人人范文网 范文大全

超声波测距总结

发布时间:2020-03-03 14:50:12 来源:范文大全 收藏本文 下载本文 手机版

超声波测距

超声波传感器用于超声控制元件,它分为发射器和接收器。发射器将电磁振荡转换为超声波向空气发射,接收器将接受的超声波进行声电转换变为电脉冲信号。实质上是一种可逆的换能器,即将电振荡的能量转换为机械振荡,形成超声波;或者有超声波能量转换为电振荡。常用的传感器有T40-XX和R40-XX系列,UCM-40T和UCM-40R系列等;其中T代表发射传感器,R代表接收传感器,40为中心频率40KHZ。

超声波的传播速度

纵波、横波及表面波的传播速度取决于介质的弹性常数以及介质的密度。

1.液体中的纵波声速:

C1=

k/

2.气体中的纵波声速:

C2=

P·/

式中:K——体积弹性模量

——热熔比

P——静态压力

——密度

注:气体中声速主要受温度影响,液体中声速主要受密度影响,固体中声速主要受弹性模量影响;一般超声波在固体中传播速度最快,液体次之,气体中传播速度最慢。 超声波测距原理

通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2

这就是所谓的时间差测距法 或:

由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0.6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为:

V = 331.45 + 0.607T

声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。

超声波发生器可以分为两类:

1、使用电气方式产生超声波;

2、用机械方式产生超声波。电气方式包括压电型,磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各有不同,因而用途也各有不同。目前较为常用的是压电式超声波发生器,其又可分为两类:(1)顺压电效应:某些电介物质,在沿一定方向上受到外力作用而变形时,内部会产生极化现象,同时在其表面上会产生电荷;当外力去掉后,又从新回到不带电的状态,这种将机械能转换为电能的现象称顺压电效应(超声波接收器的工作原理)。(2)逆压电效应:在电介质的极化方向上施加电场,会产生机械变形,当去掉外加电场时,电介质的变形随之消失,这种将电能转化为机械能的现象称逆压电效应(超声波发射器的工作原理)。

系统框图

超声波发射电路 方案一

利用555定时器构成多谢振荡器产生40KHz的超声波。如下图为555定时器构成的多谢振荡器,复位端4由单片机的P0.4口控制,当单片机给低电平时,电路停振;当单片机给高电平时电路起振。接通电源后,电容C2来不及充电,6脚电压Uc=0,则U1=1,555芯片内部的三极管VT处于截止状态。这时Vcc经过R3和R2向C2充电,当充至Uc=2/3Vcc时,输出翻转U1=0,VT导通;这时电容C2经R2和VT放电,当降至Uc=1/3Vcc时,输出翻转U1=1.C2放电终止、又从新开始充电,周而复始,形成振荡。其振荡周期t1和放电时间t2有关,振荡周期为:

T=t1+t20.7(R3+2R2)C2

f=1/T=1/(t1+t2)1.43/(R3+2R2)C2=40KHz 有上面公式可知,555多谐振荡器的振荡频率由R2,R3,C2来确定。所以在电路设计时,先确定C2,R2的取值,即C2=3300pf,R2=2.7K。再将R2和C2的值代入上式中可得:

R3=1.43/C2·f - 2R2 为了方面在实验中使用555芯片的3脚输出40KHz的方波,在这里将其用10K的电位器代替。

为了增大U1的输出功率,将555芯片的8脚接+12v的电压,同时将其复位端4脚接高电平,使用示波器观察555芯片3脚的输出波形,通过调节电位器R3的阻值,使其输出波形的频率为40KHz。

方案二

该超声波发射电路,由F1至F3三门振荡器在F3的输出为40KHz方波,工作频率主要由C

1、R1和RP决定,用RP可调电阻来调节频率。F3的输出激励换能器T40-16的一端和反相器F4输出激励换能器T40-16(反馈耦合元件)的另一端,因此,加入F4使激励电压提高了一倍。电容C

2、C3平衡F3和F4的输出使波形稳定。电路中的反相器用CC4069六反相器中的四个反相器剩余两个不用(输入端应接地)。电源用9V叠层电池;测量F3输出频率应为40KHz,否则应调节RP,发射波信号大于8m。

方案三

该超声波发射电路由VT

1、VT2组成正反馈振荡器。电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40KHz;频率稳定性好,不需做任何调整,并由T40-16作为换能器发出40KHz的超声波信号;电感L1与电容C2调谐在40KHz起作谐振作用。本电路电压较宽(3v至12v),且频率不变。电感采用固定式,电感量5.1mH,整工作电流约25mA,发射超声波信号大于8m。

方案四

该发射电路主要有四与非门电路CC4011完成谐振及驱动电路功能,通过超声波换能器T40-16辐射出超声波去控制接收器。其中门YF1和门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡器频率为40KHz;振荡信号分别控制由YF

3、YF4组成的差相驱动器工作,当YF3输出高电平时,YF4输出低电平,当YF3输出低电时,YF4输出高电平。此电平控制T40-16换能器发出40KHz超声波。电路中YF1至YF4采用高速CMOS电路74HCOO四与门电路,该电路特点是输出驱动电流大(大于15mA),效率高等;电路工作电压9V,工作电流大于35mA,发射超声信号大于10m。

方案五

本电路采用LM386对输出信号进行功率放大,LM386多用于音频放大,而在本电路中用于超声波发射。如图所示,LM386第1脚和第8脚之间串接的E1和R1,使电路获得较大的增益;TO为单片机输入口的脉冲信号,经功率放大后由5脚输出,驱动探头发射超声波。

超声波接收器模块 方案一

超声波接收传感器通过压电转换的原理,将由障碍物返回的回波信号转换为电信号,由于该信号幅度较小(几到几十毫伏),因此须有低噪声放大、40kHz带通滤波电路将回波信号放大到一定幅度,使得干扰成分较小,其电路如下所示。在此电路中,为了防止在超声波接收器上始终加有一直流信号让其工作导致传感器的寿命缩短,从而加上一隔直电容C4,从而C4和R5构成滤波电路。

在电路中,放大部分采用的是高速型运放TL084。综合考虑了反相放大器、同相放大器和测量放大器的优缺点后,最终选择了同相放大电路。因为同相放大器的理想输入阻抗为无穷大,理想输出阻抗为零,其带负载能力较强等因素。在此电路中,根据同相放大器的闭环增益公式:Af=1+Rf/Rr 由于接收到的信号幅度为几到几十毫伏,所以需要将其放大400多倍使得其接收到的40KHz信号不会被干扰信号给掩盖。为了防止引起运算放大器的自激振荡,在第一级的放大电路中,R7取值为470 K,R8取值为10K,其增益放大: Af1=1+R7/R8=48 在第二级放大电路中,R11的取值为100K,R12的取值为10K,其放大增益: Af2=1+R11/R12=11 两级增益为:Af=Af1·Af2=528 同相放大器的平衡电阻R6和R10的取值均为10K。平衡电阻公式为:

Rp=Rf/(Rf+Rr) C5和R9构成了一阶滤波电路。

方案二

该电路主要有集成电路CX20106A和超声波换能器TCT40-10SI构成。利用CX20106A做接收电路载波频率为38KHz;通过适当的改变C7的大小,可以改变接收电路的灵敏度和抗干扰能力。

工作原理:当超声波接收探头接收到超声波信号时,压迫压电晶体做振动,将机械能转化成电信号,由红外线检波接收集成芯片CX20106A接收到电信号后,对所接信号进行识别,若频率在38KHz至40KHz左右,则输出为低电平,否则输出为高电平。

方案三

双稳式超声波接收电路

电路中,由VT

5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号C

7、C8向双稳电路送进一个触发脉冲,VT

5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VT5截止,VT7导通,继电器K吸合•••调试时,在a点与+6V(电源)之间用导快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件 参数。

方案四

单稳式超声波接收电路

本电路超声波换能器R40-16谐振频率为40kHZ,经R40-16选频后,将40kHZ的有用信号(发射机信号)送入VT1至VT3组成的高通放大器放大,经C

5、VD1检出直流分量,控制VT4和VT5组成的电子开关带动继电器K工作。由于该电路仅作单路信号放大,当发射机每发射一次超声波信号时接收机的继电器吸合一次(吸合时间同发射机发射信号时间相同),无记忆保持功能。可用作无线遥控摄像机快门控制、儿童玩具控制、窗帘控制等。电路中VT1β≥200,VT2≥150,其他元件自定。本电路不需要调试即可工作。如果灵敏度和抗干扰不够,可检查三极管的β值与电容C4的容量是否偏差太大。经检测,配合相应的发射机,遥控距离可达8m以上,在室内因墙壁反射,故没有方向性。电路工作电压3V,静态电流小于10mA。

方案五

在本接收电路中,结型场效应VT1构成高速入阻抗放大器,能够很快地与超声波接收器件B相匹配,可获得较高接收灵敏度及选频特性。VT1采用自给偏压方式,改变R3的阻值即可改变VT1的工作点,超声波接收器件B将接收到的超声波转换为相应的电信号,经VT1和VT2两极放大后,再经VD1和VD2进行半波整流为直流信号,由C3积分后作用于VT3的基极,使VT3由截止变为导通,其集电极输出负脉冲,触发器JK触发D,使其翻转。JK触发器Q端的电平直接驱动继电器K,使K吸合或释放;由继电器K的触点控制电路的开关。

盲区形成的原因及处理

1、探头的余震及方向角。发射头工作完后还会继续震一会,这是物理效应,也就是余震。余震波会通过壳体和周围的空气,直接到达接收头、干扰了检测;通常的测距设计里,发射头和接收头的距离很近,在这么短的距离里超声波的检测角度是很大的,可达180度。

2、壳体的余震。就像敲钟一样,能量仍来自发射头。发射结束后,壳体的余震会直接传导到接收头,这个时间很短,但已形成了干扰。(注:不同的环境、温度对壳体的硬度和外形会有所变化,导致余震时间会略有改变)

3、电路串扰。超声波发射时的瞬间电流很大,瞬间这么大的电流会对电源有一定影响,并干扰接收电路。 通常这三种情况情况在每次超声波发射时都会出现,即超声波在发射的时候,是一个高压脉冲,并且脉冲结束后,换能器会有一个比较长时间的余震,这些信号根据不同的换能器时间会有不同,从几百个uS到几个mS都有可能,因此在这个时间段内,声波的回波信号是没有办法跟发射信号区分的.因此,被测物体在这个范围内,回波和发射波区分不开,也就无法测距,从而形成了盲区.。

在硬件方面通常将超声波转换器之间的距离适当增大来减少盲区的范围;如果发射探头和接收探头分开,收发不互相影响,必须要求发射电路和接收电路的地线隔离很好,发射信号不会通过地线串扰过去,否则也是不能减小盲区的。

在软件中的处理方法就是,当发射头发出脉冲后,记时器同时开始记时。我们在记时器开始记时一段时间后再开启检测回波信号,以避免余波信号的干扰。等待的时间可以为1ms左右。更精确的等待时间可以减小最小测量盲区。(注:超声波探头方向角越小、发射头和接收头位置越远,盲区就越小,测量距离也就越小)

超声波测距

超声波测距总结报告

超声波测距方案流程图

超声波测距试验心得

超声波测距传感器原理

超声波测距模块总结报告

HC_SR04超声波测距模块资料

超声波测距报警器文献综述

基于STM32的超声波测距

一种基于超声波的测距系统

超声波测距总结
《超声波测距总结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档