人人范文网 范文大全

预应力混凝土连续梁桥及例子(推荐)

发布时间:2020-03-04 01:21:31 来源:范文大全 收藏本文 下载本文 手机版

4.1一般规定

4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。 4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。

4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则, T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。

4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条 件 腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时 20 腹板内有纵向或竖向后张预应力钢筋之一时 30 腹板同时有纵向和竖向后张预应力钢筋时 38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。

4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。

1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。

4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m抹角。

4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于25m的桥孔应设三道跨间横梁。斜桥视其交角适当增加跨间横梁。

4.1.13主梁桥面板横向预应力不得采用无粘结预应力钢筋。 4.1.14主梁的梁高宜取最大跨径的1/20~1/27,箱梁梁高不应小于1.2m,当连续梁中支点为独柱支承时,梁高一般由中支点横梁强度控制,设计时应适当加高。

4.1.15连续梁桥施加预应力应采用后张法。预应力钢筋可采用规范规定的钢丝、钢铰线及标准强度为1860MPa的低松弛钢铰线。如采用低松弛钢铰线应按行业标准符号在图纸中予以说明。

设计文件中应要求采用经过鉴定,并符合国家标准和行业标准的锚具、联接器,预应力锚具、联接器、锚下钢筋及波纹管应按产品手册配套使用。

设计文件中应写明预应力钢筋张拉顺序、孔道灌浆要求和相应的结构施工顺序。箱梁各腹板纵向预应力钢筋应分批交替张拉,先,横梁和主梁预应力钢筋也应交替张拉,先横梁后主梁。

4.1.16桥面的纵横坡一般由支座垫块形成,设计时给出垫块中心高度,其值应控制四角高度不小于0.02m,当高度大于0.05m时应设钢筋网。

4.1.17 全桥采用支座支承的连续梁不得全部使用滑板支座,并至少设置一个双向固定支座。

4.1.18 预应力孔道灌浆宜采用真空灌浆工艺,灌浆标号不低于结构混凝土标号的80%。体外预应力钢筋锚区应采用环氧浆灌注。 4.1.19 体外预应力结构中的体外预应力钢筋设计应考虑后期可更换。结构设计时应考虑体外预应力钢筋的可检查性。

4.1.20 采用预制节段拼装的主梁应尽量考虑结构的标准化,以降低模板费用。 4.2结构分析

4.2.1桥梁上部结构应对主梁、横梁、桥面板及整体结构进行各施工阶段计算,并按规范进行承载能力极限状态及正常使用极限状态计算。

代简支梁法计算横向分布系数(对于类似跨径及桥宽的情况也可利用已取得的计算结果,分析确定横向分布系数),取最不利单梁进行分析。支点和跨中应分别取不同的分布系数,分布系数变化点为1/4~1/5计算跨径。

4.2.3异型桥及弯桥应辅以SAP、3DBSA、MIDAS或其它空间计算程序进行内力分析,用于修正“桥梁综合计算程序”所计算的配筋。弯桥还应计算扭转、弯曲剪力叠加后,对主梁截面进行剪应力验算。斜桥的斜度(支承边或支座连线与桥梁轴线法线之间的小于90的夹角)小于或等于30时可用斜跨径按正桥计算,大于30时应按斜桥采用空间计算程序进行分析计算。斜桥计算跨径取斜长,计算横截面尺寸取垂直断面尺寸。

4.2.4预应力混凝土结构进行正常使用极限状态计算时,应优先考虑采用A类构件,正截面上、下缘正应力在荷载组合Ⅰ条件下拉应力不宜超过0.5MPa,压应力不宜超过规范容许值的90%;其余荷载组合条件下拉应力不宜超过规范容许值的65%,压应力不宜超过规范容许值的90%;预加力阶段拉应力不宜超过规范容许值的65%,压应力不宜超过规范容许值的90%。

4.2.5预应力结构主梁、横梁均应进行支点、跨中、1/4截面的正截面、斜截面强度计算。以满足规范要求。

4.2.6预应力结构主梁强度计算中受压区预应力钢筋不得人为去掉,应在计算中作为受压预应力钢筋计算其对截面强度的影响。强度计算中,结构主要受力截面处,预应力的抵抗效应值超出荷载总效应值不宜过大,同时按规范要求计算并控制混凝土达到抗压设计强度时,受压构件中预应力钢筋的应力。

4.2.7桥面板应进行内力计算以确定配筋,板的分布宽度可按规范计算。箱梁跨中、1/4截面及支点截面按框架结构计算(跨中、1/4截面采用弹性支承,支点截面采用刚性支承)。当板的内力按梁(板)结构计算时应考虑不等厚桥面板厚度变化的影响。桥面板设计时,板厚、配筋应留有余量。当箱梁外悬臂大于或等于3m时,截面配筋应考虑腹板及顶、底板弯矩的协调。

4.2.8当混凝土标号大于C60时,各种构造钢筋直径等级应提高一级。 4.2.9对采用大吨位预应力的混凝土结构,对锚固部位的端横梁和体外预应力的转向块,在缺乏可靠参考资料时应对其进行局部应力分析。

4.2.10独柱支承的宽连续梁桥应进行结构空间计算。

4.2.11对于设有盖梁的横梁,当盖梁刚度较弱时,计算横梁宜将盖梁同时考虑(计入盖梁及支座刚度对横梁的影响)。

4.2.12对于采用墩梁固结和T墩形式的连续梁桥,结构计算时应上下部结构整体计算。

4.2.13对带有刚臂的计算模型(例如框架四角和墩梁固结点)时,若计算程序不能自动形成刚臂单元,则应人工划分刚臂单元。 4.3构造要求

4.3.1纵向普通钢筋应根据计算确定,钢筋直径一般宜采用F16~F25,箍筋直径不应小于F12,应根据计算确定,其它构造钢筋直径宜采用F12~F16。非预应力横梁钢筋直径宜采用F22~F28,跨间横梁钢筋直径宜采用F22~F25。预应力孔道下必须设置定位钢筋,定位钢筋直径和形式根据预应力钢筋规格确定并不小于φ8。 4.3.2主梁、横梁钢筋关系:横梁钢筋设在外层,主梁钢筋设在内层;主梁与横梁交叉处,不设主梁箍筋,横梁箍筋沿横梁全长布置。 4.3.3桥面板钢筋与主梁、横梁钢筋关系:桥面板受力主筋置于主梁顶部纵向钢筋的顶面,箱梁底板底面横向钢筋置于主梁底部纵向钢筋的底面。横梁范围内顶部和底部横梁主筋分别置于横梁最顶和最底面,主梁纵向钢筋(局部缓弯)置于横梁主筋内侧,同时横梁范围内桥面板或底板钢筋取消,但应配置翼板钢筋。 4.3.4在结构受拉边禁止设置内折角受力钢筋。

4.3.5预应力钢筋的布置,应线型平顺符合内力分布,且应尽量避免布置受压预应力钢筋。

4.3.6普通钢筋的设置应尽量避免与预应力钢筋位置相矛盾。 4.3.7箱梁顶板底横向钢筋、底板底横向钢筋和底板顶横向钢筋须伸至外腹板端部,并设90弯钩锚固。

4.3.8主梁腹板变宽段处箍筋135弯钩应改为直角焊接,以避免箍筋弯头与波纹管矛盾。

4.3.9主梁箍筋配置形式应充分考虑预应力波纹管净距要求,建议采采用弯上弯下的配筋形式。

4.3.11有伸缩缝预留槽的端横梁配筋方式应满足以下要求:横梁顶部主筋分为不同高度的两层钢筋配置,箍筋同样配置成不同高度,并且矮箍筋应与高箍筋重叠一定的距离。 注释

斜桥的斜度和斜角

至桥梁轴线的法线(右手法则)时,斜度为正,反之为负。若弄错斜度的正负,则成为方向相反的桥梁,应给以特别的注意。 2.斜角--支承边与桥梁轴线的夹角(小于90),它与斜度互余,注意不应混淆斜度与斜角。近些年来,我国已用各种典型的施工方法修建了不少大中型跨径预应力混凝土连续梁桥。下面介绍其中的沙洋汉江桥和奉浦大桥。

1.沙洋汉江桥沙洋汉江桥

沙洋汉江桥位于我国湖北省荆门县的沙洋镇,是跨越汉江,联系汉口到宜昌的公路桥。桥梁全长1818.5m,主桥采用八跨一联的变截面预应力混凝土连续梁桥,中跨111m,桥面行车道宽9m,两侧人行道各宽1.5m,全宽12.5m(图6.14)。

桥址位于汉江下游,属平原稳定性河道,河床滩、槽分明,枯水时主槽河面宽600—700m,两岸河滩约1100m,但主河槽冲淤变化剧烈,一次洪水的主槽标高冲淤变化幅度达8.7m,平均变化幅度4.5m,主槽并有横向摆动的历史,根据汉江水情变化,为了桥梁的安全和两岸人民的安全,在桥梁全长设计中按两岸沿江大堤堤距考虑。桥位处地质情况复杂。根据地质条件和冲刷情况,主桥墩基础选用钢筋混凝土空心井,平均高度31m,置于泥灰岩层上。主墩采用钢筋混凝土空心墩,墩高13.6~14.8m,每个主墩上设置两个承载力为19600kN的盆式橡胶支座。主桥与引桥的过渡墩基础选用4根直径1.25m钢筋混凝土钻孔桩。钢筋混凝土实体墩、引桥均采用直筋1.4m钢筋混凝土双圆柱墩,直径1.5m及1.25m钻孔灌注桩,桩长约30m。河道按四级航道标准设计。通航净宽55m,净高8m,主航道在主桥的两个边部。

沙洋汉江桥主桥为62.4+6×111+62.4m的预应力混凝土连续梁桥,边跨与中跨之比为0.56:1。横截面为单箱单室。连续梁的墩顶高为6m。跨中梁高3m,底缘按二次抛物线变化。横截面的尺寸按常规选定,其中腹板与底板采用变厚度。主桥的横隔梁设置3~5道,主桥中跨设置在支点、四分点、跨中截面;边跨仅设置在支点、跨中和端部截面。在主桥与引桥相接的过度墩上设置铸钢制梳齿板伸缩缝。

主桥采用挂篮悬臂浇筑法施工。墩顶的箱梁及横隔板是在墩旁托架上立模现场浇筑,待桥墩与墩顶的箱梁临时固结后进行悬臂浇筑施工。段长3.4~3.7m,最大浇筑重量1000kN。在梁段悬浇施工中,内模采用了滑升工艺,提高了施工效率。悬浇施工的顺序是从两边墩向中间墩逐墩施工,逐跨合拢,即实现体系转换的程序也是从边向中进行,最后在第五跨的中跨合拢形成8跨一联的连续梁。

图6.14 沙洋桥的总体布置

主桥纵向预应力筋为24φ5高强钢丝束、钢制锥形锚具,分有悬臂施工筋和后期筋,悬臂施工筋是在悬臂浇筑施工时在箱梁顶板与腹板上布置的钢束,后期则是在主梁体系转换之后为满足使用阶段内力要求增配的预应力筋。力筋的管道形成采用橡胶抽拔管(直束)和0.5mm铁皮管(弯管)成孔。竖向预应力筋布置在腹板内,采用25MnSiφ25高强粗钢筋轧丝锚头,钢筋的管道采用铁皮管形成,力筋张拉采用双作用千斤顶。

2.上海黄浦江奉浦大桥

奉浦大桥位于上海市,是城市快速干线道路桥梁,桥宽18.6m,设计荷载为汽车—超20级,挂车—120。主桥上部结构为五跨变截面预应力混凝土连续梁,跨径组合85.15+1253+85.15=545.30m,边跨与中跨之比为0.68,采用悬臂浇筑法施工。125m主跨支点处梁高7.0m,与跨长的比值为1/17.86;跨中梁高2.8m,为跨长的1/44.64。梁底按二次抛物线变化。横断面采用单箱单室箱梁(见图6.15),箱底宽8.6m,箱顶宽18.60m,其中箱梁翼板悬臂宽度每侧达5m。箱梁顶板厚度采用30cm和40cm二种尺寸,支点(0号节段)取80cm。箱梁腹板厚度分别采用48cm、55cm,支点截面处为105cm。箱梁底板厚度变化范围从30cm至90cm变化,支点处为140cm。箱梁仅在支点处设置横隔梁。桥梁车行道宽16m,由箱梁顶板形成1.5%的横坡。

图6.15 主梁横断面(尺寸单位:mm)

预应力混凝土连续箱梁桥裂缝控制

现浇预应力混凝土连续箱梁的施工

现浇预应力混凝土连续箱梁施工技术

预应力混凝土现浇连续箱梁支架拆除方案

现浇预应力混凝土连续箱梁施工方案(材料)

二建《市政工程》:现浇预应力混凝土连续梁施工技术

预应力混凝土桥箱梁底面横向裂缝分析

连续梁混凝土浇筑注意事项

预应力混凝土箱梁裂缝成因

高铁施工预应力混凝土连续梁质量控制研究论文

预应力混凝土连续梁桥及例子(推荐)
《预应力混凝土连续梁桥及例子(推荐).doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档