人人范文网 范文大全

高等代数教案第四章线性方程组

发布时间:2020-03-04 01:21:29 来源:范文大全 收藏本文 下载本文 手机版

第四章

线性方程组

一 综述

线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的.作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法).线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论.二 要求

掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论.重点:线性方程组有解判别法,矩阵的秩的概念及求法.

4.1 消元法

一 教学思考

本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法.二 内容要求

主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系.三 教学过程

11x213x2x3151.引例:解方程组x1x23x3

3(1)

32x4x5x21233定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换.2.消元法的理论依据

TH4.1.1初等变换把一个线性方程组变为与它同解的线性方程组(即线性方程组的初等变换是同解变换.)

3.转引

在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因

- 1a11a21Aa12a22a1na2n,则A可经过一系列行初等变换和第一种列初等变换化为如下形式:

am1aam2mn1010001brr1; 000000000000进而化为以下形式:

1000c1r1c1n0100cc2r12n0001crr1crn.其中r0,rm,rn,\"\"表示不同的元素.0000000000005)用矩阵的初等变换解线性方程组

a11x1对线性方程组:a12x2a1nxnb1ax1a22x2a2nxnb212

(1) am1x1am2x2amnxnbma11a12a1n由定理1其系数矩阵Aaaa21222n可经过行初等变换和列换法变换化为 am1am2amn1000c1r1c1n0100cc2r12n0001crr1crn;则对其增广矩阵 000000000000

- 3y1d1c1r1kr1c1nknydckck22r1r12nn2,这也是(1)的解,由kr1,,kn的任意性(1)有无穷多解.yrdrcrr1kr1crnknyr1kr1ynknx12x23x3x452x4xx3124例1 解线性方程组.x12x25x32x48x12x29x35x421解:对增广矩阵作行初等变换:

23151140132A01252801295210200100001212003213 60013x2xx24122同解,故原方程组的一般解为所原方程组与方程组113x3x42631x2xx42122.131x3x4624.2 矩阵的秩

线性方程组可解判别法

一 教学思考

1.本节在上节消元法对线性方程组的解的讨论的基础上,引入了矩阵的秩的概念,以此来表述有解判定定理,在有解时从系数矩阵的秩与未知数的个数间的关系可讨论解的个数,其中在有无数解时引入了一般解与通解的概念.2.矩阵的秩的概念是一个重要的概念,学生易出问题.定义的表述不易理解,应指出秩是一个数(非负整数)r,其含义是至少有一个r阶非零子式,所有大于r阶(若有时)子式全为0.重要的是“秩”的性质——初等变换下不变,提供了求秩的另一方法——初等变换法.3.本节内容与上一节和下一节互有联系,结论具体,方法规范,注意引导总结归纳.二 内容要求

1. 内容:矩阵的秩、线性方程组可解判定定理

2. 要求:掌握矩阵的秩的概念、求法及线性方程组求解判定定理 二 教学过程

1.矩阵的秩 (1)定义

- 5x1x2x31x1x2x3 xxx23124.3 线性方程组的公式解

一 教学思考

1.本节在理论上解决了当线性方程组有解时,用原方程组的系数和常数项将解表示出来——即公式解,结论的实质是克拉默法则的应用.其中过程是在有解判定的基础上选择r个适当方程而得,可归纳方法步骤(方程的选择、自由未知量的选择),内容规范完整,理论作用较大,实用性较小.2.作为特殊的线性方程组——齐次线性方程组的解的理论有特殊的结果,易于叙述和理解,需注意其特殊性(与一般的区别,解的存在性、解的个数等).二 内容要求

1.内容:线性方程组的公式解,齐次线性方程组的解

2.要求:了解线性方程组的公式解,掌握齐次线性方程组的解的结论 三 教学过程

1.线性方程组的公式解

a11x1a12x2a1nxnb1axaxaxb2112222nn2

(1)有解时,用方程组的系数和常数项把解本节讨论当方程组am1x1am2x2amnxnbm表示出来的问题——公式解.处理这个问题用前面的方法——消元法是不行的,因为这个过程使得系数和常数项发生了改变,但其思想即化简得同解线性方程组的思想是重要的,所以现今能否用其它方法把(1)化简得同解方程组且系数和常数项不变,才可能寻求公式解.x12x2x32,(G1)为此看例,考察2x13x2x33,(G2)

(2)

4xxx7,(G)3123显然G1,G2,G3间有关系G32G1G2,此时称G3是G1,G2的结果(即可用G1,G2线性表示).则方程组(2)与x12x2x32(G1)同解.2x3xx3(G)2321同样地,把(1)中的m个方程依次用G1,G2,,Gm表示,若在这m个方程中,某个方程Gi是其它若干个方程的结果,则可把(1)中的Gi舍去,从而达到化简的目的.即现在又得到化简(1)的方法:不考虑(1)中那些是其它若干个方程的结果,而剩下的方程构成与(1)同解的方程组.现在的问题是这样化简到何种程度为止,或曰这样化简的方程组最少要保留原方程组中多少个方程.由初等变换法,若(1)的r(A)r,则可把(1)归结为解一个含有r个方程的线性方程组.同样

TH4.3.1设方程组(1)有解,r(A)r(A)r(0),则可以在(1)中的m个方程中选取r个方程,使得剩下的mr个方程是这r个方程的结果.因而解(1)归结为解由这r个方程组成的方程组.下看如何解方程组:

- 7

线性代数教案第四章 线性方程组

高等代数教案第一章基本概念

线性方程组教案

高等代数与高等数学

浙江大学高等代数试题

复旦大学2000年高等代数

教学大纲厦门大学高等代数

高等代数课程教学工作总结

考研高等代数大纲(硕士)

高等代数半期心得体会

高等代数教案第四章线性方程组
《高等代数教案第四章线性方程组.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档