,反向电流间相互排斥.

(2)磁极和磁极之间、磁极和电流之间、电流和电流之间的相互作用都是通过磁场来传递的.

(二)磁场的方向 磁感线

1.磁场具有方向性

【演示】一个独立的小磁针,在地磁场中静止时南北指向(N极指向北),将一磁铁拿近小磁针,发现小磁针的指向发生变化.在磁铁的不同位置放上小磁针,N极的指向各不相同,说明磁场具有方向性.

2.磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向为该点的磁场方向.

3.磁感线:在磁场中画一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上.

(1)磁感线是假想的曲线.

用假想的、形象的磁感线来描写实在的、抽象的磁场.

【演示】铁屑在磁场中被磁化,显示磁感线的形状

(2)磁感线的疏密表示磁场的强弱,磁感线较密的地方磁场较强.没有画到磁感线的地方不表示那里没有磁场存在.

(3)磁感线不相交,也不相切.

(4)磁感线总是闭合曲线,在磁体的外部是从N极出来,进入S极,在内部则由S极回到N极,形成闭合曲线.

4.条形磁铁和蹄形磁铁的磁感线分布,如图所示,磁铁外部的磁感线从磁铁的N极出来,进入磁铁的S极.

5.电流磁场的磁感线分布

(1)直线电流磁场的磁感线分布

①安培定则(右手螺旋定则):用右手握住导线,让伸直的大拇指所指的方向限电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向

②安培定则应用于直线电流,如图所示.

(2)环形电流、通电螺线管磁场的磁感线分布

①安培定则:用右手握住螺线管(或环形导线),让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺线管(或环形导线)内部磁感线的方向.

②安培定则应用于环形电流、通电螺线管,如图所示.

通电的长直螺线管外部的磁场分布跟条形磁铁外部的磁场分布情况相同.

电流的磁场可通过改变电流来调节和控制,所以应用十分广泛.

【例1】 关于磁感线的概念和性质,以下说法中正确的是( )

A.磁感线上各点的切线方向就是各点的磁场方向

B.磁场中任意两条磁感线均不可相交

C.铁屑在磁场中的分布所形成的曲线就是磁感线

D.磁感线总是从磁体的N极出发指向磁体的S极

【解析】磁感线上每一点的切线方向都在该点的磁场方向上,在磁场中某点的磁场方向是确定的,如果两根磁感线相交,则该处的磁场方向就不能确定(如果两根磁感线相切,则该处的磁场将无限强,与事实相违).磁感线是为了形象地描述磁场而假想的曲线,磁感线总是闭合曲线,在磁体的外部由N极到S极,在内部由S极到N极.

正确选项为A、B

【例2】如图为通电螺线管的纵剖面图,“ ”和“⊙”分别表示导线中电流垂直纸面流进和流出,图中四个小磁针(涂黑的一端为N极)静止时的指向肯定画错的是( )

A.a B.b C.c D.d

【解析】根据安培法则判断得通电螺线管内部的磁感线方向向左,与外部的磁感线形成闭合曲线,小磁针N极在静止时的指向在该处磁感线的切线方向上,由通电螺线管的磁感线分布情况可知,a、b两小磁针的指向画错.

应选的选项为A、B

【例3】如图所示,当S闭合时,在螺线管上方的一根小软铁棒被软化,左端为N极.试判断通电螺线管的极性和电源的极性,这时用绝缘线悬挂的小通电圆环将怎样转动(俯视)?

【解析】软铁棒被磁化后左端为N极,表明软铁所在处的磁场方向向左,根据通电螺线管内外的磁感线的分布情况,利用安培定则可判断出螺线管的左端为S极,右端为N极,电源的左端为正极,右端为负极.

很小的环形电流可看成是一个小磁针,由安培定则可知,在图示位置环形电流的N极垂直纸面向里,由于通电螺线管在圆环所在处的磁场方向向右,所以俯视圆环,圆环将沿顺时针方向转过90°.

【例4】在图中,A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M;B为铁片,质量为m,整个装置用软绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,软绳上的拉力F大小为()

A.

B.

C.

D.

【解析】以铁片B为研究对象,因为他被电磁铁吸引向上,运动时加速,所以受到的磁场力f大于重力mg.以A和C组成的系统为研究对象,因为处于静止状态,所以拉力F等于重力Mg与铁片给A的磁场f之和, 而 .所以

若选A、B、C三者所组成的系统为研究对象,由于B的加速上升,使整个系统处于超重状态,所以 .

正确选项为D 【小结】磁体和电流周围都存在磁场,磁场对处在它里面的磁极或电流有磁场力的作用.磁场可用磁感线来形象地描述,电流磁场的磁感线方向由安培定则来判定. 板书设计 :略教学反思

第18篇:磁场教学反思

《磁场对电流的作用》教学后记

我在讲完《磁场对电流的作用》一课后的一些看法。

这一块的知识有点抽象,如磁场本身是看不见的,摸不着的,所以学生在直观上有点不好。电流又是不能眼见,这样加深了学生对这一块的不好理解。

当然在上课时本人做了相应的实验,学生在看和分析实验的过程中,理解了磁场对电流是有力的作用的,所以实验在教学中有着重要的意义。具体的收获: 1.学生掌握了磁场对电流有力的作用,通电的导体在磁场中能受力运动,而且受力的方向与电流的方向有关、与磁场的方向有关。 2.在演示直流电动机的模型时,加深了学生对三者方向之间的判断,同时学生还进一步从实验的结果中得到电动机的转动速度与电流的强度和磁场的强度有关。 3.学生在自已安装直流电动机时出现的故障能够进行分析和排查。有电压太低、接线柱接触不良、线圈在平衡位置、换向器太紧等原因。 4.给学生模型图能够分析是电动机的模型,知道换向器的作用。

以上是学生了解的情况,总体上我是满意的,当然也有不足的地方如学生在动手能力上明显是不行的,找不到突破点,在空间想象上也是不足的,在看一些图时竟然看不懂,这些都显示了学生的不足,必须加强对学生在理解上、思维上的指导和培养。篇2:磁现象、磁场教学反思

磁现象、磁场教学反思

学校:华民乡中学 教师:裴庆波 时间:2013年12月 磁现象、磁场教学反思

华民乡中心学校 裴庆波

学生在平时生活中接触或观察过磁体,对磁现象并不陌生, 但这些东西在学生的头脑中只是有印象,缺乏理论系统地归纳和整理。 磁场虽然存在但是看不到,也摸不着。要引导学生展开空间想象就显得很重要,所以必须做好演示实验,同时利用投影,巧设提问,使学生的观察方向化,通过改变小磁针位置观察其指向的变化,通过铁屑磁化后在磁场的分布感受磁场的存在和磁场的分布。让学生通过现象去认识磁场。通过演示实验学到探找科学规律的途径,通过小磁针的不同转向,说明磁场的存在。

我在教学设计中以四个探究实验为主线,把磁性、磁极、磁化、磁极间作用规律等基本概念交待清楚,希望以实验吸引学生眼球,激起学生学习兴趣。

在讲授“磁体有两个磁极”时类比了“蚯蚓断肢再植”,形象生动,易于让学生掌握知识点。在讲“磁极间相互作用规律”时,对比“电荷间作用规律”,教给学生一种学习方法,让他们在今后的学习中受益。类比空气流动成风、磁场对磁体有力的作用,说明看不见、摸不着的东西也是可以认识的,使学生认识磁场的存在,渗透科学的思维方法。

在整个教学过程中,我注意对学生进行思想教育。如课前用“磁浮列车”引课,让学生感受科技对生产生活的影响;四大发明的简介让学生对我国古人的智慧由衷赞叹,为做为一个中国人而感到自豪;自制小磁针环节,教育学生要善于动脑思考问题,从一点一滴做起,

将来立志做个发明家。

同时紧扣磁场的基本性质——磁场对放入其中的磁体产生力的作用,且具有方向性。另外,做好演示实验,有层次地培养学生分析问题和抽象思维能力。

本堂课我注重信息技术与学科的整合,其主体是课程,并不是所有学科、所有章节都适合用信息技术来整合,要选择最有利于开展整合的章节内容来发挥整合的优势,而本节课充分利用物理课件,在适当的时候进行整合,充分体现了学科本位的特征,又能有效地突破重点和难点。 但也有几处明显的不足:

一、教学过程中有些急躁、紧张,在教学环节的衔接上不自然。

二、时间安排不够合理。前面部分的内容花的时间过多,后面讲的时显得太匆忙,有前紧后松的感觉。

三、对学生活动的评价方面缺乏激励性的表达,只是就事论事。学生参与教学的实验和交流,老师应给予热情的鼓励,这在平时教学中是经常这样做的,在教中脑子里满是自己的课,把这个方面忽视了。篇3:《磁场》教学反思

《磁场》教学反思

庆安县第五中学 武学斌 《磁场》这是一节磁现象后的一节课,它先形象的引入了磁感线描述了磁场形状,后又挖掘地磁场。交代了地磁的两极所在的位置,用什么来验证磁场的存在我在教授这节课一直在思考应该以怎样的方式和方法来让学生们很好的学习这节课,为此我精心设计了一个教学流程,同时利用多媒体网络资源来辅助教学,课后我认真的探讨并进行了反思,感到在这节课的教学过程中很好 的达到了教学目的,首先,我以网络资源来展示相关资料,从它的特点,到磁场力及磁场方向确定,让学生对磁场树有了一个印象,让学生们从感性到理性来认识磁场

虽然这节课的教学方法有很多看点也比较好的达到了当初的教学目标但教学过程中也存在着一定的不足之处:我在随堂练习的设计上有一些不足,当时对设计的内容考虑的 不十分全面。不过从总体上来说我还是比较满意这节课的教学方式的,在今后的教学活动中我要在学习此类课时发扬优点改正设计中的不足之处,使学生能够更好的理解这类课在今后学习中的意义,为新课改的发展做了一分贡献。篇4:7.1(磁现象第2课时)磁场教学反思

磁场教学反思

西北中学 陈容

一、现场观察补记 1.本节课重点体现新课程标准的“注重科学探究,提倡教学方式的多样化”这一理念。本节课通过视频创设情景,激发学生学习兴趣,利用磁体吸铁性在生活中的应用,感受磁体的性质,视频清晰直观,学生能联想到磁场的存在;通过知识构建的过程,学生自主活动感受实验和观察在研究物理问题中的重要性。 2.在突破磁感线这一难点中采用分解难点,由浅入深,各个击破的方法。即由磁场中一点磁针的n极指向开始,再在磁场中不同点摆放小磁针,把各点的磁场方向分别显示出来,尽管方向不同但又隐约发现磁针n极指向似有规律。要把这个面上更多点的磁场方向显示出来,可放更多小的磁针,因此铁屑代替小磁针。由此引导学生建立起“磁感线”这个物理模型,培养学生的抽象思维能力。 3.利用多种教学手段优化课堂教学,例如把磁场中的磁针,铁屑进行实物投影放大;不同磁场的分布规律,放手给学生实验探究,激发学生的兴趣;自制的课件,投影片及视频,变静态为动态,变抽象为直观,提高课堂的教学效率和教学效果。实物立体磁感线演示仪及ppt立体磁感线分布图,让学生对磁场的认识由点到面,再到空间。最后提问学生磁在生活中的应用,并播放磁悬浮列车和科技前沿阿尔法磁谱仪的相关视频,拓展学生的知识视野,还充分利用教学内容增强学生的民族自豪感。 此课作为武侯区第十二届课堂教学大赛初中物理课,得到了听课的专家领导和教师的高度评价,参加听课的教师作出如下的评议:“陈老师的课通过直观的视频引入,提高学生的学习兴趣,引入精彩;实验规律通过学生充分交流、讨论和归纳得到,充分体现了学生主体作用和教师的主导作用,全课注意了学生实验能力和科学素质的培养。”

二、反思改进

在学生的分析总结中,应充分肯定学生的思维活动,并能拓展学生的思维,使其上升到一定高度,例如学生总结出:“磁场方向是小磁针在磁场中静止时,n极所指反向”时,教师应引导学生得出更多的特点(例如:磁感线上任意一点的切线方向为该点的磁场,即小磁针n极所指方向等)。 在今后的教学中,在实验过程中要强调实验操作的规范性,对易碎器材如磁体,应小心实验防止实验过程中损坏,甚至受伤。此外对实验仪器的改进、创新或自制应进一步加强。 1篇5:《磁现象和磁场》教学反思

《磁现象和磁场》一课的教学反思

对教学模式的反思;

与传统的物理教学模式相比网络化物理教学更突出了以“学生为中心”“以实践为中心”、的新的教学观点,物理教师和学生在教学中的角色发生了变化,学生掌握了学习物理的主动权、处于主动、积极学习的地位,很好地符合了以学生为主体的自我认知的学习方式。同时,网络化物理教学可以在教师与学生、学生与学生之间进行双向信息交流,加强了师生、生生之间的联系,实现了教与学的良性互动和学生在学习活动中的思考与创新。 网络化教学不能取代传统的物理试验:虽然网络技术可以利用动画、图片、声音等模拟各种各样的物理试验,或者虚拟一些真实的情景,但是它往往不能准确的表达某些知识,反而给学生造成认知上的误区,同时学生的动手能力也得不到很好的训练。物理网络化教学效果取决于多媒体的应用水平:不是每种多媒体都具有普遍的适用性,多媒体技术应用与物理教学内容、教学过程、教学活动、学生特点、课程特点统一协调起来,只有采用恰当的教学方法和手段,才能确实达到提高教学效果的目的。

对教学方法的反思:

本节课在整个教学过程中有以下几个做得比较好的地方:(1)引课自然:自然界中的磁现象丰富多彩,都有哪些磁现象呢?(2)充分发挥学生自主性,让学生自己搜索网上信息,在完成教师布置任务的同时,学习相关的知识,激发学生学习兴趣,培养学生归纳总结能力。(3)采用自主探究、合作学习的方式,还原了物理规律的发现过程,老师在整个问题探讨过程中扮演着引导者的角色。

第19篇:磁场复习教案

(教案)年级 ________学科 ___________编写人________日期 __________

磁场复习(1-4节)

教学目标:

1、磁现象的电本质。

2、磁感强度。磁感线。磁通量。

3、磁场对通电直导线的作用。安培力。左手定则。 教学重点:

磁感强度。磁感线。左手定则、安培定则 教学过程:

一、主要概念和规律

1、磁场的基本概念 (1)磁场

磁场:存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质。

磁场的基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。

磁现象的电本质:磁体、电流和运动电荷的磁场都产生于电荷的运动,并通过磁场而相互作用。

磁现象的电本质:指安培分子环流假设。

【例1】下列叙述正确的是:(A)安培假设中的分子电流是不存在;(B)通电直导线周围的磁场是内部的分子电流产生的;(C)软铁棒在磁场中被磁化是因为在外磁场作用下,软铁棒中分子电流取向变得大致相同;软铁棒中分子电流取向变得大致相同;(D)软铁棒在磁场中被磁化是因为棒中分子电流消失

答案:C (2)磁感强度(B)

B:是从力的角度描述磁场性质的矢量。

大小的定义式:B=F/IL,式中的F为I与磁场方向垂直时的磁场力(此时的磁场力最大,电流I与磁场方向平行时,磁场力为零),l为通电导体的长度。

方向规定:小磁针的N极所受磁场力的方向,即小磁针静止时N极的指向,也即磁场的方向。

单位:T 【例2】有一小段通电导线,长为1cm,电流强度为5A,把它置于磁场中某点,受到的磁场力为0.1N,则该点的磁感应强度B一定是(A)B=2T(B)B£2T(C)B³2T(D)以上情况均有可能

答案:C 【例3】在同一平面内,如图所示放置六根通电导线,通以相等的电流,方向如图。则在a、b、c、d四个面积相等的正方形区域中,磁感线指向纸外且磁通量最大的区域是:(A)仅在a区(B)仅在b区(C)仅在c区(D)仅在d区

答案:C (3)磁感线

在磁场中画出一些有方向的曲线,在这些曲线上,每一点的曲线方向,亦即该点的切线方向,都跟该点的磁场方向相同,这些曲线称为磁感线。

磁感线的疏密:表示磁场的强弱,磁感线上某点的切线方向就是该点的磁场方向。

磁感线不相交、不相切、不中断、是闭合曲线。在磁体外部,从N极指向S极;在磁体内部,由S极指向N极。

磁感线是为了形象描述磁场和电流的磁场中,磁感线在空间都是立体分布的,为了能正确地分析和解答各种磁场问题,不仅应熟悉条形磁体、蹄形磁体、直线电流、通电螺线管、磁电式电流计内的磁场、地磁场等几种典型磁场的磁感线分布,还要善于将磁感线分布的空间图转化为不同方向的平面图,如下视图、俯视图、侧视图、和相应的剖视图。

地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:1)地磁场的N极在地球南极附近、S极在地球北极附近;2)地磁场的B的水平分量(Bx),总是从地球南极指向北极,而竖直分量(By)则南北相反,在南北球竖直向上,在北半球竖直向下;3)在赤道平面内(即地磁场的中性面)上,距离地球表面相等的各点,磁感强度相等,且方向水平。

匀强磁场:磁感强度的大小处处相等、方向处处相同的磁场称为匀强磁场。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。距离很近的两个异名磁极之间的磁场和通电螺线管内部的磁场(边缘部分除外),都可以认为是匀强磁场。

在应用安培右手定则,判定直线电流和通电螺线管(环形电流可视为单匝螺线宇航局)的磁场方向时,应注意分清“因”和“果”:在判定直线电流的磁场方向时,大拇指指“原因-电流方向”;四指指“结果-磁场绕向”,在判定通电螺线管磁场方向时,四指指“原因-电流绕向”,大拇指指“结果-螺线管内部沿中心轴线的磁感线方向,即指螺线管的N极”。

【例4】如图所示,一束带电粒子沿水平方向平行地飞过静止小磁针的正上方时,磁针的南极向西转动,这一带电粒子束可能是:(A)由北向南飞行的正离子束;(B)由南向北的正离子束;(C)由北向南的负离子束;(D)由南向北的负离子束。

答案:AD

(4)磁通量(f)

穿过某一面积(S)的磁感线条数。f=BScosq,式中Scosq为面积S在垂直于磁场方向的平面(中性面)上投影的大小。

在使用此公式时,应注意以下几点:1)公式的适用条件:一般只适用于计算平面在匀强磁场中磁通量;2)q角的物理意义:表示平面法线方向(n)与磁场方向(B)的夹角或平面(S)的夹角或平面中性面(oo¢)的夹角,如图所示,而不是平面(S)与磁场(B)的夹角(a)。因为q+a=90°,所以磁通量公式还可以表示为f=BSsina;3)f是双向变量,其正负表示与规定的正方向(如平面法线的方向)是相同还是相反。若磁感线沿相反方向穿过同一平面,且正向磁感线条数为f1,反向磁感线条数为f2,则磁通量等于穿过平面的磁感线的条数(磁通量的代数和)即f=f1-f2。

【例5】如图所示,两个同平面、同圆心放置的金属圆环a和b,条形磁铁放在其中,通过两环的磁通量fa、fb相比较(A)fa>fb(B)fa

答案:B

2、磁场对电流的作用 (1)安培力

大小:F=BILsinq。其中B为通电导线所在处的匀强磁场;I为电流强度;L为导线的有效长度;q为B与I(或L)夹角;Bsinq为B垂直于I的分量。

方向:总垂直于B、I所决定的平面,即一定垂直B和I,但B与I不一定垂直。故一般使用(电动机)左手定则判定安培力方向时,左手心应迎B的垂直于I的分量(B^=Bsinq)。

公式的适用范围:一般只适用于匀强磁场;弯曲导线的有效长度l等于两端点所连直线的长度,相应的电流方向由始端指向末端,因为任意形状的闭合线圈,其有效长度l=0,所以通电后在匀强磁场中,受到的安培力的矢量和一定为零。

安培力的做功特点:可以做功,但起的是传递能量的作用。与静摩擦力做功的作用有些相似。

【例6】如图所示,在垂直纸面向里的匀强磁场中,有一段弯成直角的金属导线abc,且ab=bc=l0,通有电流I,磁场的磁感应强度为B,若要使该导线静止不动,在b点应该施加一个力F0,则F0的方向为 ;B 的大小为 。 答案:斜向上45°,

I l0B

二、主要概念及规律的辨析

1、电力线与磁力线

电力线是用于形象描述静电场的分布的,磁力线是用于形象描述静磁场的分布的。 静电场的电力线是不闭合的;静磁场的磁力线是闭合的。

静电场电力线上某点切向(沿电力线向)既表示该点场强方向,又表示电荷在该点所受电场力的方向;静磁场磁力线上某点切向既表示该点磁场方向,又表示小磁针在该点所受磁场力的方向,但不表示该点置放带电导线元或运动电荷所受力的方向。

2、磁感强度与磁通量

磁感强度是描述磁场强弱的一个物理量,是指空间某点垂直于磁场方向单位面积的磁力线条数(故也称磁通密度);磁通量是指空间某区域垂直于磁场方向某一定面积S的磁力线条数。

3、安培定则与左手定则

判断情形的因果关系有所不同。安培定则是用于判定电流或电荷产生磁场的情形;左手定则是用于判定磁场对电流或电荷产生安培力或洛仑兹力的情形。

使用方法也用所不同。安培定则:右手弯曲;左手定则:左手伸直。

三、主要问题与分析方法

1、通电导体在安培力作用下的运动及其分析方法

通电导体和通电线圈,在安碚力作用下的运动方向问题,有下列几种定性分析方法: (1)电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力的方向,最后确定运动方向。

(2)特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向。

(3)等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管。通电螺线管也可以等效成很多匝的环形电流来分析。

(4)利用现成结论:两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。

【例7】如图所示,条形磁铁放在水平桌面上,其正上方略偏右处固定一根直导线,导线和磁铁垂直,并通以垂直纸面向外的电流,则(A)磁铁对桌面的压力减小(B)磁铁对桌面的压力增大(C)磁铁受向左的摩擦力(D)磁铁受向右的摩擦力

答案:BD 【例8】如图所示,将通电线圈悬挂在磁铁N极附近,磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心。线圈将(A)转动同时靠近磁铁(B)转动同时离开磁铁(C)不转动只靠近磁铁(D)不转动只离开磁铁

答案:A 【例9】如图所示,原来静止的圆形线圈通以逆时针方向的电流I,在其直径AB上靠近B端放一根垂直于线圈平面的固定不动的长直导线,并通以垂直纸面向里的电流I¢。在磁场作用下圆线圈将:(A)向左平动(B)向右平动(C)以直径AB为轴转动(D)静止不动

答案:C 【例10】如图所示,一段铜导线折成“∩”形,它的质量为m,水平段长l,处在匀强磁场中,导线下端分别插入两个浅水银槽中,与一带开关的、内电阻很小的电源连接,当S接通的一瞬间,导线便从水银槽中跳起,其上升的高度为h,求通过导线的横截面的电量。

答案:

板书设计:

作业布置:

磁场活页

第20篇:《磁场》教学设计

《磁场》的教学设计

红寺堡区回民中学

罗彩虹

教学目标:

一、知识与技能

1、知道磁体周围存在磁场;

2、知道磁感线可用来形象地描述磁场,知道磁感线的方向是怎样规定的;

3、知道地球周围有磁场,知道地磁的南、北极。

二、过程与方法

1、观察磁体之间的相互作用,感知磁场的存在;

2、经历实验观察,总结类比的过程。学习丛物理现象和实验中归纳规律,初步认识科学研究方法的重要性。

三、情感态度与价值观

使学生在经历分析、观察的过程中体会到学习探究的乐趣。

教学重点:

1、磁场的概念;

2、用磁感线描述磁场的分布。

教学难点:如何认识磁场的存在。 教学方法:

1、创设情境,进行实验探究式学习。

2、以小组合作讨论为主,结合教师引导的自主性学习。

课时安排:1课时

教学用具:多媒体课件、条形磁体、小磁针、条形磁体的磁场空间分布模型。 教学设计:

创设情境

导入新课

讲桌上放上小磁针,让学生观察小磁针的指向,再把一个条形磁体放到小磁针附近,让学生观察并指出小磁针的指向有什么变化。拿开条形磁体,小磁针静止后又恢复原来的指向。

教师提问:条形磁体没有直接接触小磁针时就能使小磁针偏转,那么条形磁体是怎样作用于小磁针的呢?

学生思考。

点拨:小磁针发生偏转,说明小磁针受到了力的作用。 演示实验:教师手推板擦运动,手对板擦施加力的作用。

分析:手作用于板擦上时,板擦才能动;同样,小磁针能够转动也是由于有物质作用在它上面,只是这种物质看不见、摸不着。说明磁体和小磁针间存在着

某种物质。

大量的科学研究表明:在磁体周围的空间存在着一种物质,这种物质能够使小磁针偏转,我们把这种物质叫做磁场。(课件展示)这节课我们就来研究磁场。

合作交流

进行新课

一、磁场

把条形磁体吸到磁性黑板上,提问:仔细观察,说说磁体周围的磁场是什么样子的?

学生表示无法观察,因为磁场是看不见、摸不着的。

教师提问:我们在前面的学习中通过什么方法来认识看不见、摸不着的物质?

学生讨论得出:灯泡发光,电表指针发生偏转,说明电路中有电流。同样,我们要想认识磁场这种特殊物质,也要根据它产生的效应来了解。

指导学生观察图片:

1、在条形磁体的周围放若干个小磁针,观察小磁针北极的指向怎样变化?

2、不同位置的小磁针指向相同吗? 学生讨论得出:

这个现象说明了磁场是有方向的。 教师点拨:(课件展示)

1、磁场是一种物质。磁场的基本性质是它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场发生的。

2、磁场具有方向性。磁场中各点的磁场方向,可以用小磁针去测试。物理学中,通常把小磁针静止时北极所指的方向规定为这一点的磁场方向。

3、磁场具有强弱性。磁体中不同位置的磁场强弱不同,磁极的磁场最强。磁体周围离磁体越远的地方,磁场越弱。对于条形磁体,两端磁性最强,中间最弱。

二、磁感线

提问:将多个小磁针放到不同磁体的周围,可以粗略的显示磁场的分布情况,如何更形象直观点呢?

学生讨论得出:用铁屑代替小磁针来做实验。

播放视频:在一块玻璃板上均匀撒一些铁屑,然后把玻璃板放在磁体上,观察铁屑的分布有什么变化。轻敲玻璃板,观察铁屑的分布有什么变化。

学生观看视频(形象直观的呈现出磁场的分布情况)

我们仿照铁屑排列的图案沿小磁针N极所指方向画出一些带箭头的曲线,这样的曲线叫做磁感线。利用磁感线可以方便、形象的描述磁场。

2

演示实验:条形磁体的磁场空间分布。

磁感线布满磁体周围整个空间,并不只在一个平面上,由于画图的局限性,通常只在平面上画出具有代表性的几条。

学生分析条形磁体和蹄形磁体的磁场分布图,(课件展示)总结得出磁感线的特点。

教师点拨:(课件展示)

1、磁感线是不存在、不相交的闭合曲线。

2、磁体外部磁感线都是从磁体的N极出发,回到S极。

3、磁感线的切线方向就是该点的磁场方向,跟小磁针静止后北极所指的方向一致。

4、磁感线的疏密表示磁场的强弱,磁感线越密的地方磁性越强,磁体两极处磁感线最密,表示其两极处磁场最强。

巩固练习(课件展示) 教材65页中的“想想议议”。

三、地磁场

演示实验:把桌上的磁体或铁器移开,然后支起一根小磁针,小磁针静止后指南北方向。用手把磁针拨到其他方向,让学生观察放手后它会怎样。

现象:磁针仍要转向指南北。 教师提问:

1、放手后磁针为什么会转动呢? 启发学生回答:受到磁场的作用。

2、磁针附近并未放置磁体,为什么又有磁场存在呢? 教师点拨:(课件展示)

1、地球本身就是一个大磁体,地球周围存在磁场,叫地磁场。

2、地磁场的形状跟条形磁体的磁场很相似。

3、地磁的北极在地理南极附近,地磁的南极在地理北极附近。它们并不完全重合,而是存在一个偏角,叫做磁偏角,磁偏角是我国宋代的科学家沈括发现的。

地磁场的本质到现在还没研究清楚,有待同学们去继续研究。 总结反思

拓展升华 课堂总结:

引导学生归纳本节课学到了什么?

1、磁体周围存在一种特殊的物质——磁场。磁场有方向,有强弱,但看不见,摸不着。

3

2、为了形象地描述磁场,假想了磁感线。在磁体的周围,磁感线从N极出来回到S极,磁感线上任何一点(切线)的方向为该点的磁场方向。

3、地球是一个巨大的磁体,在它周围的空间存在磁场,叫做地磁场。地磁的北极在地理南极附近,地磁南极在地理的北极附近,它们并不完全重合。这是我国宋代学者沈括发现的。

知识拓展:

简介鸽子、绿海龟、鱼类等通过地磁场导航的事实,结合“科学世界”中的内容,组织兴趣小组的学生结合生物学知识研究“鸟类、鱼类等动物是怎样利用地磁导航的”。

布置作业:

教材67页中的“动手动脑学物理”

1、2题。

板书设计:

§9.2磁场

一、磁场

1、磁场的性质:磁场对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场发生的。

2、磁场的方向:把小磁针静止时北极所指的方向规定为这一点的磁场方向。

二、磁感线 磁感线的特点:

1、磁感线是不存在、不相交的闭合曲线。

2、磁体外部磁感线都是从磁体的N极出发,回到S极。

3、磁感线的切线方向就是该点的磁场方向,跟小磁针静止后北极所指的方向一致。

4、磁感线的疏密表示磁场的强弱,磁感线越密的地方磁性越强,磁体两极处磁感线最密,表示其两极处磁场最强。

三、地磁场

《磁场》的教学设计

红寺堡区回民中学

罗彩虹

2011年5月17日

磁场知识点总结
《磁场知识点总结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档