人人范文网 岗位职责

超声波专业岗位职责(精选多篇)

发布时间:2020-11-26 08:33:06 来源:岗位职责 收藏本文 下载本文 手机版

推荐第1篇:超声波焊接工程师岗位职责

1.给技术员培训超声波技术。2.超声波机器评估,改善。3.超声波模具验收。4.解决生产中超声波质量问题。

推荐第2篇:财务总监岗位职责(超声波科技公司)

1.负责组织公司的会计核算和成本费用控制工作。2.负责主持财务报表及财务预决算的编制工作,监督各分公司的运作符合财务规范。3.根据公司中、长期经营计划,组织编制公司年度综合财务计划和控制标准。4.负责对工商、税务、银行等部门事物的协调处理。5.负责财务部日常行政管理工作。6.协助总经理制定财务规划。

推荐第3篇:超声波

超声波

经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能量极大的冲击波,相当于瞬间产生几百度的高温和高达上千个大气压,这种现象被称之为“空化作用”,超声波清洗正是用液体中气泡破裂所产生的冲击波来达到清洗和冲刷工件内外表面的作用。

超声波在液体中传播,使液体与清洗槽在超声波频率下一起振动,液体与清洗槽振动时有自己固有频率,这种振动频率是声波频率,所以人们就听到嗡嗡声。

超声波定义

超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

编辑本段概述

超声波清洗器采用超声波清洗的原理,可以达到物件全面洁净的清洗效果,特别对深孔,盲孔,凹凸槽清洗是最理想的设备,不影响任何物件的材质及精度。同时在生化,物理,化学,医学,科研及大专院校的实验中可作提取,脱气,混匀,细胞粉碎,纳米分解之用。

编辑本段超声波清洗机工作原理

超声波清洗机的工作原理是怎样的呢?下面就为大家介绍下其工作的主要环节和步骤,超声波清洗机如何工作的原理及知识。超声波清洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过清洗槽壁使之将槽子中的清洗液辐射到超声波。由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。

当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012-1013pa的压力及局调温,这种超声波空化所产生的巨大压力能破坏不溶性污物而使他们分化于溶液中,蒸汽型空化对污垢的直接反复冲击。

一方面破坏污物与清洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被驳离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在清洗件表面时,油被乳化、固体粒子自行脱落,超声在清洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学清洗剂的清洗作用。由此可见,凡是液体能浸到且声场存在的地方都有清洗作用,其特点适用于表面形状非常复杂的零件的清洗。尤其是采用这一技术后,可减少化学溶剂的用量,从而大大降低环境污染。

编辑本段结构

超声波清洗机由超声波清洗槽和超声波发生器两部分构成。超声波清洗机槽用坚固弹性好、耐腐蚀的优质不锈钢制成,底部安装有超声波换能器振子;超声波发生器产生高频高压,通过电缆联结线传导给换能器,换能器与振动板一起产生高频共振,从而使超声波清洗机清洗槽中的溶剂受超声波作用对污垢进行洗净。[1]

编辑本段超声波如何完成清洗工作

超声波清洗是利用超声波在液体中的空化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。目前所用的超声波清洗机中,空化作用和直进流作用应用得更多。

1.空化作用

空化作用就是超声波以每秒两万次以上的压缩力和减压力交互性的高频变换方式向液体进行透射。在减压力作用时,液体中产生真空核群泡的现象,在压缩力作用时,真空核群泡受压力压碎时产生强大的冲击力,由此剥离被清洗物表面的污垢,从而达到精密洗净目的。

在超声波清洗过程中,肉眼能看见的泡并不是真空核群泡,而是空气气泡,它对空化作用产生抑制作用降低清洗效率。只有液体中的空气气泡被完全脱走,空化作用的真空核群泡才能达到最佳效果。

2.直进流作用

超声波在液体中沿声的传播方向产生流动的现象称为直进流。声波强度在0.5W/cm2时,肉眼能看到直进流,垂直于振动面产生流动,流速约为10cm/s。通过此直进流使被清洗物表面的微油污垢被搅拌,污垢表面的清洗液也产生对流,溶解污物的溶解液与新液混合,使溶解速度加快,对污物的搬运起着很大的作用。

1 3.加速度

液体粒子推动产生的加速度。对于频率较高的超声波清洗机,空化作用就很不显著了,这时的清洗主要靠液体粒子超声作用下的加速度撞击粒子对污物进行超精密清洗。

编辑本段专业使用方法

1.超声波清洗机安装

请参照超声波清洗机安装说明书连接清洗机的电控柜与主机间的温控传感器信号线、超声驱动线、加热器控制线等线路,并接通380VAC电源,安装清洗机的上水管、放水管与溢流排放管。

2.超声波清洗机加水

向清洗池内加入适量清水,液面高度以浸没将要清洗的零部件为准,一般不超过清洗池的四分之三。

3.超声波清洗机加温

启动电控加热开关,将水温调节旋钮上的白色刻度线指向适当的温度(应为60℃左右)。清洗机在使用过程中,清洗剂的最高温度不应超过70℃。

4.超声波清洗机加入清洗剂

待水温升至40℃左右时,将UC-O3零部件清洗剂加入清洗池中(一般一次5kg左右),徐徐搅动清水使其充分溶解(此时亦可启动越声波或开启鼓气装置进行搅拌)。

5.超声波清洗机预处理

清洗之前宜用竹刀先将零部件表面的污垢(如防尘罩任其外表面会有很多尘土、气缸体类的零件在其外壳曲线变化处会积留很多厚且易除的油泥)简单清洁一下,以便延长清洗液使用寿命。

超声波能够进行精密清洗,但其对泥类的污物处理能力较弱,故预处理中,应尽量将黄泥或稀泥类的污物去除。

6.超声波清洗机零件摆放

将零部件置于钢筋料筐中轻轻放入清洗池内,当一次性放入的零件很多时,应尽量使它们在料筐中均匀分布,不相重叠。

7.超声波清洗机开机

超声波清洗机正常工作时,超声波由三个方向同时发射,按下侧超声启动,两侧的超声波即己启动,向右旋转功率调节旋钮,按下侧超声启动.并将其旋至合适的功率,此时LEO显示器显示当前底部超声工作功率值。

8.超声波清洗机停机

在清洗过程中若要停机,应先将功率旋钮调至最小。再按下停止底超声。清洗时间根据清洗表面情况掌握。

9.超声波清洗机溢流

若清洗池液面上存有过多的浮油.应当打开清洗机的溢流装置将其排除,以防止被清洗工件的二次污染。

具体操作如下:打开溢流排放阀,向清洗池中注入水或清洗液,直至清洗液开始溢流(建议用刮板类的器具向溢流口方向割涂浮油以促进其快速流出),保持溢流排放阀常关以防上意外溢流造成地面污染。

10.超声波清洗机后处理

取出清洗好的零部件,用压缩空气将具各孔中的残留清洗液彻底吹净,并将表面吹干(建议配备一把吹尘枪配合空气压缩机使用)。若有条件,在清洗机附近最好配置水池。以便对取出的零部件进行漂洗。

11.超声波清洗机清洗剂的处理

当清洗机洗了过多的零件后,清洗剂中油泥的含量会相当高,加之超声波的乳化作用。清洗剂会因过脏发粘而减弱空化的能力,不宜继续使用。建议用户配置储水桶与清洗机配合使用,以沉淀过脏的清洗剂,用于再循环使用降低成本。

12.超声波清洗机浸泡的辅助作用

很多零部件,如气缸盖、活塞、连杆、增压涡轮、进排气歧管等都带这些零部件上的积炭,有一些较轻,

[2]很容易就清洗干净,但有一些则很重,这种情况下,对工件必要的浸泡软化过程会取得更好的清洗效果。

编辑本段构成

超波清洗机主要由超声波清洗槽和超声波发生器两部分构成。超声波清洗槽用坚固弹性好、耐腐蚀的优质不锈钢制成,底部安装有超声波换能器振子;超声波发生器产生高频高压,通过电缆联结线传导给换能器,换能器与振动板一起产生高频共振,从而使清洗槽中的溶剂受超声波作用对污垢进行洗净。

超声波清洗机(英文注释Ultrasonic Cleaning Machine)的应用

1.概况

一定频率范围内的声波作用于液体介质内可起到清洗工件的作用,这一清洗技术自问世以来,受到了各行各业的普遍关注。超声波清洗的运用极大地提高了工作效率和清洗效果,以往,清洗死角、盲孔和难以触及的藏污纳垢一直使人们备感茫然,超声波清洗的开发和运用使这一工作变得轻而易举。近年来,随着电子技术的日新月异,超声波清洗也同我们日常工作密不可分,超声波清洗机经过了几代的演变,技术更加先进,效果更加显著,同样,它的价格也越来越多的被社会所接受,在各行各业中逐渐被广泛运用。

超声波是以每秒4万6千次的振动在液体中传导,由于超声波是一种压缩纵波,在推动介质的使用下会使液体中压力变化而产生无数微小真空气泡,造成空穴效应,当气泡受压爆破时,会产生强大的冲击力,同时超声波还有乳化中和作用能更有效防止被清洗掉的油污重新附在被清洗物体上。

2.应用范围

在所有的清洗方式中,超声波清洗是效率最高、效果最好的一种,之所以超声波清洗能够达到如此的效果,是与它独特的工作原理和清洗方法密切相关的。我们知道,在生产和生活当中,需要清洁的东西很多,需要清洗的种类和环节也很多,如:物件的清除污染物,疏通细小孔洞,常见的手工清洗方法对异型物件以及物件隐蔽处无疑无法达到要求,即使是蒸汽清洗和高压水射流清洗也无法满足对清洁度较高的需求,超声波清洗对物件还能达到杀灭细菌、溶解有机污染物、防止过腐蚀等,因此,超声波清洗被日益广泛应用于各行各业:

(1)机械行业:防锈油脂的去除;量具的清洗;机械零部件的除油除锈;发动机、化油器及汽车零件的清洗;过滤器、滤网的疏通清洗等。

(2)表面处理行业:电镀前的除油除锈;离子镀前清洗;磷化处理;清除积炭;清除氧化皮;清除抛光膏;金属工件表面活化处理等。

(3)仪器仪表行业:精密零件的高清洁度装配前的清洗等。

(4)电子行业:印刷线路板除松香、焊斑;高压触点等机械电子零件的清洗等。

(5)医疗行业:医疗器械的清洗、消毒、杀菌、实验器皿的清洗等。

(6)半导体行业:半导体晶片的高清洁度清洗。

(7)钟表首、饰行业:清除油泥、灰尘、氧化层、抛光膏等。

(8)化学、生物行业:实验器皿的清洗、除垢。

(9)光学行业:光学器件的除油、除汗、清灰等。

(10)纺织印染行业:清洗纺织锭子、喷丝板等。

(11)石油化工行业:金属滤网的清洗疏通、化工容器、交换器的清洗等。

3.超声波清洗的优点

相比其它多种的清洗方式,超声波清洗机显示出了巨大的优越性。尤其在专业化、集团化的生产企业中,已逐渐用超声波清洗机取代了传统浸洗、刷洗、压力冲洗、振动清洗和蒸气清洗等工艺方法。超声波清洗机的高效率和高清洁度,得益于其声波在介质中传播时产生的穿透性和空化冲击波。所以很容易将带有复杂外形、内腔和细空的零部件清洗干净,对一般的除油、防锈、磷化等工艺过程,在超声波作用下只需两三分钟即可完成,其速度比传统方法可提高几倍到几十倍,清洁度也能达到高标准,这在许多对产品表面质量和生产率要求较高的场合,更突出地显示了用其它处理方法难以达到或不可取代的结果。

归纳其优点如下:

(1)清洗速度快,清洗效果好,清洁度高,工件清洁度一致,对工件表面无损伤。

(2)不须人手接触清洗液,安全可靠对深孔、细缝和工件隐蔽处亦清洗干净。

(3)节省溶剂、热能、工作场地和人工等。

(4) 清洗精度高,可以强有力的清洗微小的污渍颗粒。

4.注意事项

(1)超声波清洗机电源及电热器电源必须有良好接地装置。

(2)超声波清洗机严禁无清洗液开机,即清洗缸没有加一定数量的清洗液,不得合超声波开关。

(3)有加热设备的清洗设备严禁无液时打开加热开关。

(4)禁止用重物(铁件)撞击清洗缸缸底,以免能量转换器晶片受损。

(5)超声波发生器电源应单独使用一路220V/50Hz电源并配装2000W以上稳压器。

(6)清洗缸缸底要定期冲洗,不得有过多的杂物或污垢。

(7)每次换新液时,待超声波起动后,方可洗件。

编辑本段超声波清洗中应注意的几个问题

一、功率的选择

超声清洗效果不一定与(功率×清洗时间)成正比,有时用小功率,花费很长时间也没有清除污垢。而如果功率达到一定数值,有时很快便将污垢去除。若选择功率太大,空化强度将大大增加,清洗效果是提高了,但这时使较精密的零件也产生蚀点,得不偿失,而且清洗缸底部振动板处空化严重,水点腐蚀也增大,在采用三氯乙烯等有机溶剂时,基本上没有问题,但采用水或水溶性清洗液时,易于受到水点腐蚀,如果振动板表面已受到伤痕,强功率下水底产生空化腐蚀更严重,因此要按实际使用情况选择超声功率。

二、频率的选择

超声清洗频率从十几kHz到100kHz之间,在使用水或水清洗剂时由空穴作用引起的物理清洗力显然对低频有利,一般使用15-30kHz左右。对小间隙、狭缝、深孔的零件清洗,用高频(一般40kHz以上)较好,甚至几百kHz。对钟表零件清洗时,用400kHz。若用宽带调频清洗,效果更良好。

三、清洗笼的使用

在清洗小零件物品时,常使用网笼,由于网眼要引起超声衰减,要特别引起注意。当频率为28khz时使用10mm以上的网眼为好。

四、清洗液温度的选择

水清洗液最适宜的清洗温度为40-60℃,尤其在天冷时若清洗液温度低空化效应差,清洗效果也差。因此有部分清洗机在清洗缸外边绕上加热电热丝进行温度控制,当温度升高后空化易发生,所以清洗效果较好。当温度继续升高以后,空泡内气体压力增加,引起冲击声压下降,反应出这两因素的相乘作用。

五、关于清洗液量的多少和清洗零件的位置

一般清洗液液面高于振动子表面100mm以上为佳。例300W、24kHz液面约高120mm;600W、24kHz液面约高150mm。由于单频清洗机受驻波场的影响,波节处振幅很小,波幅处振幅大造成清洗不均匀。因此最佳选择清洗物品位置应放在波幅处。

六、其它

清洗大量污垢的零件一般要采用浸、喷射等方法进行预清洗。在清除了大部分污垢之后,再用超声清洗余下的污垢,则效果好。如果清洗小物品及形状复杂的物品(零件)时,如果采用清洗网或者使清洗物旋转,边振动边用超声辐射,能得到均匀清洗。

七、超声波清洗机清洗的技术特点

清洗效果好,清洁度高且全部工件清洁度一致。清洗速度快,提高生产效率,不须人手接触清洗液,安全可靠。 对深孔、细缝和工件隐蔽处亦可清洗干净。对工件表面无损伤,节省溶剂、热能、工作场地和人工。

超声波清洗方式超过一般以的常规清洗方法,特别是工件的表面比较复杂,象一些表面凹凸不平,有盲孔的机械零部件,一些特别小而对清洁度有较高要求的产品如:钟表和精密机械的零件,电子元器件,电路板组件等,使用超声波清洗都能达到很理想的效果。

超声波清洗的作用机理主要有以下几个方面:因空化泡破灭时产生强大的冲击波,污垢层的一部分在冲击波作用下被剥离下来、分散、乳化、脱落。因为空化现象产生的气泡,由冲击形成的污垢层与表层间的间隙和空隙渗透,由于这种小气泡和声压同步膨胀,收缩,象剥皮一样的物理力反复作用于污垢层,污垢层一层层被剥离,气泡继续向里渗透,直到污垢层被完全剥离。这是空化二次效应。超声波清洗中清洗液超声振动对污垢的冲击。超声加速化学清洗剂对污垢的溶解过程,化学力与物理力相结合,加速清洗过程。

八、超声波清洗机的主要参数

1.频率:≥20KHz ,可以分为低频,中频,高频3段。

2.清洗介质:采用超声波清洗,一般两类清洗剂:化学溶剂、水基清洗剂等。清洗介质的化学作用,可以加速超声波清洗效果,超声波清洗是物理作用,两种作用相结合,以对物件进行充分、彻底的清洗。

3.功率密度:功率密度=发射功率(W)/发射面积(cm2)通常≥0.3W/cm2,超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。但对于精密的、表面光洁度甚高的物件,采用长时间的高功率密度清洗会对物件表面产生“空化”腐蚀。

4.超声波频率:超声波频率越低,在液体中产生的空化越容易,产生的力度大,作用也越强,适用于工件(粗、脏)初洗。频率高则超声波方向性强,适用于精细的物件清洗。

5.清洗温度:一般来说,超声波在30℃-40℃时的空化效果最好。清洗剂则温度越高,作用越显著。通常实际应用超声波时,采用50℃-70℃的工作温度。

推荐第4篇:超声波

超声波介绍

经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能量极大的冲击波,相当于瞬间产生几百度的高温和高达上千个大气压,这种现象被称之为“空化作用”,超声波清洗正是用液体中气泡破裂所产生的冲击波来达到清洗和冲刷工件内外表面的作用。 超声波在液体中传播,使液体与清洗槽在超声波频率下一起振动,液体与清洗槽振动时有自己固有频率,这种振动频率是声波频率,所以人们就听到嗡嗡声。

超声波定义

超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

工作原理

全自动超声波清洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过清洗槽壁使之将槽子中的清洗液辐射到超声波。由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。 当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012-1013pa的压力及局调温,这种超声波空化所产生的巨大压力能破坏不溶性污物而使他们分化于溶液中,蒸汽型空化对污垢的直接反复冲击。 一方面破坏污物与清洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被驳离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在清洗件表面时,油被乳化、固体粒子自行脱落,超声在清洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学清洗剂的清洗作用。由此可见,凡是液体能浸到且声场存在的地方都有清洗作用,其特点适用于表面形状非常复杂的零件的清洗。尤其是采用这一技术后,可减少化学溶剂的用量,从而大大降低环境污染

应用范围

在所有的清洗方式中,全自动超声波清洗是效率最高、效果最好的一种,之所以超声波清洗能够达到如此的效果,是与它独特的工作原理和清洗方法密切相关的。我们知道,在生产和生活当中,需要清洁的东西很多,需要清洗的种类和环节也很多,如:物件的清除污染物,疏通细小孔洞,常见的手工清洗方法对异型物件以及物件隐蔽处无疑无法达到要求,即使是蒸汽清洗和高压水射流清洗也无法满足对清洁度较高的需求,超声波清洗对物件还能达到杀灭细菌、溶解有机污染物、防止过腐蚀等,因此,超声波清洗被日益广泛应用于各行各业: (1)机械行业:防锈油脂的去除;量具的清洗;机械零部件的除油除锈;发动机、化油器及汽车零件的清洗;过滤器、滤网的疏通清洗等。 (2)表面处理行业:电镀前的除油除锈;离子镀前清洗;磷化处理;清除积炭;清除氧化皮;清除抛光膏;金属工件表面活化处理等。 (3)仪器仪表行业:精密零件的高清洁度装配前的清洗等。 (4)电子行业:印刷线路板除松香、焊斑;高压触点等机械电子零件的清洗等。 (5)医疗行业:医疗器械的清洗、消毒、杀菌、实验器皿的清洗等。 (6)半导体行业:半导体晶片的高清洁度清洗。 (7)钟表首、饰行业:清除油泥、灰尘、氧化层、抛光膏等。 (8)化学、生物行业:实验器皿的清洗、除垢。 (9)光学行业:光学器件的除油、除汗、清灰等。

品牌产品

清洗机、超声波、工业超声波清洗机、高频超声波清洗机、超声波发生器、超声波换能器、全自动智能化超声波清洗机等产品。日前公司产品广泛应用于清洗眼镜、珠宝首饰、钟表、去除农药残留等民用家居等领域,而且已拓展到医疗、机械、纺织、电子、化纤、石油化工、大专院校、科研实验室、超硬材料及军工等行业或部门。

清洗方式

可区分全封闭/半封闭采用龙门多臂机械手移送工作,电脑控制触摸屏操作全过程。大大降低劳动强度。

超声波设备优点

1、超声波塑料焊接优点:焊接速度快,焊接强度高、密封性好;取代传统的焊接/粘接工艺,成本低廉,清洁无污染且不会损伤工件;

焊接过程稳定,所有焊接参数均可通过软件系统进行跟踪监控,一旦发现故障很容易进行排除和维护。

2、超声波金属焊接优点: 1)、焊接材料不熔融,不脆弱金属特性。2)、焊接后导电性好,电阻系数极低或近乎零。3)、对焊接金属表面要求低,氧化或电镀均可焊接。4)、焊接时间短,不需任何助焊剂、气体、焊料。5)、焊接无火花,环保安全。

超声波金属焊接适用产品:1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。3)、电线互熔,偏结成一条与多条互熔。4)、电线与名种电子元件、接点、连接器互熔。5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。7)、金属管的封尾、切断可水、气密。

3、超声波清洗机优点:相比其它多种的清洗方式,超声波清洗机显示出了巨大的优越性。尤其在专业化、集团化的生产企业中,已逐渐用超声波清洗机取代了传统浸洗、刷洗、压力冲洗、振动清洗和蒸气清洗等工艺方法。超声波清洗机的高效率和高清洁度,得益于其声波在介质中传播时产生的穿透性和空化冲击波。所以很容易将带有复杂外形、内腔和细空的零部件清洗干净,对一般的除油、防锈、磷化等工艺过程,在超声波作用下只需两三分钟即可完成,其速度比传统方法可提高几倍到几十倍,清洁度也能达到高标准,这在许多对产品表面质量和生产率要求较高的场合,更突出地显示了用其它处理方法难以达到或不可取代的结果

归纳其优点如下:

(1)清洗速度快,清洗效果好,清洁度高,工件清洁度一致,对工件表面无损伤。 (2)不须人手接触清洗液,安全可靠对深孔、细缝和工件隐蔽处亦清洗干净。 (3)节省溶剂、热能、工作场地和人工等。

(4) 清洗精度高,可以强有力的清洗微小的污渍颗粒。

超声波设备原理

当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积

推荐第5篇:超声波测距

超声波测距

超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离s,即:s=340m/s× t / 2 。这就是所谓的时间差测距法。本实验利用超声波测得的距离从串口中显示。

元器件清单:

Arduino UNO × 1; USB数据线 × 1 ; 杜邦线若干;

超声波传感器 × 1; 无线蓝牙模块×1;

知识要点:

pulseIn():用于检测引脚输出的高低电平的脉冲宽度。 pulseIn(pin, value) pulseIn(pin, value, timeout) Pin---需要读取脉冲的引脚 Value---需要读取的脉冲类型,HIGH或LOW

Timeout---超时时间,单位微秒,数据类型为无符号长整型。

使用方法及时序图:

1、使用Arduino采用数字引脚给SR04的Trig引脚至少10μs的高电平信号,触发SR04模块测距功能;

2、触发后,模块会自动发送8个40KHz的超声波脉冲,并自动检测是否有信号返回。这步会由模块内部自动完成。

3、如有信号返回,Echo引脚会输出高电平,高电平持续的时间就是超声波从发射到返回的时间。此时,我们能使用pulseIn()函数获取到测距的结果,并计算出距被测物的实际距离。

SR04与Arduino接线示意图:

Arduino示例程序:

/* 功能:利用SR04超声波传感器进行测距,并用串口显示测出的距离值

// 设定SR04连接的Arduino引脚 const int TrigPin = 2; const int EchoPin = 3; float distance; void setup()

{

// 初始化串口通信及连接SR04的引脚

Serial.begin(9600);

pinMode(TrigPin, OUTPUT);

// 要检测引脚上输入的脉冲宽度,需要先设置为输入状态

pinMode(EchoPin, INPUT);

Serial.println(\"Ultrasonic sensor:\"); }

void loop() {

// 产生一个10us的高脉冲去触发TrigPin

digitalWrite(TrigPin, LOW);

delayMicroseconds(2);

digitalWrite(TrigPin, HIGH);

delayMicroseconds(10);

digitalWrite(TrigPin, LOW);

// 检测脉冲宽度,并计算出距离

distance = pulseIn(EchoPin, HIGH) / 58.00;

Serial.print(“The distance is “);

Serial.print(distance);

Serial.print(\"cm\");

Serial.println();

delay(1000); }

连线实物图:

下载完程序后,打开串口监视器,并将超声波传感器对向需要测量的物体,即可看到当前超声波传感器距物体的距离,如下图:

推荐第6篇:超声波焊接机

超声波焊接机

摘要

超声波焊接机在焊接工作时发热量比较低,不会出现氧化的形象,还可以保持不同种类材料的在焊接之后的性能不变,诸多的作用使超声波焊接机开始被大众应用。同时可以按自动化水平进行分类,可以分成自动或手动焊接机以及半自动超声波焊接机。但是超声波焊接机的技术发展较缓慢,使用者对超声波焊接机的应用和使用都片面的了解,因此本文结合超声波焊接机的应用原理以及构成展开分析,并提出关于超声波焊接机的应用以及维护,让大众能够对超声波焊接机能够进一步了解并运用,使超声波焊接机更具现实的发展意义。

关健词:超声波;焊接机;自动化;应用

超声波焊接是发展热塑性塑料制品的连接方法中最具潜力的一种,尤其是在二次连接中,超声波焊接机是主要的使用器械,与电烫合等传统的工艺相比,不仅生产效率大大提高,焊接的效果也更突出,同时还有节能环保的优势,是极具潜力的发展行业。

1 超声波焊接原理

超声波焊接采用的是机械振动能量,同时满足20KHz以上的超声波频率的条件,是将同一类或者不同种类的金属和塑料等材料连接在一起的一种独特的焊接方式。固定功率的超声波信号通过超声波换能器转换为与其对应的声能,在利用聚能器将超声波聚焦,高度的聚焦超声波会增加超声波能量,在将高强度的超声波覆盖到别焊接的金属片的表面上,就会发生明显的物理效应,将金属晶格里面的粒子成分瞬间激活,将金属面的结合部分融合并且深入牢固的焊接到一起。简单来说就是用过高频率的震动能量覆盖在被焊接的物体上,短时间内的相互摩擦间产生足够的热量将物品结合在一起。

在超声波焊接机工作时并不需要顾虑热传导或者电阻率等的问题,所以,有色金属的箔片无论厚度如何都是可以达到预期的焊接效果的,即使是焊接难度最大的铝与其相关的合金材料等的焊接,也能够保证焊接的质量,这一点是超声波焊接机的重要优势。在本文中会介绍相关的的铝箔超声波焊接机的开发和应用,促进超声波焊接机的研究发展。

2 超声波焊接机构成及运转 2.1 超声波焊接机的主要构成

超声波焊接机主要有是三个组成部分,分别是超声波发生器、换能器系 统以及稳压电源。还有一套机械控制系统运动,使焊头可以进行横向、升降、旋转以及焊轮等的运动沿着被焊物体的延展方向的进行超声波焊接。横向运行就是由电机带减速机经过一套齿轮齿条的环节,这个环节需要一个介轮来驱动完成。将齿条固定在机架之上,在齿轮运转的过程中使焊接机运转,介轮能够将动力进行分配,并且传递给另外一套驱动焊接轮的齿轮机构。升降运行就是利用驱动气缸来带动焊接轮运转,直到焊接轮上的材料全焊完毕之后,有气缸驱动压下,进行焊接的时候,经过气缸焊接轮施压在焊接轮的表面,在焊接工作不运转的情况下会利用弹簧来回复原状。在这一系列的焊接机构中,超声波发生器中的电流以及运转速度和压力都是可以手动或自动控制调整的。

2.2超声波发生器

超声波焊接机中的主要装置就是超声波发生器,超声波发生器的性能的质量对焊接的质量有直接的影响。例如在KAMPF, SCHMUTZ分卷机中就是使用的产品皆是出自德国KLN公司,投入使用时出现多种事故问题,焊接的质量受到严重影响,也对保养和维护设备的工作带来更多的麻烦,超声波发生器在国内是十分紧要的问题,但目前已经得到有效的解决。

2.3有关计算 在焊接运作的过程中,要在焊接轮滚动在铝箔介面的时候还要随着焊接轮朝水平方向移动。此时就需要焊接轮和轮面之间的切点的线速度等于焊接机运行速度,若是将线速度设为V1,运行速度设为V2 ,就可以表明V1=V2 ,这样就可以使焊接轮在材料介面上运转时保障材料不被毁坏。

3 超声波焊接机的改建与应用 3.1 超声波焊接机的改建

焊接机机械经过严密的研发,使其精准度大大提高,这样就能够对铝箔焊接进一步保证质量。 3.1.1 关键部件

超声波焊接机要确保关键部件的质量达到标准规格,导向杆和材料以及热处理都要达到计划的要求,科学的实施才能保证超声波焊接的精准度,所以一旦发现关键部件有异样一定要马上替换,不能轻视存在的隐患。

3.1.2 弹簧

在焊接机工作时,弹簧对机械的压力有重要作用。将复位弹簧调整并控制到最佳的压缩量,科学的展开焊接工作,给予活塞

合理的空气压力。为不同的厚度的铝及相关的合金材料寻找最合适的焊接速度,调整最佳的焊接压力以及电流等参数。

3.1.3 焊接机械改造

在显存的超声波焊接机中,对机械系统加以改造完善,可以对焊接头进行双焊头的设计,单项或者反复焊接的模式也可以大胆的创新尝试。这些创新的设计不仅能够改善在焊接时焊头的发生的倾斜或者齿轮出现损坏以及焊接轮毁坏等问题,还能够完善焊轮齿轮以及齿条运行只能单方向的局限的问题。可以加大对齿轮和齿条的运转的束缚或者运用焊轮与齿型带一同转动的形式来解决双焊头在往复焊接过程中问题。此外,还可以尝试将焊接的部分调整到焊接导轮上,这样的方式是根据立式分机焊接技术得来的,这样做的好处就是可以保护导轮表面不受损害,避免铝箔等材料出现问题。

3.2 超声波焊接机的应用

将超声波焊接机应用到铝箔分卷机是发展进步的成果,在一些大型的铝加工厂中可以得到有效的利用。超声波焊接机能够焊接0.0065-0.04mm厚度的铝以及及其相关的合金材料。切焊接的质量高效,可以连续并且十分牢固,使生产中的所有需求都得到满足。

4 主要部件的选型对日常维护的影响 4.1 焊头与焊座

超声波焊接机的主要部件很多,每一个都会直接对焊接质量造成影响。尤其是焊头跟焊座的部分,在选择材料、制作工艺以及热处理上都是需要注意的部分,对焊接质量影响巨大。

大多超声波焊接机中的焊头、焊座都是以高速工具钢作材料的,也有结构钢或者合金结构钢等其他的材料,对比之下,加工高速工具钢比较有难度,相比成本也是比较高的,但是在传递高频震动的机械运动波长其范围是比其他材料要更广,能够使焊接更加稳定;相较于结构钢或者是合金结构钢制作的焊头和焊座的传递高频率震动的机械波长就是较小的范围,而且要求加工更加的精细,否则,焊接参数很难被调节,对焊接的稳定有直接的影响。此外,在选取换能器以及加速器等重要的部分时对他们的配置要求更加严苛,互换能力降低,若是出现破损的情况是很难及时替换的,这样的情况下,设备的使用寿命会大大降低。 4.2 焊接介质对焊接性能的影响

选择焊接的介质的时候也要注意,也是能够直接对焊接质量造成影响的。若是在焊接记录参数不准确时也同样会对维护带来不小的麻烦。焊接工作的时候,通常情况下软一些的介质需要直接接触到焊头。比如在铝片和镍片在焊接的过程中,最佳的方式就是把镍片放在铝片的上方,这样就可以避免铝片在焊接后直接粘在焊头上。

铝的材料具有质地软和熔点低的特点,所以在焊接就过程中需要的能量也会比较少。焊接在同等参数下,铜网和镍片焊接需要的能量要比铝网以及铝片的焊接所需能量要多出超过一倍的能量,尽管焊接的物品相同,焊物体的介面是否洁净等原因同样会导致参数调节不同。

5 结论

超声波焊接机不断的创新研究,化解了铝箔分卷机国产化的难题。最为新型的焊接工艺,超声波焊接机已经在金属箔片以及塑料等焊接企业中广泛的应用,并取得较好的成绩,但目前来说,超声波焊接机的技术研发的专业人员还是较缺乏的,对超声波焊接机的应用途径也比较狭窄,但是,随者着科技不断发达,技术的研发也会得到满足,超声波焊接机在未来很多领域都会大面积使用。

参考文献

[1]王启顺.超声波焊接机机械运动分析[J].轻合金加工技术,2003,10:47-50.[2]张晓娟.超声波焊接机的日常维护[J].纺织信息周刊,2003,35:13.[3]陆晓燕.超声波塑料焊接机的振动系统设计[J].装备制造技术,2010,04:58-60.[4]关长石,费玉石.超声波焊接原理与实践[J].机械设计与制造,2004,06:104-105.[5]民.超声波焊接机[J].工程塑料应用,1983,02:8.[6]王叶,陈斌.超声波焊接原理及其工艺研究[J].科技创业家,2013,07:158.

推荐第7篇:超声波作业指导书

桥梁支座超声波探伤作业指导书

本指导书仅适用厚度≥30mm的碳钢铸件的超声波探伤,及根据探伤结果对铸件进行评级。所用的方法仅限于A型显示脉冲反射法。本指导书依据标准为《铁路桥梁球型支座》及GB/T 7233.1-2009 铸钢件 超声波检测第1部分:一般用途铸钢件。

1、设备材料

1.1仪器:超声波探伤仪。1.2探头:纵波直探头。

1.3试块:选择与桥梁支座材质相同的铸钢件对比试块。1.4刚直尺或盒尺。

2、探伤过程

2.1工件名称编号、规格;热处理状态:正火;表面粗糙度基本符合探伤要求(机加工后表面Ra≤12.5μm);耦合剂:机油与黄甘油混合剂、水或浆糊;探伤方法:纵波法;探测面:上支座板、下支座板凹半球球面及底面大平面;定量标准≤φ4当量平底孔,评级标准根据缺陷面积进行判定,具体内容见GB/T7233.1-2009铸钢件 超声波检测第1部分:一般用途铸钢件,铸钢的超声波探伤质量等级不低于II级。 2.2探伤准备

2.2.1校准探伤机试块频次:每天校准一次。

2.2.2清理工件探测面的油污,测量总体尺寸,选择试块,记录工件编号。2.2.3根据铸件缺陷的大致分布情况及性质选用探头。 2.2.4仪器的测距校正到纵波声程100mm。 注意:不能使用始波与第一次底面回波调整测距。

2.2.5仪器的“信号抑制”置“关”或“0”,探伤灵敏度校正如工件厚度小于3N(3N=127mm),用各声程对比试块校正灵敏度。校正后记录衰减器读数N,校正后不得使用“发射”、“增益”旋钮,但可使用衰减器。校正时选用铸钢对比试块,并填写相应记录。 如工件厚度大于3N(3N=127mm),用大平底校正,计算灵敏度公式如下: △N=40lg(d1/d2)+40lg(a2/a1)=10lg(30/100)≈-21dB 其中d:平底孔直径 a:声程 △N=20lg[(πd2/(2λa)]=-22dB 其中λ=c/f c:纵波声速 f:探头频率

下支座板盆环探测面时灵敏度和固定支座相同。 2.3探伤操作 2.3.1粗探及缺陷形状的判定

在下支座板凹半球球面及底面大平面作全面扫查,扫查探伤人员要选择有规律的扫查路径进行探伤相邻两次扫查应相互重叠覆盖范围应大于探头晶片尺寸的15%,探头的移动速度不得大于150mm/s。探头在最高缺陷波附近沿直线左右扫查,当波峰下降速度很快时,此时即可判定此缺陷为点状,当波峰下降缓慢时,即可认定此缺陷为条状;当底波消失时,缺陷波很强,可以认为是大面积缺陷,如:夹层、裂纹;当缺陷波和底波都很低或者两者都消失,可认为是大而倾斜缺陷或疏松;当缺陷波互相彼连,高低不同,底波明显下降时,可认为是密集缺陷。 2.3.2精探

逐个测量每个缺陷的位置,即与工件侧面的距离(用钢板尺测量)和缺陷的埋藏深度hx。缺陷的大小即波高Nx(衰减器读数),点状:在波高为基准波高H-80%时,记录hx和Nx,计算其当量直径dx。 Dx=d(hx/h)10Nx-N/40 条状缺陷用相对6dB法测长Lx。

注意:一个缺陷测量后,必须恢复到起始灵敏度。

2.4探伤完毕,整理好设备,根据探伤结果,填写记录并对铸件进行判定,符合质量等级不低于II级的铸件判为合格,否则为不合格,铸件内部有裂纹报废。

3、由操作者填写相关记录。

推荐第8篇:超声波核聚变

超声波核聚变

!月\"日出版的《科学》杂志发表了有关“气泡核聚变”的论文。尽管这一研究成果出自橡树岭国家实验室的科学家之手,文章发表前又经过一年之久的同行评议,但仍有不少科学家对此项研究的真实性提出质疑。据此间媒体报道,由美国橡树岭国家实验室和俄国科学院的科学家组成的研究小组,通过让一个大烧杯所盛液体中小气泡产生的内部爆炸,在实验室获得核聚变的效果。实验中,他们采用氘化丙酮液体,对液体施加中子脉冲,使其产生微型气泡,并利用超声波使这些气泡不断地扩大。随着超声波强度的增加,气泡膨胀到一定大小后便 发生爆裂,同时产生几千度高温和局部的高压,并伴有大量的冲击波、闪光和能量的释放。这一过程的持续时间为微微秒。美俄科学家说,上述试验符合核聚变的两个主要标准:产生氘和释放巨大的中子能量。为验证实验结果的真伪,橡树岭国家实验室的副主任让两名物理学家夏皮拉和萨尔特马施进行重复试验。实验结束后,两位科学家说,他们未发现中子与爆裂发出的闪光有任何关联。论文同行评议人、劳伦斯·利物莫尔实验室的物理学家莫斯说:“基础研究中重大突破的认定,必须符合最高的检验标准。”“气泡核聚变可能会获诺贝尔奖,因此很容易使一些人失去客观公正性。”莫斯没有参与论文的发表,但他几年前曾在其论文中阐述过,气泡核聚变是可能的。

目前,核聚变研究集中于两种方式:磁约束核聚变和激光引发核聚变。但这两种方法既费钱又复杂。参与气泡核聚变研究的拉海认为,由于参加大型核聚变计划的研究人员,担心气泡核聚变影响他们计划的研究经费,这客观上也影响了夏皮拉等人的试验重复工作。另外,夏皮拉和萨尔特马施也没有很好地调试所有的仪器。事实上,夏皮拉观测到了中子,只是对实验数据有不同的解释。

气泡核聚变是采用所谓“声致冷光”原理。它利用超声波能在液体中产生小气泡,气泡可膨胀到原来体积的许多倍,然后爆裂,并发出一束闪光。同行评议人、华盛顿大学应用物理实验室研究人员克鲁姆说:“现在当务之急是证实是否真的发生了气泡核聚变,如果被证实,将 会有很多公司开始建造气泡聚变动力源。”

最新出版的《商业周刊》撰文称,气泡核聚变这种小型装置,还可以得到其他方面的广泛应用。如对食品的消毒、通过提高反应温度来增加化工产品的产量以及经济实用的机场爆炸物中子束探测器等。

虽然气泡核聚变命运难测,但与“气泡核聚变”相关的另一种技术———“超声核聚变”已进入商业化开发阶段。所谓超声核聚变就是用超声波触发核聚变。!年前,泰斯恩创建“脉冲装置公司”,雇佣“声致冷光”的研究人员开发直径$米的超声聚变反应堆。泰斯恩目前正与洛斯阿拉莫斯实验室谈判,以核实其计算机模型。超声聚变先驱者斯特林哈姆,%&年代中已成立公司,最近该公司建了几座示范性超声聚变装置。!月’’日他在美国物理学会会议上报告他的最新进展。这次会议的协调人楚博预测,研究人员最终会发现一种奇异的反应,来解释气泡核聚变的工作原理。他说,随着越来越多的物理学家参与这一研究,未来几个月将会出现更多令人惊奇的发现。

美国橡树岭国立实验室Taleyarkhan等人2002年3月8日在美国《科学》上发表的论文中报道了他们利用中子发生器产生的14MeV高能中子在氘代丙酮中产生了直径约10—100纳米的气泡,接着用声致发光技术在负压周期下使气泡膨胀到直径约1毫米,在正压周期下再将气泡压缩成高温、高密度的“液体”泡,并在超声波场中内爆,作者们测到了中子和氚。因此作者们认为他们用声致发光技术引发了核聚变。这一试验震惊了物理界,并引起了科学家们激烈的争论。在中科院上海原子核研究所的组织与支持下,上海原子核研究所,上海光机所,同济大 学声学研究所,交通大学与上海激光等离子体研究所的30多位科学家于3月25日举办了为期一天的关于“气泡核聚变”的研讨会。会议在学术平等的气氛中围绕“研究《科学》杂志报道的实验技术能否产生核聚变?其前景如何?”展开了自由而热烈的讨论。研讨会取得如下共识: 1.借助声空化和声致发光能产生局部高温高压已是人所共知的物理事实。但Taleyakhan等人用高能中子成核空化,并企图用声致发光技术引发核聚变,是个创新的想法。该实验研究方向值得继续下去。

2.Taleyarkhan等人的论文中缺少声致发光设备的输出功率数据,而且实验中未对连续光谱和能量转换效率进行直接测量,“液体”泡的高温、高密度的状态无从准确地认识。实验中有一“激波用了27微秒的时间从实验器中心轴线到达32毫米外的容器壁”的数据尚无争议,由此能计算出所用的氘代丙酮中的平均声速(认为不是激波的速度更为合理),进而可估算出实验中所谓的高温、高密度的“液体”泡可能达到的温度上限只不过为数万度(K)。因此,Taleyarkhan等人的实验中测到了中子,但不能肯定是气泡达到热核平衡态时产生的“热核中子”。

3.依据(d+d)反应的反应率公式估算,即使Taleyarkhan等人所研究的气泡达不到热核平衡态,而气泡内的平衡温度仅为数万度时,气态氘代丙酮分子的麦克斯韦速度分布率的高能尾巴部分加上量子力学中的隧道效应就可以产生他们实验中所测到的中子数。若人们在今后的实验中能测到108/秒以上的中子数,才能得到比较乐观的结论。

4.实验中的不确定因素太多,如气泡数、气泡位置、发生闪光时的气泡大小、每秒内爆数、每次内爆产生的中子数等等都是估计值。作者用HYDRO程序模拟计算所作的预言建立在太多的不确定因素上,缺乏可信度。在今后的研究中应尽量依据实验中能给出的参数进行计算。 5.Taleyarkhan等人的实验技术究竟能否产生核聚变?这不是一个只靠思考能解决的问题。“气 泡核聚变”的结论是否可信还有待物理界同行能否作出重复性实验来确定。

推荐第9篇:超声波检测

超声波无损检测

NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称

无损检测是工业发展必不可少的有效工具,在一定程度上反应了一个国家的工业发展水平,其重要性已得到公认。我国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。我国目前开设无损检测专业课程的高校有大连理工大学、西安工程大学、南昌航空工业学院等院校。在无损检测的基础理论研究和仪器设备开发方面,我国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。

无损检测的应用特点

a.无损检测的最大特点就是能在不损坏试件材质、结构的前提下进行检测,所以实施无损检测后,产品的检查率可以达到100%。但是,并不是所有需要测试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验只能采用破坏性试验,因此,在目前无损检测还不能代替破坏性检测。也就是说,对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结果互相对比和配合,才能作出准确的评定。

b.正确选用实施无损检测的时机:在无损检测时,必须根据无损检测的目的,正确选择无损检测实施的时机。

c.正确选用最适当的无损检测方法:由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择合适的无损检测方法。

d.综合应用各种无损检测方法:任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只有这样,无损检测在承压设备的应用才能达到预期目的

二、超声波检测(UT)

1、超声波检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。

2、超声波工作的原理:主要是基于超声波在试件中的传播特性。a.声源产生超声波,采用一定的方式使超声波进入试件;b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。

3、超声波检测的优点:a.适用于金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。

4、超声波检测的局限性a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。

5、超声检测的适用范围a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。

超声波无损检测在无损检测焊接质量验收中非常重要

来自:soundrey 2007年1月22日10:45

化工企业在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。

无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。

那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。下面介绍一下超声波探伤在实际工作中的应用。

接到探伤任务后,首先要了解图纸对焊接质量的技术要求。目前钢结构的验收标准是依据GB50205-95《钢结构工程施工及验收规范》来执行的。标准规定:对于图纸要求焊缝焊接质量等级为一级时评定等级为Ⅱ级时规范规定要求做100%超声波探伤;对于图纸要求焊缝焊接质量等级为二级时评定等级为Ⅲ级时规范规定要求做20%超声波探伤;对于图纸要求焊缝焊接质量等级为三级时不做超声波内部缺陷检查。

在此值得注意的是超声波探伤用于全熔透焊缝,其探伤比例按每条焊缝长度的百分数计算,并且不小于200mm。对于局部探伤的焊缝如果发现有不允许的缺陷时,应在该缺陷两端的延伸部位增加探伤长度,增加长度不应小于该焊缝长度的10%且不应小于200mm,当仍有不允许的缺陷时,应对该焊缝进行100%的探伤检查,其次应该清楚探伤时机,碳素结构钢应在焊缝冷却到环境温度后、低合金结构钢在焊接完成24小时以后方可进行焊缝探伤检验。另外还应该知道待测工件母材厚度、接头型式及坡口型式。截止到目前为止我在实际工作中接触到的要求探伤的绝大多数焊缝都是中板对接焊缝的接头型式,所以我下面主要就对焊缝探伤的操作做针对性的总结。一般地母材厚度在8-16 mm之间,坡口型式有I型、单V型、X型等几种形式。在弄清楚以上这此东西后才可以进行探伤前的准备工作。

在每次探伤操作前都必须利用标准试块(CSK-I A、CSK-ⅢA)校准仪器的综合性能,校准面板曲线,以保证探伤结果的准确性。

1、探测面的修整:应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等,光洁度一般低于▽4。焊缝两侧探伤面的修整宽度一般为大于等于2KT+50mm,(K:探头K值,T:工件厚度)。一般的根据焊件母材选择K值为2.5探头。例如:待测工件母材厚度为10mm,那么就应在焊缝两侧各修磨100mm。

2、耦合剂的选择应考虑到粘度、流动性、附着力、对工件表面无腐蚀、易清洗,而且经济,综合以上因素选择浆糊作为耦合剂。

3、由于母材厚度较薄因此探测方向采用单面双侧进行。

4、由于板厚小于20mm所以采用水平定位法来调节仪器的扫描速度。

5、在探伤操作过程中采用粗探伤和精探伤。为了大概了解缺陷的有无和分布状态、定量、定位就是精探伤。使用锯齿形扫查、左右扫查、前后扫查、转角扫查、环绕扫查等几种扫查方式以便于发现各种不同的缺陷并且判断缺陷性质。

6、对探测结果进行记录,如发现内部缺陷对其进行评定分析。焊接对头内部缺陷分级应符合现行国家标准GB11345-89《钢焊缝手工超声波探伤方法和探伤结果分级》的规定,来评判该焊否合格。如果发现有超标缺陷,向车间下达整改通知书,令其整改后进行复验直至合格。

一般的焊缝中常见的缺陷有:气孔、夹渣、未焊透、未熔合和裂纹等。到目前为止还没有一个成熟的方法对缺陷的性质进行准确的评判,只是根据荧光屏上得到的缺陷波的形状和反射波高度的变化结合缺陷的位置和焊接工艺对缺陷进行综合估判。对于内部缺陷的性质的估判以及缺陷的产生的原因和防止措施大体总结了以下几点:

1、气孔:单个气孔回波高度低,波形为单缝,较稳定。从各个方向探测,反射波大体相同,但稍一动探头就消失,密集气孔会出现一簇反射波,波高随气孔大小而不同,当探头作定点转动时,会出现此起彼落的现象。产生这类缺陷的原因主要是焊材未按规定温度烘干,焊条药皮变质脱落、焊芯锈蚀,焊丝清理不干净,手工焊时电流过大,电弧过长;埋弧焊时电压过高或网络电压波动太大;气体保护焊时保护气体纯度低等。如果焊缝中存在着气孔,既破坏了焊缝金属的致密性,又使得焊缝有效截面积减少,降低了机械性能,特别是存链状气孔时,对弯曲和冲击韧性会有比较明显降低。防止这类缺陷产生的措施有:不使用药皮开裂、剥落、变质及焊芯锈蚀的焊条,生锈的焊丝必须除锈后才能使用。所用焊接材料应按规定温度烘干,坡口及其两侧清理干净,并要选用合适的焊接电流、电弧电压和焊接速度等。

2、夹渣:点状夹渣回波信号与点状气孔相似,条状夹渣回波信号多呈锯齿状波幅不高,波形多呈树枝状,主峰边上有小峰,探头平移波幅有变动,从各个方向探测时反射波幅不相同。这类缺陷产生的原因有:焊接电流过小,速度过快,熔渣来不及浮起,被焊边缘和各层焊缝清理不干净,其本金属和焊接材料化学成分不当,含硫、磷较多等。防止措施有:正确选用焊接电流,焊接件的坡口角度不要太小,焊前必须把坡口清理干净,多层焊时必须层层清除焊渣;并合理选择运条角度焊接速度等。

3、未焊透:反射率高,波幅也较高,探头平移时,波形较稳定,在焊缝两侧探伤时均能得到大致相同的反射波幅。这类缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险性缺陷。其产生原因一般是:坡口纯边间隙太小,焊接电流太小或运条速度过快,坡口角度小,运条角度不对以及电弧偏吹等。防止措施有:合理选用坡口型式、装配间隙和采用正确的焊接工艺等。

4、未熔合:探头平移时,波形较稳定,两侧探测时,反射波幅不同,有时只能从一侧探到。其产生的原因:坡口不干净,焊速太快,电流过小或过大,焊条角度不对,电弧偏吹等。防止措施:正确选用坡口和电流,坡口清理干净,正确操作防止焊偏等。

5、裂纹:回波高度较大,波幅宽,会出现多峰,探头平移时反射波连续出现波幅有变动,探头转时,波峰有上下错动现象。裂纹是一种危险性最大的缺陷,它除降低焊接接头的强度外,还因裂纹的末端呈尖销的缺口,焊件承载后,引起应力集中,成为结构断裂的起源。裂纹分为热裂纹、冷裂纹和再热裂纹三种。热裂纹产生的原因是:焊接时熔池的冷却速度很快,造成偏析;焊缝受热不均匀产生拉应力。防止措施:限制母材和焊接材料中易偏析元素和有害杂质的含量,主要限制硫含量,提高锰含量;提高焊条或焊剂的碱度,以降低杂质含量,改善偏析程度;改进焊接结构形式,采用合理的焊接顺序,提高焊缝收缩时的自由度。

冷裂纹产生的原因:被焊材料淬透性较大在冷却过程中受到人的焊接拉力作用时易裂开;焊接时冷却速度很快氢来不及逸出而残留在焊缝中,氢原子结合成氢分子,以气体状态进到金属的细微孔隙中,并造成很大的压力,使局部金属产生很大的压力而形成冷裂纹;焊接应力拉应力并与氢的析集中和淬火脆化同时发生时易形成冷裂纹。防止措施:焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解能在足够的温度区间内进行,避免淬硬组织的产生,同时有减少焊接应力的作用;焊接后及时进行低温退火,去氢处理,消除焊接时产生的应力,并使氢及时扩散到外界去;选用低氢型焊条和碱性焊剂或奥氏体不锈钢焊条焊丝等,焊材按规定烘干,并严格清理坡口;加强焊接时的保护和被焊处表面的清理,避免氢的侵入;选用合理的焊接规范,采用合理的装焊顺序,以改善焊件的应力状态。

以上所总结的几个方面还不够全面,有待于在实际工作中不断地总结和完善,为化工企业生产把好质量关。

推荐第10篇:超声波探伤

1. db在超声探伤中是“增益调节的单位”,也叫“辐射当量”,是超声波折算的单位,decibel 分贝,数值越大,辐射和穿透力越强。

回声强弱的量的大小单位:分贝(db)

dB指的是分贝。10db就算10分贝

10DB天线

就是指增益倍数为10dB的天线。分贝是声压级单位,记为d B 。用于表示声音的大小。1 分1分贝大约是人刚刚能感觉到的声音。适宜的生活环境不应超过4 5 分贝,不应低于1 5 分贝。 按普通人的听觉 0 -2 0 分贝 很静、几乎感觉不到。 2 0 -4 0 分贝安静、犹如轻声絮语。4 0 -6 0 分贝一般。普通室内谈话6 0 -7 0 分贝吵闹、有损神经。7 0 -9 0 分贝很吵、神经细胞受到破坏。 9 0 -1 0 0 分贝 吵闹加剧、听力受损。 1 0 0 -1 2 0 分贝难以忍受、呆一分钟即暂时致聋。

2.超声波探伤有A、B等扫描,是什么含义?

A型扫描显示是一种波形显示。在屏幕上 横坐标代表时间,纵坐标代表反射波的强度。B型扫描显示是一种图像显示。在屏幕上 横坐标是靠机械扫描来代表探头的扫差轨迹,纵坐标是靠电子扫描来代表超声波的传播时间。

A扫也就是一维成像扫面,B扫自然就是二维成像扫描,C扫描就是三维成像扫描A扫超生波探伤仪探伤有实际作用,目前B扫描对探伤实际作用不大,也就是说生产厂家只是作为卖点,无实际作用,其实也就是忽悠,因为厂商对B扫说成图像自己都还不懂,做软件的人对所成图像自己都不能解释怎么能应用呢,C扫描才是有用的,但是核心技术基本上只有国外有,国内超声技术还有很长的路要。

3.请问超声波探伤仪中 分辨力:>40dB是什么意思 ,最小探伤精度是多少? 工作频率0.3-20MHZ,是指波长=波速/频率

中的频率吗?

现在的探伤仪可以检测到0.1mm的缺陷吗,谢谢各位前辈

分辨力:是指在示波屏上区分相邻两缺陷的能力。能区分相邻两缺陷的距离愈小,分辨力就愈高。即几个回波的波峰和波谷的分贝差20lg(A/B)。分辨力:>40dB是指直探头和仪器的远场分辨力,JB/T 4370-2005中规定,必须≥30dB,斜探头和仪器的远场分辨力≥6dB,你所说的精度是指缺陷的大小吗?如果是,那么现在的数字机可以达到0.1MM三个表征波动的参数:频率f:波在单位时间内通过给定点的完整波的个数称为波的波动频率;波长λ:波在一个周期内传播的距离称为波长;波速c:声波在单位时间所传播的距离称为波速。c=λf。

超声波DAC曲线制作过程谁有?

超声波探伤仪DAC曲线的制作过程 超声波探伤仪DAC曲线的概念:DAC既距离幅度曲线,由于相同大小的缺陷,因声程不同,回波幅度也不相同。超声检测时如需根据缺陷的回波幅度来判定缺陷是否有害,必须按不同的声程对回波幅度进行调整,通常用标准里指定的试块来制作距离-波幅曲线,DAC曲线的制作必须在检测仪器--探头自动校准之后进行。以下曲线的制作是以11345-B级为标准: 第一步;选择DAC功能组,选择设置菜单,将显示状态功能设置为“开启”状态。 第二步;选择标定菜单,将斜探头放置RB-3试块上,在表面10MM?○3通孔进行检测,最高反射回波,选择A门起始功能,调节A门起始和A门宽度,使反射回波位于闸门内,(回波必须在屏幕显示的范围内,一般为满屏的80%),然后选择保存标定功能,顺时针旋转拨轮,保存标定值由0自动改为1, 第三步;用斜探头在RB-3试块上找距表面20MM?3通孔的最高反射回波,选择A门起始功能,用拨轮调节起始门位套住该反射回波,选择保存标定功能,顺时针旋转拨轮,保存标定值由1自动改为2,如果标定值有误,按保存标定功能逆时针旋转拨轮,重新保存标定点 第四步;;用斜探头在RB-3试块上找距表面30MM?3通孔的最高反射回波,选择A门起始功能,用拨轮调节起始门位套住该反射回波,选择保存标定功能,顺时针旋转拨轮,保存标定值由2自动改为3,如果标定值有误,按保存标定功能逆时针旋转拨轮,重新保存标定点 第五步;在标定点标定完成之后,,在对比试块上检查以显示的DAC曲线是否准确,如果标定点与以绘制成形的DAC曲线有误差,选择修正菜单 第六步;补偿-选择补偿菜单,如被测工件和对比试块的材料衰减值有差别时,请计算出材料衰减值并输入材料衰减功能中 表面补偿功能是指被测工件与对比试块的表面粗糙度及曲率有差别时,请计算得出表面补偿值并输入表面补偿功能中 第七步:评估,在判废线1中输入-4DB,在定量线中输入-10DB在评定线中输入-16DB由于本探伤仪支持JIS标准的曲线制作,DAC曲线初始为五条。如果需要减少曲线条数到3条,只需将评定线1评定线2设置为同样的正负DB数和判废线1,判废线2设置为同样的正负DB数即可按DB键,将DAC曲线提高到适合观察位置 第八步;数据保存,返回功能组,选择数据菜单经行数据保存,DAC曲线制作完成

第11篇:概述超声波

概述

超声进入医学临床的半个多世纪中,初始在治疗研究中缓慢起步,随后在诊断探索中迅猛发展。40年代以前,欧洲许多科学家埋首于实验室,一些论著的主题多局限于实验研究,直至1949年第一届国际超声医学学术会议上,才有接触实践的临床治疗经验交流。随后陆续召开的几次国际超声医学学术会议上,交流的论文达到一定的深度与广度,初步奠定了超声治疗基础,推动了超声治疗学的发展。国内在这一领域起步较晚,直至50年代初期,始有少数医院开展超声治疗,公开报道的文献初见于1957年。40年来,已积累了一定数量的自己的第一手资料和比较丰富的具有中国特色的临床经验。90年代以来,国内相继召开了三次全国超声治疗学术会议,论文内容较为广泛,学术水准逐届提高。今秋即将召开第四届超声治疗学术会议,预期将会进一步推动超声治疗在国内更广泛深入地开展。

目前应用于临床治疗的除一般超声疗法外,已较为广泛开展的尚有超声药物透入疗法、超声雾化吸入疗法、超声穴位疗法(声针疗法),以及与其他理疗协同应用的超声-电疗法等等。近年来,超声治疗在某些方面取得了突破性进展,其中除现已广泛实践中日益发挥重要作用,目前已成功地用于抑制癌瘤生长和外科、妇科的各种手术治疗;眼科治疗青光眼已形成一套成熟技术和取得一系列成功经验,使聚焦超声均可起到有效破坏作用,被认为是继手术、化疗、放疗之后的第四种治癌方法。

超声不仅能改善心肌收缩、消除心律率乱,且能减少缺氧征象,从而使恢复过程的障碍得以排解。国外近期文献介绍心脏超声进展、新用途有:①超声瓣膜成形术;②超声血管成形和血栓溶解术;③超声起搏和除颤;④超声控释药物以及心脏旁路和声学过滤等。

上述若干重要新进展在有关章节中将逐项予以扼要叙述。

超 声 疗 法

大于20kHz、正常人不能感知的机械振动波为超声。应用从低至数10kHz至高达数MHz的超声,通过各种方式作用于人体以治疗疾病的方法,统称为超声疗法。

超声波的基本特性

频率在2kHz以上的声波称之为超声波,由于频率f升高,波长λ变短使得超声波比普通声波具有特殊性,即近似于光的某些特征。如束射性,由一种媒质进人另一种媒质发生折射、反射等。同时有很强的被吸收性与衰减性,带有很强的能量。本节简要介绍超声波的几个主要特征。

【超声波的束射性】

人耳可感受的声音是无指向性的球面波,即以声源为中心呈球面向四周扩散周围均能听到声音。由于超声波频率很高,所以方向性就相对要强,方向性即柬射性。当超声波发生体压电晶体的直径尺寸远大于超声波波长时,则晶体所产生的超声波就类似于光的特性,如图1一1一1所示。

紧靠晶体辐射板的一段叫近场区,接近于圆柱状;离晶本辐射较远的部分,超声波以一定

的角度扩散,叫远场区。若压晶体圆片的直径为D,超声波在该介中的波长为λ,则近区的长度为:

D2-λ2D2

N= ————≈——(D》λ)

4λ4λ

由上式看出,压电晶体片直径愈大或频率越高,即波长λ愈短,则近场区的长度愈长,此超声波场的束射性就愈好。

声学工作者用光衍射法,对医用超声波换能器的声场显示做了深入、生动的研究。

就是这个研究成果的一组照片,它对我们深入而又形象地理解超声波的束射性,超声波的聚焦性,都有很大的帮助。图1-2是这种是这种光衍射法的实验光路图。图中的He——Ne激光器的波长为6328A(埃),O为一组组合透镜,它将光束镜发出的扩散光束变为平行光束。最后在相屏上得到的是一个超声波声束的倒立的实相。图1-3图1-6的一组照片,就是从这个相屏上拍摄而成的。整个实验均在暗室中进行。图1-5所示的这张未聚焦的单片换能器的全景超声波束照片,是我们超声波治疗机所发出的超声波声束的生动、形象的显示,是值得我们深入研究和理解的。

理解了超声波的束射性,对超声波治疗有重要的意义。由于超声波具有很强的束射性,在超声波治疗时,要注意使用声头辐面垂直,对准治疗部位。以由于超声波声头辐射出的超声波场中心处最强,愈向外侧愈弱,所以,在超声波治疗操作时,一般都要以一定的速度,在治疗部位做小圆周或其它形式的移动,以使治疗部位得到的超声波剂量基本均匀,从而保证治疗效果的良好。

【超声波的透射、反射、折射与聚集】

由于超声波的频率较高,所以超声波在定向传播时,在两种不同媒质的分界面上,会出现类似于光线一样的透射、反射和折射现象。

光线的透射、反射与折射现象是常见的。例如,我们在一个黑暗的环境里将一束光线投身到一个盛满水的透明玻璃烧杯里,我们将十分清楚地看到光线在水面上产生的透射、反射与折射现象。我们采用图1一2所示的光衍射法,也可以清楚地看到超声波声束的反射、透射与折射现象。见图1一7。

光的聚集现象是常见的。如果我们手边在一个放大镜,在强烈的阳光下,太阳光经过放大镜的聚集到一点,就会将这一点上的纸或者香烟等物点燃。许多人都亲身做过这个实验。

超声波的聚集现象和光线的聚集现象是一样的。利用超声波聚集装置可以将超声波束会聚到一点,从而将超声波的声强提高几倍甚至几千倍,利用这样巨大的声强可以做许多很有意义的工作。例如:超声波切割、超声波钻孔、超声波打磨等。

【超声波的吸收与衰减】

声波在各种媒质中传播时,由于媒质要吸收掉它的一部分能量,所以,随着传播路程的增加,声波的强度会逐渐减弱。

在一个广场上,一个民族弦乐正在为广大群众作街头演出,许多人闻讯前去观看和欣赏那动听的音乐。当你从远处走近这个乐队时,首先听到的是那音调低沉的鼓声,随着你慢慢走近乐队,你就逐渐听到了锁呐声、笛声、二胡声等;当你最后走到乐队周围时,你才听到了那音调很高的清脆的铃声。

这个例子,很生动地说明了各种不同频率的声波,在空气中传播时被吸收的程度是不同的。频率越高的声波,空气对它的吸收越强,所以它传播的距离较短。例如上述乐队中音调很高的铃声;因其频率很高,空气对它的吸收作用很强,所以传不远。反之,对频率越低的声波,空气对它的吸收较少,因此,它传播的距离较长。上述乐队中音调低沉的大鼓声音传得很远,正是由于它的频率很低的缘故。

声波在媒质中传播时,被吸收而衰减的另一个特点是对于同一个声波,当它在围体、液体或气体,以及各种不同物质中传播时,它被吸收的程度也是不同的。对于一个频率固定的声波,在气体中传播时,它被吸收的最厉害;在液体中传播时,它吸收的较少;而在固体中传播时,则被吸收的最少。所以,声波在空气中传播的最短,在水中则可传播的远一些,而在金属中则能传播得很远。

以上关于声波吸收的两个特性,无论对可听声,或是对超声波,都是适用的。对于超声波来讲,由于它的频率很高,所发,它在空气中传播时,被吸特别厉害。据科学家们的实验,频率为100亿Hz的超声波,在它离开声源的一刹那间,马上会被空气全部吸收掉。在超声波治疗的临床应用中,对于超声波的吸收特性,必须予以足够的重视。这一点,在下面的有关章节中,将要详细谈到。

【超声波的巨大能量】

超声波之所以在工业、国防和医疗等方面发挥着独特而又巨大的作用,还有一个原因是由于超声波比一般可听声有着强大的功率。根据声学工作者的实验测定,一般的讲话声音的能量是很小的。假设我们想用普通说话的能量来烧开一壶水,那么,必须动员700多万人,连续大声喊叫12个小时才行。超声波具有的能量,要比一般可听声大的多。根据有关声学实验测定,频率为100万赫兹的超声波的能量,要比同幅度的频率为1000赫兹的可听声能量大100万倍。所以说,拥有巨大的能量,是超声波的一个重要特点。超声波的许多应用,也都是利用它的这一特点进行工作的。为什么超声波拥有这么强大的功率呢?这是由于声波到达某一物质中时,由于声波的振动作用,使物质中的分子随便之一起振动,两者振动的频率是一致的。物质分子振动的频率,决定了该物质分子振动的速度,频率越高,速度越大。我们知道,一个运动物体所具有的动能E与其质量M和运动速度有下列关系:

E=Mv2

即,运动物体的动能与其质量成正比,与其速度的平方也成正比。

由于超声波的频率很高,它使所进入的物质分子运动速度,也随之变的很高。根据上式可知,这样高的运动速度,使该物质分子具有很大的动能,这就是超声波拥有巨大能量的缘故。

【超声波的声压特性】

所谓“声压”指的是由于声波的振动而使声场中的物体受到附加压力的强度,单位为公斤/

平方厘米,一般可听声的声压非常微小,其数值约为0.000001公斤/平方厘米~0.000002公斤/平方厘米。这公微小的声压,一般是不引起人们的注意的。但是,超声波的声压,一般是很大的。例如,在水中通过一般强度的超声波时,因超声波而产生的附加压力,可以达到好几个大气压。超声波之所以能够产生这样强的声压,可以达到好几个大气压,其根本原

因仍然是由于超声波的频率很高,所以振动时,使高密度分子间的伸拉很快以致使其间形成瞬时的真空与压缩高密度区,产生巨大的压力差。当它的振幅达到一定程度时,超声波拥有的能量十分巨大。

当超声波束通过液体时,由于巨大的超声波声压作用,可以在液体中出现\"空化现象\"。这种现象所产生的瞬时压力,可以高达几千个,甚至上万个大气压!这么巨大的瞬时压力,使超声波的应用,在许多方面显示出它独特的巨大作用。现在已被普遍应用的超声波清洗,超声波乳化等,都是超声波空化现象的具体运用。

超声波的空化现象是怎样产生的呢?让我们通过观察一个声学实验,来了解空化现象产生的奥妙。

如图1一8所示,在一个盛满水的玻璃容器中,放大一个超声波发生器的声头。

在超声波机末工作之前,该容器中的液体分子受到的只是大气压的压力,液体的分子都很稳定,没有什么变化。当超声波机开始工作后,一般强大的超声波束穿过了整个液体内部。我们知道,当声波通往某种物质时,由于声振动现象,这种压缩和稀疏相互交替的作用,使该物质分子受到的压力产生了变化。例如当超声波振动使水分子压缩时,水分子所受到压力将是大气压加上水分子被压缩时受到的压力,这个变化的压力就是前面我们所谈到的\"声压\"。当这个巨大的声压使水分子团压缩时,好象水分子团受到了来自四面八方的巨大压力(参看图1一8A)当超声波振动使水分子稀疏时,水分子又受到了向四面八方散开的拉力(参看图1一8B)。对于一般的液体,它能经受得住声压的巨大压力作用,所以在受到压缩力时,水分子团不会发生反常的现象。但是当水分子团受到稀疏作用而受到四面八方的拉力时,它们就支持不住了。在拉力集中的地分,水分子团就会断裂开来,这种断裂作用,最容易发生在存有杂质和气泡的地方,因为这些地方水的强度特别低,根本经不住几倍于大气压力的巨大的拉力作用而发生断裂。这种断裂的结果,使水中会产生许多气泡状的小空腔,这种空腔存在的时间很短,一瞬间,就会闭合起来。小空腔闭合的时侯,会产生巨大的瞬时压力,一般的可高达几千个,甚至上万个大气压。这种巨大的瞬时压力,可以使悬浮在水中的固体表面受到急剧的破坏,超声波的绝妙的清洗作用、乳化作用以及超声波治疗中利用超声波来击碎 脑血栓和胆结石块等,都是运用了超声波的这种巨大的瞬时压力。这种由于超声波在液体中的声压,而使液体分子团破裂而产生无数气体小空腔,由于这些小空腔闭合而产生的瞬时压力的现象,称之为超声波的空化现象。超声波的空化现象,也是超声波的重要特性之一。

第12篇:超声波社会实践报告

七月中旬,我入了一家刚刚起步的新公司,开始我的社会实践活动。我此次实践的目的是想通过自己的亲身经历来学习和积累社会经验。

说明来意之后,我被安排与新的员工一起进行了几天的培训。可以说,对于公司的了解是从培训开始的。在几天的培训中,我了解了很多有关公司主导产品的应用和最初的公司发展地界。这里的主要产品是超声波技术。

超声波技术是近年来的新兴技术,应用于制作塑料制品行业。同时,对于模具的成型也应用广泛。一个超声波机器设备通常能与多个模具相匹配。它是借助超声波的摩擦生热,使塑料制品快速软化,从而实现塑料制品的的焊接工艺。它在90年代由台湾引入中国大陆,最早在广州一带设厂,现在在上海也有其公司,它之所以能在这样的大都市立足是因为它有其他焊接设备所没有的优点,成本低,环保等等。它是目前最先进的轻工业设备。

培训结束后,我被直接派入人事管理部门,做一些辅助性工作。这里的配置大体有三个大的部门:生产部、业务部和管理部门。

作为生产部的操作工人需要熟练的掌握超声波的每项操作,并且具备相当的涉及物理和机械操作的工作经历。他们的任务是解决问题和在原有的基础上对设备进行改进。对于顾客的要求的新兴设备要有自创和发明。

操作部门是技术性人才的云集地,是一个企业的地基所在。

处于业务部门的人员需要一定的业务能力作为支撑,他们的重点是寻找在线市场和潜在市场,把最新的工艺扩大化,以实现企业间的双赢。同时业务人员还要对超声波的操作要有了解。业务人员以业绩的多少获得工资以外的提成。

所有这些人员之外配备了专门进行疏通和管理的管理人员。他们主要对日常的事宜进行有针对性的管理,组织开会,调整资金,对工作成果进行验收。

从表面上看,部门与部门之间是相当清晰的,但是实际并不是如此。半个月下来,我发现公司的管理有不当之处,致使部门间的分工出现混乱。比如在人事调动上,出差的业务员常常会在与客户进行谈判时,客户要求有专业的人员来操作示范,所以总是要两两出差,导致公司操作层不能按时完成客户的定单。其实解决这样的问题,有两种方法:一是业务员在介绍这种产品时,可以预先对他的操作进行熟悉,二是将顾客的意愿(这里主要是指客户要求的超声波技术的焊接效果)带回公司,再把它制成样品给顾客看,如果通过,就按合同交易。再比如在工作时间上,因为大多数员工是住在公司的,所以没有规定的工作时间安排。这使得有些员工很晚才上班,或者即使到下班时间还在办公室或者车间。

我还分别在几个部门进行调查,看到了一些由于管理不当而导致的缺陷。

一线的生产部门主要存在的问题有:第一,新入公司的人对于这个行业熟知程度比较低,一开始无法完成任务。针对这样的情况,老的技术工真正出山的很少,他们都是自己干自己的。企业内新老员工互相排挤,社会弊病一时难以治愈。第二,即使员工加班加点,但是仍然不能完成任务,这其中的原因在于公司没有针对公司的现状作出正确判断,以至于公司定单太多,而本身设备有限也使其受到影响。

业务人员大多是刚毕业的大学生,业务能力欠缺,偶遇挫折丧失信心的大有人在。就我个人来说,人才是要的,但是有经验的人才更是需要。

没有明确的管理规章制度是造成管理不善的重要原因。

我把我的想法说给经理听后,他回答我说,其实他们也知道这其中会有一定的影响,但是,如果从人性上来考虑,这样的管理是他们对于后期工作而做的一项必要措施。这里我将阐述的是该公司的管理理念。

公司采用人性化管理理念,注重员工的心理。原来这里的经理和员工都是同吃同住。这里没有严格的打饭制度,饮食上,员工和上司没有分别。员工与上司在业余以朋友相称,结伴吃玩没有拘束。再有如果员工因为工作压力大出现精神反差时,作为上司会主动开导并且单方面会提出休假或者其他方式以最大限度帮助员工战胜困难,求得心理平衡。

公司不想制定有关规章制度是因为现在很多企业都用规则约束员工。比如迟到扣钱等,都使员工影响工作。员工对公司的不满直接导致了公司工作环境不佳,从而影响了产品销量。

因此,我也不难理解老板的用心。再者,老板在前面谈到这些措施是为后期打基础的。现在公司尚处于初创期,要的是人与人之间的齐心协力,要的是不怕苦的干劲。至于以后,等到时机成熟,对于管理完善化,将被针对性的落实。

以人为本,服务员工,实现效益,这也许就是企业制胜的法宝所在。

不久,我的工作已经涉及公司的财务。我花了大量时间在公司的账目上,特别是今年的财务状况。我凭借半年的会计基础制定了表格,并把所有的费用归类。

做帐目不是一件容易的事情,非常繁琐。没有耐心会很吃力。整整一个星期,我把账目制成表格给了老刘。老刘是公司的总会计师。从整个账目来看,公司存在很大的财政问题,公司的利润空间非常大,但是实际利润却只有一半,很多钱被花莫名其妙。再看看这些被归类的账目,可以很清楚地看到,平时员工的生活费用都算在了差旅费上面。还有一些公司员工的聚餐全部来自公司,另外,房租、电话、办公用品、设备等都是一笔不小的费用。所以,这些账目很快就清晰了。但是,目前我们所要面对的不是这个问题。这些支出很多是没有收据和发票的,也就没有办法把账目作平。

我把这样的情况跟上级汇报后,他们的说法是要我把账目最大限度的填平,可是,我学习的东西实在有限。我唯一的办法就是能否在一些老顾客那里拿到票据。再有我找到了一些可以证明购买产品有效凭证,并要求卖方给我们开票。经过一番周折,填了一些,但是,也只是绵薄之力。

想不到的是,第二天,公司的经理就和我谈话,并且非常友好的感谢我这阶段中,对公司所作的一切,并且要我毕业后能到那里就业。我仔细想了一下,委婉的拒绝。我说了自己的专业,至少在我毕业后的两年内,我仍然以我的专业为主。我很明白,现在大学生毕业后,很难找到与自己专业相对口的工作,所以,毕业后寻找新的出路是很正常的,但对于我来说,我仍然希望学有所用。

通过这次社会实践,我学到了很多东西。特别是人性这个东西。我一直相信,要成事必先成人,无任是一个企业还是一个集体。

实践的感受

通常人们认为,人才是企业竞争制胜的关键。其实,优秀的人才只是具备好的精神与文化才能发挥更有益的作用。顶尖的人才,可以精诚合作搞出世界上最好的产品,也可以上演最惨烈的争斗。因此,一个企业刘关张诸葛亮赵云一应俱全并不一定就有战斗力。如果缺乏富于凝聚力和团结精神的文化,这个企业不过是“一盘散沙”,就算人才再多,也必将沦于内耗,产生不了强大的合力。我的结论是:人才并不必然构成生产力,

有人说,可以通过引进好的制度来实现人与人之间的分工合作。这当然是可行的思路。不过,制度就其本质而言并非是一些条条框框,以及写在本子上的东西,而是人们内心中活的潜在规则,是由文化内生的一整套东西。制度经济学集大成者道格拉斯就说过“制度包括人类用来决定相互关系的任何形式的制约。”也就是说,制度可以是正规的,也可以不是正规的,或者二者兼而有之。理解制度的奥秘就在于:制度的精神重于形式。好比说,如果大家都吸烟,即使墙上写着“禁止吸烟”也可能无济于事;反之,如果大家都是不吸烟的人,没有文明告示也不会有人抽烟。制度创新的关键不是求取制度的形式,而是获得内在的制度精神,其中文化建设至关重要。

有些地方,人和人之间互相信任、友爱、路不拾遗;但另外一些地方,人与人之间相互为害,就需要装上防盗门以保安全,企业内部人与人之间以及企业之间的情形也是这样。如果缺乏友爱与合作的文化,完全靠防盗门的制度来激励和监管的话,成本就会急剧上升,无法与那些不装防盗门的企业竞争。

早在80年代,中国的企业就提出过建设“企业文化”的口号,并视之为企业获得最大回报的关键,可见企业其实知道“文化”的厉害的。

中国人一般都相信“廪仓实而知礼节”,但从历史的角度看,也许是相反,不是经济发达了人才变好,而是现有一帮守规矩、讲诚信的好人,然后才有发达的经济,即“知礼节而廪仓实”。从英美文化演变的与经济的发展的历史来看,就是马克思所阐述的先有“清教伦理”所孕育的资本主义精神,后有资本主义市场经济出现。

汤因比说过一句精辟的话,所有文明的消亡皆因自杀,而非他杀。因此,企业精神之营造,企业文化之营造才是根本。

第13篇:超声波测距总结报告

电子技术实验课程设计

超声波测距系统

总结报告

自03 胡效赫 2010012351

自03 胡效赫 2010012351

一、课题内容及分析

首先根据课程所给的几个题目进行选择,由于自己最近在做电子 设计大赛的平台设计,希望对超声波测距在定位方面应用有更详尽的了解,所以选择课题三——超声波测距作为课程设计,内容如下:

对课题进行分析:实验提供超声波传感器T40-16和R40-16,利用面包板和小规模芯片搭接电路,实现距离的测量及显示。大致思路即驱动发射端发出超声波,接收端收到返回的脉冲进行处理与计算得到测量距离并通过数码管和蜂鸣器显示。

二、方案比较与选择

由于超声波测距方案原理基本相同,只要能够检测出发射到接收的时间,并通过相应计算就可以得到所测距离。所以问题大致分为驱自03 胡效赫 2010012351 动发射端、接收端检测、间隔时间计算与计算结果显示四部分。 具体的方案设计如下:

闸门脉冲源产生基准宽度为T 的闸门脉冲,该脉冲一方面控制计数电路的计数启动和并产生计数器清零脉冲,使计数器从零开始对标准脉冲源输出的时钟脉冲(频率为17KHz)计数。同时开启控制门,超声波振荡器输出的40kHz脉冲信号通过控制门,放大后送至超声波换能器,由发射探头转换成声波发射出去。该超声波经过一定的传播时间,达到目标并反射回来,被超声波换能器的接收探头接收变成电信号,经放大、滤波、电压比较和电平转换后,还原成方波。图中的脉冲前沿检测电路检测出第一个脉冲的前沿,输出控制信号关闭计数器,使计数器停止计数。则计数器的计数值反映了超声波从发射到接收所经历的时间(或距离)。

自03 胡效赫 2010012351

三、模块化设计及参数估算

1、闸门控制模块  设计思路

555振荡电路产生频率为2Hz的脉冲,作为闸门脉冲源。 RC微分电路将输出的2Hz脉冲进行微分运算产生脉冲信号,作为计数启动和计数清零的信号,分别控制D触发器的置高端和74LS90的清零端。  参数设计:

555振荡电路T = (R1+2*R2)*C*ln2。其中R1取4.7kΩ,R2接入10kΩ滑动变阻器,最后实测7.51kΩ,C取47uF。 RC微分电路R为1kΩ,C为4.7nF

2、超声波发生模块  设计思路

555振荡电路产生频率为40kHz的脉冲,作为驱动超声波发射端 自03 胡效赫 2010012351 的基础脉冲信号。

同时由2Hz闸门信号作为门控(高电平有效)。

再利用电压比较器,对555脉冲信号进行整形,而后输出。  参数设计

555振荡电路T = (R1+2*R2)*C*ln2。其中R1取2kΩ,R2接入 1kΩ滑动变阻器,最后实测440Ω,C取10nF。

3、超声波接收模块  设计思路

电压放大电路,利用LF347放大超声接收端信号

电压比较电路,利用电阻分压设计阈值电压VREF,当没有接收到信

号时V-大于V+,输出为负,当接收到信号时V-小于V+,输出为正。 稳压电路,电压比较器输出端接1kΩ电阻,反接5V稳压管接地,自03 胡效赫 2010012351 使没有信号即输出为负时,输出-0.7V电平,有信号即输出为正时,输出5V电平。  参数设计

放大电路电阻值为1kΩ和750kΩ,放大倍数为750。

电压比较器VREF由100kΩ电阻和100kΩ的滑动变阻器分压决定, 最终滑动变阻器阻值取为5.68kΩ,VREF取值大致为-0.6V。

4、计数控制模块  设计思路

计数控制模块由,计数启动和计数停止控制组成。由D触发器进行实现 当计数开始时闸门信号的微分电路给出低电平脉冲将Q置高,计数信号有效。而接收到回波后,接收信号由低变自03 胡效赫 2010012351 高,CLK产生上升沿将Q置低,计数信号关闭。

5、计数模块  设计思路

555振荡电路产生17kHz的脉冲型号用来计数 三个74LS90级联,采用十进制接法计数,分别对应米、分米、厘米。

计数信号控制源由计数控制模块的D触发器的Q信号给出 计数信号清零源由闸门控制信号的微分模块经由缓冲器后给出高脉冲清零。  参数设计

555振荡电路T = (R1+2*R2)*C*ln2。其中R1取5.1kΩ,R2接入

47kΩ滑动变阻器,最后实测18.98kΩ,C取2.2nF。

6、报警模块  设计思路

令A[4],B[4],C[4]分别对应米、分米、厘米,同时当模块计数时报 警应该无效,设D触发器输出信号为Q,则 逻辑函数Alarm = A1’A0’B3’B2’B1’Q 自03 胡效赫 2010012351 利用与非、或非及非逻辑运算搭接电路

四、实验电路总图

1、电路原理图

自03 胡效赫 2010012351

2、时序图

3、面包板布局

五、实验结果与实验中出现的问题分析

1、实验结果 结果:基本要求及提高要求全部完成。其中四个地方用到了滑动变阻器分别是三个555的脉冲源(产生2Hz、17kHz和40kHz的方波)和接收模块的电压比较器阈值电压VREF的确定。调试结果的各自03 胡效赫 2010012351 阻值已在模块设计中标明。

2、实验中出现的问题及分析

A.微分电路输出信号的检查

开始分模块调试时,不会测量微分电路输出的脉冲信号,然后不能确定问题出现在下级还是本级。经过老师的提示,只要把示波器显示的波形调到最粗最亮,调成相应扫描速度,可以看到面板上有亮点间歇显示。从而验证微分电路输出信号无误,并且幅值正确。

B.数码管显示不稳定

数码管显示不稳定,多数原因是由于数字电路与模拟电路相互干扰,计数器中混有杂波和高频信号。用示波器测量计数电路的74LS90的信号,发现有17kHz的杂波。首先将模拟地和数字地分开将555振荡电路的地直接由引线接到学习机上,而后数码管开始显示,但仍不太稳定。再在VCC和GND之间跨接0.1uF的电容滤掉杂波。之后数码管稳定显示。

C.信号输出不正确

D触发器输出电平Q在未接受到信号时应该是低电平,但始终是高电平。开始时不确定前级各模块的正确与否,有些停滞,之后确定前级信号正确,D触发器接线正确,而输出信号不对,则一定芯片的问题。换了芯片之后,输出正常。

六、收获、体会和建议

1、收获与体会 本次实验充分体会电路模块设计与调试的过程,对于设计电路和自03 胡效赫 2010012351 测试电路的能力有了更一步的提升。 首先,搭接与调试电路时,应该本着自顶向下逐步求精的原则,在理解原理并确定原理正确之后,先对于面包板的布局进行规划,把相应的芯片测试后,插到相应部分,保证后面搭接时方便并且思路清晰。 然后,按分模块逐级搭接调试的原则测试电路,保证了每一级的输入信号都是正确的后,如果输出不正确,去检查接线,接线正确后检查芯片是否正常工作。 最后,发现信号干扰问题,尝试用滤波,分离数字地和模拟地,以及简单的搭接电容的方法,解决干扰。 依照上述方法调试电路,保持一颗正常心态,可以高效并且正确的完成问题。

2、建议 由于整个实验过程中只需要,测量接收波形的上升沿,所以对于模拟电路中波形整形处理部分现对简单。现提出以下课程建议: 建议老师将提高要求的测量距离改为高于3m,这样同学们利用波形放大然后与阈值电压比较的方法就不能实现了,因为相应的杂波干扰也会随之放大,冲过阈值电压,影响结果。所以此时同学应该使用选频电路选出40kHz的波形,控制后面的计数模块,对于模拟电路部分会有更高的锻炼。

附工作日志

8月21日 自03 胡效赫 2010012351 经过周末的预习,查找了关于超声传感器的原理知识和超声测距的相关内容。分析了超声测距的实现方案,并将电路分为各个模块实现,每个模块进行了相应仿真(但有些仿真结果不理想,待硬件实测)。

本日上午首先针对超声测距系统方案中的几个模块与同学进行了讨论,包括方波频率的选择与实现,闸门信号的实现与清零,以及面包板的布局合理性。

而后首先搭接了三个555方波发生器。上午只搭接测试出了,40kHz的方波 本日下午再次对于板子的规划进行思考,并大致划分了区域,把相应用到的芯片放到了相应的位置。然后搭接测试出了2Hz方波。分别测试两种方波的频率均很稳定,效果不错。而后开始搭接超声发射模块的实现,将两种频率的方波进行逻辑运算,经由LS00,信号传至运算放大器LF347,将信号与2.5V电压值进行比较,得到最终的大约0.5s驱动一次超声波发射器的效果。

但是遇到的问题是,当2Hz和40kHz的方波共同输入到LS00中时,对2Hz的方波进行测量,示波器显示的频率很难稳定下来,发现混有杂波,可能是40kHz的杂波,也可能是交流成分。进行了各种测试,重新退到上一步骤,检查芯片的问题,等等。但是问题并没解决,后来怀疑是示波器测量可能不是很准。直接测量最终运放发射的信号,发现效果正常。问题解决。

而后进行超声接收信号接收处理的部分电路的搭接,以及触发器电路的搭接。之后搭出17kHz的脉冲源后,下课。

晚上又把数码显示和蜂鸣器部分搭出来了,明天分模块测试。 8月22日

由于昨天已经把各个模块全部搭好,今天开始分模块测试和模块的联调测试。 今天下来调试结果:

超声波发射模块调试通过正常运行,并且接收模块可以接收到相应信号,在示波器上显示相应波形。40kHz的555脉冲源正常,2Hz的555脉冲源正常,经过LS00运算后,到LF347正常驱动T40-16,而相应的R40-16接收到反射的超声波信号后,产生较大幅值的波形(较之原有的干扰信号),可以通过放大,与阈值电压比较后得到相应的脉冲信号(没有接收到信号时,信号为0,大于阈值电压,最终输出低电平信号-0.7V;接收到信号后,信号为负,小于阈值电压,最终由于稳压管稳压后输出高电平5V)。即,当调整出较好的阈值电压后接收到超声信号后会产生相应的上升沿信号。

对于闸门信号的作用部分,由74LS74双上升沿D触发器来完成。对2Hz脉冲信号进行微分运算,上升沿时给出正脉冲,经由40106COMS施密特反相器可以得到一直是高电平闸门信号时给出低电平和一直是低电平闸门信号时给出高电平的信号。将LS74的置高端接前者信号,给出低电平脉冲时D触发器被置高,而只有CLK信号给出上升沿后才能将D触发器置低。

!!!但是输入信号都测出来了,输出不对哎有木有 所以明天LS74是重点哎有木有!!!

而后是计数器显示模块,需要有17kHz的555脉冲源,搞定。与经由闸门信号控制锁存后的Q输出端进行逻辑运算(LS00),结果输出到LS90中进行计数并在数码管中显示。同时从计数的信号端中做组合逻辑实现低于0.2m时报警。同时计数器的清零信号由闸门信号微分运算后COMS施密特反相器整形后得到。

开始没有产生555脉冲信号的时候,将CLK和CLR用学习机模拟,效果很好,接上555后发现数码管不稳,有木有!!!

模拟地和数字有干扰有木有!!!想办法有木有!!! 自03 胡效赫 2010012351 数电电子技术实验考核的时候就有这个问题木有解决,明天上午一定要解决有木有!!!

8月23日

今天来到实验室后重新整理了思路,调整了心态。理清了各个模块的作用关系,由最初级开始逐级测试,当确定D触发器的输入信号均正常,并且接线正常,而输出不正常,所以果断换了74LS74。突然之间信号变好了,然后数码管开始工作了,无比的开心。直接找助教验收基本实验,助教发现信号并不是很稳定,然后感觉计数器和数码管显示部分仍有杂波干扰,在VCC和GND之间接入0.1uF,信号稳定了,基本实验调试通过。好开心,有木有。而后通过改变阈值电压,使阈值电压接近0V,将距离较远处的返回信号,也作为有效信号。然后通过了提高要求。搞定!

第14篇:超声波测距总结

超声波测距

超声波传感器用于超声控制元件,它分为发射器和接收器。发射器将电磁振荡转换为超声波向空气发射,接收器将接受的超声波进行声电转换变为电脉冲信号。实质上是一种可逆的换能器,即将电振荡的能量转换为机械振荡,形成超声波;或者有超声波能量转换为电振荡。常用的传感器有T40-XX和R40-XX系列,UCM-40T和UCM-40R系列等;其中T代表发射传感器,R代表接收传感器,40为中心频率40KHZ。

超声波的传播速度

纵波、横波及表面波的传播速度取决于介质的弹性常数以及介质的密度。

1.液体中的纵波声速:

C1=

k/

2.气体中的纵波声速:

C2=

P·/

式中:K——体积弹性模量

——热熔比

P——静态压力

——密度

注:气体中声速主要受温度影响,液体中声速主要受密度影响,固体中声速主要受弹性模量影响;一般超声波在固体中传播速度最快,液体次之,气体中传播速度最慢。 超声波测距原理

通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2

这就是所谓的时间差测距法 或:

由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0.6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为:

V = 331.45 + 0.607T

声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。

超声波发生器可以分为两类:

1、使用电气方式产生超声波;

2、用机械方式产生超声波。电气方式包括压电型,磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各有不同,因而用途也各有不同。目前较为常用的是压电式超声波发生器,其又可分为两类:(1)顺压电效应:某些电介物质,在沿一定方向上受到外力作用而变形时,内部会产生极化现象,同时在其表面上会产生电荷;当外力去掉后,又从新回到不带电的状态,这种将机械能转换为电能的现象称顺压电效应(超声波接收器的工作原理)。(2)逆压电效应:在电介质的极化方向上施加电场,会产生机械变形,当去掉外加电场时,电介质的变形随之消失,这种将电能转化为机械能的现象称逆压电效应(超声波发射器的工作原理)。

系统框图

超声波发射电路 方案一

利用555定时器构成多谢振荡器产生40KHz的超声波。如下图为555定时器构成的多谢振荡器,复位端4由单片机的P0.4口控制,当单片机给低电平时,电路停振;当单片机给高电平时电路起振。接通电源后,电容C2来不及充电,6脚电压Uc=0,则U1=1,555芯片内部的三极管VT处于截止状态。这时Vcc经过R3和R2向C2充电,当充至Uc=2/3Vcc时,输出翻转U1=0,VT导通;这时电容C2经R2和VT放电,当降至Uc=1/3Vcc时,输出翻转U1=1.C2放电终止、又从新开始充电,周而复始,形成振荡。其振荡周期t1和放电时间t2有关,振荡周期为:

T=t1+t20.7(R3+2R2)C2

f=1/T=1/(t1+t2)1.43/(R3+2R2)C2=40KHz 有上面公式可知,555多谐振荡器的振荡频率由R2,R3,C2来确定。所以在电路设计时,先确定C2,R2的取值,即C2=3300pf,R2=2.7K。再将R2和C2的值代入上式中可得:

R3=1.43/C2·f - 2R2 为了方面在实验中使用555芯片的3脚输出40KHz的方波,在这里将其用10K的电位器代替。

为了增大U1的输出功率,将555芯片的8脚接+12v的电压,同时将其复位端4脚接高电平,使用示波器观察555芯片3脚的输出波形,通过调节电位器R3的阻值,使其输出波形的频率为40KHz。

方案二

该超声波发射电路,由F1至F3三门振荡器在F3的输出为40KHz方波,工作频率主要由C

1、R1和RP决定,用RP可调电阻来调节频率。F3的输出激励换能器T40-16的一端和反相器F4输出激励换能器T40-16(反馈耦合元件)的另一端,因此,加入F4使激励电压提高了一倍。电容C

2、C3平衡F3和F4的输出使波形稳定。电路中的反相器用CC4069六反相器中的四个反相器剩余两个不用(输入端应接地)。电源用9V叠层电池;测量F3输出频率应为40KHz,否则应调节RP,发射波信号大于8m。

方案三

该超声波发射电路由VT

1、VT2组成正反馈振荡器。电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40KHz;频率稳定性好,不需做任何调整,并由T40-16作为换能器发出40KHz的超声波信号;电感L1与电容C2调谐在40KHz起作谐振作用。本电路电压较宽(3v至12v),且频率不变。电感采用固定式,电感量5.1mH,整工作电流约25mA,发射超声波信号大于8m。

方案四

该发射电路主要有四与非门电路CC4011完成谐振及驱动电路功能,通过超声波换能器T40-16辐射出超声波去控制接收器。其中门YF1和门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡器频率为40KHz;振荡信号分别控制由YF

3、YF4组成的差相驱动器工作,当YF3输出高电平时,YF4输出低电平,当YF3输出低电时,YF4输出高电平。此电平控制T40-16换能器发出40KHz超声波。电路中YF1至YF4采用高速CMOS电路74HCOO四与门电路,该电路特点是输出驱动电流大(大于15mA),效率高等;电路工作电压9V,工作电流大于35mA,发射超声信号大于10m。

方案五

本电路采用LM386对输出信号进行功率放大,LM386多用于音频放大,而在本电路中用于超声波发射。如图所示,LM386第1脚和第8脚之间串接的E1和R1,使电路获得较大的增益;TO为单片机输入口的脉冲信号,经功率放大后由5脚输出,驱动探头发射超声波。

超声波接收器模块 方案一

超声波接收传感器通过压电转换的原理,将由障碍物返回的回波信号转换为电信号,由于该信号幅度较小(几到几十毫伏),因此须有低噪声放大、40kHz带通滤波电路将回波信号放大到一定幅度,使得干扰成分较小,其电路如下所示。在此电路中,为了防止在超声波接收器上始终加有一直流信号让其工作导致传感器的寿命缩短,从而加上一隔直电容C4,从而C4和R5构成滤波电路。

在电路中,放大部分采用的是高速型运放TL084。综合考虑了反相放大器、同相放大器和测量放大器的优缺点后,最终选择了同相放大电路。因为同相放大器的理想输入阻抗为无穷大,理想输出阻抗为零,其带负载能力较强等因素。在此电路中,根据同相放大器的闭环增益公式:Af=1+Rf/Rr 由于接收到的信号幅度为几到几十毫伏,所以需要将其放大400多倍使得其接收到的40KHz信号不会被干扰信号给掩盖。为了防止引起运算放大器的自激振荡,在第一级的放大电路中,R7取值为470 K,R8取值为10K,其增益放大: Af1=1+R7/R8=48 在第二级放大电路中,R11的取值为100K,R12的取值为10K,其放大增益: Af2=1+R11/R12=11 两级增益为:Af=Af1·Af2=528 同相放大器的平衡电阻R6和R10的取值均为10K。平衡电阻公式为:

Rp=Rf/(Rf+Rr) C5和R9构成了一阶滤波电路。

方案二

该电路主要有集成电路CX20106A和超声波换能器TCT40-10SI构成。利用CX20106A做接收电路载波频率为38KHz;通过适当的改变C7的大小,可以改变接收电路的灵敏度和抗干扰能力。

工作原理:当超声波接收探头接收到超声波信号时,压迫压电晶体做振动,将机械能转化成电信号,由红外线检波接收集成芯片CX20106A接收到电信号后,对所接信号进行识别,若频率在38KHz至40KHz左右,则输出为低电平,否则输出为高电平。

方案三

双稳式超声波接收电路

电路中,由VT

5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号C

7、C8向双稳电路送进一个触发脉冲,VT

5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VT5截止,VT7导通,继电器K吸合•••调试时,在a点与+6V(电源)之间用导快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件 参数。

方案四

单稳式超声波接收电路

本电路超声波换能器R40-16谐振频率为40kHZ,经R40-16选频后,将40kHZ的有用信号(发射机信号)送入VT1至VT3组成的高通放大器放大,经C

5、VD1检出直流分量,控制VT4和VT5组成的电子开关带动继电器K工作。由于该电路仅作单路信号放大,当发射机每发射一次超声波信号时接收机的继电器吸合一次(吸合时间同发射机发射信号时间相同),无记忆保持功能。可用作无线遥控摄像机快门控制、儿童玩具控制、窗帘控制等。电路中VT1β≥200,VT2≥150,其他元件自定。本电路不需要调试即可工作。如果灵敏度和抗干扰不够,可检查三极管的β值与电容C4的容量是否偏差太大。经检测,配合相应的发射机,遥控距离可达8m以上,在室内因墙壁反射,故没有方向性。电路工作电压3V,静态电流小于10mA。

方案五

在本接收电路中,结型场效应VT1构成高速入阻抗放大器,能够很快地与超声波接收器件B相匹配,可获得较高接收灵敏度及选频特性。VT1采用自给偏压方式,改变R3的阻值即可改变VT1的工作点,超声波接收器件B将接收到的超声波转换为相应的电信号,经VT1和VT2两极放大后,再经VD1和VD2进行半波整流为直流信号,由C3积分后作用于VT3的基极,使VT3由截止变为导通,其集电极输出负脉冲,触发器JK触发D,使其翻转。JK触发器Q端的电平直接驱动继电器K,使K吸合或释放;由继电器K的触点控制电路的开关。

盲区形成的原因及处理

1、探头的余震及方向角。发射头工作完后还会继续震一会,这是物理效应,也就是余震。余震波会通过壳体和周围的空气,直接到达接收头、干扰了检测;通常的测距设计里,发射头和接收头的距离很近,在这么短的距离里超声波的检测角度是很大的,可达180度。

2、壳体的余震。就像敲钟一样,能量仍来自发射头。发射结束后,壳体的余震会直接传导到接收头,这个时间很短,但已形成了干扰。(注:不同的环境、温度对壳体的硬度和外形会有所变化,导致余震时间会略有改变)

3、电路串扰。超声波发射时的瞬间电流很大,瞬间这么大的电流会对电源有一定影响,并干扰接收电路。 通常这三种情况情况在每次超声波发射时都会出现,即超声波在发射的时候,是一个高压脉冲,并且脉冲结束后,换能器会有一个比较长时间的余震,这些信号根据不同的换能器时间会有不同,从几百个uS到几个mS都有可能,因此在这个时间段内,声波的回波信号是没有办法跟发射信号区分的.因此,被测物体在这个范围内,回波和发射波区分不开,也就无法测距,从而形成了盲区.。

在硬件方面通常将超声波转换器之间的距离适当增大来减少盲区的范围;如果发射探头和接收探头分开,收发不互相影响,必须要求发射电路和接收电路的地线隔离很好,发射信号不会通过地线串扰过去,否则也是不能减小盲区的。

在软件中的处理方法就是,当发射头发出脉冲后,记时器同时开始记时。我们在记时器开始记时一段时间后再开启检测回波信号,以避免余波信号的干扰。等待的时间可以为1ms左右。更精确的等待时间可以减小最小测量盲区。(注:超声波探头方向角越小、发射头和接收头位置越远,盲区就越小,测量距离也就越小)

第15篇:超声波检测技术

超声波检测技术

由于超声波具有激发容易、检测工艺简单、操作方便、价格便宜等优点,因此在道路状态检测中,特别是高等级水泥路面路基检测中的应用有着较广泛的前景。超声波是一种频率高于人耳能听到的频率(20Hz~20KHz)的声波。实践证明,频率愈高,检测分辨率愈高,则检测精度愈高。因此实践中利用超声波检测水泥路面状态时,其上限频率为100KHz、下限频率为20KHz。

超声波是一种波,因此它在传输过程中服从波的传输规律。例如:超声波在材料中保持直线行进;在两种不同材料的界面处发生反射;传播速度服从波的传输定理:ν=λf(ν为波速,λ为波长,f为波的频率)。资料证明,波速对于水泥路面路基检测十分有用,因此一般也称超声波检测法为波速法。

波速法是超声波检测水泥路面路基状态的最基本的方法。研究证明,波在介质材料中行进的速度愈大,则介质材料的坚硬性愈大;反之,则介质材料愈松软。而介质材料的坚硬性实质上也反映了该种材料强度的高低,因此材料强度愈高,波速应愈大;材料强度愈低,则波速应愈小。这样,知道了波速,亦即知道了材料强度。在土工试块及某些岩体中利用波速法进行无损检测有比较成熟的经验,用得也比较广泛。但水泥路面路基情况比较特殊,作为无损检测的超声波探头无法生根或埋置,从而造成检测工作的难度。因此,应该采用波速法与回弹法相组合的综合法。 超声波检测原理

2009-02-12 15:39 超声波检测管可以分为超声波探伤和超声波测厚,以及超声波测晶粒度、测应力等。在超声探伤中,有脉冲反射法、穿透法和共振法。脉冲反射法是根据缺陷的回波和底面的回波进行判断,穿透法是根据缺陷的阴影来判断缺陷情况,而共振法是根据被检物产生驻波来判断缺陷情况或者判断板厚。目前用得最多的方法是脉冲反射法。脉冲反射法在垂直探伤时用纵波,在斜射探伤时用横波。把超声波射入被检物的一面,然后在同一面接收从缺陷处反射回来的叫波,根据回波情况来判断缺陷的情况。脉冲反射法有纵波

第16篇:超声波探伤作业指导书

目 录

1.范围

2.引用标准

3.检验人员的职责与要求 4.检验设备

5 校准与复核 6.检测工艺 7.检验程序 8.标识与报告 9.职业健康安全措施 10.环境保护措施

超声波作业指导书 新公司金属室

超声波检验作业指导书

1.范围

本作业指导书规定了超声波探伤的一般程序,及探伤过程中的技术要点、安全措施以及环境保护,以规范超声波探伤的检验工作。

本作业指导书适用于A型脉冲反射式超声波探伤仪进行的无损探伤。

本作业指导书适用于金属材料制锅炉压力容器和压力管道的原材料、零部件以及焊缝的超声检测。

2.•引用标准

劳部锅[1993]441号 锅炉压力容器无损检测人员资格鉴定考核规则 GB11345-89 钢焊缝超声波探伤方法和探伤结果的分级。 GB11259-89 超声波检验用钢制对比试块的制作与校验方法 GB/T15830-95钢制管道对接环焊缝超声波探伤方法和检验结果的分级 GB/T 5777-96 无缝钢管超声波探伤方法 GB/T 11343-89 接触式超声斜射探伤方法 GB/T2970-91 中厚钢板超声波探伤方法 GB6402-91 钢锻材超声纵波探伤方法 GB7734-87 复合钢板超声波探伤方法 JB4730-94 压力容器无损检测

JB/T10061-1999 A型脉冲反射式超声探伤仪通用技术条件 JB/T10062-1999 超声探伤用探头性能测试方法 JB/T10063-1999 超声探伤用1号标准试块技术条件

JB/T9214-1999 A型脉冲反射式超声探伤系统工作性能测试方法 JB/T4009-1999 接触式超声纵波直射探伤方法 JB/T 8467-96 锻钢件超声波探伤方法

DL/T542-94 钢熔化焊T形接头角焊缝超声波检验方法和质量分级 DL5007-92 电力建设施工及验收技术规范(火力发电厂焊接篇)。 DL/T5048-95 电力建设施工及验收技术规范(管道焊缝超声波检验篇)。 DL/T675-1999 电力工业无损检测人员资格考核规则

3.检验人员的职责与要求

超声波作业指导书 新公司金属室 从事超声波探伤的人员必须经过培训考核,持有有关部门颁发的资格证书。 3.1具有初级超声波检验资格的人员在中、高级人员的指导下进行检验操作、记录检测数据、初评检测结果,但不得出具检验报告。初级检验人员应了解有关条例、规程、标准、技术规范的要求;熟悉超声波检测的原理和操作技术;正确调整和使用仪器;了解安全防护措施。

3.2中级超声波检验人员可以编制检测工艺、独立进行检测工作、评定检测结果、签发审核检测报告。中级检验人员应掌握有关条例、规程、标准、技术规范、无损检测的基本知识;掌握超声波检测的原理;具有熟练的操作技能;熟悉锅炉压力容器和金属材料以及产品制造工艺的一般知识;熟悉安全防护措施。

3.3高级超声波检验人员可以编制审核检测作业指导书和工艺卡、审核签发检测报告、仲裁初级和中级人员对检测结果的争议、指导初级和中级人员的工作。

3.4 检验人员应严格执行标准,实事求是,对检验结果负责。

4. 检验设备 4.1 超声波探伤仪

4.1.1 可以采用模拟或数字式A型脉冲反射式超声波探伤仪。

4.1.2 超声波探伤仪的性能指标应符合JB/T10061 《A型脉冲反射式超声探伤仪通用技术条件》的规定;超声波探伤仪的性能测试方法应符合JB/T9214-1999 《A型脉冲反射式超声探伤系统工作性能测试方法》的规定。

4.1.3其工作频率至少为1-6MHz;数字式超声波探伤仪的采样频率在40MHz以上。 4.2 探头

4.2.1探头性能必须按JB/T10062-1999 《超声探伤用探头性能测试方法》进行测试。

4.2.2单斜探头主声束垂直方向不应有明显的双峰,声束轴线水平偏离角不大于2°,单斜探头的晶片面积不应超过400mm2,单斜探头磨损后经测试其性能不能符合要求后应更换。

4.2.3探测具体的部件应按照相应的标准的要求选择探头。 4.3仪器和探头的组合性能

4.3.1仪器和探头的组合性能应按JB/T9214-1999《 A型脉冲反射式超声探伤系统工作性能测试方法》的规定进行测试。

4.3.2在所探焊件的最大声程处,有效探伤灵敏度余量不小于10dB。4.3.3仪器和探头的组合频率与公称频率误差不大于±10%。

超声波作业指导书 新公司金属室 4.3.4直探头的远场分辨力大于或等于30dB,斜探头的远场分辨力大于或等于6dB。 4.4 试块

4.4.1 标准试块CSK-IB的技术要求应满足JB/T10063-1999 《超声探伤用1号标准试块技术条件》的规定。

4.4.2对比试块应选用与被检工件材料相同或声学性能相近的材料制成,试块的外形尺寸应代表被检工件的特征。

4.4.3探测具体的部件,应采用相应标准规定的试块。4.5耦合剂

耦合剂应有良好的润湿性能和透声性能,对工件无腐蚀,对人体无害,容易清洗。

5.校准与复核

校准应在标准试块和对比试块上进行,校准中应使超声主声束垂直对准反射体的轴线,以获得稳定和最大的反射信号。校准、复核和线性检验时,任何影响仪器线性的控制器(如抑制或滤波开关)都应在“关”的位置或处于最低水平。

5.1仪器校准

在开始使用仪器时,应对仪器的水平线性进行测定,测定方法按JB/T10061的规定进行,在使用过程中,每隔三个月至少应对仪器的水平线性和垂直线性进行一次测试。

5.2探头校准

5.2.1在探头开始使用时,应对探头进行一次全面的性能校准,测定方法按JB/T10062的规定进行。

5.2.2斜探头在使用前应进行前沿距离、折射角、主声束偏离、灵敏度余量和分辨力的校准。使用过程中,每次使用前应校准前沿距离、折射角和主声束偏离。

5.2.3直探头的始脉冲占宽、灵敏度余量和分辨力应根据使用的频度每隔一个月或三个月检查一次。

5.3组合系统的校核

5.3.1每次检测前均应对扫描线、灵敏度进行校核,遇有下述情况应进行重新核查: a.校准后的探头、耦合剂和仪器旋钮发生改变时; b.开路电压波动或怀疑灵敏度有变化时; c.连续工作4小时以上时; d.工作结束时。 5.3.2时基调节复核

超声波作业指导书 新公司金属室 当发现校验点反射波在扫描线上偏移超过原读数的10% 或满刻度的5% 时,应重新调整扫描比例,前次校验后已经检验的管件要重新检验。

5.3.3距离-波幅曲线的复核

复核时,校验应不少于3点,如曲线上任何一点幅度下降2dB,则应对上一次所有的检测结果进行复检,如幅度上升2dB,则应对所有的记录信号进行重新评定。

6.检测工艺

对于具体部件的检测,中级或高级检验人员应根据相应的标准编制检测工艺卡,经审批后实施。工艺卡应包括如下内容:检验等级、材料种类、规格、检验时机、坡口形式、焊接工艺方法、表面状态及灵敏度补偿、耦合剂、仪器型号、探头及扫查方式、灵敏度、试块、缺陷位置标定方法、报告要求、操作人员资格、执行标准等。

7.检验程序 7.1检验流程

工件准备 -- 表面检查、委托检验-- 接受委托、指定检验员- 了解焊接情况—确定检测工艺卡—选定探伤方法、仪器、探头、试块—校准仪器和探头--制作距离波幅曲线--调整探伤灵敏度—校准与复核-- 涂布耦合剂-- 粗探伤-- 标示缺陷位置--精探伤--评定缺陷—复核--记录--报告-- 审核 --存档。

对于不合格焊缝的重新探伤,仍然遵从此程序的要求。 7.2委托

委托单位委托前应提供检测部件的编号、分布图以及必要的安全设施与条件,检测部位应清除掉油漆、氧化层、飞溅等,露出金属光泽,必要时还应把焊缝余高打磨掉。委托单位按照有关标准要求的检验比例委托检验。需要热处理的部件应在热处理后进行委托。

检验部门应了解工件的名称、材质、形状、规格、使用标准、以及安全作业环境等,确认可以实施检验后,方可受理委托。

7.3检验前的准备

7.3.1根据被检部件的材质、规格、性质和结构形状选定探伤标准,确定检验等级,确定检测工艺卡。

7.3.2 对选定的仪器、探头的性能及其组合性能应进行测试,并符合要求。 7.3.3制作距离—波幅曲线及综合补偿测定:

7.3.3.1 斜探头前沿距离、•K值的测定应在CSK-IB试块上进行,前沿距离、K值至少应测量三次,取其平均值。

超声波作业指导书 新公司金属室 7.3.3.2调节扫描速度、扫描比例,按照选定的标准要求制作距离波幅曲线,并计入综合补偿,绘制在坐标纸上。

7.3.3.3 综合补偿测定按选定的标准进行。

7.3.4检测面和检测范围的确定应保证检查到工件被检部分的整个体积,检验前应用80#或100#砂纸去除检测面上的毛刺等,•以利于声耦合和探头的移动并减少探头磨损。

7.3.5对于焊缝的检测,斜探头扫查声束通过的母材区域应用直探头进行检查,以便确定是否有影响斜探头探伤结果的缺陷存在。检查方法按选定标准的要求,•此项检查仅作记录,不属于对母材的验收检查。

7.3.6对于焊缝的检测,为了便于对缺陷的判定,可以对焊缝两侧的母材进行厚度测量,并作好记录。

7.4检验

7.4.1按照选定标准的规定确定探伤灵敏度,并对扫描线和灵敏度进行复核。7.4.2 扫查时应尽量扫查到工件的整个被检区域,探头的每次扫查覆盖率应大于探头直径的15% ,探头移动速度不应大于150mm/S。

7.4.3 可以采用锯齿型扫查、斜平行扫查和平行扫查,以检测不通走向的缺陷。检测纵向缺陷时,探头沿焊缝在母材上均匀做锯齿形或矩形扫查,•在保持探头移动方向与焊缝中心线基本垂直的同时,还要作10°-15°的摆动;检测焊缝和热影响去的横向缺陷应采用斜平行扫查和平行扫查。

7.4.4 初探时,如发现评定线及以上的反射波时,可先用记号笔在部件上做出标记;待整个部件初探结束后再对所标记反射波进行复探。

7.4.5 复探扫查可用平行扫查、旋转扫查、摆动扫查、前后扫查等方式找到反射波最大值,读出深度并计算出反射波距探头前沿的水平距离。如确定该反射波为缺陷回波,则在母材上记录该缺陷深度、反射当量、指示长度等参数。

7.4.6 缺陷尺寸参数的测定:

应根据缺陷最大反射波幅度确定缺陷当量值Φ或测定缺陷指示长度△l。

7.4.6.1缺陷当量值Φ,用当量平底孔直径标示,可采用公式计算、试块对比、或当量计算尺确定缺陷当量尺寸。

7.4.6.2缺陷指示长度△l的测定:

a.反射波高只有一个高点时,用半波高度法测长。

b.反射波高有多个高点、缺陷端部反射波幅位于定量线上及Ⅱ区时,用端点峰值法测超声波作业指导书 新公司金属室 量缺陷长度。 即以缺陷两端反射波信号最大值之间的距离确定为缺陷的指示长度。

c.当缺陷反射波峰位于Ⅰ区,若有必要记录时,将探头左右移动,使波幅降到评定线,以此测定缺陷指示长度。

d.对于管道焊缝,当确认为根部未焊透时,应采用K1探头,在特定的试块上进行对比测定,以确定其指示长度。

7.4.7缺陷评定

7.4.7.1应根据缺陷的反射当量和特征、缺陷位置、缺陷的指示长度结合生产工艺综合分析,来推断缺陷的性质。当怀疑有裂纹等存在而超声又无法准确判定时,可辅以其它检测方法。

7.4.7.2 检测结束后应对仪器扫描速度和探伤灵敏度进行复核,并执行5.3.2条和5.3.3条的规定。

7.4.7.3 根据缺陷情况依照选定的标准对缺陷进行分级。 7.4.7.4 根据选定的验收规范评判检测结论。

7.4.7.5不合格焊口返修后应按本程序的要求进行委托和检验。8.标识与报告

8.1超标准缺陷应在母材相应位置注明深度、长度,并标明“返修”字样,有需要可加其它文字说明,以便磨除缺陷。检测人员应出具“探伤缺陷返修单”,说明返修部件的编号、返修缺陷的数量及每个缺陷的位置与尺寸等。

8.2 检查结束后,按缺陷分布情况画草图如实记录其深度、当量、长度、性质等,并签发检测报告。记录与报告中缺陷位置的标注,应在产品上打上测量基准点和测量方向的标识或制定详细的说明。报告显示合格的产品,可以进行下一道工序的施工。

8.3检测合格的部件,如有要求,应在工件上作永久和半永久性标识。8.4 报告

8.4.1 返修合格的焊口应在报告中注明“返修合格”。

8.4.2 检验报告的填写、审核、签发按《金属检验与试验报告签发审核制度》和《金属检验与试验报告标识管理办法》的规定执行。

8.4.3检验记录与报告及检测工艺卡等资料的管理按《金属检验与试验档案资料管理制度》的要求进行,保存期不少于7年。

9.职业健康安全措施

9.1 进入施工现场必须正确戴安全帽。

超声波作业指导书 新公司金属室 9.2施工作业人员必须穿软底绝缘鞋,着装应轻便灵活。 9.3高处作业必须扎安全带,安全带应挂在上方的牢固可靠处。

9.4雨天禁止室外作业,对焊口进行探伤检验时,搭设的脚手架必须牢固且有护栏。 9.5下雪天禁止室外作业,雪后应立即清除工作区内的脚手架、跳板和走道上的霜雪。

9.6在进行无损探伤时,必须用绳子把仪器固定在牢固可靠处,防止仪器坠落。9.7在高处作业传递物品时严禁抛掷,以防止物品坠落伤人。

9.8夜间作业应有充足的照明。照明不足时应增设照明灯具,否则应停止作业。 9.9仪器充电时,应注意识别电源电压的等级,以免损坏仪器。仪器连续充电不得超过12小时。

9.10在给检验设备接电源时应两人进行,一人操作一人监护,严禁将电源线直接挂在闸刀上。

9.11在对工件进行检验时,应注意被检工件以及周围工件是否稳固,防止滚动、滑落、倾斜。

9.12被检焊口附近有正在热处理的焊口时,应防止触电、烫伤。被检焊口温度过高不得进行超声波检验。

9.13狭窄环境工作前应先观察环境,防止扎伤、碰伤。

9.14发现工作场所有不安全因素应及时处理或报告,不安全因素消除后再进行工作。9.15遵守施工现场的有关规定。

10.环境保护措施

10.1超声检验的过程中应注意保护环境和设备,预防二次污染。10.2应尽量采用无腐蚀、易清洗的耦合剂。 10.3超声检测结束后,应擦拭掉检测表面的耦合剂。 10.4使用后的破布、砂纸应放在制定的垃圾堆放处。

10.5施工现场车辆较多、扬尘大,应洒水降尘,确保施工人员的身体健康。

超声波作业指导书 新公司金属室

第17篇:超声波探伤作业指导书

超声波探伤作业指导书

1 适用范围

本作业指导书适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波检验。 不适用于铸钢及奥氏体不锈钢焊接,外径小于159mm钢管对接焊缝,

内径小于等于200mm的管座角焊缝及外径小于250mm和内径小于80%的纵向焊缝。 2 引用标准

JB4730-94《压力容器无损检测》

GBll345-89《钢焊缝手工超声波探伤方法和探伤结果分级法》 GB50205-2001《钢结构工程施工质量验收规范》 3 试验项目及质量要求

3.1 试验项目:内部缺陷超声波探伤。 3.2 质量要求 3.2.1 检验等级的分级

根据质量要求检验等级分A、B、C三级,检验的完善程度A级最低,B级一般,C级最高。检验工作的难度系数按A、B、C顺序逐级增高,应按照工种2的材质、结构、焊接方法,使用条件及承受荷载的不同,合理的选用检验级别。检验等级应按产品的技术条件和有关规定选择或经合同双方协商选定。 3.2.2 焊缝质量等级及缺陷分级 表3.2.2 焊缝质量等级

一级

评定等级 检验等级 探伤比例

II B级 100%

二级 III B级 20% 内部缺陷 超声波探伤

3.2.3 探伤比例的计数方法

探伤比例的计数方法应按以下原则确定:①对工厂制作焊缝,应按每条焊缝计算百分比,且探伤长度不应小于200mm,当焊缝长度不足200mm时,应对整条焊缝进行探伤;②对现场安装焊缝,应按同一类型,同一施焊条件的焊缝条数计算百分比,探伤长度应不小于200mm,并应不少于l条焊缝。 3.2.4 检验区域的选择

3.2.4.1 超声波检测应在焊缝及探伤表面经外观检查合格后方可进行,应划好检验区域,标出检验区段编号。

3.2.4.2 检验区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一般区哉,这区域最小10mm,最大20m。 3.2.4.3 接头移动区应清除焊接飞溅、铁屑、油垢及其它外部杂质。探伤区域表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3um,必要时进行打磨。a、采用一次反射法或串列式扫查探伤时,探头移动区应大于2.5δk,(其中,δ为板厚,k为探头值);b、采用直射法探伤时,探头移动区域应大于1.5δk。

3.2.4.4 去除余高的焊接,应将余高打磨到与临邻近母材平齐。保留余高焊缝,如焊缝表面有咬边,较大的隆起和凹陷等也应进行适当修磨,并做圆滑过渡以免影响检验结果的评定。 3.2.5 检验频率

检验频率f一般在2-5MHZ的范围内选择,推荐选用2—2.5MHZ区称频率检验,特殊情况下,可选用低于2MHZ区或高于2.5MHZ的检验频率,但必须保证系统灵敏度的要求。 3.2.6 检验等级,探伤面及使用k值(折射角) 见表3.2.6 表3.2.6

板厚mm 探伤面 A 单面单 侧

B

C

探伤法

使用折射角或k值

直射法及一 次性反射法 直射法

70°(k2.5、k2.o) 70°或60°(k2.

5、k2.o、k1.5) 45°或60°;45°和60°, ≤25 >25—50

单面双侧或 双面单侧

45°和70°并用(k1.o或k1.5,

>50—100 >100 /

(k1.o和k1..5,k1.0和k2.O并用)

双面双侧

45°和60°并用(k1.0和k1.5或k2.O)

4 仪器、试块、耦合剂、探头

4.1 仪器CTS-2000笔记本式数据超声波探伤仪 4.2 试块 CSK-IA 试块 CSK-ⅡA 试块 4.3 耦合剂

应选用适当的液体或模糊状物作耦合剂。耦合剂应具备有良好透声性和适宜流动性,不应对材料和人体有损伤作用。同时应便于检验后清理。典型耦合剂为水、机油、甘油和浆糊。在试块上调节仪器和产品检验应采用相同的耦合剂。 4.4 探头:斜探头、直探头 5 仪器的调整的校验 5.1 基线扫描的调节

荧光屏时基线刻度可按比例调节为代表缺陷的水平距离ι,深度h或声程S。

5.1.1 探伤面为平面时,可在对比试块上进行时基线扫描调节,扫描比例依据工作厚度和选用的探头角度来确定,最大检验范围应调到时基线满刻度的2/3以上。

5.1.2 探伤面曲率半径R大于W2/4时,可在平面对比试块上或探伤面曲率相近的曲面对比试块上,进行时基线扫描调节。 5.1.3 探伤面曲面半径R小于等于W2/4时,探头楔块应磨成与工件曲面相吻合,按GBll345-89第6.2.3条在对比试块上作时基线扫描调节。

5.2 距离一波幅(DAC)曲线的绘制

5.2.1 距离一波幅曲线由选用的仪器、探头系统在对比试块上实测数据绘制,曲线由判废线、定量线、评定线组成,不同验收级别各线灵敏度见表5.2.1 表中DAC是以上φ2mm标准反射体绘制的距离一波副曲线,即DAC基准线。评定线以上定量线以下为I区,定量线至判废线以下的Ⅱ区,判废线及以上区域为Ⅲ区(判废区) 距离——波幅曲线的灵敏度 表5.2.1

级别 板厚mm DAC 判废线 定量线 评定线

DAC-4dB DAC-12dB DAC-18dB

DAC+2dB DAC-8dB DAC-14dB

DAC DAC-6dB DAC-12dB

A

B

C

8—46 >46-120 >46-120

5.2.2 探测横向缺陷时,应将各线灵敏度均提高6dB。

5.2.3 探伤面曲率半径R小于等于W2/4时,距离一波幅曲线的绘制应在曲线面对比试块上进行。

5.2.4 受检工件的表面耦合损失及材质衰减应与试块相同,否则应进行传输损失修整,在1跨距声程内最大传输损差在2dB以内可不进行修整。

5.2.5 距离一波幅曲线可绘制在坐标纸上,也可直接绘制在荧光屏刻板上。 5.3 仪器调整的校验

5.3.1 每次检验前应在对比试块上,对时基线扫描比例和距离一波幅曲线进行调整或校验。校验点不少于两点。 5.3.2 在检验过程中每4h之内检验工作结束后应对时基线扫描和灵敏度进行校验,校验可在对比试块或其他等效试块上进行。

5.3.3 扫描调节校验时,如发现校验点反射波在扫描线上偏移超过原校验点刻度读数的10%或满刻度5%(两者取较小值),则扫描比例应重新调整,前次校验后已经记录的缺点,位置参数应重新测定,并予以更正。

5.3.4 灵敏度校验时,如校验点的反射波幅比距离一波幅曲线降低20%或2dB以上,则仪器灵敏度应重新调整,而前次校验后,已经记录的缺陷,应对缺陷尺寸参数重新测定并予以评定。 6 初始检验 6.1 一般要求

6.1.1 超声检验应在焊缝及探伤表面经外观检查合格并满足GBll345-89第8.1.3条的要求后方可进行。

6.1.2 检验前,探伤人员应了解受检工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高及背面衬垫、沟槽等情况。

6.1.3 探伤灵敏度应不低于评定线灵敏度。

6.1.4 扫查速度不应大于150mm/S,相邻两次探头移动间隔保证至少有探头宽度10%的重叠。

6.1.5 对波幅超过评定线的反射波,应根据探头位置、方向、反射波的位置及6.1.2条了解焊缝情况,判断其是否为缺陷。判断缺陷的部位在焊缝表面作出标记。 6.2平板对接焊缝的检验

6.2.1 为探测纵向缺陷,斜探头垂直于焊缝中心线放置在探伤面上,作锯齿型扫查。探头前后移动的范围应保证扫查到全部焊缝截面及热影响区。在保持垂直焊缝作前后移动的同时,还应作10°~15°左右移动。

6.2.2 为探测焊缝及热影响区的横向缺陷应进行平行和斜平行扫查。B级检验时,可在焊缝两侧边缘使探头与焊缝中心线成10°~20°斜平行扫查。C级检验时,可将探头放在焊缝及热影响区上作两方向的平行扫查,焊缝母材厚度超过lOOmm时,应在焊缝的两面作平行扫查或者采用两种角度探头(45°和60°或45°和70°并用)作单位两个方向平行扫查,亦可用两个45°探头作串列式平行扫查。对电渣焊缝还应增加与焊缝中心线45°的斜想向扫查。

6.2.3 为确定缺陷的位置、方向、形状、观察缺陷动态波形或区分缺陷讯号与伪讯号,可采用前后、左右、转角、环绕等四种探头基本扫查方式。 6.3 曲面工作对接焊缝的检验

6.3.1 探伤面为曲面时,按规定选用对比试块,并采用6.2条的方法进行检验。C级检验时,受工件几何形状限制,横向缺陷探测无法实施时,应在检验记录中予以注明。

6.3.2 环缝检验时,对比试块的曲率半径为探伤面曲率0.9-1.5倍的对比试块,均可采用,对比试块的采用。探测横向缺陷时按6.3.3条的方法进行。

6.3.3 纵缝检验时,对比试块的曲率半径与探伤面曲率半径之差应小于10%。

6.3.3.1 根据工件的曲率和材料厚度选择探头角度,并考虑几何临界角的限制,确保声束能扫查到整个焊缝厚度;条件允许时,声束在曲底面的入射角度不应超过70°。

6.3.3.2 探头接触面修磨后,应注意探头入射点和折射点角或K值的变化,并用曲面试块作实际测定。

6.3.3.3 当R大于W2/4采用平面对比试块调节仪器,检验中应注意到荧光屏指示的缺陷深度或水平距离与缺陷实际的径向埋藏深度或水平距离弧长的差异,必要时应进行修正。 6.4 其它结构焊缝的检验

尽可能采用平板焊缝检验中已经行之有效的各种方法。在选择探伤面和探头时应考虑到检测各种类型缺陷的可能性,并使声束尽可能垂直于该结构焊缝中的主要缺陷。 7 规定检验 7.1 一般要求

7.1.1 规定检验只对初始检验中被标记的部位进行检验。

7.1.2 对所有反射波幅超过定量线的缺陷,均应确定其位置,最大反射波幅所在区域和缺陷指示长度。 表7.1.2mm

检验等级

A

灵敏度 评定灵敏度 定量灵敏度 判废灵敏度

7.2 最大反射波幅的测定

7.2.1 对判定的缺陷的部位,采取6.2.3条的探头扫查方式,增加探伤面、改变探头折射角度进行探测,测出最大反射波幅并与距离一波幅曲线作比较,确定波幅所在区域,波幅测定的允许误差为2dB。

Φ3 Φ4 Φ6

Φ2 Φ3 Φ6

Φ2 Φ3 Φ4

B

C

7.1.3 探伤灵敏度应调节到评定灵敏度,见表7.1.2直探头检验等级评定。 7.2.2 最大反射波幅A与定量线SL的dB差值记为SL±——dB 7.3 位置参数的测定

7.3.1 缺陷位置以获得缺陷最大反射波的位置来表示,根据相应的探头位置和反射波在荧光屏上的位置来确定如下全部或部分参数。

a、纵坐标L代表缺陷沿焊缝方向的位置。以检验区段编号为标证基准点(即原点) 建立坐标。坐标正方向距离上表示缺陷到原点的距离。

b、深度坐标h代表缺陷位置到探伤面的垂直距离(mm),以缺陷最大反射波位置的深度值表示。

c、横坐标q代表缺陷位置离开焊缝中心线的垂直距离,可由缺陷最大反射波位置的水平距离或简化水平距离求得。 7.3.2 缺陷的深度和水平距离(或简化水平距离)两数值中的一个可由缺陷最大反射波在荧光屏上的位置直接读出,另一个数值可采用计算法、曲线法、作图法或缺陷定位尺求出。

第18篇:超声波检测教案

1、何谓超声波?它有哪些重要特性?

答:频率高于20000Hz的机械波称为超声波。重要特性:①超声波可定向发射,在介质中沿直线传播且具有良好的指向性。②超声波的能量高。③超声波在界面上能产生反射,折射和波型转换。④超声波穿透能力强。

2、产生超声波的必要条件是什么?

答:①要有作超声振动的波源(如探头中的晶片)。②要有能传播超声振动的弹性介质

什么是波长?什么是频率? 答:相邻两波峰(或波谷)的距离称为波长,每秒钟发生的波峰数称为频率 15.超声波检测利用超声波的哪些特性? P4 答:①超声波有良好的指向性。②超声波在异质介面上将产生反射、折射、波型转换。③超声波在固体中容易传播

超声波的传播速度 P7-8 超声波垂直入射到界面时的反射和透射 P 15 超声波倾斜入射到界面时的反射和透射 P 21

1.何谓超声波声场?超声波声场的特征量有哪些?

答:充满超声波的空间或超声振动所波及的部分介质,称为超声波声场。描述超声波声场的物理量即特征量有声压、声强和声阻抗。声压:超声波声场中某一点在某一瞬时所具有的压强P与没有超声波存在时同一点的静压强P之差,称为该点的声压。声强:单位时间内通过与超声波传播方向垂直的单位面积的声能,称为声强。常用I表示。声阻抗:介质中某一点的声压P与该质点振动速度V之比,称为声阻抗,常用Z表示,声阻抗在数值上等于介质的密度与介质中声速C的乘积。

12.什么是波型转换?波型转换的发生与哪些因素有关?

答:①超声波入射到异质界面时,除产生入射波同类型的反射和折射波外,还会产生与入射波不同类型的反射或折射波,这种现象称为波型转换。②波型转换只发生在倾斜入射的场合,且与界面两侧介质的状态 (液、固、气态)有关。

超声波的衰减

13.什么是超声波的衰减?引起超声衰减的主要原因有哪些?

答:超声波在介质中传播时,随着传播距离的增加,超声波的能量逐渐减弱的现象称为超声波的衰减。衰减的主要原因:

①扩散衰减:由于声束的扩散,随着传播距离的增加,波束截面愈来愈大,从而使单位面积上的能量逐渐减少。这种衰减叫扩散衰减。扩散衰减主要取决于波阵面的几何形状,与传播介质的性质无关。

②散射衰减:超声波在传播过程中,遇到由不同声阻抗介质组成的界面时,发生散射(反射、折射或波型转换),使声波原传播方向上的能量减少。这种衰减称为散射衰减。材料中晶粒粗大(和波长相比)是引起散射衰减的主要因素。

③吸收衰减:超声波在介质中传播时,由于介质质点间的内磨擦(粘滞性)和热传导等因素,使声能转换成其他能量(热量)。这种衰减称为吸收衰减,又称粘滞衰减。 散射衰减,吸收衰减与介质的性质有关,因此统称为材质衰减。

21.超声波检测利用超声波的哪些特性?

答:①超声波有良好的指向性,在超声波检测中,声源的尺寸一般都大于波长数倍以上,声束能集中在特定方向上,因此可按几何光学的原理判定缺陷位置。②超声波在异质介面上将产生反射、折射、波型转换、利用这些特性,可以获得从缺陷等异质界面反射回来的反射波及不同波型,从而达到探伤的目的。③超声波检测中,由于频率较高,固体中质点的振动是难以察觉的。因为声强与频率的平方成正比,所以超声波的能量比声波的能量大得多。④超声波在固体中容易传播。在固体中超声波的散射程度取决于晶粒度与波长之比,当晶粒小于波长时,几乎没有散射。在固体中,超声波传输损失小,探测深度大。 33.什么叫探伤灵敏度?常用的调节探伤灵敏度的方法有几种?

答:探伤灵敏度是指在确定的探测范围的最大声程处发现规定大小缺陷的能力。有时也称为起始灵敏度或评定灵敏度。通常以标准反射体的当量尺寸表示。实际探伤中,常常将灵敏度适当提高,后者则称为扫查灵敏度或探测灵敏度。调节探伤灵敏度常用的方法有试块调节法和工件底波调节法。试块调节法包括以试块上人工标准反射体调节和水试块底波调节两种方式。工件底波调节法包括计算法,AVG曲线法,底面回波高度法等多种方式。

34.焊缝斜角探伤中,定位参数包括哪些主要内容?

答:缺陷位置的记录应包括下列各项:①缺陷位置的纵坐标:沿焊缝方向缺陷位置到焊缝探伤原点或检验分段标记点的距离。记录时应规定出正方向。②缺陷深度:缺陷到探测面的垂直距离。③缺陷水平距离:缺陷在探测面上的投影点到探头入射点的距离,也称作探头缺陷距离。有时以简化水平距离代之,即缺陷在探测面上投影点到探头前沿的距离,亦称缺陷前沿距离。④探头焊缝距离:探头入射点到焊缝中心线的距离。⑤缺陷位置的横坐标:缺陷在探测面上投影点到焊缝中心线的距离,记录时应规定的正方向。其数值可以从③、④两参数之差求得。实际探伤中,由于焊缝结构形式不同,缺陷定位时,可依据标准或检验规程的要求,记录以上全部或部分参数。

35.何谓缺陷定量?简述缺陷定量方法有几种?

答:超声波探伤中,确定工件中缺陷的大小和数量,称为缺陷定量。缺陷的大小包括缺陷的面积和长度。缺陷的定量方法很多,常用的有当量法,底波高度法和测长法。 36.什么是当量尺寸?缺陷的当量定量法有几种?

答:将工件中自然缺陷的回波与同声程的某种标准反射体的回波进行比较,两者的回波等高时,标准反射体的尺寸就是该自然缺陷的当量尺寸。当量仅表示对声波的反射能力相当,并非尺寸相等。当量法包括:①试块比较法:将缺陷回波与试块上人工缺陷回波作比较对缺陷定量的方法。②计算法:利用规则反射体的理论回波声压公式进行计算来确定缺陷当量尺寸的宣方法。③AVG曲线法:利用通用AVG曲线或实用AVG曲线确定缺陷当量尺寸的方法。

37.什么是缺陷的指示长度?测定缺陷指示长度的方法分为哪两大类?

答:按规定的灵敏度基准。根据探头移动距离测定的缺陷长度称为缺陷的指示长度。测定缺陷指示长度的方法分为相对灵敏度法和绝对灵敏度法两大类。①相对灵敏度法:是以缺陷最高回波为相对基准。沿缺陷长度方向移动探头,以缺陷波辐降低一定的dB值的探头位置作为缺陷边界来测定缺陷长度的方法。②绝对灵敏度法:是沿缺陷长度方向移动探头,以缺陷波幅降到规定的测长灵敏度的探头位置作为缺陷边界来测定长度的方法。

38.什么是缺陷定量的底波高度法?常用的方法有几种?

答:底波高度法是利用缺陷波与底波之比来衡量缺陷相对大小的方法,也称作底波百分比法。底波高度法常用两种方法表示缺陷相对大小:F/B法和F/BG法:①F/B法:是在一定灵敏度条件下,以缺陷波高F与缺陷处底波高B之比来衡量缺陷的相对大小的方法。②F/BG法:是在一定灵敏度条件下,以缺陷波高F与无缺陷处底波高BG之比来衡量缺陷相对大小的方法。底波高度法只能比较缺陷的相对大小,不能给出缺陷的当量尺寸。

99.名词解释:灵敏度

答:超声探伤系统所具有的探测最小缺陷的能力 100.名词解释:吸收

答:由于部分超声能量转变为热能而引起的衰减 101.名词解释:远场

答:近场以远的声场,在远场中,声波以一定的指向角传播,而且声压随距离的增大而单调地衰减 102.名词解释:重复频率

答:单位时间(秒)内产生的发射脉冲的次数 103.名词解释:频率常数

答:晶片共振频率与其厚度的乘积 104.名词解释:声场的指向性

答:波源发出的超声波集中在一定区域内,并且以束状向前传播的现象 105.名词解释:半波高度法

答:把最大反射波高降低一半(-6dB)用以测量缺陷指示长度的方法 106.名词解释:临界角

答:超声束的某个入射角,超过此角时某种特定的折射波型就不再产生 107.名词解释:阻尼

答:用电的或机械的方法来减少探头的振动持续时间

108.名词解释:距离幅度校准(距离幅度补偿、深度补偿)

答:用电子学方法改变放大量,使位于不同深度的相同反射体能够产生同样回波幅度的方法 109.名词解释:迟到回波

答:来自同一来源的回波,因所经的路径不同或在中途发生波型变换以致延迟到达的回波 110.名词解释:界面波

答:由声阻抗不同的两种介质的交界面产生的回波

111.什么叫超声场?反映超声场特征的主要参数是什么?

答:充满超声波能量的空间叫做超声场,反映超声场特征的重要物理量有声强、声压、声阻抗、声束扩散角、近场和远场区

112.超声探伤仪最重要的性能指标是什么?

答:超声探伤仪最重要的性能指标有:①分辨力;②动态范围;③水平线性;④垂直线性;⑤灵敏度;⑥信噪比

113.超声波探伤试块的作用是什么?

答:试块的作用是:①检验仪器和探头的组合性能;②确定灵敏度;③标定探测距离;④确定缺陷位置,评价缺陷大小

114.用CSK-1A试块可测定仪器和探头的哪些组合性能指标?

答:可测定的组合性能指标包括:①水平线性;②垂直线性;③灵敏度;④分辨力;⑤盲区;⑥声程;⑦入射点;⑧折射角

115.焊缝探伤时,用某K值探头的二次波发现一缺陷,当用水平距离1:1调节仪器的扫描时,怎样确定缺陷的埋藏深度?

答:采用下式确定缺陷的埋藏深度:h=2T-(水平距离/K),式中:h-缺陷的埋藏深度;T-工件厚度;K-斜探头折射角的正切值

6.波长λ、声速C、频率f之间的关系是

λ=c/f

16.在平板对接焊缝的超声波检测中,为什么要用斜探头在焊缝两侧的母材表面上进行?

答:在焊缝母材两侧表面进行探测便于检出焊缝中各个方向的缺陷;便于使用一次、二次声程扫查整个焊缝截面,不会漏检;有些缺陷在一侧面发现后,可在另一侧面进行验证;一般母材表面光洁度比焊缝高,易于探头移动扫查,也可省去焊缝打磨的工作量

23.超声波探伤中常用的方法有几种?

答:常用两种方法表示缺陷相对大小:F/B法和F/BG法。(F表示缺陷波高、B表示缺陷处底波高、BG表示无缺陷处底波高)。

24.超声波焊缝检验中,“一次波法”与“直射法”是否为同一概念?

答:是同一概念。“一次波法”是指在斜角探伤中,超声束不经工件底面反射而直接对准缺陷的探测方法,亦称为直射法。 11.探头保护膜的作用是什么?

答:保护膜加于探头压电晶片的前面,作用是保护压电晶片和电极,防止其磨损和碰坏。

12.对探头保护膜有哪些要求(至少3条)?

答:耐磨性好,强度高,材质衰减小,透声性好,厚度合适。 13.简述聚焦探头的聚焦方法?

答:聚焦方法:凹曲面晶片直接聚焦 采用声透镜片聚焦。 14.简述聚焦探头聚焦形式? 答:聚焦形式:点聚焦和线聚焦。 16.什么叫AVG曲线?

答:根据反射体的反射面积大小,离声源的距离,反射信号的幅度三者之间的关系绘制的曲线,叫做AVG曲线

第19篇:超声波图文详解

超声波探伤原理(初学者入门篇)

超声波是频率很高的声波,定向性很强,尤如手电筒发出的一束光,射到物体时,会被反射回来。超声波探头内,有个压电晶片,施加一个发射脉冲电压,就会产生超声波脉冲,当把探头压紧在光洁的被测工件上时,超声波束就会传入工件,以每秒数千米的声速前进,当碰到裂缝等缺陷时,从缺陷表面反射回来,传回到探头晶片上,产生回波电压。经仪器处理后,从声波来回所花费时间,再扣除掉晶片到探头表面保护膜所化的时间(称作探头零点),乘上声速就是超声波脉冲走过的路程称作声程,也就是从探头表面,声波入射到工件的点(称作入射点)到缺陷之间的距离,同时从回波电压大小也可推算出缺陷大小。由于发射时晶片强裂振动,震动哀减下来需要一定时间,此期间收到的回波混在余震中无法区别,故最小探测距离一般为5mm以上。如要探测近距离缺陷,需用频率高阻尼好的探头或双晶探头。

当声波前进到工件底部时,也会产生反射。反射方向同镜子反光规则,即垂直射入时,垂直反射回;斜射时,反射角等于入射角,且在法线两侧。如果工件底面平行于放置探头的探测面,垂直反射的回波仍能被探头接收到,而且工件底面面积一般来说远比缺陷大,故底面回波幅度也远比缺陷波幅度大。

底面回波简称底波。底波回传到探测面时,又会产生反射,又会向底面传播,如此来回反射,形成2次底波,3次底波,4次底波等等。由于存在扩散现象,反射损耗,吸收损耗等,各次底波会越来越小,经过一段时间后,能量就会耗尽,再起动下一次发射。每秒发射次数称发射重复频率,探头移动速度快时,要求较高发射重复频率,否则会造成漏检。

如果工件底面同探测面不平行,根据反射角等于入射角原理,反射波偏向一边,底面反射波就回不到探头,也就收不到底波,故工件的上下面不平行时,是看不到底波的。同理,如工件内部缺陷面平行于波束传播方向,也是收不到缺陷回彼的。如缺陷面垂直于波束传播方向,收到的缺陷回波会最大,所以要根据缺陷最可能的方向,尽量选择探伤灵敏度高的探测面探伤,或选不同方向探测面反复探测,如找不到合适的探测面,也可改用斜探头。

斜探头内的晶片是倾斜安装的,射出的超声波束也是斜线进入工件的。为表明倾斜程度,用工件内波束方向同探测面垂线之间的夹角表示。角度越大,波束越倾斜;声程在水平方向上的分量(也可叫投影)所占比例越大,垂直分量比例越小。常用的60度斜探头,水平同垂直之比为1.73比1(60度正切函数值),也可用这个比值称为K值来表示,故K = 1.73就是60度的斜探头,而K = 0是斜探头的特例,即称为直探头,没有水平分量,垂直分量就是声程。

斜探头常用于焊缝探伤,因为焊缝表面高低不平,不能用直探头直接在焊缝上探伤,而且缺陷往往平行于焊缝,直探头的声束和缺陷面的夹角很小,也不易发现缺陷。由于斜探头的声束是倾斜进入工件的,可以避开高低不平的焊缝表面,在焊缝一侧探伤,而且声束和缺陷面的夹角比较大,尤其是先入射到底面再斜着反射的声束正好垂直于缺陷表面,能产生比较大的反射波,容易检测到缺陷,这也称为2次波探伤。随着探头朝远离焊缝方向移动,一直可以探到焊缝最上部,不过再移下去声束会先打到上表面,再斜着反射下来,也可打到焊缝,形成3次波探伤。但是路程越远回波强度越弱,应尽量不用。用1次波探到的缺陷深度,就等于声束走过的垂直分量;用2次波探到的缺陷深度不等于垂直分量走过的路程之和。缺陷越浅,垂直分量走过的路程之和反而越大。例如板厚20mm,声束的垂直分量走过35mm(缺陷波出现在刻度垂直分量35mm处),这表明声束的垂直分量走20mm,碰到底面后反射向上走15mm(3515)。读者可在纸上画示意图理解。

由于超声波在传递过程中,强度会遂步衰减,相同大小的缺陷,在不同深度时,缺陷回波的高度是不一样的,不能用某一波高一刀切来定缺陷大小。为了帮助判断缺陷大小,用曲线来表示某一大小的缺陷回波高度同深度的关系。直探头探伤往往用AVG曲线,斜探头用DAC曲线。

超声波探头必须同工件表面紧密接触,中间那怕一层极薄的空气,也会产生极大衰减,在工件上刷耦合剂(例如机油)就能减少耦合损失。如工件表面光洁度不好,而曲线是对试块做的,那末根据两者光洁度的差别,探伤时,应对增益(仪器放大量)增加一些,以补偿耦合损失。补偿量大小可凭经验确定,也可通过先测一下底波或某一大缺陷波的波高和增益dB数,再把探测面磨光洁,重新测一下底波或某一大缺陷波达到原来波高时增益减小的dB数,就是所需补偿量。这也积累了经验。知道了光洁度程度和补偿量大小关系,通常,对加工过表面,如没有试块那样平整光洁,就补偿6dB左右,末加工过表面,差别很大,最好按上法做一次试验。如曲线是对工件自身做的,就不需补偿。

超声波探伤仪不是计量仪器,不能像如游标卡尺一样,直接读出尺寸,而是有点像内外径卡一样先卡一下工件大小,再在尺子刻度上量出尺寸。由于回波高度同仪器灵敏度高底,发射脉冲强度,探头效率,工件表面光洁度,缺陷大小,缺陷深度,缺陷面方向,缺陷面对超声波的反射能力等因素有关,所以只能用比较的方法(用已知缺陷大小来比),来探测末知缺陷,并以相对已知标准缺陷来表达所探测缺陷大小。例如等效φ3平底孔大小,实际缺陷不一定是园孔,也不大可能是平底,方向很可能是倾斜的,后二个因素会造成反射波减小,所以实际缺陷比φ3大些。

超声波探伤一般只能检测出大于1到2mm的缺陷。由于始波比较宽,故离探头接触面近的缺陷的回波容易被淹没在始波内,因此无法有效检测;用频率较高的探头,能检测较小的缺陷,而且始波也较窄,故能检测较近的缺陷,但高频探头不适合粗晶粒材料和远距离检测。

第20篇:超声波个人总结

超声波总结

自2005年从事超声波检测工作以来,我认为超声波检测的难点主要在于:焊接质量受人的因素和环境的影响很大,超声波检测时有未焊透、未熔合、裂纹、气孔和夹渣等焊接缺陷产生的回波,也可能有焊缝内成型(内凹或内凸)和错边产生的回波。有些回波信号在探伤仪示波屏上出现的位置相同或相近,有的形态又很相似,给检测工作识别带来了难度,有可能造成误判、漏判。超声波检测前应对有关被检测工件的情况(如:焊接工艺、坡口形式、钝边高度、钝边间隙等)进行了解。分析缺陷产生的可能性及其产生在焊缝中的部位,正确判断反射回波;可以防止焊缝中缺陷的漏检、误检,同时结合探头的扫查方式观察缺陷的动态回波变化特点。

超声波探伤对缺陷的判断,主要是依赖于对示波屏上显示的反射回波的鉴别。当认定某一回波是缺陷反射波后,在不同的方向上对该缺陷进行探测,根据缺陷波形状和高度的变化,结合缺陷的位置和焊接工艺,才能对缺陷性质大小进行综合判断。而实际探伤过程当中示波屏上往往有大量回波信号,所以第一步从大量反射回波中找出真正的缺陷波是至关中要的。

然而在实际超声波探伤工作中,示波屏上除了这些缺陷信号外还同时存在着许多其它非缺陷回波信号,也就是伪缺陷波。通常探伤中所占比例要大大高于真实缺陷比例。这些伪缺陷波的存在一方面容易造成探伤者的误判,造成不必要的人力、财力浪费延误工期;另一方面,它们也同时影响检验精度,容易造成漏检影响了检验质量,为

将来安全运行埋下隐患,所以必须把示波屏上的缺陷信号和其它非缺陷回波信号区分开来。实际探伤中,我认为一般是由探伤仪器、探头杂波、工件轮廓回波、耦合剂反射波以及其它一些波等引起的非缺陷回波信号。仔细正确的识别缺陷信号和其它非缺陷回波信号对今后超声波检测工作会有很大帮助。

以上是我从业以来对超声波检测工作的一点心得体会,工作中发现自己的专业知识和理解能力还需要继续加强。在今后的工作中,我会加强学习专业知识,对新型钢超声波检测及新标准继续学习。

崔海峰

2011年09月12日

超声波专业岗位职责
《超声波专业岗位职责.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档