人人范文网 范文大全

机械基础教案

发布时间:2020-03-03 23:12:04 来源:范文大全 收藏本文 下载本文 手机版

机械基础

第一篇

机构及机械零件基础

通常一台完整的机包括三个基本部分: (1) (2) (3)

第一章

第一节

一、低副

两构件以面接触组成的运动副称为低副

1、若组成运动副的两个构件只能作相对转动,这种运动副称为转动副或回转副

2、若组成运动副的两个构件以面接触,且沿某一固定直线或曲线(如圆弧)作相对移动,这种运动副称为移动副。

第二节

平面机构具有确定运动的条件

一、平面机构的自由度

一个作平面运动的自由构件具有三个自由度。

活动构件的自由度总数减去运动副引入的约束总数就是该机构相对于固定件的自由度数,以F表示即

F=3n-2PL-PH

机构具有确定运动的条件是:机构的原动件数目必须等于机构的自由度。

第二章

平面连杆机构由若干刚性构件用低副联接而成,也可称为平面低副机构。

平面连杆机构的优点是:由于机构中名构件之间的运动副都是低副制造比较简单,承载能力大;

平面连杆机构的缺点是:为实现复杂运动规律或运动轨迹设计的平面连杆机构一般比较繁琐,且多数另能近似满足设计要求;机构构件较多时,有较大的积累误差。

第一节

平面四杆机构的分类及其应用

一、全转动副的四杆机构(又称铰链四杆机构)

1、曲柄摇杆机构

2、双曲柄机构

具有两个曲柄的铰链四杆机构称为双曲柄机构。

3、双摇杆机构

两连架杆均为摇杆的四杆机构称为双摇杆机构。

二、含有移动副的四杆机构

1、曲柄滑块机构

当四杆机构中有一连架杆为曲柄,另一连架杆相对于机架往复移动而成为滑块时,则这个四杆机构称为曲柄滑块机构。

2、导杆机构

四杆机构、其连架杆1为曲柄,连架杆3对滑块2的运动起导向作用,称为导杆。

第三章

凸轮机构的间歇运动机构

平面连杆机构 运动副及其分类 机构分析的基本知识 原动部分 工作部分 传动部分

第一节

凸轮机构的应用和分类

凸轮机构按其运动形式,分为平面凸轮机构和空间凸轮机构两种。

凸轮机构运动简图(a)平面凸轮机构(b)空间凸轮机构(c)移动凸轮机构 1凸轮 2从动件3机架

一、凸轮机构的应用及特点

凸轮是一个具有一定形状的曲线轮廓或凹槽的构件。当凸轮运动时,通过其轮廓或凹槽与从动件接触,使从动件实现预定的运动。止轮机构主要由凸轮、从动件和机架组成。凸轮与从动件之间可以通过弹簧力、重力或几何形状封闭等方法来保持接触。从动件运动规律完全取决于凸轮轮廓的形状。

二、凸轮机构的分类

1、按凸轮的形状分类 ① ② ③ 盘形凸轮,也叫平板凸轮。 移动凸轮 圆柱凸轮。

2、按从动件端部形状分类 ① ② ③

第四章

带传动和链传动

第一节

带传动概述

一、带传动的类型

1、按传动原理分类 ① ② 摩擦式带传动 齿合式带传动 尖顶从动件 滚子从动件平底从动件

2、按传动带的截面形状分类 ①平带 ② V带 ③ 圆形带 ④ 多楔带 ⑤ 同步带

二、带传动的特点

1、由于带具有弹性与挠性,可起到缓冲和减振的作用,运转平稳,噪声小

2、可用于远距离(两轴中心距离较大)的传动。

3、结构简单,便于维护。

4、由于它靠摩擦力进行传动,当传动负荷过载时,带会在带轮上进行打滑,故能起到过载保护作用。

5、带传动效率(与齿轮传动相比)较低,平均效率一般为n=0.94~0.97。

6、带靠摩擦传动,摩擦容易起电。因此,不能用在有易燃、易爆危险品的场合,如某些化要车间。

7、对于传动比要求比较严格的场合,不能采用带传动。

第二节

链传动概述

一、链传动的特点和类型

链传动由装在平行轴上的链轮和跨绕在两用人才链轮上的环形链条所组成,以链条作中间挠性件,靠链条与链轮轮齿的啮合来传递运动和动力。

链传动结构简单,耐用、维护容易,适用于中心距较大的场合。与带传动相比,链传动能保持稳定准确的平均传动比;没有弹性滑动和打滑需要的张紧力小;能在温度较高、有油污等恶劣环境条件下工作。与齿轮传动相比,链传动制造和安装精度要求较低,成本低廉,能实现远距离传动;但瞬时速度不均匀,瞬时传动比不恒定;传动中有一定的冲击和噪声。

按照链条的结构不同,传动力用的链条主要有滚子链和齿形链两种,齿形链具有传动平稳、噪声小,承受冲击性能好,工作可靠等优点,但结构复杂,重量较大,价格较高。

第四章

一、概述

齿轮传动是机械传动中应用最广泛的传动形式。其主要优点是:传动准确可靠,效率高,寿命长,适应的载荷和速度范围广,能在空间任意两轴间传递运动和动力等;主要缺点是制造和安装要求精度较高,两轴相距较远刊机构庞大,不适宜用在距离传动的场合。

二、齿轮传动的类型

齿轮传动

第一节

齿轮传动概述

其分类方法主要有以下三种。

1、按两齿轮轮轴的相对位置分类 ① 两齿轮轴线平行圆柱齿轮传动,平行的圆柱齿轮,双可按照轮齿相对轴线的方向分为直齿圆柱齿轮传动斜齿圆柱齿轮传动和人字形齿轮传动三种。圆柱齿轮按照啮合情况又可分成外啮合齿轮传动内啮合轮传动及齿轮与齿条传动等。 ② ③ ① 两齿轮轴线相交的锥齿轮传动。两员线相交的锥齿轮传动又有直齿锥齿轮传动和曲齿锥齿轮传动两种。 两齿轮轴线相错的齿轮传动,两轴线相错的齿轮传动又可分为交错轴斜齿轮传动和蜗杆蜗轮传动。

开式齿轮传动。开式齿轮传动的齿轮外露齿轮上容易落上灰尘,不能保证良好的润滑,容易产生磨损。这种类型的传动多用于传动齿轮较大的场合,如矿山设备、建筑设备等。 ② 闭式齿轮传动。闭式齿轮传动的齿轮全部安装在封闭的刚性箱体内,安装精确,润滑良好,工业企业的设备多数采用该类型。 按齿轮齿廓的曲线形状可分可为渐开线齿轮传动摆线齿轮传动和圆弧齿轮传动等;工程中常用渐开线齿轮传动,其容易加工制造,费用低,广泛应用在各类设备中。

第二节

渐开线标准直齿圆柱齿轮各部分的名称和基本尺寸

一、齿轮各部分的名称

2、按齿轮的工作条件分类

3、按齿轮廓的曲线形状分类

齿廓啮合线

1、齿顶圆。过齿轮顶端的圆为齿顶圆,是齿轮上最大的圆(或直径)。其半径和直径分别用ra和d a 表示。

2、齿根圆。过轮齿根部的圆为齿根圆,其半径和直径分别用rf和df 表示。

3、分度圆。在齿顶圆与齿根圆之间,取一个圆作为计算齿轮各部分尺寸的基准,称为分度圆,其半径和直径分别用r和d 表示。分度圆上的齿厚s、齿槽宽e、齿距p、压力角a等分别规定这些符号一律不加脚标。而其他圆上的参数必须指明是哪个圆上的参数,如基圆齿厚符号为sb、齿顶圆压力角符号为aa等。

4、齿顶高。齿顶圆和分度圆之间沿半径方向的高度称为齿顶高,用ha 表示。

5、齿根高。齿根高和分度之间沿半径方向的高度称为齿根高,用hf表示。

6、全齿高。齿根圆和齿顶圆之间沿半径方向的高度称为全齿高,用H表示。

7、齿距。任一圆上,相邻两齿对应点间距离不齿距。分度圆上的齿距(简称齿距或周节)用P表示。

8、齿厚。在齿轮同一圆周上,一个轮齿左右两齿廓间的距离(弧长)称为齿厚。分度圆齿厚用S表示。

9、槽宽。分度圆上,一个齿槽两侧齿廓间的弧才称为槽宽,用E表示。显然

p=s+e

10、齿轮宽度。轮齿沿轴线方向的宽度称为齿轮宽度,用B表示。

二、渐开线齿轮的主要参数

1、模数

工程上规定比值P/∏于整数或选择简单的有理数,并称之为齿轮模数,以M表示,单位为㎜。所以可将上式写成

d=mz

2、压力角

我国规定分度圆上的压力角a=200 ,称为标准压力角。

3、齿顶高系数和顶隙系数

齿顶高ha=ha*m

齿根高 hf=ha+c=(ha*+c*)m

第三节 渐开线齿轮的啮合

一、渐开线齿轮连续传动的条件

为了保证齿轮能够连续传动,就必须使前一对轮齿尚末脱离啮合时,后一对轮齿已经进入啮合。

第四节

一、概述

斜齿圆柱齿轮是逐渐进入和退出啮合,同时啮合的轮齿数较直齿圆柱齿轮为多,重合度较大。与直径齿轮传动相比,其传动平稳,承载能力大,适合于高速及大切率传动,斜齿轮的主要缺点是产生轴向力。

第五节

锥齿轮传动的概念

一、概述

锥齿轮用来传递两相交轴的运动和动力。其传动可以看成是两个锥顶共点的圆锥体相互作纯滚动。

第六节

蜗杆传动

当两传动轴既不平行,也不相交,而在空间垂直相错且要求传动比较大时,可以采用蜗杆传动,如图所示,本节讨论常用的普通圆柱蜗杆蜗轮传动。

斜齿圆柱齿轮传动

一、特点

1、传动比大,动力传动中可取i=10~80,分度机构可达1000,故机构紧凑。

2、传动平稳,噪音小

3、蜗杆蜗轮传动可实现自锁,常用于需要反向自锁的设备中。蜗杆蜗轮传动的主要缺点效率较低,发热和磨损严重。为减少摩擦和磨损,提高传动效率,蜗轮齿圈常需用贵重的青铜制造。

第五章

螺纹联接与螺旋传动

螺纹联接和螺旋传动都是利用具有螺纹的零件进行工作的,前者作为紧固联接件,后者则作为传动件。

第一节

螺纹的基本知识

一、螺纹的类型

螺纹有外螺纹和内螺纹之分,二者共同组成螺纹副用于联接或传动。螺纹有米(公)制和英制两种,我国除部分管螺纹外都采用米制螺纹。常用的螺纹牙型有三角型、矩形、梯形和锯齿形等。按螺旋绕行方向的不同,螺纹可分为右旋螺纹和左旋螺纹,通常用右旋螺纹。按螺旋线的数目,还可将螺纹分为单线(单头)螺纹和多线螺纹,一般常用的是单线螺纹。

二、螺纹的主要参数

现以圆柱普通螺纹为例说明螺纹的主要几何参数,

1、大径d与外螺纹牙顶或内螺纹牙底相重合的假想圆术体的直径,是螺纹的最大直径,在有关螺纹的标准中称为公称直径。

2、小径d1:与外螺纹牙底或内螺纹牙顶相重合的假想圆柱体的直径,是螺纹的最小直径,常选此直径作为强度计算的依据。

3、中径d2:在螺纹的轴向断面内牙厚与牙槽宽相等处的假想圆柱的直径。

4、螺距p:螺纹相邻两牙在中线上对应两点间的轴向距离。

5、导程s:同一条螺旋线上两牙间的轴向距离。导程s、螺距p及线数z之间的关系为s=zp。显然对单线螺纹而言其螺距与导程相等。

6、螺纹升角^:按螺纹中径所在的圆柱量得。由图6-4可得

tan^=s/

7、牙型角a和牙侧角B:在螺纹 的轴向断面内,螺纹牙型相邻两侧边的夹角称为牙型角。牙型侧边与螺纹轴线的垂线间的夹角称为牙侧角,三角形和梯形螺纹具有对称的牙侧角,锯齿型螺纹如图所示。其牙侧角是不对称的。

三、常用螺纹的特点及应用

由于三角形螺纹副中的摩擦属于楔面摩擦,自锁性能好,即只要适当控制螺纹升角,即可得到良好的自锁性,从而提高了连接的可靠性。三角形螺纹的牙根厚、强度高,但效率低,故多用于紧固联接。

1、普通螺纹

普通螺纹即米制三角形螺纹,其牙型角为a=600 ,螺纹大径d称为螺纹的公称直径,以㎜为单位。

2、管螺纹

管螺纹是英制螺纹,公称直径为管子的内径。可将管螺纹分为550非螺纹密封管螺纹和用螺纹密封的管螺纹。

第二节

一、螺纹联接的基本类型

1、螺栓联接

这种联接是利用一端有头、另一端有螺纹的螺栓穿过被联接件的光孔,拧上螺母将被联接件联成一体。

2、双头螺柱联接

螺纹联接的基本类型和螺纹联接件 双头螺柱的两端加工成螺纹,联接时一端拧紧在被联接件之一的螺纹孔内,另一端穿过另一被联接件的通孔,再旋上螺母。

3、螺钉联接

螺钉的杆部一般全部为螺纹,其联接的特点是不用螺母,用途与双头螺柱联接相似,多用于不需经常拆卸的场合。

4、紧定螺钉联接

将紧定螺钉旋入一零件的螺纹孔中,并以其末端顶住另一零件的表面或嵌入相应的凹坑中,以固定两个零件的相对位置,并传递不大的力或转矩。

5、地脚螺栓联接

地脚螺栓的一端为钩头、另一端为螺纹,与螺母相联,其作用是将设备固定在地基上。

第三节

螺纹联接的预紧和防松

一、螺纹联接的预紧

大多数情况下,在装配螺栓时要预紧螺母。

二、防松

一般在静载荷和温度不高的情况下,拧紧螺母后,只靠螺纹之间的预紧力F产生的摩擦力是能自锁的,不会自行松脱,但在冲击、振动或变载荷作用下,螺纹之间的摩擦力可能减小或消失,联接有可能松脱而发生事故,因此,这种螺纹联接时,必须考虑防松问题。

第四节

螺旋传动

在机械中,有时需要将转动变为直线移动。螺旋传动是实现这种转变经常采用的一种传动,分别为螺旋压力机和螺旋千顶,工作部分的直线运动都是利用螺旋转动来实现的,又如机床给机构中采用螺旋传动实现刀具或工作台的直线进给。

螺旋传动是由螺杆、螺母和机架组成的螺旋机构来完成的,主要用于将回转运动转变为直线运动,同时传递运动和动力的场合。 螺旋传动一般采用梯形螺纹或锯齿形螺纹。

第六章

轴承

轴承是用来支承轴及轴上零件、保持轴的旋转精度和减少转轴与支承之间的摩擦和磨损,轴承分两大类:滚动轴承和滑动轴承。两类轴承按所受载荷方向的不同,又可分为向心轴承和推力轴承两种。

第一节

滑动轴承的类型与构造

滑动轴承按其工作表面的摩擦状态有液体摩擦和非液体摩擦之分。摩擦表面完全被润滑油隔开的轴承称为液体摩滑动轴承。

摩擦表面不能被润滑油完全隔开的轴承称为非液体摩擦滑动轴承。

一、向心滑动轴承

滑动轴承一般是由轴瓦、壳体、连接零件及附属的润滑、密封等装置组成。常用的非液体摩擦滑动轴承的类型与构造

1、整体式滑动轴承

典型的整体式向心滑动轴承,系由轴承座和轴瓦构成。

2、剖分式滑动轴承

剖分式向心滑动轴承,它由轴承座、轴承盖、双头螺柱、螺母和对轴瓦等组成。

3、自动调心式滑动轴承。

二、推动滑动轴承

推力滑动轴承由轴承座

1、衬套

2、向心轴瓦3和环状推力轴瓦4等组成。

第二节

滚动轴承的基本构造和类型

一、滚动轴承的基本构造

滚动轴承有多种结构型式,其基本构造由是外圈

1、内圈

2、滚动体3和保持架4组成。

二、常用滚动轴承的类型和应用

第一种分类法:按其承受载荷的作用方向,可分成三大类,即径向接触轴承、向心角接触轴承和轴向接触轴承。

1、径向接触轴承

这类轴承主要用于承受径向载荷,可分为:深沟球轴承、圆柱滚轴承、调心球轴承等。

① 深沟球轴承

2、向心角接触轴承

这类轴承能同时承受径向与单向轴向载荷,可分为:角接触球轴承、圆锥滚子轴承等。

3、轴承向接触轴承

轴承只能承受轴向载荷。轴承两个套圈的内孔直径不同,直径较小的套圈紧配在轴颈上,直径较大的套圈安放在机座上,称为座圈。

第2种分类法:按滚动体形状可分为球轴承和滚子轴承两大类。

① 球轴承。球状滚动体与内、外圈滚道为点接触,故承载能力、耐冲击能力低,但极限转速较高,价格便宜。

滚子轴承。滚动体与内、外圈滚道为线接触,承载能力、耐冲击能较高,但极限转速低,价格较贵。

第二篇

液压与气传动

液压与气传动都是以有压流体(压力油或压缩空气)为工作介质,进行运动和动力传递的一种传动方式。

第七章

液压传动基本知识

第一节

液压传动的基本概念

一、液压传动装置的组成

一个完整的液压传动装置是由四部分组成的。

1、动力元件。液压泵,它给液压系统提供压力油,是将电动机输出的机械能转换为油液的液压能的元件。

2、执行元件。液压缸或液压马达,是将油液的液压能转换为驱动工作部件的机械能的元件。实现直线运动的执行元件叫做液压缸;实现旋转运动的执行无件叫做液压马达。

3、控制调节元件。各种控制阀、压力控制阀、流量控制阀等,用以控制调节液压系统油液的流动方向、压力和流量,以满足执行元件运动的要求。

4、辅助元件。辅助元件包括油箱、滤油器、蓄能器、热交换器、压力表、管件和密封装置等。

二、液压传动的优缺点

8

1、液压传动的优点

与机械传动、电气传动相比,液压传动的优点如下:

① 从结构上看,与机械传动相比传递同样载荷,液压传动装置体积小,重量轻,结构简单,安装方便,便于和其他传动方式联用,易实现较远距离操纵和自动控制。

② 从工作性能上看,速度、转矩、功率均可作无级调节,能迅速换向的变速,调速范围宽,动作快速性好。

③ 从使用维护上看,元件的自润滑性好,能实现系统的过载保护,使用寿命长;元件易实现系统化、标准化、通用化,便于设计、制造、维修和推广使用。

2、液压传动的缺点

① 由于存在油液的漏损和阻力损失,因此系统的效率低。

② 液压元件的加工的装配精度要求较高,成本较高。

③ 系统受温度的影响较大,故液压传动不宜在高温和低温的场合使用。

④ 系统的故障原因有时不是易查明。

第八章

液压元件

第一节

液压泵

液压泵是将电动机(或其他原动机)输入的机械能转换为液体压力能的能量转换元件。在液压系统中,液压泵是动力元件,作为动力源,向液压系统供给液压油,是液压系统的“心脏”是液压系统重要的组成部分。

一、常用液压泵的种类

液压泵的种类多,按其结构不同可分为柱塞泵、叶片泵、齿轮泵及凸轮转子泵等;按输出的流量能否调节可分定量泵和变量泵。按额定压亿的高低又可分为低压泵、中压泵和高压泵。

第二节

液压缸和液压马达

液压缸和液压马达的作用与液压泵正好相反,它是将液压能转变为机械能的转换元件,在液压传动系统中属于执行元件。

一、液压缸是液压系统中应用最为广泛的执行元件。按照液压缸的结构形式,可分为活塞式、柱塞式和摆动液压缸。按照液压缸-的驱动方式,可分为单作用液压缸和双作用液压缸两大类。

第三节

液压控制阀

液压阀的种类很多,根据其工作特点和用途的不同可分为三大类:

1、方向控制阀,如单向阀、换向阀等。

2、压力控制阀,如溢流阀、顺序阀、减压阀等。

3、流量控制阀,如节流阀,调速阀等。

一、方向阀

方向阀用来控制油液的定向、换向和闭锁等,它包括单向阀和换向阀。

1、单向阀

单向阀的作用是使油液只能沿一个方向流动,因此亦称逆止阀。

2、换向阀

换向阀的作用通过阀心的运动,变换油流方向或截断油路来对油流进行方向控制。

二、压力阀

压力阀用来控制液压系统中的压力,以实现恒压、限压、减压或稳压,或利用系统中压力的变化来控制某些液压元件的动作,压力阀是利用阀心所受的液压作用力和弹簧力的平衡关系来进行工作的。

压力阀按用途可分溢流阀、减压阀、顺序阀和压力继电器等。

第九章

液压基本回路及液压系统

第一节

液压基本回路

一、方向控制回路

在液压系统中,起控制执行元件的起动、停止(包括锁紧)及换向作用的回路,称为方向控制回路。

1、换向回路

运动部件的换向,一般可采用各种换向阀来实现。

2、闭锁回路

为了使执行元件在任意位置上停止后漂移或窜动,可采用闭锁回路。

第十章

气压传动

气压传动系统是以压缩空气不工作介质实现动力传递和工程控制的系统,与机械、电气、液压传动相比,由于气压传动的工作介质的空气,因此具有来源方便、不污染环境、节能、高效、动作迅速、维护简单等优点,此外,气动元件结构简单、成本低、寿命长,使得气压传动近年来发展迅速,在机械、轻工、航空、交通运输等行业中得到广泛应用。

第一节

气压传动基本知识

一、气压传动系统的组成

气压传动系统由以下四部分组成。

1、气源装置。气源装置即压缩空气的发生装置,其主体部分是空气压缩机(简称空压机)。它将原动机(如电动机)供给的机械能转换为空气的压力能并经净化设备净化,为各类气动设备提供洁净的压缩空气。

2、执行机构。执行机构是系统的能量输出装置,如气缸和气马达,它们将气体的压力能转换为机械能,并输出到工作机构上去。

3、控制元件。控制元件是用来控制压缩空气的压力、流量和流动方向,以便使执行机构完成运动规律的元件,如各种压阀、流量阀、方向阀和逻辑元件等。

4、辅助元件。系统中除上述三类元件外,其余元件称辅助元件,如过滤器、油雾器、消声器、散热器、传感器、放大器及管件等。它们对保证系统可靠、稳定和持久地工作起着十分重要的作用。

第二节

气压传动系统的元件及装置

一、气源装置

1、空气压缩机

二、气动执行元件

气动执行元件中将压缩空气的压力能转化为机械能的能量转换装置,包括气缸和气马达。气缸用于实现直线往复运动,气马达用于实现旋转运动。

三、气动控制元件

气动控制元件是指在气动系统中,控制压缩空气的压力、流量和方向等的各类控制阀。它包括压力控制阀、流量控制阀和方向控制阀以及具有一定逻辑功能的气动逻辑元件。

机械基础教案

机械基础教案

机械基础教案

机械基础教案(职高)

机械基础精品课程教案

中职机械基础教案

机械基础公开课教案

机械基础公开课教案()

汽车机械基础教案04章

链传动机械基础电子教案

机械基础教案
《机械基础教案.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档