人人范文网 范文大全

Ansys复合材料结构分析总结

发布时间:2020-03-02 05:45:36 来源:范文大全 收藏本文 下载本文 手机版

Ansys复合材料结构分析总结

说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀

目录

1# 复合材料结构分析总结

(一)——概述篇 5# 复合材料结构分析总结

(二)——建模篇 10# 复合材料结构分析总结

(三)——分析篇 13# 复合材料结构分析总结

(四)——优化篇

做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。

(一)概述篇

复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。

采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1) 选择单元类型

针对不同的结构和输出结果的要求,选用不同的单元类型。

Shell 99 —— 线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10;

Shell 91 —— 非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181—— 有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料的非线性行为;

Solid 46 —— 三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构; Solid 191—— 三维实体结构单元,高精度单元,不支持材料的非线性和大变形。

(2) 定义层属性配置

主要是定义单层的层属性,对于纤维增强复合材料,在这里可以定义单层厚度、纤维方向等。

(3) 定义失效准则

支持多种失效准则,不过我还是没有用他,而是自己写了通过应力结果采用二次蔡胡准则程序来判断的。

(4) 其他的一些建模技巧和后处理指导

在我的分析工作中,主要采用了三维实体结构单元。

关于Solid 46单元

(1) Solid 46是用于模拟复合材料厚壳或实体的8节点三维层合结构单元,单元节点有x,y和z方向三个结构自由度,单元允许最多250层不同的材料;

(2) 这种单元的定义包括:8个节点、各层厚度、各层材料方向角和正交各项异性材料属性,其中每层可以为面内两个方向双线性的不等厚层;

(3) 在材料定义时,只需定义材料主方向和材料坐标系(单元坐标系)一致的材料参数,不一致的复合材料层通过定义材料方向角(该层材料主方向和材料坐标系所成的角度)由程序自动转换;

(4) 通过选择不同的层直接在单元坐标下获取单元应力,包括三个方向的应力和面内剪切应力,而不需要通过应力应变的转换来获取;

论坛问答:

Q:ANSYS如何处理失效后的材料退化呢? A:ANSYS没有直接提供材料失效后的退化,但可以自己写程序让ANSYS执 行。 ANSYS可以用失效准则判断材料是否失效,之后刚度降低可以通过实验 测得。再将实验数据输入到ANSYS中,对失效的单元重新进行分析。

共同讨论! Ansys确实没有直接提供材料失效后的退化的处理方法。我们在进行复合材料结构分析时,通常采用单层模量退化的估算方法,这种估算方法就是将带有裂纹层的横向、剪切模量与泊松系数全部用一组经过DF因子退化的新值替代,为了考虑压缩强度的下降,对单向复合材料的压缩强度也要DF因子退化(详细信息可以参考蔡为仑的《复合材料设计》一书),这样,我们就可以再结合Ansys的APDL来处理了。

建模篇

复合材料是一种各向异性材料,对于纤维增强复合材料又是一种正交各向异性材料,因此,在进行复合材料结构建模的时候要特别注意的一个重要的问题,就是材料的方向性。下面,就我个人的分析经验,对复合材料结构的建模作一个总结。 1. 结构坐标系、单元坐标系、材料坐标系和结果坐标系

建立复合材料结构模型,存在一个结构坐标系,用于确定几何元素的位置,这个坐标可以是笛卡尔坐标系、柱坐标系或者是球坐标系;单元坐标系是每个单元的局部坐标系,一般用来描述整个单元;材料坐标系是确定材料属性方向的坐标系,一般没有专门建立的材料坐标系,而是参考其他坐标系,如整体结构坐标系,或单元坐标系,在Ansys程序中,材料坐标是由单元坐标唯一确定的,要确定材料坐标,只要确定单元坐标就行了;结果坐标系是在进行结果输出时所使用的坐标系,也是一般参考其他坐标系。在Ansys程序中,关于坐标系有人做过专门的总结。见后。 2. 用于复合材料结构分析的单元

用于复合材料分析的单元主要有两类,一类是层合单元,如Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191;另一类是各向异性单元,如Solid64;这些材料都有不同的处理方法,层合单元,在一个单元内可以包含多层信息,包括各层的材料、厚度和方向;各项各向异性单元,在一个单元内,只能包含一种材料信息,而且所得到的计算结果还要进行一些处理,因此有一定的局限性。

3. 单元坐标的一致性问题

在进行复合材料结构建模的时候,有些时候结构几何比较复杂,很难用统一的坐标来确定单元坐标系,即使对一些规则的几何(如圆桶),在用旋转方法生成几何时,不同的面法向也会带来单元坐标的不一致,这就使得材料输入的时候存在问题并使计算结果错误,因此,在几何建模时要特别注意这一问题,笔者也没有得到一些复杂几何进行单元划分时保持单元一致的合适方法。

4. 一个实例

5. 下面的命令流显示了不同的几何生成方法会产生不同的单元坐标方向:

/PREP7

!******Create Material******* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.068e8 MPDATA,PRXY,1,,0.29 MPTEMP,,,,,,,,

MPTEMP,1,0 MPDATA,DENS,1,,7.82e-6

!*********Create Element Type********** ET,1,SOLID95 KEYOPT,1,1,1 KEYOPT,1,5,0

KEYOPT,1,6,0 KEYOPT,1,11,0

!*************************** CSYS,1 HS=80

!**create two keypoints along axial K,101,0,0,0, K,102,0,0,400, !**create keypoints K,1,61,0,0, K,2,HS,0,0,

K,5,100,0,0, K,11,61,0,178, K,12,HS,0,178, K,15,HS+10,0,178, K,111,61,0,178, K,112,HS,0,178, K,115,HS+10,0,178,

K,21,61,0,2450, K,22,HS-4,0,2450, K,25,HS+6,0,2450,

!*************************** !**create areas by keypoints FLST,2,4,3 FITEM,2,21 FITEM,2,111

FITEM,2,112

FITEM,2,22 A,P51X FLST,2,4,3 FITEM,2,22 FITEM,2,112 FITEM,2,115 FITEM,2,25 A,P51X

!*************************** FLST,2,2,5,ORDE,2

FITEM,2,1

FITEM,2,-2 FLST,8,2,3 FITEM,8,101 FITEM,8,102 VROTAT,P51X, , , , , ,P51X, ,90,1, TYPE, 1

MAT, 1 REAL,

ESYS, 0

SECNUM, MSHAPE,0,3D MSHKEY,1

FLST,5,2,6,ORDE,2

FITEM,5,1

FITEM,5,-2 CM,_Y,VOLU VSEL, , , ,P51X CM,_Y1,VOLU CHKMSH,\'VOLU\'

CMSEL,S,_Y

VMESH,_Y1

CMDELE,_Y

CMDELE,_Y1 CMDELE,_Y2 运行上述命令流,查看一下单元坐标,再把命令流中下列部分

FLST,2,4,3 FITEM,2,21 FITEM,2,111

FITEM,2,112

FITEM,2,22 A,P51X 改为:

FLST,2,4,3 FITEM,2,22 FITEM,2,21 FITEM,2,111

FITEM,2,112

A,P51X

再看一下单元坐标。 ANSYS坐标系总结

工作平面(Working Plane)

工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 总体坐标系

在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为:

CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系

数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系

局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径 Workplane>Change active CS to>。

节点坐标系

每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用 \"Prep7>Move/Modify>Rotate Nodal CS to active CS\", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。

注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 单元坐标系

单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。

结果坐标系

/Post1通用后处理器中 (位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体笛卡尔在坐标系表达。无论节点和单元坐标系如何设定。要恢复径向和环向应力,结果坐标系必须旋转到适当的坐标系下。这可以通过菜单路径Post1>Options for output实现。 /POST26时间历程后处理器中的结果总是以节点坐标系表达。

显示坐标系

显示坐标系对列表圆柱和球节点坐标非常有用(例如, 径向,周向坐标)。建议不要激活这个坐标系进行显示。屏幕上的坐标系是笛卡尔坐标系。显示坐标系为柱坐标系,圆弧将显示为直线。这可能引起混乱。因此在以非笛卡尔坐标系列表节点坐标之后将显示坐标系恢复到总体笛卡尔坐标系。

分析篇

下面就我对碳纤维增强复合材料压力容器分析过程中所做的工作,从复合材料材料参数转化、复合材料强度准则、结构刚强度分析几方面写些我的心得,与大家共同探讨。

1. 复合材料材料参数的转化

单向纤维增强复合材料(也称单向板)是指纤维按照同一方向平行排列的复合材料,是构成层合板和壳的基本元素,可认为是一种正交各向异性材料,也是一种横观各向同性材料(存在一个各向同性面),在进行有限元计算时,必须知道复合材料的弹性特性参数,并由弹性特性参数来计算正交各向异性材料的9个参数(在ANSYS程序中定义材料时所需3个弹性模量、3个泊松系数和3个剪切模量),单向复合材料特性的计算有许多种方法,主要的方法有Halpin-Tai的弹性力学方法,这种方法根据弹性理论将复杂的纤维与树脂间的关系用一组方程来表示,通过求解方程组,解得弹性参数,我们使用的9个弹性参数的计算是通过单向复合材料的刚度矩阵转化得到,下面是用APDL语言编写的材料转化程序。

MAT_PAR_COMP

!***************************************************************** !*this macro is used to calculate material parameters of composite

!***************************************************************** E1=1.81E8 E2=1.03E7 V21=0.28

V12=E2*V21/E1 V23=0.5 V32=0.5 G12=7.17E6 RM=COS(ARG1) RN=SIN(ARG1) RM2=RM*RM RM4=RM2*RM2 RN2=RN*RN RN4=RN2*RN2

RMN=RM*RN

RMN2=RMN*RMN

!* caculate stiffne matrice of unidirectional composite material * VV=(1.0+V23)*(1.0-V23-2.0*V21*V12) VV=1.0/VV

Q11=(1.0-V23*V32)*VV*E1 Q22=(1.0-V21*V12)*VV*E2 Q33=Q22

Q12=V21*(1.0+V23)*VV*E2 Q13=Q12

Q23=(V23+V21*V12)*VV*E2

Q44=(1.0-V23-2.0*V21*V12)*VV*E2*0.5 Q55=G12

Q66=Q55

!* calculate equivalent stiffne of composite material * HQ11=Q11*RM4+2.0*(Q12+2.0*Q66)*RMN2+Q22*RN4 HQ12=(Q11+Q22-4.0*Q66)*RMN2+Q12*(RM4+RN4) HQ13=Q13*RM2+Q23*RN2 HQ23=Q13*RN2+Q23*RM2

HQ16=-RMN*RN2*Q22+RM2*RMN*Q11-RMN*(RM2-RN2)*(Q12+2.0*Q66) HQ22=Q11*RN4+2.0*(Q12+2.0*Q66)*RMN2+Q22*RM4 HQ33=RN2*Q13+RM2*Q23 HQ33=Q33

HQ26=-RMN*RM2*Q22+RMN*RN2*Q11+RMN*(RM2-RN2)*(Q12+2.0*Q66) HQ36=(Q13-Q23)*RMN HQ44=Q44*RM2+Q55*RN2

HQ45=(Q55-Q44)*RMN HQ55=Q55*RM2+Q44*RN2

HQ66=(Q11+Q22-2*Q12)*RMN2+Q66*(RM2-RN2)*(RM2-RN2) QQ11=HQ11 QQ12=HQ12 QQ22=HQ22 QQ13=HQ13 QQ23=HQ23 QQ33=HQ33

QQ44=(HQ44*HQ55-HQ45*HQ45)/HQ55 QQ55=(HQ44*HQ55-HQ45*HQ45)/HQ44 QQ66=HQ66 Q(1)=QQ11 Q(2)=QQ12 Q(3)=QQ13 Q(4)=QQ22 Q(5)=QQ23 Q(6)=QQ33 Q(7)=QQ66 Q(8)=QQ44 Q(9)=QQ55 !*

QQQ=Q(1)*(Q(4)*Q(6)-Q(5)*Q(5))-Q(2)*(Q(2)*Q(6)-Q(3)*Q(5))+Q(3)*(Q(2)*Q(5)-Q(3)*Q(4)) S1=(Q(4)*Q(6)-Q(5)*Q(5))/QQQ S2=-(Q(2)*Q(6)-Q(3)*Q(5))/QQQ S3=(Q(2)*Q(5)-Q(3)*Q(4))/QQQ S4=(Q(1)*Q(6)-Q(3)*Q(3))/QQQ S5=-(Q(1)*Q(5)-Q(2)*Q(3))/QQQ S6=(Q(1)*Q(4)-Q(2)*Q(2))/QQQ S7=1/Q(7) S8=1/Q(8) S9=1/Q(9)

EEX=1/S1 EEY=1/S4 EEZ=1/S6 VXY=-S2*EEX VXZ=-S3*EEX VYZ=-S5*EEY

GXY=1/S7 GYZ=1/S8

GXZ=1/S9 /EOF 2. 复合材料强度准则

复合材料结构的受力及应力应变情况非常复杂,并要考虑各种应力应变的耦合和相互影响,复合材料强度破坏准则基于结构的宏观破坏,一般来说复合材料的二次蔡-吴强度破坏准则较为精确。有兴趣的朋友可以参考科学出版社出版的蔡为仑先生的《复合材料设计》这一本书。

3. 复合材料结构刚强度分析

一般说来,复合材料结构总是受到空间力的作用,其应力分布是三维的,因此,复合材料结构的刚强度分析一般不宜采用复合材料的板壳理论(这种理论仅考虑板壳面内的应力和横向剪切应力,而忽略法向应力),同时,对于简单的结构(如板、壳),可以得到弹性力学的一般解,而对于大多数结构来说,则必须用数值的方法计算,三维有限元分析是最常用的方法。采用ANSYS程序对复合材料进行刚强度分析的步骤如下:

(1) 建立结构的几何模型

由于复合材料分析单元一般都是六面体单元,因此,在建立几何时要特别考虑到网格划分的方便。

(2) 建立材料模型

根据复合材料材料参数建立单向复合材料材料模型,我所采用的是碳纤维增强复合材料,有两种建立方法。 a.若选择单元为各向异性单元,则根据单向复合材料的刚度矩阵或柔度矩阵建立各向异性材料模型;

b.若选择层合单元,则可以建立相关的材料模型,如单向复合材料则可以建立正交各向异性材料模型

(3) 选择单元类型并设置相关属性

根据结构特征和计算要求,选择不同的单元类型并设置单元属性(各种单元的选择依据请参考概述篇或ANSYS帮助文件)

(4) 网格划分

在建立的几何实体上进行网格划分,对于复合材料,选择六面体三维实体单元,定义单元属性,分别指定不同的材料属性,并保证材料坐标一致,运用有限元网格生成器进行网格划分。

(5) 定义边界条件

根据实际情况定义边界条件。

(6) 分析设定并提交计算

设定分析类型及相关一些参数

(7) 结果后处理

复合材料结构的分析结果在进行后处理时,非常重要的一点是选择合适的并与计算时所用的坐标一致的结果坐标系,如对于回转体结构选择计算时的柱坐标。另外,对于用各向异性单元(Solid64)来模拟的计算结果在结果处理时必须保证应力应变关系的一致,主要是在不同种复合材料层间或者同一种复合材料不同铺层方向的层之间界面的应力应变情况,ANSYS后处理中所得到的结果不完全是正确的,应该根据法向应力联系,面内应变连续的准则来进行处理。

复合材料结构分析总结

(四)——优化篇

与传统材料相比,复合材料具有可设计性,复合材料结构的多层次性为复合材料及其结构设计带来了极大的灵活性,复合材料的力学性能和机械性能,都可按照结构的使用要求和环境条件要求,通过组分材料的选择匹配、铺层设计及界面控制等材料设计手段,最大限度的达到预期目的,以满足工程设备的使用性能,因此,在工程实践中对复合材料结构进行优化设计有很重要的现实意义,下面以我所研究的复合材料压力容器为例,将复合材料结构优化以及在ANSYS下的实现过程给大家作一个介绍。

1. 问题描述

本文所涉及的复合材料压力容器是带有金属内胆外缠碳纤维增强复合材料的复合容器,优化问题是:以金属内胆壁厚、复合材料各缠绕层厚度和缠绕角为设计变量,在满足压力容器强度(金属内胆层和复合材料层均满足强度要求)和重量要求的条件下,使压力容器的刚度最大。 2. 优化模型

根据纤维增强复合材料特性,压力容器环向缠绕复合材料有利于提高容器刚度,轴向平铺复合材料有利于提高容器刚度,因此,模型采用3种缠绕角的方案,即靠近金属内胆为环向(90度)缠绕,中间为缠绕,外部为轴向平铺(0度),以各层的厚度(金属层和三层复合材料)和中间缠绕层的角度为优化参数,在压力容器强度约束的条件下,以压力容器一阶固有频率为优化目标。其数学模型如下: Maximize:fSubjectto:X,其中X(x1,x2,x3,x4)(h1,h2,h3,)TTh1h2h3H,(h1,h2,h30),090s1(X)1.2,s2(X)1.5,c(X)c0

其中,f为复合材料压力容器的一阶固有频率,s1和s2分别为金属内胆的安全系数和各复合材料层的强度比,通过有限元程序求得,为中间层复合材料缠绕角,h1、h2 和h3分别为金属内胆厚度、90度缠绕层厚度和度缠绕层厚度,H为h1、h2 和h3的极限值,当总厚度确定后,0度缠绕层厚度由h1、h2、h3及总厚度确定,c为复合容器重量,c0为全压力容器重量上限。 3. 优化算法

基于ANSYS的优化,可以直接使用ANSYS提供的优化模块,根据上述优化模型,建立优化计算文件,选择合适的优化算法,进行计算。

同时,也可以通过APDL语言(甚至可以通过外部编程环境,如VC++,FORTRAN等)来自己编制优化算法,本文就是通过自己编制优化算法来实现的,采用的优化算法是复形调优法。算法描述如下:

复形调优法是求解约束条件下n维极值问题的重要方法,通过构造复合形,计算各顶点的目标函数值,并进行比较,然后循环迭代,逐步替代最坏点构造新的复合形,经过多次迭代,进行收敛判断,最终得到最优复合形,并求得最优值。其迭代过程如下:

(1) 在n维空间中确定出初始复合形的2n个满足常量约束条件和函数约束条件的顶点

X(j)x1j,x2j,,xnjT,j1,2,,2n;

(2) 计算复合形的2n个顶点的目标函数值;f(j)f(X(j)),j1,2,,2n (3) 确定所有顶点中的最坏点和次坏点,即:

f(R)f(X(R))minf(i)

1i2nf(G)f(X(G))minf(i)

1i2niR

其中X(R)为最坏点,X(G)为次坏点;

(4) 计算最坏点的X(R)的对称点X(T)

X(T)(1)XFX(R)

其中,

XF12n2n1i1X(i)

iR称为反射系数,一般取1.3左右;

(5) 根据对称点X(T)确定一个新的顶点替代最坏点X(R)构成新的复合形,当f(X(T))f(X(G))或X(T)不满足常量约束条件和函数约束条件,则修改X(T);

(6) 重复(3)至(6),当复合形中的各个顶点距离小于给定精度要求为止。

4. 有限元计算模型

有限元计算主要是通过在ANSYS下建立有限元模型,用来计算强度和一阶固有频率,即约束条件和目标函数,其中,强度判断中,金属内胆部分采用第四强度准则,复合材料部分采用二次蔡胡准则。这部分内容在分析篇中已有描述。 5. 优化过程 基于建立的优化模型和有限元模型,以ANSYS软件为分析平台,并采用其提供的二次开发语言APDL编制计算程序,程序编制的依据为复形调优算法,其计算过程示意图如图1所示,程序流程图如图2所示。

图1 优化过程示意图

图2 程序流程图

ansys错误分析

ANSYS问题总结

ANSYS分析实例详解

With复合结构的用法小结

用ANSYS进行温度和结构的耦合分析需要注意的问题总结

Ansys流体培训总结

ansys分析的一些心得

动词ING形式的复合结构

There be句型和with复合结构的用法

复合形容词总结

Ansys复合材料结构分析总结
《Ansys复合材料结构分析总结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档