人人范文网 教案模板

遗传学课程教案模板(精选多篇)

发布时间:2020-04-18 13:51:02 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:遗传学教案

遗传学教案

Genetics 课程代码:10102104 学时数:72学时(讲课:58学时;实验:14学时;实习:无) 学分数:4 教学目的

通过本课程的学习,使学生获得遗传学的基本理论知识,掌握遗传分析的一般方法和实验技能,了解遗传学发展的概况,为学习后续课程以及从事与遗传学有关的工作打下一定的基础。

第一章 绪言

课时分配:讲课2学时

教学目标和基本要求: 通过本章学习,认清遗传学研究的对象和任务,了解遗传学在科学和生产发展中的作用,掌握在遗传学发展史上的重要科学家和关键性实验。 本章主要内容:

1.遗传学研究的对象和任务;2.遗传学的发展简史;

3.遗传学在科学和生产发展中的作用。

重点内容:遗传学的概念,遗传与变异的关系,遗传变异与生殖的关系,遗传学的历史及发展。 难点内容:遗传与变异的关系。

掌握内容:遗传学的概念、遗传与变异的关系。 概 念:遗传学,遗传,变异,

第二章 遗传的细胞学基础

课时分配:讲课5学时,实验3学时

教学目标和基本要求:通过本章学习,了解生物染色体的结构与组成‚掌握真核染色体在细胞分裂、生殖等生命活动中的规律性行为及其与生物遗传和变异的关系。 本章主要内容:

1.真核细胞的遗传体系;2.染色体的形态、结构和数目 3.细胞的有丝分裂; 4.细胞的减数分裂; 5.配子的形成和受精; 6.生活周期。

重点内容:染色体组,染色质与染色体的关系,减数分裂过程及特点,减数分裂与有性生殖的关系。 难点内容:减数分裂。

掌握内容:减数分裂,染色体相关内容。

概 念:联会、染色质、染色体、同源染色体、非同源染色体、单倍体、一倍体、二倍体、多倍体、二价体、四分体、染色单体、姐妹染色单体、非姐妹染色单体。 实验:1.植物细胞有丝分裂与减数分裂的观察(3学时);

2.植物花粉母细胞减数分裂涂抹制片(2学时)。3.植物根尖有丝分裂压片法(2学时)

第三章 孟德尔遗传

课时分配:讲课6学时

教学目标和基本要求:通过本章学习,掌握关于性状、表现型、基因型等遗传学的基本概念,掌握分离规律和独立分配规律两个遗传规律的内容和细胞学实质,了解基因作用与性状表现的关系。 本章主要内容:

1.分离规律;

2.独立分配规律;

3.遗传学数据的统计学处理;4.孟德尔规律的补充和发展。

重点内容:分离规律及其实质,自由组合规律及其实质,概率及其应用。 难点内容:孟德尔对试验的解释及验证,自由组合规律的实质,概率及其应用。 掌握内容:分离规律、概率、乘法定律、加法定律。

概 念:遗传因子、基因、等位基因、显性基因、隐性基因、显性性状、隐性性状、基因型、表现型、纯合体、杂合体、回交、测交、分离、完全显性、不完全显性、共显性、镶嵌显性、F1代、F2代。

第四章 连锁遗传

课时分配:讲课8学时,实验3学时

教学目标和基本要求: 通过本章学习,深入了解基因连锁交换与减数分裂过程中非姊妹染色单体交换之间的关系,掌握重组率计算和三点测验方法,掌握在动植物育种中利用基因连锁群资料确定育种试验规模的方法。 本章主要内容: 1.连锁与交换; 2.交换值及其测定; 3.基因定位与连锁图; 4.真菌类的连锁与交换; 5.连锁遗传规律的应用; 6性别决定与性连锁。

重点内容:连锁与互换的实质, 基因定位 难点内容:交换值的测定

概 念:完全连锁,不完全连锁,重组,重组值、单交换,双交换,干涉,并发(符合)系数。 实验:4.基因独立分配、基因互作和连锁遗传现象的观察(3学时)

第五章 基因突变

课时分配:讲课3学时

教学目标和基本要求:通过本章学习,掌握基因突变的特征及基因突变与性状表现之间的关系,了解基因突变的诱发与鉴定的方法,理解基因突变的分子基础。 本章主要内容:

1.基因突变的时期和特征;2.基因突变与性状表现; 3.基因突变的鉴定;

2 4.基因突变的分子基础; 5.基因突变的诱发。

重点内容:基因突变的鉴定和分子基础 难点内容:基因突变的分子基础

概 念:置换,颠换,移码突变,同义突变,错义突变,缺失,重复,倒位,易位

第六章 染色体变异

课时分配:讲课10学时,实验4学时

教学目标和基本要求:通过本章学习,掌握真核生物染色体结构变异的类型、细胞学特征和主要遗传效应,了解染色体结构变异的诱发和利用的基本知识;掌握染色体组的概念、染色体组的整倍性变异、非整倍性变异的类型和遗传特点以及在动、植物育种方面的应用,了解同源多倍体和非整倍体的染色体分离和基因分离的规律。 本章主要内容:

1.染色体结构变异类型与遗传效应;

2.染色体结构变异的应用:基因的染色体定位,果蝇的ClB测定。

3.染色体倍数性变异:染色体组的概念,同源多倍体,异源多倍体,单倍体。4.染色体的非整倍变异:亚倍体,超倍体,非整倍体的应用。 重点内容:染色体结构变异的类型,。 难点内容:遗传物种改变的遗传学效应。

概 念:单体,三体,缺体,四体,同源多倍体,异源多倍体。 实验:5.染色体结构变异观察与鉴定(2学时);

6.多倍体的诱发与鉴定(2学时)。

第七章 数量遗传

课时分配:讲课6学时

教学目标和基本要求:通过本章学习,掌握数量性状遗传特点、遗传力的估算方法及在育种上根据数量性状遗传参数估计值对性状选择的原则,了解QTL的概念与数量性状定位方法;掌握近亲繁殖和杂种优势的概念和表现特征,了解其在动、植物育种上的用途。 本章主要内容:

1.数量性状的特征:表现特征,遗传基础。2.数量性状遗传研究方法; 3.遗传力的估算及应用; 4.数量性状基因定位; 5.近亲繁殖与杂种优势。

重点内容:多基因假说,方差分析杂种优势。 难点内容:遗传力的估算

概 念:数量性状,质量性状,不连续变异,连续变异,方差,遗传力,杂种优势,近亲繁殖。

第八章 细菌和病毒的遗传

课时分配:讲课6学时

教学目标和基本要求:通过本章学习,理解细菌和病毒的一般特征、类型以及生活周期,了解病毒的重 3 组作图原理和方法,掌握细菌遗传分析的原理和基本方法。 本章主要内容:

1.细菌和病毒遗传研究的意义;2.噬菌体的遗传分析;

3.细菌的遗传分析:转化,接合,性导,转导。重点内容:中断杂交实验,转导 难点内容:重组作图

概 念:细菌杂交,中断杂交,转导噬菌体,受体,供体,F-细胞,F+细胞,Fˊ因子,Hfr,F因子。

第九章 基因工程和基因组学概述

课时分配:2学时

教学目标和基本要求:通过本章学习,了解狭义基因工程的发展概况、DNA重组技术的主要环节和工具,理解基因组学的概念、理解构建遗传图谱的意义和途径。 本章主要内容:

1.基因工程:限制性内切酶,载体,基因的分离与鉴定。2.基因组学:遗传图谱及其构建,遗传图谱的应用。

第十章 细胞质遗传

课时分配:讲课5学时

教学目标和基本要求:通过本章学习,掌握细胞质遗传的特点及其与母性影响的区别,了解叶绿体和线粒体遗传,了解其它细胞质颗粒的遗传以及核、质遗传系统的互作关系,掌握植物雄性不育的类别和特点以及雄性不育在植物育种上的应用方法。 本章主要内容:

1.细胞质遗传的概念和特点;2.母性影响;

3.叶绿体和线粒体的遗传;

4.共生体和质粒决定的染色体外遗传;5.植物雄性不育的遗传。

重点内容:细胞质遗传的遗传机制,母性影响的遗传机制。 难点内容:叶绿体DNA,线粒体DNA的传递特点。 概 念:雄性不育系,保持系,恢复系

第十一章 群体遗传

课时分配:讲课5学时

教学目标和基本要求:通过本章学习,掌握群体的遗传组成即基因频率与基因型频率的概念与计算方法,理解群体遗传平衡定律的内容,掌握影响群体基因频率和基因型频率的因素与方式,重点掌握选择与群体基因频率改变的数学关系;掌握物种的概念,了解物种形成的主要方式。 本章主要内容: 1.群体的概念;

2.群体的遗传组成:基因型频率、基因频率及其计算;3.群体遗传的机制;Hardy-Wenberg 定律;

4 4.群体变异的机制:随机交配偏移,突变,选择,遗传漂变,迁移; 5.物种的形成:物种的概念,物种的形成方式。

重点内容:基因型频率、基因频率及其计算和Hardy-Wenberg 定律 难点内容:基因频率及其计算和Hardy-Wenberg 定律

概 念:遗传漂变、Hardy-Wenberg 定律、基因频率、进化速率、分子钟

实验部分

通过教学录像、示范图片、幻灯片及田间实验的实验环来节印证课堂讲授的遗传学规律和理论;通过实验室实际操作和观察,训练遗传学的实验技能,培养学生的动手能力。要求学生学会正确使生物显微镜的方法,掌握常用的植物染色体制片技术,能独立进行从取材、样本处理到制片和观察的全过程操作,对实验结果进行记录、统计、分析和归纳,写出完整的实验报告,为学习后续课和以后从事本专业工程技术和科学研究工作打下基础。

实验1 植物细胞有丝分裂与减数分裂的观察(3学时)

内容和要求:观看“植物有丝分裂和减数分裂”录像片、幻灯片和永久片,掌握植物有丝分裂和减数分裂各个时期染色体的变化特征,了解试材的制备过程和方法。 实验2 植物花粉母细胞减数分裂涂抹制片(2学时)

内容和要求:用涂抹法制作黑麦花粉母细胞减数分裂临时片,并对其进行观察,学习花粉母细胞减数分裂涂抹制片技术,进一步了花粉母细胞减数分裂全过程及各个时期染色体的变化特征。 实验3 植物根尖有丝分裂压片法(2学时)

内容和要求:学习根尖压片技术,进一步观察有丝分裂染色体的变化特征。 实验4 基因独立分配、基因互作和连锁遗传现象的观察(3学时)

内容和要求:观察玉米的几种一对性状、二对性状杂交F

2、测交果穗及F1花粉的性状分离,并作X检验,验证独立分配规律和连锁规律,了解基因互作的表现特征和遗传性质。实验5 染色体结构变异观察与鉴定(2学时)

内容和要求:制作玉米花粉母细胞减数分裂涂抹片,观察玉米易位杂合体减数分裂终变期分裂相及花粉半不育现象,观察玉米易位杂合体自交果穗结实情况,掌握染色体结构变异的细胞学特征和遗传效应。

实验6 多倍体的诱发与鉴定(2学时)

内容和要求:制作黑麦加倍根尖材料的临时压片,掌握染色体加倍和鉴定方法。

2 5

推荐第2篇:《遗传学(Genetics)》课程教学大纲

《遗 传 学 (Genetics)》课程教学大纲

课程编号:0231204 课程名称:《遗传学》 总学时数:48学时

先修课及后续课:先修课有《普通生物学》、《生物化学》、《细胞生物学》、《微生物学》、《分子生物学》,后续课有《基因工程》

一、说明部分

1、课程性质 遗传学是研究生物遗传和变异规律、探索生命起源和生物进化机理的科学,是生物学科中十分重要的基础科学。遗传学研究的任务是阐明生物遗传和变异现象及其表现的规律;探索遗传变异的原因、物质基础及其内在规律;指导动植物和微生物的改良,提高医学水平,为人民谋福利。

2、教学目标及意义

让学生全面系统掌握遗传学的基本原理和方法、遗传物质及其传递过程、遗传物质和环境的关系。要求学生正确理解生物的遗传和变异的辨证关系,能够运用遗传变异理论解决生产实践上的实际问题。

3、教学内容及教学要求

本课程安排在学生完成《普通生物学》、《生物化学》、《细胞生物学》、《微生物学》、《分子生物学》等有关基础和专业基础课程之后的第七学期。内容上注意与以上课程的衔接,并避免不必要的重复。同时注意与后续课程《基因工程》等课程的衔接。课堂教学应力求使学生掌握基本概念,弄清生物遗传物质存在的形式及其传递特点,生物产生可遗传变异的有效途径,数量性状与质量性状的特征等内容。在群体、个体、细胞和分子水平了解遗传变异的规律及其遗传学基础。由于该课程内容繁多,发展迅速,故授课教师在吃透教材基础上,应广泛阅读相关参考资料,紧跟本学科发展,随时补充新内容,使学生及时了解本学科的重要进展及发展动态。

4、教学重点、难点 重点是遗传学三大规律及其应用、基因定位、染色体结构与数目变异、细菌的遗传分析、分子遗传学基础和数量遗传学基础等内容。难点是连锁分析与基因定位;染色体数目变异与遗传分析;数量性状基因定位等内容。

5、教学方法与手段

在教学方法上采取课堂讲授为主,辅以多媒体课件、提问、综述、实验、作业、教学辅助材料等,以加强学生对理论知识的消化和理解,在教学过程应注意积极启发学生的思维,培养学生发现问题和解决问题的能力。

6、教材及主要参考书 教材和重要参考书:

教 材: 朱军.遗传学.第三版.北京: 中国农业出版社,2002 参考书: 1)、刘祖洞.遗传学(上、下册).第二版.北京:高等教育出版社,1990 2)、王亚馥,戴灼华.遗传学.北京:高等教育出版社,1999 3)、杨业华.普通遗传学.北京:高等教育出版社,2001 4)、宋运淳,余先觉.普通遗传学.武汉:武汉大学出版社,1990 5)、徐晋麟,徐沁,陈淳.现代遗传学原理.北京:科学出版社,1999 6)、赵寿元,乔守怡.现代遗传学.北京:高等教育出版社,2001 7)、朱玉贤,李毅.现代分子生物学.第二版.北京:高等教育出版社, 2002 8)、刘国瑞等,《遗传学三百题解》,北京师范大学出版社,1984 9)、李绍武,王永飞,李雅轩.考研精解-遗传学.北京:科学出版社 ,2002 10)、H K Jain,1999,Genetics—Principles, Concepts and implications, Science publishers, lnc USA.遗 传 学 (Genetics)

7、其它: 从讲课内容上,删掉了第三章遗传物质的分子基础,以避免与生物化学内容重复;删掉了第八章基因的表达与调控, 因在《分子生物学》中涉及到。略讲孟德尔定律,是避免与中学生物学的重复。简讲第九章基因工程和基因组学,避免与后续课程基因工程的重复。总之,便于在有限的教学时间内讲授重点、难点。

一、正文部分 第一章 绪论

一、教学要求

了解遗传学的研究对象和任务、遗传学的发展及其在科学和生产发展中的作用。 掌握遗传变异和遗传学的概念,以及遗传和变异的辩 关系。

二、教学内容

第1节 遗传学的研究的对象、任务和范围

(一)遗传学的概念

(二)遗传和变异的概念及其辩证关系

(三)遗传学研究的对象、任务和范围

第2节 遗传学的形成和发展

(一)人类早期对遗传变异的认识

(二)遗传学的形成

(三)遗传学的发展

第3节 遗传学在科学发展和生产实践中的意义

(一)遗传学在科学发展中的作用

(二)遗传学在生产实践中的应用

三、本章学时数 : 1学时

第二章 遗传学的细胞学基础

一、教学要求

了解细胞核结构、染色体的超微结构;有丝分裂、减数分裂;雌雄配子的形成;世代交替;有丝分裂和减数分裂的遗传学意义。

掌握染色体的超微结构;减数分裂;雌、雄配子的形成。

二、教学内容

第1节 细胞的结构和功能

知识要点:1.细胞膜,2.细胞质,3.细胞核。 第2节 染色体的形态和数目 知识要点:1.染色体的形态特征,2.染色体的数目。 第3节 细胞的有丝分裂

知识要点:1.有丝分裂的过程,2.有丝分裂的遗传学意义。 第4节 细胞的减数分裂过程

知识要点:1.减数分裂的过程,2.减数分裂的遗传学意义。 第5节 配子形成和受精

知识要点:1.雌雄配子的形成,2.受精,3.直感现象,4.无融合生殖。 第6节 生活周期 知识要点:1.低等植物的生活周期,2.高等植物的生活周期,3.高等动物的生活周期。

三、本章学时数:6 学时。

第三章 遗传物质的分子基础

一、教学要求

要求学生利用课后时间复习《生物化学》中已学过的相关内容,掌握DNA复制,RNA的转录、加工和翻译等基础知识;遗传密码的特点。

二、教学内容

DNA复制过程;RNA的转录及转录后加工过程及研究进展;遗传密码;中心法则。

三、本章学时数:0学时(作为课后阅读处理)。

第四章 孟德尔遗传

一、教学要求

了解孟德尔的豌豆杂交实验、显性的相对性、基因互作以及两个规律在理论及实践中的意义。

掌握分离规律和自身组合规律的实质、重要的名词概念和统计学原理在遗传研究中的应用。

二、教学内容 第1节 分离规律 知识要点:1.孟德尔的豌豆杂交试验,2.分离现象的解释,3.表现型和基因型的概念,4.分离规律的验证,5.分离比例实现的条件,6.基因型、表现型与环境。

第2节 独立分配规律

知识要点:1.两对相对性状的遗传,2.三对和多对相对性状的遗传,3.独立分配规律的验证。

第3节 遗传学数据的统计处理

知识要点:1.乘法定理,2.加法定理,3.二项分布。 第4节 基因的互作(略)

知识要点:1.互补作用,2.积加作用,3.重叠作用,4.显性上位作用,5.隐性上位作用,6.抑制作用,7.多因一效,8.一因多效,9.独立分配规律的应用。

三、本章学时数:6学时。

第五章 连锁遗传和性连锁

一、教学要求

了解连锁交换规律在实践中的应用,性别分化与环境的关系;人类性别异常的现象及发生的原因。

掌握连锁遗传机理,连锁遗传的分析方法,性别决定方式和性连锁遗传机理;

二、教学内容 第1节 性状连锁遗传现象的表现

知识要点: 1.相引相,2.相斥相,

3、连锁遗传的解释

4、果蝇的完全连锁,

5、不完全连锁,

6、交换。第2节 交换值及其测定

知识要点: 1.交换值概念,2.交换值的测定。 第3节 基因定位与连锁遗传作图

知识要点: 1.基因定位:1.1 两点测验,1.2 三点测验;2.干扰与符合,

3、连锁遗传作图。

第4节 真菌类的连锁和交换

知识要点:

1、红色链孢霉的生活史,

2、四分子分析,

3、着丝粒作图,

4、着丝粒距离和重组频率。

第5节 连锁遗传规律的应用 第6节 性别决定与性连锁

知识要点: 1.性别决定:1.1 遗传因素决定性别:1.1.1 性染色体决定性别, 1.1.2 遗传平衡与性别决定,1.1.3 染色体倍性决定性别,1.1.4 H-Y抗原与性别,1.1.5 性别决定基因。2.性别与环境:2.1 激素与性别,2.2 营养与性别,2.3 环境温度与性别,2.4 环境条件与植物性别分化。

3.X染色体上基因的遗传:3.1 X染色上隐性基因的遗传,3.2 X染色上显性基因的遗。4.Z染色体上的基因遗传。5.限性遗传和从性遗传: 5.1 限性遗传,5.2 从性遗传。

本章学时数:5学时。

第六章 染色体的变异

一、教学要求

了解染色体结构变异的细胞学鉴别和染色体畸变在实践中的应用。

掌握染色体结构和数目变异的类型及遗传效应。尤其是染色体结构变异中倒位和易位的减数分裂行为;整倍体、非整倍体的类型、遗传效应及应用

二、教学内容

第1节 染色体结构变异

知识要点:1.缺失:1.1 缺失的类别,1.2 缺失的遗传效应。2.重复:2.1 重复的类别,2.2 重复的遗传效应。3.倒位:3.1 倒位的类别,3.2 倒位的遗传效应。4.易位:4.1 易位的类别,4.2 易位的遗传效应。

第2节 染色体结构变异的应用

知识要点:6.1 利用缺失进行基因定位,6.2 果绳的CIB测定法,6.3 利用易位创造玉米核不育系的双杂合保持系。

第3节 染色体数目变异

知识要点:1.染色体组及其倍数的变异:1.1 染色体组及其整倍性,1.2 一倍体,1.3 整倍体的同源性与异源性,1.4 非整倍体。2.同源多倍体:2.1 同源多倍体的形态特征,2.2 同源多倍体的联会和分离。3.异源多倍体:3.1 偶倍数的异源多倍体3.2 奇倍数的异源多倍体。4.多倍体的形成途径及其应用:4.1 未减数配子的结合与多倍体形成,4.2 合子染色体数加倍与多倍体形成,4.3 人工诱导多倍体的应用。5.单倍体。6.非整倍体:6.1 单体,6.2 缺失,6.3.三体,6.4.四体。7.非整倍体的应用:7.1 测定基因的所在染色体,7.2有目标地替换染色体。

三、本章学时数:4学时。

第七章

细菌和病毒的遗传

一、教学要求

了解原核生物细菌和病毒的遗传特点。 掌握如何进行细菌和病毒染色体的遗传作图。 教学内容

第一节细菌和病毒遗传研究的意义

知识要点:1.1细菌,1.2病毒,1.3细菌和病毒在遗传研究中的优越性。 第二节 噬菌体的遗传分析

知识要点:

1、噬菌体的结构和生活史,

2、噬菌体的突变型,

3、噬菌体的基因重组和遗传作图。

第三节 细菌的遗传分析

知识要点:

1、转化,

2、接合,

3、性导,

4、转导。

三、本章学时数:4学时。

第八章 基因的表达与调控

一、教学要求 了解基因调控的类型。 掌握基因的概念。

二、教学内容 第1节 基因的概念

知识要点:

1、基因的概念及其发展,

2、基因的微细结构,

3、基因的作用与性状表达。第2节 基因调控

知识要点:

1、原核生物的基因调控。

2、真核生物的基因调控。

3、翻译水平的调控。

三、本章学时数:0学时。

第九章 基因工程和基因组学

一、教学要求

了解基因工程的原理和应用, 基因组学和后基因组学的内容和应用。 掌握基因工程的原理和应用。

二、教学内容 第1节 基因工程

知识要点:1.基因工程概述,2.限制性内切酶,3.载体,4.基因的分离与鉴定,5.基因工程的应用。

第2节 基因组学。

知识要点:1.基因组图谱的构建,2.基因组图谱的应用,3.后基因组学。

三、本章学时数:2学时。

第十章 基因突变

一、教学要求 了解基因突变的诱发。

掌握基因突变的概念、特征与鉴定;基因突变的分子基础。

二、教学内容

第1节 基因突变的一般特征 知识要点:1.突变的重演性和可逆性,2.突变的多方向性和复等位基因,3.突变的有害性和有利性,4.突变的平行性。

第2节 基因突变与性状表现

知识要点:1.突变类型,2.显性突变与隐性突变,3.外显率和表现度,4.大突变和微突

第3节 基因突变的鉴定

知识要点: 1.植物基因突变的鉴定,2.生化突变的鉴定,3.人类基因突变的鉴定。 第4节 基因突变的分子基础

知识要点:

1、突变的分子机制,2突变的修复。

第5节 基因突变的诱发

知识要点:

1、物理因素的诱发,

2、化学因素的诱发。

第6节 转座因子

知识要点:

1、转座因子的发现和鉴定,

2、转座因子的结构特征,

3、转座因子的应用。

三、本章学时数:4学时。

第十一章 细胞质遗传

一、教学要求

了解线粒体和叶绿体的遗传方式。

掌握细胞质遗传的特点和植物雄性不育的遗传机制。

二、教学内容

第1节 细胞质遗传的概念的特点

知识要点:1.细胞质遗传的概念,2.细胞质遗传的特点。 第2节 母性影响

知识要点:短暂、持久的母性影响 第3节 叶绿体遗传

知识要点:1.叶绿体遗传的花斑现象,2.叶绿体遗传的分子基础 第4节 线粒体遗传

知识要点:1.线粒体遗传的表现,2.线粒体遗传的分子基础 第5节 其它细胞质颗粒的遗传

知识要点:1.细胞共生体的遗传,2.质粒的遗传。 第6节 植物雄性不育的遗传

知识要点:1.雄性不育的类型及其遗传特点,2.雄性不育的发生机理,3.质核型雄性不育的利用。

三、本章学时数:4学时。

第十二章 遗传与发育

一、教学要求

了解个体发育的特点及其遗传基础。

二、教学内容

第一节 细胞核和细胞质在个体发育中的作用

知识要点:1.1细胞质在细胞生长和分化中的作用 1.2细胞核在细胞生长和分化中的作用

1.3细胞核和细胞质在个体发育中的相互依存 第二节基因对个体发育的控制 知识要点:2.1个体发育的阶段性,

2.2基因与发育模式,2.3基因与发育过程.第三节 细胞的全能性

知识要点:细胞的全能性

三、本章学时数:4学时。

第十三章 数量性状的遗传

一、教学要求

了解数量性状遗传的基本统计方法、数量性状遗传的多基因假说,以及杂种优势的理论及其在生产中的应用。

掌握数量性状的遗传特征和基础、遗传率的概念及其估算方法。

二、教学内容

第1、2节 数量性状的特征及其遗传基础

知识要点:1.数量性状的特征,2.数量性状的遗传基础。 第3节数量性状遗传研究的基本统计方法 知识要点:

1、平均数,

2、方差和标准差 第4节遗传率的估算及其应用

知识要点:1.遗传率的概念,2.广义遗传率的估算方法(不推导公式),3.狭义遗传率的估算方法,4.遗传率在育种中的应用。

第5节数量性状基因定位 知识要点:数量性状基因定位 第6节近亲繁殖与杂种优势

知识要点:1.近亲繁殖的概念,2.近亲繁殖的遗传效应,3.回交的遗传效应,4.纯系学说。5.杂种优势的概念;6.杂种优势的基本特点,6.1 F1的优势表现,6.2 F2的衰退表现;7.杂种优势的遗传机理,7.1 显性假说,7.2 超显性假说。

三、本章学时数:5学时。

第十四章 群体遗传与进化

一、教学要求

了解掌握生物进化的遗传基础,群体遗传平衡及其影响因素,物种形成机制。 教学内容

第1节 群体的遗传平衡

知识要点:1.基因频率和基因型频率,2.哈迪-温伯格定律。 第2节 改变基因频率的因素

知识要点:1.突变,2.选择,3.遗传漂移,4.迁移。 第3节 达尔文的进化学说及其发展

知识要点:

1、生物进化的概述,

2、达尔文的进化学说及其发展,

3、分子水平的进化。

第4节 物种的概念与形成方式

知识要点:1.物种的概念,2.物种形成的方式。

本章学时数:3学时

教研室:生物技术

执笔人:解绍儒

李玉晖

系主任审核签名:

推荐第3篇:医学遗传学教案

教 师 课 程 教 案

课程名称:医学遗传学

学生专业:眼视光专业

医学检验专业

讲 授 人:谭湘陵 职

称:教授

南通大学生命科学学院

授课时间:2007~2008学年第1学期

《医学遗传学》课程基本信息

(一)课程名称:医学遗传学

(二)学时学分:总学时54,学分3(理论学时42,实验学时12)

(三)预修课程:生物化学、人体解剖学、生理学、微生物学

(四)使用教材:《医学遗传学》(第4版),左

伋 编(著),人民卫生出版社,2004年。

(五)教学参考书:

1.《医学遗传学》,陈竺编(著),人民卫生出版社,2001年。 2.《医学遗传学》,张咸宁 编(著),科学出版社,2002年。 3.《医学遗传学》,李璞 编(著),人民卫生出版社,1999年。

(六)本课程的性质和任务:

本课程为医学类各专业本科生的必修基础课。

通过学习医学遗传学,了解该学科的发展前沿、热点,使学生牢固掌握医学遗传学的基本理论和基础知识,了解人类病理性状遗传规律以及遗传病的发生、传递、诊断、治疗和预防,为学生今后的学习及工作实践打下宽厚的基础。

(七)教学方法:课堂讲授,启发式教学,课堂讨论等。

(八)教学手段:多媒体教学,结合网络教学等。

(九)考核方式:闭卷考试,平时作业,实验考核等。作业占学期总评成绩的10%,实验考核占学生成绩的20%,期末考试占学期总评成绩的70%。

(十)学生创新精神与实践能力的培养:通过学习,掌握基本理论;以病例为基础,提高学生分析问题、解决问题的能力;通过实验操作,培养学生的动手能力;通过学科进展的介绍,拓宽视野,提高学生考研能力。

(十一)其它要说明的问题与事项:

眼视光专业学生的课程为理论42,实验12学时,而医学检验专业学生的学时为理论36学时,没有实验。因此在理论授课中,检验专业较眼视光专业有所压缩,按照教学计划书的安排,压缩内容主要在序论,以及第十八章和第十九章,这些内容的处理采取删除部分节的内容和减少举例的做法,在主要章节内容上,不进行压缩。

本教案针对42学时的眼视光专业。

教学学时分配和安排

本课程讲授按每周6学时安排,全学时共42(理论)+12(实验)学时。 教学内容及具体学时分配如下:

一、理论课学时分配 第一章 绪论(3学时) 第二章 人类基因(3学时) 第三章 基因突变(3学时)

第四章 基因突变分子细胞生物学效应(1学时) 第五章 单基因疾病的遗传(5学时) 第六章 多基因遗传(3学时) 第七章 线粒体疾病的遗传(1学时) 第九章 人类染色(2学时) 第十章 染色体畸变(3学时) 第十一章 单基因遗传病(3学时) 第十四章 染色体疾病(3学时) 第十五章 免疫缺陷(3学时) 第十六章 遗传与肿瘤发生(3学时) 第十八章 遗传病诊断(3学时) 第十九章 遗传病的治疗(2学时) 总复习(1学时)

其他章节内容由学生根据自身条件自学,不作要求。

二、实验课学时分配

实验

一、人类外周血染色体制备(3学时) 实验

二、染色体GTG标本制备(3学时)

实验

三、用小鼠微核测定法检测染色体畸变(3学时) 实验

四、PCR法检测DXS52位点多态性(3学时)

三、其他教学环节的学时分配

第一章 绪 论(3学时)

〖目的要求〗

通过本章的课堂教学,引导学生建立医学遗传学的基本概念,了解医学遗传学的研究范畴,研究对象和研究目的,了解医学遗传学与医学的关系和学科发展历史。激发学生的学习兴趣和明确肩负救死扶伤重任的医生的责任。 〖教学内容〗

1.遗传病的概念、特点及其与先天性疾病、家族性疾病的区别。遗传因素(遗传基础)和环境因素对疾病发生发展的共同影响和作用,举例说明。【重点】 2.遗传病的危害,通过几组数据反映。

3.遗传病的分类,染色体病、单基因病、多基因病、线粒体病、体细胞病,各举例说明。

4.医学遗传学的主要分支学科。共介绍9个分支学科。

5.遗传学发展简史,重点突出孟德尔、Morgan、Watson JD和Crick和人类基因组计划的发展。

〖教学方法〗课堂讲授,讨论。 〖作业或思考题〗 1.简述遗传病的概念。

2.简述遗传基础和环境因素对疾病发生发展的影响和作用。 3.遗传病分为哪些类型?

4.医学遗传学与医学是什么关系?

第二章 人类基因(3学时)

〖目的要求〗

通过本章的教学,使同学掌握基因的概念和演化、基因结构组成、基因组结构特征和基因表达,使同学对基因的功能作用有一个基本的了解,特别是基因结构有关的术语要有较为清楚的认识。 〖教学内容〗

1.基因的概念和概念演化:基因的抽象概念和具体概念;基因概念从“一个基因一个性状”到“一个基因多种肽链”的变化过程。【重点】 2.基因组的概念:人类基因组组成。

3.基因组结构:单一序列、重复序列、遗传标记、基因家族、拟基因、断裂基因、侧翼序列、基因结构。【重点、难点】(通过实例和ppt详细比较讲解) 4.基因表达:RNA加工【重点】。

5.人类基因组计划:结构基因组学,功能基因组学,其他组学。 〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗 1.名词解释:基因组、割裂基因、外显子、内含子、非翻译区、单拷贝序列、微卫星DNA、启动子、增强子、终止信号、拟基因、基因表达。 2.什么是多基因家族?

3.微卫星DNA与小卫星DNA的区别在哪里? 4.典型的真核基因结构有那些部分组成? 5.转录后的加工有那些过程?分别具有什么作用?

第三章 基因突变(3学时)

〖目的要求〗

基因突变是导致遗传病发生的直接原因,本章的讲授为后续遗传病发生发展以及遗传规律的内容打下基础。通过本章内容的讲授,使同学们掌握突变发生的各种形式,突变与蛋白结构变化或表达变化之间的关系,了解突变产生的原因。 〖教学内容〗

1.突变的基本概念:广义、狭义、作用。【重点】 2.诱发突变的因素:物理、化学、生物。【重点】

3.突变的一般特征:多向性、可逆性、有害性、稀有性、随机性、可重复性。 4.突变的分子机制:静态、动态;碱基替换、移码突变。【重点】片段突变。 5.单核苷酸多态性:结构特征、特点、作用、意义。 〖教学方法〗课堂讲授,讨论。 〖作业或思考题〗

1.名词解释:静态突变、动态突变、同义突变、错义突变、无义突变、终止密码突变、移码突变、转换、颠换、点突变、SNP。 2.哪些突变会造成编码肽连长度的改变? 3.动态突变可能的机制是什么?

第四章 基因突变分子细胞生物学效应(1学时)

〖目的要求〗

本章内容之所以安排1学时,是因为后面章节,如第11章,与本章节内容存在重复,因此在授课中对本章节对内容仅做一提纲式的介绍,可以看成前一张的延续,仅要求同学对内容做一般性了解。 〖教学内容〗

1.基因突变导致蛋白质功能的改变:合成、效应、细胞定位、聚合、与辅助因子结合以及稳定性的变化。

2.基因突变导致代谢功能的改变:结合基因、酶、代谢途径的关系进行讲解,底物与中间产物积累、代谢途径变化、终产物缺乏、反馈抑制。酶活力增高等方面。

〖教学方法〗课堂讲授,ppt辅助。 〖作业或思考题〗(此章不布置作业)

第五章 单基因疾病的遗传(5学时)

〖目的要求〗

单基因遗传是本门课程的重点之一,因此课时安排较多。

通过本章的学习,使同学们重点掌握5种单基因疾病的遗传规律,掌握发病风险率的一般估计方法,了解单基因遗传中的特点和影响因素。同时认识和熟悉常见的单基因疾病,了解基本的分析方法。在教学中注意各个知识点的关联和区别,注重举例的应用,充分利用同学对疾病关注度较高的特点,把握节奏,突出重点。 〖教学内容〗

1.单基因遗传病的定义和几个重要概念:主要受控一对等位基因,常染色体和性染色体,显性和隐性,纯合子、杂合子、携带者、基因型、表型。【重点】 2.系谱分析:系谱符号,家系图,作用。

3.常染色体显性遗传病的遗传(AD):完全显性,不完全显性,不规则显性,共显性,延迟显性。特点,代表性疾病【重点、难点】。表现度、外显率。发病风险计算。

4.常染色体隐性遗传病的遗传(AR):特点,代表性疾病,发病风险计算【重点、难点】。

5.X连锁显性遗传病的遗传(XD):特点,代表性疾病。【重点】

6.X连锁隐性遗传病的遗传(XR):特点,突出交叉遗传,代表性疾病。发病风险计算【重点】。

7.Y连锁遗传病的遗传:全男性,半合子,代表性疾病。

8.影响单基因遗传病分析的因素:拟表型、基因多效性、遗传早现、遗传异质性、从性遗传、限性遗传、遗传印记、X染色质失活。注意概念的区别,注意表述的准确性。

〖教学方法〗课堂讲授,ppt辅助,提问、请同学参与讨论。 〖作业或思考题〗

1.名词解释:单基因遗传病、多基因病、显性基因、隐性基因、先证者、显性纯合子、隐性纯合子、杂合子、携带者、亲缘系数、交叉遗传、表现度、外显率、拟表型、基因多效性、遗传异质性、遗传早现、从性遗传、限性遗传、遗传印记、延迟显性、X染色质、不完全显性、不规则显性、共显性、复等位基因。 2.常用于系谱分析的符号有哪些?

3.AD、AR、XD、XR的遗传特点是哪些?代表性疾病有哪些? 4.AR、XR患病风险如何计算?

第六章 多基因遗传(3学时)

〖目的要求〗

多基因遗传的知识对学生来说是比较陌生的,中学阶段和大学过去学习的课程基本没有接触。因此在教学中应特别注意多基因遗传概念的讲述;注意与单基因遗传内容的比较;注意涉及到群体、统计概率概念的问题,如分布、易患性、阈值以及遗传度等。

通过本章的学习,使同学掌握多基因遗传中的重要概念,掌握数量性状的特点,掌握遗传度的三种计算方法,了解典型的多基因疾病和发病风险率的估算,讲课中适当穿插多基因遗传病的研究方法和目前取得的成果。 〖教学内容〗

1.数量性状和质量性状:受控基因数,分布特点,多基因特点,通过人身高性状的举例,说明为什么多基因性状(数量性状)表现为单峰正态分布【重点】。 2.易感性、易患性、阈值概念【重点】。

3.遗传度概念和估算:Falconer公式,Holzinger公式和方差方法计算遗传度【重点】。了解常见多基因疾病的遗传度。

4.多基因疾病再发风险率的估计:公式,查图表和影响估计的因素。 〖教学方法〗课堂讲授,ppt辅助。 〖作业或思考题〗

1.名词解释:质量性状、数量性状、易感性、易患性、阈值、遗传度。2.为什么多基因遗传的性状呈现单峰分布? 3.为什么人群不同,阈值与平均值之差也不同? 4.为什么遗传度用在个体无意义? 5.多基因发病风险与哪些因素有关?

第七章 线粒体疾病的遗传(1学时)

〖目的要求〗

通过本章的学习,掌握线粒体基因组的基本结构和母系遗传的特征,了解mtDNA的复制方法、与核基因的区别,了解部分线粒体遗传病的病例。

本章内容属于本课非重点内容,可是安排较少。 〖教学内容〗

1.复习线粒体亚亚显微结构

2.线粒体基因组:双链环形,16569bp,编码2种rRNA;22种tRNA;13种蛋白质。不含非编码序列,不与组蛋白结合。【重点】 3.线粒体DNA的复制:D环复制机制。

4.mtDNA特点:具有半自主性、基因排列紧密,无非编码序列、部分遗传密码与核不同、母系遗传(不符合经典遗传定律)、在细胞分裂间经过复制和分离、具有阈值效应、突变率极高、主要编码与氧化磷酸化过程相关的酶系。【重点】 5.线粒体疾病的遗传:多质性、异质性、阈值,野生趋同现象。

6.常见线粒体遗传病:Leber遗传性视神经病、MELAS综合症、MERRF综合征、Kearns-Sayre综合症。

〖教学方法〗课堂讲授,ppt辅助。 〖作业或思考题〗

1.名词解释:母系遗传、遗传瓶颈、阈值。 2.为什么线粒体遗传不表现出孟德尔式遗传? 3.线粒体基因组与核基因组有何区别?

第九章 人类染色(2学时)

〖目的要求〗

染色体是遗传物质重要的载体,是核基因唯一的载体,染色体结构和行为是遗传学重要的研究内容,染色体数目和结构的变化是导致遗传病的重要原因,因此本章是本课程又一重要章节。

通过本章学习,使同学们掌握染色体的基本组成、基本形态结构、染色体与染色质的关系,了解lyon假说和染色体的研究方法,了解分带与核型和描述,为染色体畸变和染色体病的教学打下基础。 〖教学内容〗

1.染色质:常染色质、异染色质、性染色质和Lyon假说。【重点】

2.染色体:基本概念,染色质与染色体,从DNA到染色体四级结构模型。【重点】 3.染色体形态与性别决定。【重点】 4.染色体研究方法和显带。

5.核型的概念和表示方法,染色体多态性。 〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗 1.名词解释:常染色质、异染色质、X小体、核小体、同源染色体、核型。 2.染色体和染色质是什么关系?

3.染色体的四级结构模型是如何解释从染色质到染色体变化的? 4.染色体结构中包含了哪些组成部分? 5.常用的染色体显带有几种?

6.染色体简式表达式是如何描述染色体核型的?

第十章 染色体畸变(3学时)

〖目的要求〗

在前一章的基础上,本章主要讲染色体畸变,讲课中注意与前一章内容的联系。本章的重点是讲解染色体数目结构变化的类型,要求掌握单倍体,多倍体,单体,三体,纯合体,嵌合体等概念;掌握整倍型和非整倍型发生的机制和结构畸变发生机制;掌握部分单体,部分三体发生机制,常见结构畸变类型。通过学习,了解染色体畸变诱发因素和异常染色体的表达式。 〖教学内容〗

1.染色体畸变的类型:数目、结构、纯合体、嵌合体、表达式。【重点】 2.染色体畸变发生的原因:物理、化学、生物、遗传以及母亲年龄。 3.整倍性改变及原因:单倍体;整倍体;二倍体;多倍体;双雄受精、双雌受精、核内复制、核内有丝分裂。【重点】

4.非整倍性改变及原因:亚二倍体-单体;超二倍体-多体(三体、四体„),减数分裂染色体不分离,有丝分裂染色体不分离,染色体丢失。【重点】 5.染色体结构畸变及其产生机制:断裂、重排。常见结构畸变类型:缺失、重复、倒位、易位、环形、双着丝粒、等臂,倒位环、四射体。【重点】 6.畸变染色体表达式举例。 7.部分单体与部分三体。

〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.名词解释:单倍体、多倍体、单体、多体、嵌合体、部分三体、部分单体、染色体多态、易位携带者、倒位携带者、罗氏易位。 2.哪些因素可能导致染色体畸变? 3.倒位环和四射体形成的原因是什么? 4.染色体数目和结构畸变的原因是什么? 5.常见的染色体结构畸变的类型有哪些? 第十一章 单基因遗传病(3学时)

〖目的要求〗

通过本章的学习,掌握分子病、先天性代谢缺陷等疾病的发病机理和遗传特征,了解典型的分子病和代谢缺陷病。 〖教学内容〗

1.分子病、先天性代谢缺陷的概念。

2.血红蛋白的分子结构极其遗传控制:基因结构,发育演变,变异体和血红蛋白病。【重点】

3.其他分子病:血浆蛋白病,胶原蛋白病,肌营养不良,受体蛋白病,膜转运蛋白病。【重点】

4.先天性代谢缺陷(酶蛋白病):苯丙酮尿症、白化病、尿黑酸症【重点】、半乳糖血症、α1-抗胰蛋白酶缺乏症。 〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.名词解释:分子病、不等交换、先天性代谢缺陷。 2.常见血红蛋白病有哪些?

3.基因结构和功能表现出何种异常? 4.血友病A和B发病的遗传机制是什么?

5.试述苯丙酮尿症(PKU)的临床特征、发病机制、遗传控制、类型、诊断和治疗。

6.尿黑酸尿症和白化病的发病机制是什么? 7.α1-抗胰蛋白酶缺乏症的发病机制是什么? 8.胶原蛋白病包括哪些类型?发病机制是什么?

第十四章 染色体疾病(3学时)

〖目的要求〗

染色体病是一大类遗传病,是因为染色体数目和结构异常导致的疾病,因此本章的基础是前两章-染色体和染色体畸变,因而本章的讲授应结合前面的内容,可以将本章与第九章、第十章合并视为一个完整的教学单元。

通过本章的学习,使同学们掌握染色体发病的机理,掌握典型的染色体病,了解与疾病临床相关的问题。 〖教学内容〗

1.染色体病发病概况:新生儿染色体异常率、自然流产胎儿、产前诊断胎儿、自然流产后再发风险。 2.常染色体病:以21三体为典型病例(文字和图片),讲述发病率、临床特征、分类核型以及临床诊断和处理方法【重点】。18三体、13三体、猫叫综合征。 3.性染色体病:克氏征、XYY综合征、多X综合征、Turner综合征的发病率、临床特征、分类以及临床诊断和处理方法。以克氏征和Turner综合征为典型病例。【重点】

〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.常见染色体病的主要表现、核型和分类? 2.D/G平衡易位者可能产生什么样的后代?

第十五章 免疫缺陷(3学时)

〖目的要求〗

本章的内容是与免疫相关的遗传学问题,通过学习,掌握红细胞抗原、白细胞抗原、免疫球蛋白的遗传结构和遗传机制,了解新生儿溶血症、HLA与疾病的关联、HLA与器官移植等有关临床问题。 〖教学内容〗

1.ABO血型系统:遗传控制。【重点】 2.Rh血型系统:基因结构,单倍型。 3.新生儿溶血症。

4.HLA系统:特点,I类、II类和III类基因区,各区中的基因组成,连锁不平衡、HLA与疾病的关联、机制,HLA与器官移植。【重点】

5.免疫球蛋白遗传:分子结构、基因结构、DNA重派与免疫球蛋白多样性。【重点】

〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.HLA系统的特点有那些?

2.人类ABO血型决定中,IA,IB,i,H基因各自的作用是什么? 3.Rh抗原由哪些基因决定?

4.HLA基因的复杂性体现在哪些方面?

5.为什么HLA基因也是一个理想的遗传标记系统? 6.从遗传的角度看,哪些人中可能HLA完全相同? 7.什么机制保证了免疫球蛋白的多样性?

第十六章 遗传与肿瘤发生(3学时)

〖目的要求〗 肿瘤是一类严重危害人类的疾病,是医学研究中最热门的问题。影响肿瘤的发生发展的因素颇多,很多机制问题还没有认识到。因此在本章授课中应向学生交代这一问题。

通过本章的学习,应使同学们掌握肿瘤发生与遗传的关系,染色体、基因异常与肿瘤发生,特别是费城染色体、癌基因、肿瘤抑制基因等重要内容,同时使同学们了解肿瘤发生的遗传学说。 〖教学内容〗

1.肿瘤发生与遗传相关的证据:种族差异、家族聚集、遗传性肿瘤、遗传缺陷与肿瘤。【重点】

2.染色体异常与肿瘤:单克隆起源、多克隆起源,肿瘤干系、旁系、众数,标记染色体,费城染色体的形成和致病的分子机制。【重点】 3.癌基因:概念、分类与作用、激活。【重点】

4.肿瘤抑制基因:概念,与癌基因的区别。【重点】P

53、Rb基因。5.肿瘤发生的遗传学说:单克隆起源、二次突变论、多步骤遗传损伤。 〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.名词解释:众数、标记染色体、干系、旁系、癌基因、肿瘤抑制基因。 2.如何说明肿瘤的发生与遗传相关? 3.Ph染色体形成的原因和致病机理是什么? 4.癌基因的激活方式有哪些?

5.癌基因和肿瘤抑制基因的异同点在哪里?

第十八章 遗传病诊断(3学时)

〖目的要求〗

通过本章的学习,使同学们掌握遗传病的一般诊断方法和遗传学特殊诊断方法,重点突出产前诊断和分子诊断的内容。通过本章的学习,使同学们了解染色体检查指征,携带者的检出,产前诊断适应征等问题。 〖教学内容〗

1.遗传病诊断的主要途径:病症、家系、染色体检查、生化检查、分子诊断,携带者的检出。【重点】

2.产前诊断:遗传病诊断的重要应用方面,适应症,主要方法和途径(绒毛取样、羊水)。【重点】

3.分子诊断:材料、技术路线和方法、诊断举例。【重点】 〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.名词解释:产前诊断,分子诊断。 2.染色体检查和产前诊断的适应症是什么? 3.为什么分子诊断可能实现预先诊断?

第十九章 遗传病的治疗(2学时)

〖目的要求〗

遗传病的治疗目前还没有理想的方法,学术界还在探索之中,因此一般的治疗还是以对症治疗为原则。通过学习,了解遗传病的一般治疗策略和方法,了解基因治疗的主要原理和目前的发展。 〖教学内容〗

1.治疗的原则:体细胞基因修饰、基因表达异常进行调控、蛋白质功能改善、代谢产物控制、临床针对症状的治疗措施。

2.基因治疗:策略、基因流程、临床应用的例子,存在问题。【重点】 〖教学方法〗课堂讲授,ppt辅助,讨论。 〖作业或思考题〗

1.遗传病治疗的原则是什么? 2.什么是基因治疗?

推荐第4篇:遗传学实验教案

《现代遗传学》实验

实验一

植物细胞有丝分裂的制片与观察

实验类型:验证型。 学

时: 4 。 内

容:

一、实验目的

1.学习和掌握植物细胞有丝分裂制片技术。

2.观察植物细胞有丝分裂过程中染色体的形态特征及染色体的动态变化行为。

二、实验原理

有丝分裂是植物体细胞进行的一种主要分裂方式。有丝分裂的目的是增加细胞的数量而使植物有机体不断生长。在有丝分裂过程中,细胞核内的遗传物质能准确地进行复制,然后能有规律地均匀地分配到两个子细胞中去。植物有丝分裂主要在根尖、节间、茎的生长点、芽及其它分生组织里进行。将生长旺盛的植物分生组织经取材,固定、解离、染色、压片,可以观察到细胞有丝分裂的全过程。若进行染色体计数,则需进行前处理,即取材之后要用物理的或化学的方法,阻止细胞分裂过程中纺垂体的形成,使细胞分裂停止在中期,这时的染色体不排到赤道板上,而是散在整个细胞核中,便于对染色体的形态、数目进行观察。

三、试剂与器材

恒温培养箱、显微镜、水浴锅、载玻片、盖玻片、单面刀片、镊子、培养皿、量筒、吸水纸等。

四、实验材料

蚕豆根尖。

五、实验内容

生根→取材→前处理→固定→解离→水洗与低渗→染色与压片→镜检→永久制片。

六、关键步骤及注意事项

1.取材要找分裂高峰期。

2.前处理、固定、解离、染色等步骤,注意药品与时间的选择。

七、思考题

选择有丝分裂各期的优秀细胞绘图,在典型的前、中、后、末各期之间选择一个过渡期细胞以连接染色体的动态行为。

实验二

植物细胞减数分裂的制片与观察

实验类型:验证型 学

时:4 。 内

容:

一、实验目的

1.学习和掌握植物细胞减数分裂制片方法。

2.了解植物生殖细胞的形成过程及减数分裂过程各期的细胞学特征。

二、实验原理

减数分裂是生物在形成配子时的一种特殊的分裂方式。减数分裂是在性母细胞中进行的。减数分裂的目的是使二倍染色体数减为单倍染色体数,以便两性配子结合时恢复形成二倍体生物。减数分裂的特点是这些细胞连续进行两次细胞分裂即减数第一次分裂和减数第二次分裂,而染色体只复制一次。结果一个小孢子母细胞形成四个小孢子,每个细胞只含单倍数染色体,使染色体数目减少一半,所以叫减数分裂。减数分裂的另一个特点是前期特别长,而且变化复杂,包括同源染色体配对、交换与分离等。

三、试剂与器材

酒精灯、镊子、解剖针、50ml烧杯、10ml烧杯、载玻片、吸水纸、量筒、显微镜等。

四、实验材料

玉米雄穗。

五、实验内容

取材→固定→保存→花药剥离→媒染→水洗→染色→压片→镜检。

六、关键步骤与注意事项

1.花药剥离时大、中、小花药都要有,量要充足。

2.镜检时首先要区分花粉母细胞和花药壁细胞,要注意第一次分裂的前期的不同型态。

七、思考题

试绘制减数分裂过程中各期的典型细胞。要求双线期、终变期染色体数目清楚。

实验三 果蝇唾腺染色体的制备和观察

实验类型:验证型 学

时:4 。 内

容:

一、实验目的

1.练习分离果蝇幼虫唾腺的技术,学习唾腺染色体的制片方法。2.观察了解果蝇唾腺染色体的形态学及遗传学特征。

二、实验原理

果蝇是双翅目昆虫,其唾腺细胞发育到一定阶段后停止在间期,但紧密配对的同源染色体(实为伸展的染色质丝),仍能不断复制,复制后产生的子染色体彼此不分开。复制可达9次之多,因此一对染色体最终可产生2×2=1024条染色质丝。它们集结在一起形成了一条多线染色体,宽度可达5m,长度可达400m,约为普通中期染色体的,在显微镜下清晰可见。染色质丝的不同部位螺旋化程度不同,其中螺旋化程度较高的部位形成染色粒。这些染色粒经由多线染色体的放大,形成染色较深的横纹,而染色粒间螺旋化程度较低的部分则形成了染色较浅的间纹。研究表明,对一种果蝇来说,带纹的宽窄、数目、位置等是恒定的,标志着物种的特征。当染色体上有结构畸变,如缺失、重复、倒位、易位等,很容易在唾腺染色体上鉴别,使唾腺染色体成为染色体变异研究的独特材料。

三、实验材料

黑腹果蝇三龄幼虫。

四、实验步骤

1.剥离唾腺:在一干净的载玻片上滴一滴生理盐水,选择行动迟缓、肥大、爬在瓶壁上即将化蛹的三龄幼虫,或者选择经低温处理的果蝇三龄幼虫置于载玻片上。每只手各持一个解剖针,在解剖镜下进行操作。果蝇的唾腺位于幼虫体前约1/3处,找到具有口器的头部(有一小黑点),一手用解剖针刺入(或压住)头部,将虫固定,一手用解剖针刺入体前约1/3处,适当用力向两端迅速拉开。唾腺是一对透明的棒状腺体,外有白色的脂肪组织(不透明)。去除幼虫其它组织部分,并把唾腺周围的白色脂肪剥离干净。

2.染色:吸去生理盐水,注意操作时要边观察边吸湿,最好用解剖针轻压,防止连同唾腺一起吸走;滴加卡宝品红染色液,染色5-10min。

3.压片:染色完成后,盖上干净的盖片,并覆一层滤纸。将片子放在实验台上,用大拇指均匀用力压片。(注意不要使盖片移动。)

4.镜检:在低倍镜选择唾腺细胞多且染色体分散好的视野,换高倍镜仔细观察唾腺染色体的染色中心、染色体臂、横纹、蓬突(puff)等结构。

五、注意事项

1.一定加生理盐水,否则唾腺易干。2.将脂肪组织清除干净

3.水不可太多,否则幼虫会漂浮而且活跃。4.染色时间不可过长,否则背景也着色 5.压片时要揉,用力要均匀

6.染色完以后,将旧的染色液吸去,加新的染色液,再压片。7.吸水时勿将唾腺一起吸走。 9

六、实验作业

1.制做效果较好的唾腺染色体临时片1~2张。检查你制作的制片,寻找形态良好、分散适中的图象仔细观察各条臂的特点。

2.画出所制染色体的形态,大小,并标出明显的横纹特点。

实验四 染色体数目变异的观察

实验类型:验证型。 学

时:4 。 内

容:

一、实验目的

1.观察和鉴别洋葱、小麦等植物单倍体、二倍体、三倍体等染色体永久装片,了解倍性变化在植物育种上的应用。

2.观察和分析人类染色体数目变异装片,了解染色体数目变化导致的遗传疾病。

二、实验原理

自然界各种生物的染色体数目是相当恒定的,这是物种的重要特征。例如玉米体细胞染色体有20 个,配成10 对。遗传学上把一个配子的染色体数,称为染色体组(或称基因组)用n 表示。如玉米染色体组内包含10 个染色体,它的基数n=10。一个染色体组内每个染色体的形态和功能各不相同,但又互相协调,共同控制生物的生长和发育、遗传和变异。

由于各种生物的来源不同,细胞核内可能具有一个或一个以上的染色体组,凡是细胞核中含有一套完整染色体组的就叫做单倍体,也用n 表示。具有两套染色体组的生物体称为二倍体,以2n 表示。细胞内多于两套染色体组的生物体称为多倍体。例如三倍体(3n)、四倍体(4n)、六倍体(6n)等,这类染色体数的变化是以染色体组为单位的增减,所以称作整倍体。

在整倍体中,又可按染色体组的来源,区分为同源多倍体和异源多倍体。凡增加的染色体组来自同一物种或者是原来的染色体组加倍的结果,称为同源多倍体。如果增加的染色体组来自不同的物种,则称为异源多倍体。

多倍体普遍存在于植物界,目前已知道被子植物中有1/3 或更多的物种是多倍体,如小麦属(Triticum)染色体基数是7,属二倍体的有一粒小麦,四倍体的有二粒小麦,六倍体的有普通小麦。除了自然界存在的多倍体物种之外,又可采用高温、低温、X 射线照射、嫁接和切断等物理方法人工诱发多倍体植物。在诱发多倍体方法中,以应用化学药剂更为有效。如秋水仙素、萘嵌戊烷、异生长素、富民农等,都可诱发多倍体,其中以秋水仙素效果最好,使用最为广泛。 秋水仙素是由百合科植物秋种番红花——秋水仙(Colchicumautumnale)的种子及器官中提炼出来的一种生物碱。化学分子式为

具有麻醉作用,对植物种子、幼芽、花蕾、花粉、嫩枝等可产生诱变作用。它的主要作用是抑制细胞分裂时纺锤体的形成,使染色体不走向两极而被阻止在分裂中期,这样细胞不能继续分裂,从而产生染色体数目加倍的核。若染色体加倍的细胞继续分裂,就形成多倍性的组织,由多倍性组织分化产生的性细胞,所产生的配子是多倍性的,因而也可通过有性繁殖方法把多倍体繁殖下去。

多倍体已成功地应用于植物育种,用人工方法诱导的多倍体,可以得到一般二倍体所没有的优良经济性状,如粒大、穗长、抗病性强等。三倍体西瓜、三倍体甜菜、八倍体小黑麦已在生产上应用。

三、实验材料

洋葱、小麦、人等永久装片。

四、实验器具

显微镜。

五、实验步骤

用光学显微镜观察各种染色体数目变异永久装片。

六、实验作业

绘出至少3种染色体数目变异材料观察结果。

实验五 人类染色体核型分析

实验类型:综合型。 学

时:4 。 内

容:

一、实验目的

1.学习染色体组型的分析方法。2.了解人类染色体的特征。

二、实验原理

各种生物的染色体数目是恒定的。大多数高等动植物是二倍体(diploid)。也就是说,每一个体细胞含有两组同样的染色体,用2n 表示。其中与性别直接有关的染色体,即性染色体,可以不成对。每一个配子带有一组染色体,叫做单倍体(haploid),用n 表示。两性配子结合后,具有两组染色体,成为二倍体的体细胞。如蚕豆的体细胞2n=12,它的配子n=6,玉米的体细胞2n=20,配子n=10。水稻2n=24,n=12。有些高等植物还是多倍体。

染色体在复制以后,纵向并列的两个染色单体(chromatids),往往通过着丝粒(centromere)联在一起。着丝粒在染色体上的位置是固定的。由于着丝粒位置的不同,可以把染色体分成相等或不等的两臂(arms),造成中间着丝粒,亚中间着丝粒、亚端部着丝粒和端部着丝粒等形态不同的染色体。此外,有的染色体还含有随体或次级缢痕。所有这些染色体的特异性构成一个物种的染色体组型。染色体组型分析是细胞遗传学、现代分类学和进化理论的重要研究手段,也是一种简便的方法。

三、实验材料

由实验室提供的正常男性染色体放大照片。

四、实验器具和药品

镊子、剪刀、绘图纸。

五、实验内容

染色体组型分析方法分为两大类,一类是分析体细胞有丝分裂时期的染色体数目和形态。另一类是分析减数分裂时期的染色体数目和形态,均能得到染色体组型。这里我们要做的是有丝分裂时期的分析。

各染色体的长臂与短臂之比称为臂率。

臂率为1.0—1.7 的归为中间着丝粒染色体,用(M)表示。

1.7—3.0 的归为亚中间着丝粒染色体,用(Sm)表示。 3.0—7.0 的归为亚端部着丝粒染色体,用(St)表示。 7.0—更大的归为端部着丝粒染色体,用(Ot)表示。

用SAT 代表具随体的染色体,计算染色体长度时,可以包括随体也可以不包括,但均要注明。

六、实验步骤

1、测量:根据放大照片测量、记录染色体形态测量数据如下: (1)臂比=长臂(q)长度/短臂(p)长度 (2)着丝粒指数=短臂长度/该染色体长度×100 (3)总染色体长度=该细胞单倍体全部染色体长度(包括性染色体)之和 (4)相对长度=每条染色体长度/总长度×100

2、填表(表格于实验结果中)。

3、配对:根据测量数据,即染色体相对长度、臂率、着丝粒指数、次缢痕的有无及位置、随体的形状和大小等进行同源染色体的剪贴配对。

4、染色体排列:染色体对从大到小,短臂向上、长臂向下,各染色体的着丝粒排在一条直线上。有特殊标记的染色体(如含有随体的)以及性染色体等可单独排列。

5、绘图:完成上述步骤的染色体剪贴,可以通过翻拍摄影或描图成为染色体组型图。

七、实验作业

填表并说明人类染色体的各种测量值并列出核型公式。K(2n)=2X=46=xm+xSm+xSt+xOt

推荐第5篇:遗传学课程报告心得体会(推荐)

课程报告讨论体会

这次课堂讨论使我们在制作PPT和收集资料的过程中,不仅让我们了解了更多有关遗传学的知识,而且增强了我们对前沿课题的兴趣和团队意识的重要性。

在接到课题后,我们组便开始准备分工合作,细化各个步骤,尽量做到公平化,效率化。虽然人数不多,但没有感觉到压力的重大。虽然在事实上不排除组队中有部分同学持“走过场”的心态,但是我们还是按照能力的不同,让更多同学参与了进来。尽管在课程报告的最后,我们组是以单人报告的方式进行的,但同学们都能对所讲述的内容“了如指掌”。讨论的效果达到了我们的预期。

内容上,我们主要对体细胞克隆做了较为深入的认识。从克隆细胞到克隆器官和个体都有涉入。特别是对克隆的意义和成功率的讨论,通过搜集相关文献和相关论坛,我们比较赞成动物体细胞核移植后核重编程的研究成果。该理论认为,核的重编程是指高度分化的体细胞核作为核供体,在移植入卵母细胞后关闭自身的基因表达程序,并启动胚胎发育所需的基因表达程序,从而获得全能性发育的过程,其主要包括DNA甲基化、组蛋白乙酰化、X染色体失活、印记基因表达和端粒长度恢复等方面。而且相关文献表示,多次传代的细胞有利于克隆胚发育的原因可能在于传代后期的细胞中具有更少的后成性基因修饰,易于被再程序化;同时,多次传代的细胞中处于G。期。G。期的细胞比例明显多于早期传代的细胞。这也比较合理的指出了成功克隆的途径。此外,还有供、受体细胞的因素的影响,也有不少学者做过研究。总之,能够提高克隆效率的方法,至少在目前来看还是很多,但都基本上是基于对上述三者的研究,其它介入因素的改变还是很少。不论怎么说,克隆方法的提高也是局限的,我们常常关注针对性的个体,对广泛性的动物或生物,手段依然不能跟得上科学实验研究的步伐。

总之,我们对克隆虽然没有保持10年前的“兴奋”状态,但也保持了对它的好奇心,克隆课题仍然是时代前沿的一项重要内容,它需要许许多多的科研人员和兴趣爱好者不断深入的探索,希望更多的有兴趣和有科研志向的人,齐心协力,使克隆这项技术能够早日给人类的健康带来突破性进展。

总的来说,这次课程报告给我们带来了多方面的收益,也开阔了我们的知识视野,小组的认可度比较好。希望老师以后能够为学生提供更多的类似这样的平台,让学生能够在课余发挥自己自主学习能力,调动起获取知识的积极性和趣味性,这样也能逐步改变教学模式的“应试化”,使教师和学生共创一个良好的,轻松的学习环境,达到教有所长、学有所用、共赢共进!

09水产(营养)

20091109 董宇文

2009103杨刚

20091098 陈之航

2009

何龙

2011/11/01

推荐第6篇:医学遗传学辅导教案

第4章 数字式传感器

 教学要求

1.了解各种数字式传感器的分类、结构及特点。 2.熟悉各种数字式传感器的测量转换电路。 3.掌握各种数字式传感器的应用。

 教学手段

多媒体课件、多种数字式传感器演示  教学重点

各种数字式传感器的应用  教学课时

7学时  教学内容:

4.1 光栅数字式传感器 4.1.1光栅的分类

按原理和用途分为:

1.物理光栅,利用光的衍射现象,用于光谱分析和波长的测量。

2.计量光栅,利用莫尔现象,用于长度、角度、速度等的测量,又可分为透射式光栅和反射式光栅。

4.1.2 光栅传感器的结构和工作原理

1.光栅传感器的结构

光栅传感器由光源、光栅副、光敏元件三大部分组成。 2.光栅测量原理

把两块栅距相等的光栅(光栅

1、光栅2)面向对叠合在一起,中间留有很小的间隙,并使两者的栅线之间形成一个很小的夹角θ,如图所示,这样就可以看到在近于垂直栅线方向上出现明暗相间的条纹,这些条纹叫莫尔条纹。由图可见,在df线上,两块光栅的栅线错开,形成条纹的暗带,它是由一些黑色叉线图案组成的。因此莫尔条纹的形成是由两块光栅的遮光和透光效应形成的。

W

¹âÕ¤1

dd

ff

dd

ffBH dd¹âÕ¤2

光栅莫尔条纹的形式

莫尔条纹有如下特征:

(1)莫尔条纹是由光栅的大量刻线共同形成的,对光栅的刻划误差有平均作用,从而能在很大程度上消除光栅刻线不均匀引起的误差。

(2)当指示光栅沿与栅线垂直的方向作相对移动时,莫尔条纹则沿光栅刻线方向移动(两者的运动方向相互垂直);指示光栅反向移动,莫尔条纹亦反向移动。

(3)莫尔条纹的间距是放大了的光栅栅距,它随着指示光栅与主光栅刻线夹角而改变。 ○ 由于θ很小,所以其关系可用下式表示

L=W/sinθ≈W/θ

(4)莫尔条纹移过的条纹数与光栅移过的刻线数相等。 4.1.3 光栅传感器的测量电路

光栅传感器作为一个完整的测量装置包括光栅读数头、光栅数显表两大部分。光栅读数头利用光栅原理把输入量(位移量)转换成响应的电信号;光栅数显表是实现细分、辨向和显示功能的电子系统。

1.光栅传感器的常用光路 (1)垂直透射式光路 (2)透射分光式光路 (3)反射式光路 (4)镜像式光路

2.光栅传感器的光电转换系统

光栅传感器的光电转换系统由聚光镜和光敏元件组成,光敏元件可以将光量的变化转换成电阻或电能的变化。

3.光栅传感器的辨向处理

如果传感器只安装一套光电元件,则在实际应用中,无论光栅作正向移动还是反向移动,光敏元件都产生相同的正弦信号,是无法分辨移动方向的。为此,必须设置辨向电路。

4.光栅传感器的细分原理

细分电路能在不增加光栅刻线数(线数越多,成本越昂贵)的情况下提高光栅的分辨力。 常用的细分方法有两大类:机械细分和电子细分,电子细分的两种最常用方法为:倍频细分法和电桥细分法。

(1)倍频细分法 (2)电桥细分法 4.1.4 光栅传感器的应用

由于光栅具有测量精度高等一系列优点,若采用不锈钢反射式光栅,测量范围可达十几米,而且不需接长,信号抗干扰能力强,因此在国内外受到重视和推广,但必须注意防尘、防震问题。

1.光栅数显表

2.光栅传感器在位置控制中的应用 4.2 磁栅数字式传感器

磁栅传感器结构:磁栅、磁头和信号处理电路等。 4.2.1 磁栅的结构和种类

磁栅分类:长磁栅和圆磁栅两大类。

用途:长磁栅主要用于直接位移测量,圆磁栅主要用于角位移测量。 4.2.2 磁头的结构和种类

1.动态磁头 2.静态磁头

4.2.3 磁栅传感器的信号处理

1.鉴幅方式 2.鉴相方式

4.2.4 磁栅传感器的应用

鉴相式磁栅数字位移显示装置 4.3 感应同步器

一 4.3.1 感应同步器的类型和结构

感应同步器根据用途的不同可分为两类:直线式同步器和旋转式同步器 1.直线式感应同步器 (1)标准型 (2)窄型 (3)带型

2.旋转式感应同步器 4.3.2 感应同步器的工作原理 4.3.3 感应同步器的信号处理

由感应同步器组成的检测系统,可采取不同的励磁方式,并对输出信号采取不同的处理方式。根据对输出感应电动势信号的处理方式不同,可把感应同步器的检测系统分成相位式和幅值式。

1.鉴相处理:就是根据输出感应电动势的相位来鉴别感应同步器定、滑尺间相对位移量的方法。

2.鉴幅处理:采用同频率、同相位、不同幅值的交流电压,对感应同步器滑尺两相绕组进行激励磁,就可以根据定尺绕组输出感应电动势的幅值来鉴别定、滑尺间相对位移量,叫做感应同步器输出信号的鉴幅处理。 4.3.4 感应同步器的应用

鉴幅型数显表 4.4 编码器

将机械转动的模拟量(位移)转换成以数字代码形式表示的电信号,这类传感器称为编码器。编码器以其高精度、高分辨率和高可靠性被广泛用于各种位移的测量。 

编码器的种类很多,主要分为脉冲盘式(增量编码器)和码盘式编码器(绝对编码器)。4.4.1 脉冲盘式编码器

脉冲盘式编码器又称为增量编码器,它不能直接产生几位编码输出。 1.脉冲盘式编码器的结构和工作原理 2.脉冲盘式编码器的辨向方式 3.脉冲盘式编码器的应用 4.4.2 码盘式编码器

码盘式编码器又称为绝对编码器,它将角度转换为数字编码,能方便地与数字系统连接。码盘式编码器按结构可分为接触式、光电式和电磁式三种,后两种为非接触式。

1.接触式编码器:由码盘和电刷组成。

2.光电式编码器:是一种绝对编码器,即几位编码器其码盘上就有几位码道,编码器在转轴的任何位置都可以输出一个固定的与位置相对的数字码。

3.电磁式编码器:是近年发展起来的一种新型电磁敏感元件,主要优点是对潮湿气体和污染敏感,体积小,成本低。 作业:P95

7、8

推荐第7篇:医学遗传学辅导教案

第7章

传感器与检测系统的干扰抑制技术

 教学要求

1.了解噪声干扰的来源及噪声的耦合方式。 2.掌握噪声的干扰模式。

3.掌握硬件和软件抗干扰技术。  教学手段

多媒体课件

 教学重点

硬件和软件抗干扰技术  教学课时

3学时  教学内容: 7.1 噪声干扰的形成 干扰与噪声:

在非电量测量过程中,往往会发现总是有一些无用的背景信号与被测信号叠加在一起,这称为干扰,有时也采用噪声这一习惯用语。

噪声对检测装置的影响必须与有用信号共同分析才有意义。

在测量过程中应尽量提高信噪比,以减少噪声对测量结果的影响。 7.1.1噪声源

1.机械干扰

机械干扰是指机械振动或冲击使电子检测装置中的元件发生振动,改变了系统的电气参数,造成可逆或不可逆的影响。对机械干扰,可选用专用减振弹簧-橡胶垫脚或吸振橡胶海绵垫来降低系统的谐振频率,吸收振动的能量, 从而减小系统的振幅。

2.湿度及化学干扰

当环境相对湿度增加时,物体表面就会附着一层水膜,并渗入材料内部,降低了绝缘强度,造成了漏电、击穿和短路现象;潮湿还会加速金属材料的腐蚀,并产生原电池电化学干扰电压;在较高的温度下,潮湿还会促使霉菌的生长,并引起有机材料的霉烂。

某些化学物品如酸、碱、盐、各种腐蚀性气体以及沿海地区由海风带到岸上的盐雾也会造成与潮湿类似的漏电腐蚀现象,必须采取以下措施来加以保护:浸漆、密封、定期通电加热驱潮等。

3.热干扰

热量,特别是温度波动以及不均匀的温度场对检测装置的干扰主要体现在以下几个方面:

元件参数的变化(温漂)、接触热电势干扰、元器件长期在高温下工作时,引起寿命和耐压等级降低等。

克服热干扰的防护措施有:

选用低温漂元件,采取软、硬件温度补偿措施,选用低功耗、低发热元件,提高元器件规格余量,仪器的前置输入级远离发热元件,加强散热、采用热屏蔽等。

4.固有噪声干扰

在电路中,电子元件本身产生的、具有随机性、宽频带的噪声称为固有噪声。最重要的固有噪声源是电阻热噪声、半导体散粒噪声和接触噪声等。固有噪声可以从喇叭或耳机中反映出来,但更多的时候是反映在输出电压的无规律跳变上。

5.电、磁噪声干扰

电磁干扰源分为两大类:自然界干扰源和人为干扰源,后者是检测系统的主要干扰源。

(1)自然界干扰源包括地球外层空间的宇宙射电噪声、太阳耀斑辐射噪声以及大气层的天电噪声。后者的能量频谱主要集中在30MHz以下,对检测系统的影响较大。 (2)人为干扰源又可分为有意发射干扰源和无意发射干扰源。 7.1.2噪声的耦合方式

噪声要引起干扰必须通过一定的耦合通道或传输途径才能对检测装置的正常工作造成不良的影响。常见的干扰耦合方式主要有静电耦合、电磁耦合、共阻抗耦合和漏电流耦合。 1.静电耦合 2.电磁耦合

3.阻抗耦合 4.漏电流耦合 7.1.3噪声的干扰模式

1.差模干扰 2.共模干扰 7.2 硬件抗干扰技术 7.2.1接地技术

接地起源于强电技术,它的本意是接大地,主要着眼于安全。这种地线也称为“保安地线” 。它的接地电阻值必须小于规定的数值。

对于仪器、通讯、计算机等电子技术来说,“地线”多是指电信号的基准电位,也称为“公共参考端”,它除了作为各级电路的电流通道之外,还是保证电路工作稳定、抑制干扰的重要环节。它可以接大地,也可以与大地隔绝。

检测系统中地线的种类:

(1)信号地:指传感器本身的零电位基准线。 (2)模拟地:模拟信号的参考点。 (3)数字地:数字信号的参考点。

(4)负载地:指大功率负载或感生负载的地线。

(5)系统地:整个系统的统一参考电位,该点称为系统地。 以上5种类型的地线,接地方式有两种:

单点接地:有串联接地和并联接地两种,主要用于低频系统。

多点接地:高频系统中,通常采用多点接地方式,各个电路或元件的地线以最短的距离就近连到地线汇流排上。 7.2.2屏蔽技术

利用金属材料制成容器,将需要防护的电路包围在其中,可以防止电场或磁场耦合干扰的方法称为屏蔽。

屏蔽可分为静电屏蔽、低频磁屏蔽、驱动屏蔽和电磁屏蔽等几种。根据不同的对象,使用不同的屏蔽方式。

1.静电屏蔽:能防止静电场的影响,可以消除或削弱两电路之间由于寄生分布电容耦合而产生的干扰。

2.电磁屏蔽:采用导电性能良好的金属材料做成屏蔽层,利用高频干扰电磁场在屏蔽体内产生涡流,再利用涡流消耗高频干扰磁场的能量,从而削弱高频电磁场的影响。

3.低频磁屏蔽:电磁屏蔽对低频磁场干扰的屏蔽效果很差,对低频磁场的屏蔽,要用导磁材料做屏蔽层,将干扰磁通限制在磁阻很小的磁屏蔽体内部,防止其干扰。

4.驱动屏蔽:就是使被屏蔽导体的电位与屏蔽导体的电位相等,能有效抑制通过寄生电容的耦合干扰。 7.2.3滤波技术

滤波器是一种允许某一频带信号通过,而阻止另一些频带通过的电子电路。滤波就是保持需要的频率成分的振幅不变,尽量减小不必要的频率成分振幅的一种信号处理方法。

一 滤波器分为低通滤波器和高通滤波器。 1.低通滤波器 2.高通滤波器 7.3 软件抗干扰技术 7.3.1 数字滤波

数字滤波由软件算法实现,不需要增加硬件设备,只要在程序进入控制算法之前,附加一段数字滤波程序。

1.中位值法 2.平均值法 3.限幅滤波 7.3.2 软件冗余技术

进行软件设计时要考虑到万一程序“跑飞”,应让其自动恢复到正常状态下运行,冗余技术是常用的方法。常用的冗余技术主要有指令冗余技术、数据和程序冗余技术。 7.3.3 软件陷阱技术

当乱飞程序进入非程序区或表格区时,采用冗余指令使程序入轨条件便不满足,此时可设定软件陷阱。

软件陷阱,就是用引导指令强行将捕获到的乱飞程序引向复位入口地址0000H,在此处将程序转向专门对程序出错进行处理的程序,使程序纳入正轨。 7.3.4 “看门狗”技术

计算机受到干扰而失控,引起程序乱飞,也可能使程序陷入“死循环”。当指令冗余技术、软件陷阱技术不能使失控的程序摆脱“死循环”的困境时,通常采用程序监视技术,又称“看门狗”技术,使失控的程序摆脱“死循环”。

“看门狗”技术既可由硬件实现,也可由软件实现,还可由两者结合实现。

推荐第8篇:医学遗传学辅导教案

第十一章

单基因遗传病

 教学要求

1.掌握分子病和先天性代谢缺陷病的概念; 2.掌握主要的分子病的分子机制; 3.掌握先天性代谢缺陷病的特征; 4.熟悉先天性代谢缺陷病的分子机制;

5.了解主要的分子病和先天性代谢缺陷病的临床症状;

 教学手段

多媒体课件

 教学课时

4学时

 教学内容

一.分子病 分子病概念

(一)血红蛋白病

血红蛋白病的分类

1.血红蛋白分子的结构及发育变化

(1)血红蛋白分子的结构 (2)珠蛋白基因及其表达特点 2.珠蛋白基因突变的类型

3.常见的血红蛋白病(重点、难点)

①镰状细胞贫血症 ②血红蛋白M病 ③地中海贫血

α地中海贫血 β地中海贫血

(二)血浆蛋白病

1.血友病A (重点) 2.血友病B (重点) 3.血友病C 4.血管性假性血友病

(三)结构蛋白缺陷病(重点)

1.胶原蛋白病 (1)成骨不全

(2)Ehlers-Danlos综合征DMD BMD 3.肌营养不良 (四)受体蛋白病 受体病

家族性高胆固醇血症 (五)膜转运蛋白病

1. 囊性纤维样变 2.胱氨酸尿症

2. 先天性葡萄糖、半乳糖吸收不良症 多媒体中的照片、教学录像展示各种分子病病例 二.先天性代谢病

先天性代谢缺陷概念

(一)先天性代谢缺陷的共同规律(重点)

1.酶缺陷与酶活性。 2.底物堆积和产物缺乏 3.底物分子的大小与性质 4.临床表型与酶缺陷的关系

(二)糖代谢缺陷病 1.半乳糖血症

2.葡糖-6-磷酸脱氢酶缺乏症 3.糖原累积症 4.粘多糖累积症

(三)氨基酸代谢缺陷(重点)

1.苯丙酮尿症 2.白化病 3.尿黑酸症

(四)核酸代谢缺陷

1.次黄嘌呤鸟嘌呤磷酸核糖转移酶缺陷症 2.着色性干皮病

(五)α1抗胰蛋白酶缺乏症

多媒体中的照片、教学录像展示各种先天性代谢病病例

推荐第9篇:医学遗传学辅导教案

第2章 传感器的基本概念

 教学要求

1.熟悉传感器的定义与分类。 2.掌握传感器基本特性。

3.了解传感器的应用领域及发展。

 教学手段

多媒体课件

传感器演示  教学重点

1.传感器的分类及特性 2.传感器的应用领域  教学课时

4学时  教学内容

2.1 传感器的定义与组成

传感器(狭义):能感应被测量的变化并将其转换为其他物理量变化的器件.传感器(广义):是信号检出器件和信号处理部分的总称.组成:一般由敏感元件、转换元件和信号调理电路组成.2.2 传感器的分类

按测量的性质划分:位移传感器,压力传感器,温度传感器等.按工作的原理划分:电阻应变式,电感式,电容式,压电式,磁电式传感器等.按测量的转换特征划分:结构型传感器和物性型传感器.按能量传递的方式划分:能量控制型传感器和能量转换型传感器.2.3 传感器的基本特性

2.3.1 传感器的静态特性

1.线性度:指输出量与输入量之间的实际关系曲线偏离直线的程度,又叫非线性误差.2.灵敏度:指传感器的输出量增量与引起输出量增量的输入量的比值.3.迟滞:指传感器在正向行程和反向行程期间,输出-输入曲线不重合的现象.4.重复性:指传感器在输入量按同一方向做全量程多次测试时,所得特性曲线不一致性的程度.5.分辨率:指传感器在规定测量范围内所能检测输入量的最小变化量.6.稳定性:指传感器在室温条件下,经过相当长的时间间隔,传感器的输出与起始标定时的输出之间的差异.7.漂移:指传感器在外界的干扰下,输出量发生与输入量无关的变化,包括零点漂移和灵敏度漂移等.2.3.2 传感器的动态特性

1.瞬态响应法 2.频率响应法

2.4 传感器的应用领域及其发展 2.4.1 传感器的应用领域

1.生产过程的测量与控制 2.安全报警与环境保护 3.自动化设备和机器人 4.交通运输和资源探测 5.医疗卫生和家用电器 2.4.2 传感器的发展

1.微型传感器(Micro sensor) ○ 2.智能传感器(Smart sensor) 3.多功能传感器(Multifunction sensor) 2.5 传感器的正确选用

1.与测量条件有关的因素 2.与使用条件有关的因素 3.与传感器有关的技术指标

此外,还要考虑购买和维修等因素.作业:P23:

3、4

推荐第10篇:医学遗传学辅导教案

第6章 传感器与检测系统的信号处理技术

 教学要求

1.掌握直流电桥和交流电桥电路。 2.掌握各种放大器的结构及特点。 3.掌握信号的变换形式。  教学手段

多媒体课件

 教学重点

1.直流电桥、交流电桥的平衡条件

2.各种放大器的特点及应用

 教学课时

5学时  教学内容: 6.1.电桥电路 6.1.1直流电桥

直流电桥平衡条件:相邻两臂电阻的比值应相等,或相对两臂电阻的乘积应相等。 按电阻应变片接入电桥电路的接法,电桥可分为: 1.单臂工作电桥: 2.等臂双臂工作电桥 3.等臂全桥工作电桥

三种工作方式中,全桥四臂工作方式的灵敏度最高,双臂半桥次之,单臂半桥灵敏度最低。采用全桥(或双臂半桥)还能实现温度自补偿。

IoB R1R2£«

CRLUoA

£

R3R4

D

E 直流电桥 6.1.2交流电桥

引入原因:由于应变电桥输出电压很小,一般都要加放大器,而直流放大器易于产生零漂,因此应变电桥多采用交流电桥。

由于供桥电源为交流电源,引线分布电容使得二桥臂应变片呈现复阻抗特性,即相当于两只应变片各并联了一个电容。

C1C2ZZ12

R2R1 UoUo

Z3Z4R3 R4

UU ¡«¡«

(a)(b)

交流电桥

○ 6.2信号的放大与隔离

从传感器来的信号有许多是毫伏级的弱信号,须经放大才能进行A/D转换。系统对放大器的主要要求是:精度高、温度漂移小、共模抑制比高、频带宽至直流。

目前常用的放大器有以下几种型式:一种是高精度、低漂移的双极型放大器;另一种为隔离放大器,它带有光电隔离或变压器隔离的低漂移信号放大器,以及一个高隔离的DC/DC电源。

6.2.1运算放大器

1.反相放大器 2.同相放大器 6.2.2测量放大器

1.测量放大器的结构与特性

具有高共模抑制比、高速度、高精度、高稳定性、高输入阻抗、低输出阻抗、低噪声的特点。

2.测量放大器集成电路(自学) 3.测量放大器的使用

(1)差动输入端的连接:要注意为偏置电流提供回路。

(2)护卫端的连接:电缆的屏蔽层应连接测量放大器的护卫端。 (3)R端、S端的连接:R端接电源地,S端接输出。 6.2.3程控测量放大器PGA 程控测量放大器PGA是通用性很强的放大器,放大倍数可通过编程进行控制。 1.浮点放大器型 2.增益电阻切换型 6.2.4 隔离放大器

1.AD277型双隔离式放大器 2.AD210型三隔离式放大器 6.3信号的变换

6.3.1 电压与电流转换

1.电压转换为电流:以A/D693为例

2.电流转换为电压:电阻式电流/电压转换电路 6.3.2 电压与频率的相互转换

实现电压/频率转换的方法很多,主要有积分复原型和电荷平衡型。 V/F转换器常用集成芯片主要有VFC32和LM31系列。 作业:P135

1、6

第11篇:医学遗传学辅导教案

第十五章 免疫缺陷

 教学要求

1.掌握ABO红细胞遗传系统和Rh遗传系统的组成,新生儿溶血症发病的机制。 2.掌握HLA系统的结构和组成。

3.了解HLA与疾病关联,HLA抗原与器官移植等问题。

4.了解遗传性免疫缺陷病、遗传性自身免疫性疾病的遗传基础。

 教学手段

多媒体课件

 教学课时

2学时

 教学内容

一、新生儿溶血症与红细胞抗原遗传

(一)新生儿溶血症(重点)

(二)血型(红细胞抗原)的遗传 1.ABO血型系统 2.Rh血型血型系统

着重介绍新生儿溶血症发病的机制。

二、HLA系统与医学

(一)HLA系统的结构和组成(重点)

1.I类基因及编码蛋白 2.II类基因及编码蛋白 3.III类基因及编码蛋白

(二)HLA与疾病的关联(重点)

(三)HLA抗原与器官移植(重点)

(四)HLA的DNA分型

着重介绍HLA系统与医学的关系。

三、遗传性免疫缺陷病(重点)

(一)遗传性无丙种球蛋白血症 1.临床特征 2.遗传学与发病机制

(二)严重联合免疫缺陷病 1.临床特征 2.遗传学与发病机制

(三)腺苷脱氨酶缺乏症 1.临床特征 2.遗传学与发病机制

四、遗传性自身免疫病(难点)

遗传性自身免疫病具有几个特点①有自身反应性免疫细胞存在;②可以分离到特异的自身抗原;③用该自身抗原免疫动物,能获得自身抗体,或诱导出特异的自身反应性细胞;④用自身抗原免疫动物可以诱导出类似人类自身免疫病的症状;⑤具有遗传基础。

(一)自身免疫病的分类 (二)自身免疫病的遗传基础 (三)几种常见自身免疫病

1.强直性脊椎炎

2.胰岛素依赖性糖尿病)

3.类风湿性关节炎

4.系统性红斑狼疮

(四)自身免疫病的诊疗原则

1.诊断原则

2.治疗原则

第12篇:遗传学教案大纲 重点!!!

第一章 绪论

一、遗传学的定义与研究内容 1. 定义:

遗传与变异 遗传:亲代与子代间相似的现象

变异:亲代与子代间不同的现象 {遗传物质的改变、环境所引起的} 拉马克,达尔文―――下课铃→吃饭

2. 研究内容

遗传与变异的主要内容

从早期研究简单的、可见的单个性状――遗传物质染色体――精确定位于DNA分子上――研究DNA分子的的精细结构 大:群体遗传学

小:分子水平教材P3

二、发展简史

1. 泛生论:精液是在全身各个部分中形成并通过体液流动汇集到阴茎中,“获得性状”, 哈维—血液循环系统 2. 魏斯曼: 种质学说

种质与体质相分离,仅有种质是可以遗传下去的 剪去小鼠尾巴(无获得性体质遗传),后代仍有尾巴

3. 孟德尔:1865年发现,奥地利修道士,8年实验 再发现过程:1900年《德国植物学会杂志》18卷 4. 遗传的染色体学说

5. 1909年:约翰逊,基因一词由丹麦Johannsen→希腊文“给予生命” 并不表示物质

不说明是实体 6. 1910年:摩尔根,白眼雄蝇 定位到染色体上;

1926年《基因论》并指出基因代表一个有机的化学实体。 7. 1944年:Avery , 肺炎球菌转化实验 1952年T2噬菌体研究 Hershey 冷泉港 Chase 8. 1953年:Watson(遗传) Crick Nature 1953年4月25日〈171卷737-738〉 9.1972年:Berg→体外重组 9. 人类基因组计划

开始于90年代初,1983年酝酿,1985年正式提出,90年代初执行

10. 克隆羊:多莉→(已分化细胞)

第二章.孟德尔式遗传分析

一、孟德尔遗传研究的特点 1. 材料选取科学

豌豆:⑴有稳定的可区分的性状。⑵是严格自花授粉植物,各部分结构较大,易操作。⑶子代数目多,且臵于豆荚中,易于收集、计算统计。⑷种植容易,生长周期短 2. 设计合理。从单个性状出发

3. 分析方法科学、先进。(统计学统计)

二、孟德尔实验相关的各项名词 P10 (课本)

三、第一定律(分离定律)

P:红 × 白 (基因型?) 假设:P11 CC → cc 回交:杂交后代与亲本交配

F1 红 测交:杂交后代与隐性亲本

→ 假设:⑴颗粒式遗传

F2 705红 224白 ⑵一个个体

内有两份遗传物质

→ → ⑶两份遗传

物质进入生殖细

F3 红 白 全白 ⑷因子间存

在显隐性关系

1/3 2/3 全红 出现3:1分离

四、第二定律(自由定律)

P:黄色子叶,圆粒。 绿色子叶,皱缩

YYRR yyrr F1 黄满

黄满 黄皱 绿满 绿皱 →黄:绿=3:1 满:皱=3:1 315 101 108 32 棋盘法: 一对 Rr 另一对 Yy 1/4RR 1/16RRYY

2/16RRYy 1/16RRyy 2/4Rr 2/16RrYY 4/16RrYy 2/16Rryy 1/4rr 1/16rrYY 2/16rrYy 1/16rryy 孟德尔式遗传的一个关键与核心在于:单因子控制性状

五、适合度检验〈检验一个实验结果是否符合预定假设〉 1.概率的加法率与乘法率

两个或多个独立事件同时发生的概率等于他们单独发生概率的乘积

两个非此即彼事件随机发生其中一个的概率等于它们单独发生时的概率相加

例:一个位与X染色体上的显性致病基因在群体中出现的概率是百分之五,问男性与女性中得病的概率分别为多少?

女性中:5%+5%=10%(错误) 5%*95%+5%*5%+95%*5%(正确)

2.二项式展开法

⑴Aa×aa的N个子代理论分布比数 Aa×aa → Aa aa 1 : 1 如果以上杂交有三个子代: 3个子代都是显性。 1/8 2子代是显性,一个隐性 3/8 2个子代是隐性,一个显性 3/8 3个子代都是隐性 1/8 以上计算结果符合二项式展开项:(P+Q) 各项分别为:CnS *P *QS(n-s)

n

如果总共有二十个子代,其中14个显性,6个隐性的概率:14:6=0.037 而10个显性的与10个阴性的是表面上最符合理论比数的情况,但其正实发生的概率实际上很低,如子代个数更多时该比例更低

⑵适合度应当考虑误差和它一样大+比它大的那一部分事件发生的概率

因为只有将所有事件发生的概率相加为1 通常该比例被定位为5% 14:6加所有该加项: 0.116 3. 卡平方检验

X[]=Σ(实得数-预期数)/预期数

分析卡平方值大小与准确度的关系:数值越大,准确度越小 自由度:项数减1,(有一项预期数小于5时不宜使用卡平方检验)

上述检验可为:X=(14-10)/10 + (6-10)/10 = 3.20 自由度为1:卡平方5%中对应:3.84 卡平方1%中对应:6.64 结论是:差异不显著,不能排除理论假设

香豌豆花冠中有紫色和红色的,花粉有长形和圆形

紫圆×红长 F1 紫长 →

F2.紫长:226 紫圆:95 红长:97 红圆:1 共419 419×9/16=235.69

419×3/16=78.56

419×3/16=78.56 419×1/16=26.19 X3=32.40 X3=11.35时 P=0.01 <第一次明显例

222

2

22

外>

六、遗传的染色体学说 1.染色质与染色体

①染色质:存在于真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。

由DNA+蛋白质+少量RNA组成

常染色质:是构成染色体DNA的主体,染色较浅,而着色均匀,在细胞分裂间期常染色质呈高度分散状态,伸展而折叠疏松。

异染色质:间期时仍保持螺旋化状态,染色较深,因而在光学显微镜下可以鉴别。大多数生物的异染色质集中分布于染色体的着丝粒周围,另一些生物分布在染色体顶端。 ②染色体:是染色质在细胞分裂过程中经过紧密缠绕,折叠,凝缩,精巧包装而成的,是具有固定形态的遗传物质存在形式。

③染色体的形态 染色体的大X形

长臂、短臂、随体、臂比

中部着丝粒染色体、近端部着丝粒染色体、端部着丝粒染色体

2.染色体周期

细:开始收缩

偶:开始连会,同源染色体的两个成员侧向连接,像拉链一样地并排配对称为联会,终止于联会复合体:(SC):两侧体形成中间体。①稳定同源染色体距离为100nm。②在适当条件下激活染色体的交换。 粗:可能出现交换。 双:交叉端化。 终:

思考题: 摩尔根两大定律发生于哪一个时期中? 七.基因间的作用以及和环境因素的相互关系 1.环境对表型的影响 ①表型模写

环境因素所诱导的表型类似于基因突变所产生的表型,这种现象称为表型模写

a:VgVg 残翅果蝇 高温处理果蝇幼虫(31℃)翅膀接近野生型

b:人的隐性遗传病短肢畸形:臂和脚部分缺失

妊娠早期3~5周服用“反应停”

②外显率:一定基因型的个体在特定环境中形成预期表型的比率〈与环境有关〉

隔代遗传〈显性遗传病〉

③表现度:由同一基因型产生的不同程度的表型效应 外显率是指一个基因效果的表达或不表达,表达的程度称表现度

人类遗传病(舞蹈病)有不同的外显率和表现程度。(头痛,胸部和身体不停地颤动,神经系统退化,丧失体力、智力、甚至死亡)

出现症状的时间可以从0~4岁直到65岁以上,发病率最高可能35~49岁之间,不同年龄出现对患者生命影响不同 果蝇细眼:只有针眼大小 2. 等位基因的相互作用 ①不完全显性

紫茉莉 红花×白花(CC×cc) F1 粉红色→F2 分离 人的天然卷发(WW),W十分卷曲,直发 ②并显性

M N 血型(LL):红细胞上有抗原,血清中无天然抗体 ③镶嵌显性

异色瓢虫 鞘翅: 底色黄色.上黑色斑花 M

N

S(前缘黑色) S(后缘黑色) ④复等位基因

ABO血型.I、I、i O型中有H抗原

A、B、O.输血原则:受血者体内不能有与输血者的红细胞抗原作用的抗体

AB型万能受血,O型万能供血

孟买型:H抗原的有无,如无H基因,则一定为O型 Rh血型:(R.r)

Rh抗原:粘多糖,通常Rh阴性个体不含Rh抗体 R、r 中国人多数为阳性

Rh阴性个体多次输入Rh阳性个体血液后诱导产生抗体 Rh阴性母亲生出第一胎Rh阳性子女无影响,第二胎也为Rh阳性时,新生儿得溶血症,导致死亡。(全身浮肿,有重症黄疽和贫血,肝、脾中有活动旺盛的造血巢,血液中有很多有核红细胞)

比率不高的原因 a:第一胎时必须有足够Rh阳性血进入母体中

b:进入母体中的血液(胎儿第一胎时的Rh

阳性)可能为其他血型迅速凝掉,不能诱导产生RH抗体。

A

BAUE

⑤致死基因

1904年法国遗传学家发现,小鼠黄色皮毛的品种不能真实遗传

黄鼠×黑鼠→黄2378 黑2389 黄色为显性 黄鼠×黄鼠→黄2396 黑 1235 数目有明显的减少 一基因多效现象 黄色为A 有隐性致死效应 黑色为a a:隐性致死 在纯合时致死

b:显性致死 如何保存? 外显率、表现度 c:条件致死 在一定条件下死亡,可用于选择 3.非等位基因相互作用 (多基因控制一个性状) 两对基因间的相互作用 ① 基因互作

两对基因共同控制一个性状.当它们单独显性存在时,分别使性状表现一种表型,全部存在时使性状表现另一种表型。而当两对基因为隐性纯合时表现第四种表型

RRpp×rrPP 一种无毒蛇皮颜色(黑色在橘红色两边)

鸡冠形状: 玫瑰 豆冠 ooBB OObb → 黑 橘红色 RrPp → 核桃冠 OoBb → 野生型

Y

RxPx RxPP rrPx rrpp →

9 : 3 : 3 : 1 9: 3 : 3 : 1 核桃 玫瑰 豆冠 单冠 野生 黑色 橘红色 白色

② 互补基因

若干非等位基因同时显性存在表现某一表型,其中少任何一个会表现另一个表型

牧草,白花三叶草,含氰(HCN)

hhDD × HHdd 不含氰 不含氰 产氰糖苷酶 氰酸酶

→ 前体物—-→含氰糖苷——→氰 HhDd ↑ ↑ 含氰 基因D 基因H →

9 : 7 含氰 不含氰

③ 抑制基因

一对基因抑制另一对基因表现出它的显性性状,当第一对基因显性存在时,表型是第二对基因的隐性表型。

家蚕茧的颜色:欧洲白×黄→F1全白→F2 白:黄=13:3 显性白蚕 × 黄蚕 IIyy iiYY →

I iYy(全白)

13: 3(白:黄)

④ 上位基因

一对基因掩盖另一对基因的效应,起掩盖作用的叫上位基因。 a:显性上位

两对基因共同控制一个性状,第一对基因为显性时使性状表现为一种独特的表型,而当其为隐性纯合时该性状的表型由另一对基因的显隐性决定

小麦黑颖与黄颖

黑 黄 BByy bbYY → BbYy 黑

黑 黄 白

12: 3 : 1 黑色素比黄色素颜色深 b:隐性上位

两对基因共同控制一个性状,第一对基因为显性时使性状表现为一种独特的表型,而当其为隐性纯合时该性状的表型由另一对基因的显隐性决定

家兔毛色(灰 CCDD 白 ccdd)

CCDD(灰):ccdd(白) → 灰→

9: 3: 4 灰 黑 白

产生色素与分布色素: C 控制黑色素 D 控制分布

〈隐性纯合时上位,显性由另一基因决定〉

④ 叠加效应

多对基因共同使性状向同一表型进发,除非全为隐性则表现另一表型。

荠菜的蒴果三角形与卵形

三角形 卵形 A1A1A2A2 a1a1a2a2 → A1a1A2a2 三角形

三角形:卵形

15 : 1(有一大写即为三角形)

多基因控制影响同一性状

第三章 连锁遗传分析与染色体作图

一、性染色体与性别决定

1、性染色体与性别决定

a:性别形成的过程 哺乳动物,染色体决定性腺分化 b:人类的性染色体 X大,Y小,但Y的作用极强 c:性别决定方式;〈1〉XY方式(教材P43) 同配雌 果蝇中

XO为雄性,但常为不育,Y不如在人中那样重要(教材P56)

〈2〉ZW方式: ZZ ZW 同配雄。

〈3〉XO方式: XX雌 XO雄。

2、其它类型性别决定:

a:蜂:雄峰--不受精 N=18:交配后死亡

雌蜂2N=36(插入)

单级纺锤丝→向一侧运动

b:后益: 环境: 雌虫大,雄虫位与雌虫子宫中

幼虫中性→海底雌虫。某种因素在雌虫口吻上→雄虫→脱离为间性 c:基因的性别决定

玉米: ba纯合时无雌株 Ts纯合时,花不产生花粉或雌花序

babatsts × babaTsTs→babatsts×babaTsts→雌:雄=1 :1 (雌花上有卵细胞)(雄)

3、人类的性别畸形

a:XXY→外貌男性。身长较高。睾丸发育不全。女性式乳房。智力较差,无生育能力

b:XO→外貌女性。2n=45 身长较矮卵巢缺失。无生育能力。往往有先天性心脏病

c:XYY→外貌男性,智力较差,但也有较高的,有生育能力,据说有反社会行为

二、伴性遗传

1、果蝇的伴性遗传

a:摩尔根的白眼果蝇实验(X、X) 1909年 (白眼雄果蝇) 摩尔根的3个实验

W

+

红眼♀×白眼♂

F1 红眼雌雄:1237 F2 红眼♀ 2459 红眼♂ 1011 白眼♂ 782 结论:①红眼的显性 白眼的隐性② 白眼均出现在雄性中,有待研究

F1中 红眼♀× 白眼♂

一定为(W+) 一定为隐性纯合

红 红 白 白

♀ ♂ ♀ ♂ 129 132 88 86 结论:原始的白眼胸性为隐性纯合

测交中 白眼♀ × 纯种红

一定为WW ++ ×

鸿雁♀ (白眼♂) ?? ×

红 红 白 白 1 1 1 1 说明:如果白眼为纯合的,那如果雄性中仅一个遗传因子即可解释

b:遗传的染色体学说的直接证据

X/A=1 雌 X/A=0.5 雄 X/A=0.5-1 表现为间性 X/A不在此之间死亡 Y 上有精子形成必须的基因 摩尔根的学生Bridges (1916年提出)

白眼♀ 红眼♂

×

( 红♀ 白♂ 红眼雄 白眼雌 (正常) 不生育 可生育 初级例外子代 1/2000 次级例外比率加大

偏母 白♀ × 红 ♂ 红雌 白雄 红雄 白雌

96%: 4% 次级例外子代

解释: 第一次杂交使,雌果蝇的减数分裂不正常

2、人的拌性遗传

人的性染色体分为配对区域与非配对区域:X Y〈X染色体长臂远段与Y染色体长臂是同源的 非配对区域基因表现为 X。Y 连锁

a: 伴X显性→女性高于男性 多为杂合子发病 5%×5%≠ 2×5%(1-5%)

b: 伴 X隐性→男性明显高于女性 血友病(A。B) 两种凝血因子

X上两基因突变→基因治疗

c: 伴Y 遗传→限性遗传: 毛耳 : Y上最重要的是睾丸决定因子

3、鸡的伴性遗传

鸟类为 Z W ♀:Z W ♂ZZ 决定斑纹的显性基因B在Z上

芦花♀鸡 非芦花♂鸡 ZW × ZZ

X 芦花雄鸡 非芦花雌鸡

三、剂量补偿效应与X小体

1、剂量补偿效应

剂量补偿效应是指在XY性别决定机制的生物中,使性连锁基因在两种性别中有相等或近乎相当的有效剂量的遗传效应→酶与蛋白质大致相同

两中情况:X染色体转录速率不同:果蝇雌性中

B

bb

雌性细胞中一条X染色体是失活的:哺乳类和人类属于这种情况

2、X小体/Barr氏小体与Lyon假说 a: X小体,女性表皮口腔粘膜,羊水中 b:Lyon假说:教材:P57 失活随机 失活发生于5~6干细胞时→嵌合体

玳瑁猫:黑色,黄色斑快。黄色O 黑色o,多为雌猫 雄的玳瑁猫极少→XXY。有巴氏小体

对酶组成研究:X连锁的葡萄糖-6-磷酸脱氢酶:A.B带。单个细胞为一带,,而另一些细胞另一带。所有2倍体动物中,无论有多少X,仅保留一个X有活性 C:失活机制

并非其上所有基因失活,短臂远端,与Y配对区极其附近基因不失活

X染色体上有一特异失活中心(XIC)该段缺失则X不失活

目前已找到转录子:XI6T可能与失活有关。

四、连锁基因的交换与重组

1、连锁互换定律: Morgan 1912年

黑蝇:灰体(B)→黑体(b) 长翅(V)对残翅(v) 灰体长翅 × 黑体残翅

(BBVV)♂ (bbvv)♀

F1 BbVv (灰体长翅) →

F1与bbvv (♀)测交: 理论上应当有四种 灰体长翅:灰体残翅:黑体长翅:黑体残翅

1:1:1:1 但仅有灰体长翅:黑体残翅

(BbVv) (bbvv) 1:1 雄果蝇完全连锁 F1与bbvv(♂)回交

灰体长翅:灰体残翅:黑体长翅:黑体残翅 0.42 0.08 0.08 0.42 非 1:1:1:1 不完全连锁

处在同一染色体上的两个或两个以上基因遗传时,联合在一起的频率大于重新组合的频率

2、重组频率的测定

重组频率(RF)=重组型数目/(原组合数目+重组合数目) 玉米糊粉层有色(C)对糊粉层无色(c).饱满种子(Sh)对凹陷种子(sh) CSh/csh×csh/ csh →

CcShsh×csh/csh →

CSH/csh

Csh/csh

cSh/csh csh/csh 有满

有凹

无满 无凹

4032

149

152 4035

RF=301/8368=3.6%

3、交换: a:交换发生的时期

双线期交叉→同源染色体的非姊妹染色单体之间

交换发生的位臵与重组

交换与自由组合可以改变一个物种中基因的组合情况。 b:影响交换的因素

许多因素可影响交换:温度、性别、射线、化学物质等。 22℃下果蝇交换频率最低,某些化学物质加大重组,着丝粒位臵附近基因重组率下降,凡以性染色体决定性别的生物,异配性别的个体中一般总是较少发生交换

雄果蝇与雌家蚕完全连锁。

c:最大交换值为50%

4、基因定位与染色体作图 a:染色体图

染色体图/基因连锁图/遗传图 依据基因之间的交换值(或重组值),确定连锁基因在染色体上的相对位臵而绘制的一种简单线形示意图(交换值≠重组值)

基因定位:根据重组值确定不同基因在染色体上的相对位臵和排列顺序的过程

图距:两个基因在染色体图上距离的数量单位 1%重组值:1CM(厘摩) 1CM大约1000KB b:三点侧交

基因在染色体上以线形排列,三次实验测定三个基因关系

〈1〉 一次三点侧交实验是在同一环境下进行,而三次二点杂交无法以相同环境进行 〈2〉 通过三点实验可测得双交换值。 三点测交:

果蝇中棘眼(ec)截翅(Ct)横脉缺失(cv) 3个X隐性突变

如对3基因杂合体ecct+/++cv与ecctcv/ecctcv杂交。

⑴、看A、B、C三基因交换时的情况:(减裂时杂合体的基因交换)

① A B间交叉互换 ② B C间交叉互换

③ AB BC同时互换(如无干涉,应为AB×BC) ④ 亲组合

所以共应有8种表型,如AB BC间不能同时,则6种表型。

⑵、教材:P69 8种数据:发生数少的双交换

计算:ct-CV重组:8.4 ec-cv重组:10.28 % 去第三个

ec-ct重组:18.4

双交换带来的交换率≠重组率

(18.6-18.4)×0.2 %≠10.2 %×8.4 %

c:干涉与并发

第一次交换发生后,引起邻近发生第二次交叉机会降低称为正干涉

第一次交换发生后,引起邻近发生第二次交叉机会增加称为负干涉

染色体干涉是指两条同源染色体的4条染色体参与多线交换的机会非随机

并发系数C=观察到的双交换率/两个单交换率的乘积 干涉I=1-C 正:提高四线双交换(未出现。重组值西小于50%) 负;提高二线(少数) d:作图函数;

在染色体图上可出现>50的图距,但重组值不会大于50%,这是两个基因间发生多次交换。重组值上升时,意味距离更远,发生偶次交换的概率也上升,从而使其描述图距的准确率也下降,重组率小于交换率

可根据自己的经验建立作图函数计算重组率与交换值之

间的关系,也可用作图函数(对于基因定位已经很细的染色体无须以作图函数纠正,而新物种需要)

作图函数要求: ①最大重组值不超过50%。②对较小的重组率大致上要是加性的

第四章 基因概念的演变

1、液态遗传物质

2、遗传因子的提出

3、1909年约翰逊:基因;Gene 丹麦

4、遗传的染色体学说

5、DNA是遗传物质→Avery.噬菌体研究

6、20世纪40年代G.W.Beadle和G.L.Tatum 提出一基因一酶学说→蛋白质与酶关系→一基因一多肽

7、1953年 Watson,Crick

8、1957年 S.Benzer:T4噬菌体,顺反子→突变重组,功能

顺式:两个突变位于同一染色体上

同一顺反子→a,b 顺式,野生 a,b 反式,突变 不同顺反子→a,b 顺式,野生 a,b 反式,野生

9、1961年:F.Jacob和J.Monod 操纵子学说(操纵元学说)

10、20世纪50年代(1951年)1983年获奖,Mcclintock ①插入序列:分子量小于2000bp、IS因子/IS序列 两侧有IR序列,长度未必相同 插入后两侧形成正向重复序列←转座酶 ②转座子:较大,往往带有抗菌素抗性基因 a:复合型:IS+抗菌素抗性片段+IS b:Tn3系;长度约5000bp,末端有一对38bp的IR序列。一个是抗性基因,二个是与转座有关的基因

③真核生物的转座子:〈1〉如细菌IR:正向重复、Ac/Ds. 〈2〉逆转录转座子:编码的多肽链具有反转录酶活性

④转座方式:复制,剪切

⑤玉米的Ac-Ds:Ac长4563 bp,转录一个mRNA.成熟后

长3500 bp。含807个密码子,4个内元,5个外显子。Ac两侧IR为11bp。正向重复序列为8bp。 Ac自主,Ds非自主

11、20世纪70年代后期:真核生物的断裂基因。HnRNA:核内不均一RNA 高等真核生物的外显子,内含子

exon→外元 intron→内元 内元突变远远大于外元 可变剪接:不同剪接方式的内元与外元不同←内元与外元的可变性,相对性

12、重叠基因:

φx174:对其进行全基因组测序,发现其上所有碱基编码蛋白质仍不够

基因B和K重叠于A之内→使用不同阅读框

单链DNA有5387个核苷酸→1795个 aa×110→197000 实际为:262000 1977年 Sanger 在真核生物中:存在一些特殊基因,一个基因的编码序列寓居于别的基因的间隔于序列上,如:果蝇的UART基因,但为另一条链转录;在人中:存在反义链上转录的重叠基因

13、假基因

1977年G.Jacq等人根据对5SrRNA基因簇的研究提出 一种核苷酸序列同其相应的正常功能基因基本相同,但却不能产生功能蛋白质的失活基因。

① 重复的假基因,与真基因连锁,而且同其编码区及侧翼序列的DNA具有很高的同源性 多拷贝的基因失活→但可生存

② 加工的假基因:无启动子和间隔子,可能是逆转的产物

第五章 噬菌体

一、关于病毒(P119)

不属于原、真核生物,无核糖体,自身不代谢,可繁殖,体外可生存、动物,植物病毒,细菌、真菌、藻类→噬菌。 病毒=外壳+核酸,植物病毒中RNA病毒,一般其外壳蛋白

均可自组装。

二、噬菌体的繁殖 (教材P120)

1、烈性噬菌体 a:概念

b:基因表达过程:早前期基因:启动自身基因表达,抑制寄主DNA表达

晚前期基因:核酸酶与DNA复制有关的酶

晚期基因:控制形态发生过程及结构蛋白编码基因

2、温和型噬菌体: a:概念

b:裂解与溶源周期→原噬菌体,溶源性细菌,原噬菌体(整合入宿主DNA)

特点〈1〉免疫性〈2〉可诱导性(自发万分之一),紫外线,化学物质。

三、λ噬菌体〈免疫性,原理〉 教材P132 λ噬菌体有一个蛋白质外壳,它的基因组由双链线性DNA分子组成。基因组约有49000个核苷酸对的线性分子,两个5端各有12个碱基的粘性末端,并具有回文对称特点,在,

大肠杆菌体内可形成环行分子 基因组成: P132 CI蛋白质为阻碍物,阻止左,右两启动子表达:复制被抑制

第六章 细菌的遗传分析

一、细菌是遗传学研究的好材料

1.有易于观察的形态 2.子代多 3.世代短 4.饲养容易

二.大肠杆菌

1.形态,杆状菌,其大小为0.5~1×2um,兼性厌气菌,革兰氏阴性

遗传物质主要是环行DNA,还有一些质粒DNA→对数生长期中有数多DNA。E.loli的基因组的总长度为:4。6×10bp→DNA有80%,其中多为RNA与蛋白质,由RNA酶处理后松

散,以DNA酶处理则链散开,而脚手架不散开 无真正的染色体,但常称为大肠杆菌的染色体 2.大肠杆菌的突变型及其筛选

①合成代谢缺陷型→营养缺陷型,培养基中没有该物质则不能生存

②分解代谢功能突变→条件致死,如乳糖操纵元缺陷的不提供葡萄糖给乳糖则死亡

③抗性突变型→有抗性的在加之的培养基中可以生存 影印法培养细菌→印到基本培养基上

三、质粒

细菌质粒是存在于细胞质中的一类独立于染色体的自主复制的遗传成分,仅发现少量线性质粒,但已知的绝大多数的质粒都是由环形双链的DNA组成的复制子,仅酵母的杀伤质粒是一种RNA质粒

超螺旋结构(cccDNA)开环DNA(ocDNA)线性DNA(LDNA) 是独立复制,独立遗传的遗传物质,游离于主DNA之外:经常携带抗性基因,进入其他细胞 松弛型质粒;10~60份/C 严紧型质粒:1~3份/C

四、转化与转导

1. F因子、Hfr、F因子

a: F因子:F因子含3个区域〈1〉原点(转移起点)〈2〉致育基因:编码产物形成表面结构〈3〉配对区:与细菌染色体相应区域配对 F可高频率使F变为F

b: Hfr高频重组,引起重组,最后很少使F变为F c: F因子 性导

d: 细菌重组的特点:〈1〉只有偶数次交换才能产生平衡的重组子

〈2〉相反的重组子不出现

2、中断重组作图

按出现的时间,确定进入的顺序,得到基因的排列顺序 一分钟时间约为20%重组值。以时间计算则不准确→直接计算重组值。

重组值不高时,重组值与时间相同。

3、转导:以噬菌体为媒介,将细菌的小片段染色体或基因从一个细菌转移到另一个细菌的过程

外壳蛋白中包含有核酸可转入E.coli中

-++-+

第七章 真核生物的遗传分析

一、真核生物的C值与C值矛盾

二、真核生物DNA序列的重复性

1、DNA序列的重复性〈分子遗传.南京大学.P42〉 单拷贝序列(一个拷贝)

轻度重复序列(2~10拷贝,有时会有微小的区别) 中度重复序列:10~几百个拷贝,一般只是小编码的序列。据认为在基因调中起重要的作用,包括开启或关闭基因的活性,促进或终止转录,DNA复制的开始,其转录产物参与mRNA的处理等

这样重复序列的平均长度大约300个bp常有数千种像这样的重复序列,每一种平均重复数百次,它们一起构成了序列家族

人类的ALU序列家族:其成员众多,大约有30万个,每个长度约300bp,在其第170位臵附近都有AUCT这样的序列,可为限制性内切酶ALU切割,ALU家族的各个成员之间有很

大的同源性,个别成员与其一致序列之间有87%的同源性 高度重复序列:几百到几百万个拷贝,在高度重复序列中有些是重复数百次的基因,如rRNA基因与某些tRNA基因,大多数是重复程度更高的序列。

T.G多→重链。A.C→轻链→两条链不对称 卫星DNA:数百个bp的片段,A*T碱基密度小

三、真核生物DNA的基因家族

1、基因家族:真核生物的基因组中有许多来源相同,结构类似,功能相关的基因,这样的一组基因称为一个基因家族。可以紧密集中于一处,中间常以中度重复序列间隔,也可以分散于同一或不同一染色体上 简单的基因家族:5SrRNA,串联重复排列

复杂的多基因家族:可以有几个相关家族构成,海胆、果蝇的5个组蛋白基因在一起为一独立单位后重复

2、基因簇;一个基因家族的成员紧密连锁成簇排列在某一染色体上

四、真核生物的染色体组成

核小体:H2A H2B H3 H4 各两分子组成八聚体,DNA缠绕1.75圈成核小体。70nm→10nm在H1存在下核小体螺旋化6个核小体→外径3nm 内径10nm 螺距11中空管→6倍。螺

旋成直径为0.4um的超螺线管→40倍

再折叠压缩5倍成为2~10um的染色体→5倍。共7×6×40×5=8400倍

五、真核的基因丢失,扩增与重排

a) 基因丢失:通过丢失染色体,丢失某些基因而除去这些基因活性的现象称为基因丢失

某些原生动物,如线虫、昆虫、甲壳类动物在个体发育中,体细胞常丢失部分或整条染色体,在高等真核生物(动,植物)中,无这种现象 细胞的“全能性”

b) 基因扩增:指基因组内某些基因的拷贝数专一性大量增加的现象

非洲爪蟾体细胞中rDNA拷贝数约有500个,卵母细胞中达200万个

未扩增的成簇存在,中间以长短不一致的间隔区分开,扩增的为染色体外的环形DNA分子,同一环形内的间隔区一致,不同环内不同,表明同环内rDNA可能来自同一单位,基因组中不同单位的扩增效率是不同的,扩增在卵细胞成熟时停止,所合成的rDNA逐渐消失,分裂到几百个C时完全消失 3.基因重排

是指DNA分子核苷酸序列的重新排列,这些序列的重排不仅可形成新的基因,还可以调节基因的表达 啤酒酵母结合型、哺乳动物免疫球蛋白基因

六、持家基因与奢侈基因

持家基因:哺乳动物各类不同的细胞中均有相同的一组基因在表达,这些基因数目约在1万左右,由于它们的功能各个细胞都是必要的,因此称为持家基因。

奢侈基因:不同细胞类型中有种类不多只在该特定细胞类型中表达的基因

加性饱和实验:以鸡的非重复DNA序列分别与来自肝和输卵管中的mRNA杂交,能杂交的分别占DNA的A% B%,如它们完全不同,则加在一起能使(A+B)%DNA杂交,但实际表明小于(A+B)%,表明A+B-C为在两个中部表达的。A-(A+B-C)=C-B为在A中表达的。B-(A+B-C)=C-A为在B中表达的 奢侈基因在一个细胞中的数量一般不会大于持家基因,但总数应当大于持家基因

在一个细胞中,奢侈基因的产物通常远多于持家基因

七、遗传标记/DNA分子标记/分子标记

DNA上的一些特殊标记,用以识别区分不同DNA分子 DNA序列突变造成的DNA变异称为DNA多态性

1. RFLP:(restriction fragment length polymorphism) 限制性长度多态性 2.AFLP(扩增片段长度多态性) 3.RAPD(随机扩增长度多态性);每次加入随机引物的一种进行扫描

第八章 核外遗传

染色体以外的遗传因子所决定的遗传现象,在真核生物中称为核外遗传或细胞质遗传,高等真核生物中受精卵中的主要物质是由卵子提供的

一、母性影响

母体中的核基因的某些产物积累在卵细胞的细胞质中,使子代的表型不由自身的基因型决定而与母本的理论表型相同的遗传现象,称为母性影响

在高等真核生物中,受精卵细胞质中的主要物质是由卵子提供的

1. 短暂的母性影响:只影响子代的幼龄期

欧洲麦蛾野生型幼虫的皮中含有色素,成虫复眼为深褐色,是由犬尿氨酸所形成的,由A、a控制,(突变型表型:

成虫红色眼,幼虫不着色) AA×aa(无论亲本雌雄) →

Aa(均有色) Aa(父本)×aa(母本) Aa(母本)×aa(父本) → →

Aa aa (无区别) Aa(一半野生型) aa(另一半幼虫着色,成虫红色眼)

2. 永久的母性影响:影响子代终生

椎实螺单个饲养时进行行自体受精,群养时异体受精,螺壳右、左旋(D、d)

♀ 右旋(DD)×♂ 左旋(dd) ♂左旋(dd)×♀右旋 (DD)

→ → F1 右旋(Dd) F1 左旋(Dd) →自交 →自交

F2 ♀:右旋 DD Dd dd 无论与何种雄螺杂交 F2 ♀ 右旋 DD Dd dd 无论与何种雄螺杂交

1→2→1→ 1→2→1→

F3 右旋 左旋 左旋 F3 右旋 右旋 左旋

椎实螺的螺壳方向取决于第一次卵裂的方向,而第一次卵裂的纺锤体侧向方向即为螺壳方向

3. 母性影响的决定因素仍然是核基因,

个体的表型不是由自己的基因型决定的而是由它们母亲

的基因型决定的

二、细胞质遗传

1. 细胞质遗传的特点:由细胞质中的遗传物质决定的遗传称为细胞质遗传

它的特征是:①遗传方式是非孟德尔式的 ②F1通常只表现母方性状 ③杂交的后代一般不出现一定的比例的分离 2.线粒体遗传:线粒体是细胞的代谢中心之一,是产生呼吸酶和其他酶系的地方。呼吸酶的缺少,会影响细胞的生长。所以出现“生长迟缓”的突变。酵母菌的“小菌落”。(有氧情况下)。缺少细胞色素a,b 以及细胞色素c氧化酶 ①.酵母菌的“小菌落”突变

a:酵母菌的生殖方式:〈1〉无性生殖 〈2〉单倍体细胞融合形成二倍体合子,减裂成4个单倍体 b:小菌落突变的细胞质遗传

A(小菌落)×a(正常)→Aa→4个单倍体(理论上AA、aa)但全为正常 ②.线粒体基因组

a) mtDNA;裸露的双链DNA分子,主要呈环状,但也有线性分子,各个物种中mtDNA大小不一致,一般动物14~39kb,真菌:17~176kb为环状,四膜虫属,草履虫

为50k每一细胞有多个线粒体,每个线粒体又有多个DNA分子。

绝大多数mtDNA中无重复核苷酸序列,这是mtDNA一级结构的重要特点,mtDNA也是半保留复制,无论分裂或静止的体细胞中,mtDNA的合成常是活跃进行着的,只是每个mtDNA分子复制是不均一的,mtDNA与核DNA合成的调节是彼此独立的,但其复制仍受核DNA控制,如DNA聚合酶由核基因控制,在细胞质中合成

不同生物的线粒体基因组中包含着控制呼吸作用的几种基因,还有一些抗药性基因如抗氨霉素,抗江蕾素及抗寡霉素基因

b)转录与翻译:半自主性的:具核糖体,rRNA mtDNA自身编码, tRNA也是

③.线粒体的双重遗传机制:其在遗传装臵方面并不能自给自足,大部分蛋白质由核基因编码,在细胞质中合成 3.叶绿体遗传

①.紫茉莉的叶绿体遗传

绿白斑植株:在同一个体上,有些枝条深绿色叶,有的白色或极淡绿,有的绿白相交的花斑叶

雌花:绿白斑 =〉白色,绿色,绿白斑幼苗。

②.叶绿体基因组

〈1〉ctDNA:是一个裸露的环状双螺旋分子,其大小一般为120KB~217KB之间,通常一个叶绿体中可含有一到几十这样的分子,叶绿体的基因组碱基序列中不含有5甲基胞嘧啶,这一特点可作为鉴定叶绿体DNA提纯程度的指标

ctDNA能够自我复制,但DNA聚合酶等很多成分由核基因编码,细胞质合成,叶绿体中也有自己的转录与翻译系统 〈2〉ctDNA与核基因组关系(半自主性) a:叶绿体ctDNA编码,在其70S核糖体上翻译 b: 核基因编码,细胞质翻译,运入 c:核基因与ctDNA共同,各编码不同亚基 4. 其他细胞质遗传(卡巴粒) ①草履虫的生殖方式 a:细胞分裂

b:接合生殖:一大核(营养核)二小核(均为2n 生殖核) 小核减数分裂→8个 ×n →7个退化留一个 c:自体受精 ②放毒型草履虫

草履虫素→杀死不同系草履虫

a: 细胞质因子卡巴粒 b:核基因k 卡巴粒的存在需

,

K维持,无K时间一长卡巴粒消失

K/K+卡巴粒 放毒型 kk敏感型

K/k+卡巴粒 K/k (放毒型) (敏感型)

→ → 1:1分离 稳定遗传

→ →

→(自体受精 需要等待几代才 仅当接合时间长是变的

变为敏感型 与放毒型一样

③内共生现象与内共生学说

卡巴粒中有DNA,但是放毒粒是由于内部寄生的另一小的DNA分子决定(可能是噬菌体)

线粒体与叶绿体的起源(内共生学说) 5. 禾本科植物的雄性不育及应用

①核不育型:核基因控制的雄性不育多发生在小孢子母细胞减数分裂时期,不能形成正常花粉(由于纯合体不育),因此很难有子代真实遗传,除非是通过环境作用后恢复育性.如光温敏核不育系水稻,因此很难应用 ②质-核不育型

细胞质中决定不育,但核基因R可控制恢复:二区三系法

(s)rfrf × (n) rfrf

不育 可育,不恢复 (无花粉必须有对方提供花粉 ) →

→ →

(s)rfrf 白花授粉保持系

回交n次

雄性不育自交系

(与保持系基因一直,纯合)

(s)rfrf × (N) RfRf → → (N) Rfrf 仅能自化授粉 (可育的杂交种子) 恢复系

如果在恢复系中放入需要杂交的基因,即为杂交种子(二区三系,可以大规模生产杂交种子,利于推广) 6.持久饰变

似乎是介于母性影响与细胞质遗传之间,一般是由环境因素引起的表型改变,在这种后代中进行筛选,该性状必然逐渐消失

机制不明,有人认为变异的衰退是由于细胞质基因的稀释,因为它的复制速率比不上细胞分裂,但也可能是其他机制

7.细胞质遗传与核遗传相关

①线粒体、叶绿体并不能合成自身需要的一切物质 ②线粒体、叶绿体的遗传行为与核基因有关系(卡巴粒与K基因)

③细胞质是蛋白质的合成场所也是核与外界交流物质信息的场所

④细胞质中的遗传物质影响了生物体的表型

第九章 染色体变异

一、缺失

1、概念:染色体丢失了一个片段,片段上的基因也随之发生丢失

2、末端缺失与中间缺失(P408):末端丢失造成融合,肿瘤中出现着丝粒球

3、缺失的遗传效应

①缺失环:同源染色体配对时,缺失大片段染色体致死,果

蝇中到成虫最大纯合缺失为0.1% ②假显性:缺失显性基因,同源染色体上的隐性基因起作用:缺失太大即使杂合也死

果蝇X染色体上翅膀后端边缘缺刻

红眼雌蝇 缺刻显性(红眼基因缺刻部位)

(插入)×(插入)

(插入)(插入)(插入)(插入) ① 缺刻只在♀中 ② 雌:雄=2:1 ③ 在缺刻白♀中 白眼变显性

二、重复:染色体的某一片段在同一染色体上出现不止一次的现象

1.串联重复与反向串联重复:P411 2. 遗传效应 ①几种配对形状

②特点表型效应:果蝇棒眼与起棒眼

不均等交换---两份变成

一、三

三、倒位

1.倒位定义:P408

2.遗传效应

①配对方式:纯合体正常,改变交换值

杂合体: a:片段小的时候正常b:片段大的时候倒转c:适当:倒位环 ②交换抑制子

降低育性(不显著)----倒位环内的交换产生不平衡配子 以下例外可育: 倒位环内双交换

倒位环上交换片段最小不影响育性 完全连锁时,雄果蝇

3.平衡致死系:致死基因不能纯合保存,但是杂交保存是将出现++,有优势,使”十一”消失 基因紧密连锁的隐性致死基因平衡致死系 + Gl -------------- D + 自交,纯合致死 关键:D与al间不交换

实现真实遗传(其实死亡) 四.易位 ( P417) 1.概念与分类。

①相互易位

②单向易位的非相互易位 ③同一染色体内插入 ④罗伯逊式易位/着丝粒融合 2.遗传效应

① 十字架结构与分离 P410 相邻分离与相间分离

② 假连锁:两对染色体原不连锁的基因,由于易位染色体总是以相间分离方式产生可育配子,其结果是非同源染色体上,基因间的自由组合受到抑制,出现假连锁 ③ 位臵效应:位臵的改变引起个体的表型改变的遗传学效应

常染色体与异染色体的转换

五、染色体变异的应用

家蚕中雄蚕食量少,吐丝早,茧层率高,出丝率比雌蚕高20%-30%

六、染色体数量的改变

1、染色体组与倍性:(P424。概念) 每个物种的染色体数目是固定的

2、整倍体

① 单倍体的作用与生殖

作用→二倍体。花粉或花药→单倍体→加倍 二倍体 生殖→减数分裂中同源染色体的配对 ② 多倍体 a:同源多倍体 概念

自然形成与秋水仙素:染色体已经复制但不分裂(生殖细胞中、受精卵中)

同源多倍体的生殖与应用:p426 同源多倍体的形态特征

四倍体:2个2倍体。一个三倍体 一个单倍 一个四倍 (表型)→多数不育

三倍体:高度不育,但是多营养器官十分繁茂

三倍体西瓜:四倍体雌花上授二倍体花粉才可以,反之则有硬壳

b:异源多倍体:P428 形成 AA×BB→AB不可育→加倍AABB(四倍体) 小麦的起源:

第13篇:遗传学课程论文写作方法及要求

遗传学课程论文(综述)写作方法和要求

一、综述性论文写作程序

——找到感兴趣的问题,以此为关键词

——通过中国期刊网查阅最新论文

——根据这些最新论文的英文标题、摘要和关键词总结出对应的英文名词

——通过EI、SCI、Wiki、scholur.google 检索英文词,得到近3年相关论文的出处和摘要 ——总结出最重要的综述,深入阅读

(如何判断重要性?影响因子高的期刊)

——用一段文字总结每篇论文的主要观点和手段,根据研究对象、原理、手段、应用等对阅

读的论文进行分类。

——列出综述论文的写作提纲

——论文写作

二、课程论文写作要求

1、论文内容反映2008年以来遗传学研究新进展;

2、;论文字数:2000-3000字;论文摘要300字左右。

3、论文格式:正文用宋体,小四,行距20磅;大标题黑体,小三;小标题黑

体,四号。

4、引用参考文献至少6篇;论文中所列参考文献的格式及范例如下:

期刊论文类:作者名.论文题目[J].期刊名,年份,卷序号(期序号):页码。

[1] 邬建国.景观生态学—概念与理论[J].生态学杂志,2000,19(1): 42-52.

书籍类:

[2] 傅伯杰,陈利顶,马克明等.景观生态学原理及应用[M].北京:科学出版社, 2001: 202-357.

学位论文类:

[3] 孙虎.柿树炭疽菌基因组文库构建及致病性相关突变体的筛选分析[D].浙江大学博士学位论文,2008:64.

5、不得抄袭,一经发现按零分处理。

6、交稿时间:

7、电子稿文档名称统一为:学号姓名论文标题。如:

11141021王路遥 表观遗传学研究的进展

第14篇:山大医学遗传学辅导教案

第一章 绪论

 教学大纲要求

1、掌握医学遗传学概念及其研究对象

2、掌握遗传病概念及分类

3、了解医学遗传学发展概况

4、了解人类基因组计划及其医学意义  重点、难点介绍

一、医学遗传学概述

医学遗传学(medical genetics)是运用遗传学的原理和方法研究人类遗传性疾病的病因、病理、诊断、预防和治疗的一门学科,是遗传学的一个重要分支。医学遗传学的研究对象是遗传病,与其它临床学科类似,医学遗传学是研究遗传病的诊断、发病机理、防治及预后,但由于遗传病的特殊性,其研究重点主要在发病机理和预防措施。本课程主要介绍医学遗传学的三个主干分支(医学分子遗传学、医学细胞遗传学和医学群体遗传学)的原理和应用。

二、遗传病概念及分类

(一)遗传病概念及其特征 1.遗传病概念: 遗传病(genetic diseases)是由于遗传物质改变而导致的疾病。遗传物质是存在于细胞内的、决定特定性状的基因。 2.遗传病的特征:

1) 在有血缘关系的个体间,由于遗传继承,有一定的发病比例;在无血缘关系的个体间,尽管属于同一家庭,但无发病者; 2) 有特定的发病年龄和病程;

3) 同卵双生发病一致率远高于异卵双生。

(二)遗传病与下列疾病的关系:

1.先天性疾病(congenital diseases):出生前即已形成的畸形或疾病。先天性疾病可以是遗传病,例如先天愚型是由于染色体异常引起的,出生时即可检测到临床症状,是先天性疾病;但先天性疾病又不都是遗传病,有些先天性疾病是由于孕妇在孕期受到外界致畸因素的作用而导致胚胎发育异常,但并没有引起遗传物质的改变,因而不是遗传病。 2.后天性疾病(acquired diseases):出生后逐渐形成的疾病。后天性疾病也可以是遗传病,有些遗传病患者尽管在受精卵形成时就得到了异常的遗传物质,但要到一定年龄才表现出临床症状,如假性肥大型肌营养不良症患者通常要到4-5岁才出现临床症状。

因此,先天性疾病不一定都是遗传病, 后天性疾病不一定不是遗传病。 3.家族性疾病(familial diseases):表现出家族聚集现象的疾病,即在一个家庭中出现一个以上患者。由于遗传病的遗传性,通常能观察到家族聚集现象;但家族性疾病并不都是遗传病,因为同一家庭成员生活环境相同,因此,可以因为相同环境因素的影响而患相同疾病。如由于缺碘引起的甲状腺功能低下。

4.散发性疾病(sporadic diseases):无家族聚集性的疾病,即在家系中只出现一名患者。尽管遗传病具有遗传性,但由于特定遗传病在子代当中有一定的发病比例,加之遗传病患者可以是由于新发生的遗传物质改变所致,所以遗传病也可以是散发性疾病。 因此,家族性疾病不一定都是遗传病,散发性疾病不一定不是遗传病。

(三)遗传病分类:经典医学遗传学将遗传病分为染色体病、单基因病和多基因病三大类。现代医学遗传学将遗传病分为染色体病、单基因病、多基因病、线粒体遗传病和体细胞

第15篇:普通遗传学 第13章 教案

第13章 基因突变 教案

基因突变在动物、植物、细菌和病毒中广泛存在,人类可利用基因突变进行育种。

基因突变既可自然发生也可人工诱变,而且诱发突变成位育种材料的一种重要手段。

一、目的和意义

了解基因突变的种类,原因以及突变与性状表现的关系。如何诱发基因突变。

二、重点内容:

1、自发突变的原因(辐射。温度的极端变化。过高或过低。化学物质主要体内或细胞内某些生理、生化过程所产生的物质的作用。)

2、基因突变的概念

基因突变的概念及其类别

最初突变的概念:DeVries1901~1903.研究月见草的变异,指突然发生的变异(实际上是染色体畸变),现在遗传学上指的突变一般指基因突变。

基因突变:由于基因内部某一位点的结构发生改变(化学变化),使其由原来的存在状态而变为另一种新的存在状态,即变为它的等位基因。又称为点突变(pointmutation)。带有突变基因的细胞或个体叫做突变体(mutant)。基因突变是可以遗传的。

3、类别:按其发生的原因可分为

(1)自发突变(spontaneousmutation)。丰自然情况下发生的突变。

(2)诱发突变(inducedmutation)。人们有意识地利用物理、化学诱变因素引起的突变。(射线、温度)。 这两类突变在表现形式上没有原则上的区别。

按其表形特征可分为

(1)形态突变型(mirphologicalmutation)。泛指外形改变的突变型。因为这类突变可在外观上看到,所以又称可见突变(visiblem.)。

(2)致死突变型(lethalmulations):能引起个体死亡或生活力明显下降的突变型。分显隐性、全致死(>90%)、半致死(50~90%)、低活性(50~10%)。隐性致死较为常见。

(3)条件致死突变型:在一定条件下表现致死而在另外条件下能成活的突变型(conditionallethalmutation)。T4的温度敏感型在25℃时能成活,42℃致死。 (4)生化突变型(biochemicalmutation)。没有形态效应但导致某种特定生化功能改变的突变型。表现在补充培养基上能生长。

事实上,以上类型相互之间是有交叉的。几乎所有突变都是生化突变。

4、基因突变的一般特征

A、自然条件下突变的频率低。一般地,细菌和噬菌体等为10~10,高等生物10~10,然而,微生物繁殖周期短,实际更易于获得突变体。突变还受生物体内在的生理生化状态,以及外界环境条件(包括营养、温度、化学物质和自然界的辐射等)的影响,其中以生物的年龄和温度的影响比较明显。比如在诱变条件下,一般在0-25℃的范围内,每增加10℃突变率将提高2倍以上。当温度降到0℃时也有所增加,在老龄种子的细胞内,常产生某种具有诱变作用的代谢产物——自发诱变剂,从而提高了突变频率。 B、突变的多方向性

突变的多方向性也是相对的,是在一定范围内的多方向性。 C、突变的重演性:

同种生物中同一基因突变可在不同个体间重复地出现。也的也称为平行性。 -

4-10

-

5-8D、突变的可逆性:

一个叫正向突变,一个叫回复突变。 E、突变的平行性:

亲源关系相近的物种因遗传基础比较近似,往往发生相似基因突变。 F、突变的有利性与有害性:

多数突变改变了原来的功能,功能的改变对生物往往有害。当然少数个别的是有利的(如大肠杆菌的抗性突变等),还有少数既无害又无利——中性突变。突变发生的时期和部位:

G突变可发生在任何时期,任意部位。

发生在体细胞——当代表现;发生在生殖细胞——传给后代。

控制细胞分裂的基因发生了突变——癌症,造成某些功能的丧失,后期死亡的速度很快,为当代表现,为体细胞的变化。

5、基因突变的诱导:物理因素(电离辐射、非电离辐射)

化学因素(碱基类、烷化剂、抗生素类)

6、基因突变的鉴定 (1)利用分离规律 1.显性突变: 2.隐性突变:

由于处于杂合状态而不表现,在进行杂合体自交或偶然自交的情况下才能表(第二代有纯合的隐性突变型)。

(2)微生物营养缺陷型的测定筛选方法

7、基因突变的分子基础 (1)突变的两种方式

a碱基替代(basesubstitution):某一位点的一个碱基对被其他碱基对取代。碱基替换包括两种类型。

转换(transition):是同型碱基之间的替换,即一种嘌呤被另一种嘌呤替换。或一种嘧啶被另一种嘧啶替换。

颠换(transversion):嘌呤和嘧啶之间的替换。即嘌呤为嘧啶代替,嘧啶为嘌呤代替。

b移码突变:DNA分子中增加或减少一个或几个碱基对,引起密码编组的移动(frameshiftmutation)。 (2)、突变产生的机理 a.互变异构化:

一个质子的位置变化而改变了碱基氢键的特性。 b.碱基类似物(baseanalogues):

是在化学结构上与DNA的碱基很相似的物质,在DNA复制时,“冒充”碱基掺入到DNA链中去。 c.亚硝酸(HNO2)的作用: 具有氧化脱氨的作用。

d.烷化剂的作用:

具有一个或多个活性烷基的化合物(alkylatingagents)

作用:使DNA中的碱基发生烷化作用。如添加甲基或乙基,产生配对误差。如甲基磺酸乙酯(EMS) e.吖啶类化合物:

原黄素,吖啶橙等。为三环扁平的分子,大小与碱基对的大小差不多,能与DNA结合,嵌入DNA的碱基对之间,使相邻的两个碱基对的距离拉长,使DNA双链歪斜,导致DNA交换时出现参差,结果导致不等交换,产生移码突变。

吖啶类诱发的突变的一个重要特征是:吖啶类化合物所诱发的突变能用吖啶类来回复,但不能用碱基替换来回复。假使在一个碱基插入点的附近,以后又丢失了同样数目的碱基或者相反,突变效应往往可以被抑制。但这不是真正的回复突变,而是抑制突变。如果两个位点中还包括终止密码,就不能回复。

三、难点内容:

1、性状的变异与原因

2、基因突变的鉴定

3、基因突变的分子基础

四、课程时间安排 第一节基因突变的时期

1、基因突变的时期

2、一般特征 第二节基因突变与性状表现

1、显性突变与隐性突变的表现

2、大突变和微突变的表现

第三节基因突变的鉴定

1、植物基因突变的鉴定

2、生化突变的鉴定 第四节基因突变的分子基础及诱发

1、突变的分子机制

2、突变的修复

3、物理因素和化学因素

五、参考文献

华北农业大学等,1976,植物遗传育种学,北京,科

学出版社

杨业华,2000,普通遗传学,北京,高等教育出版社 贺竹梅,2002,现代遗传学教程,广州,中山大学出

版社

刘祖洞,1991,遗传学,北京,高等教育出版社 浙江农业大学主编,遗传学,1989,北京,农业出版社 蔡旭主编,植物遗传育种学,1988,北京,农业出版社

第16篇:遗传学教学大纲

遗传学教学大纲

序言

§0.1 遗传学的定义、研究对象和任务

遗传的定义;遗传和变异;遗传、变异与环境的关系;遗传、变异与选择在生物进化与新品种选育中的作用;遗传学的任务。 §0.2 遗传学的发展简史

古代遗传学知识的积累;近代遗传学的奠基;遗传学的建立和发展;遗传学的建立及各分支学科的发展;遗传学的最新重要成就。 §0.3 遗传、发育进化的统一

细胞分化、个体发育与基因表达的关系;物种进化过程中基因的稳定遗传与变异;基因对遗传、发育和进化的统一。 §0.4遗传学的作用

遗传学在生命科学,生物进化领域,动植物育种、微生物改良及人类医药卫生中的应用。

孟德尔式的遗传分析

§1.1 孟德尔第一定律及遗传分析

孟德尔遗传分析的方法;孟德尔遗传分析的相关概念;孟德尔的实验及分离定律的归纳。 §1.2 孟德尔第二定律及遗传分析

孟德尔实验及第二定律的归纳;孟德尔学说的核心;分支法对遗传率的计算及统计学方法对遗传学数据的处理;人类性状的孟德尔遗传;豌豆皱缩性状的的分子机制。 §1.3 遗传的染色体学说

染色质;染色体及类型;有丝分裂的过程及遗传学意义;减数分裂的过程遗传学意义;遗传的染色体学说。

§1.4 环境因素对基因作用的影响

基因型和表型;表型模拟、外显率和表现度;等位基因间的相互作用:不完全显性、并显性、镶嵌显性;致死基因和复等位基因;非等位基因之间的相互作用:基因互作、基因互补、累加效应和上位效应。

连锁遗传分析与染色体作图

§2.1 性染色体与性别决定

性染色体的发现;性染色体决定性别的类型 §2.2 性连锁遗传

果蝇伴性遗传的分析;人类伴X显性、X隐性和伴Y染色体遗传的分析;鸡伴性遗传的分析;植物伴性遗传的分析。 §2.3 遗传的染色体学说的证据

摩尔根及其学生染色体学说的直接证据。 §2.4 果蝇的Y染色体及其性别决定

果蝇Y染色体与性别决定的关系 §2.5 剂量补偿效应

巴氏小体;剂量补偿效应;Lyon假说及其对剂量补偿和巴氏小体形成的解释;X染色体随机失活的分子机制。

§2.6 连锁基因的交换与重组

连锁的发现;连锁的类型:完全连锁与不完全连锁;重组频率的计算;交换重组的机制;基因定位和染色体作图;三点测交分析;并发系数;大距离作图函数的推导与应用。 §2.7 真菌的遗传分析

顺序四分子的着丝粒分析作图;两个连锁基因的分析作图;非顺序四分子的遗传分析。 §2.8 人类基因组的染色体作图

人类基因定位的家系分析法;人类基因定位的体细胞杂交法;利用DNA介导进行基因定位;人类染色体作图:RFLP和VNTR作图;人类基因组的物理作图。

基因精细结构的遗传分析

§3.1 基因的概念

基因的概念及其发展;基因的分类;基因与DNA和染色体的关系。 §3.2 重组测验

拟等位基因;条件致死突变体;两点测交。 §3.3 互补测验

互补测验的原理和方法;顺反子;基因内互补。 §3.4 基因的缺失作图

基因缺失作图的原理;缺失作图的方法。 §3.5 断裂基因与重叠基因

断裂基因及意义;外显子与内含子;重叠基因与重叠方式。 §3.6 基因的功能

先天代谢缺陷症;一个基因一个酶的假说;一个基因一条肽链的证据。

病毒的遗传分析

§4.1 噬菌体的繁殖和突变型

烈性噬菌体的裂解反应;温和噬菌体的溶源与裂解生长;噬菌体的条件致死突变类型;敏感因子与抑制基因;无义与无义抑制基因。 §4.2 噬菌体突变型的互补测验

ФX174条件致死突变性的互补测验;T4噬菌体突变型的互补测验。 §4.3 噬菌体突变的重组实验

两点测交;三点测交;ФX174噬菌体的两点和三点测交;烈性噬菌体的遗传机制。 §4.4 λ噬菌体的基因组与λ原噬菌体

λ噬菌体的基因组;λ原噬菌体;λ原噬菌体溶源与裂解过程中插入与切除的机理。§4.5 环状DNA与末端重复序列

线状DNA的环状遗传图谱;环状序列的形成与末端重复序列。

细菌的遗传分析

§5.1 细菌细胞与细菌染色质

细菌细胞的特点;细菌染色质的特征。 §5.2 大肠杆菌突变体及筛选

大肠杆菌突变体的类型;合成和分解代谢突变体;大肠杆菌的抗性突变体;大肠杆菌突变体的筛选。

§5.3 大肠杆菌的性质

大肠杆菌的性质;F因子;大肠杆菌的高频重组;细菌重组的特点。 §5.4 细菌的重组作图

中断杂交及原理;中断杂交作图;细菌的重组作图。 §5.5 F’与性导

F’因子的特征;性导的原理。 §5.6 转化与转导作图

细菌的转化;细菌的转导;转化作图的原理;普遍性转导作图的原理;局限性转导作图的原理。

真核生物的遗传作图

§6.1 真核生物的基因组

真核生物的基因组;C值;真核生物基因组结构的特点; §6.2 真核生物基因组DNA序列的复杂度

真核生物重复序列的检测方法及原理;DNA序列的类型;卫星DNA。 §6.3 基因家族

基因簇与基因家族;Alu家族及其特点;假基因及特点。 §6.4 真核生物基因组的包装

DNA与染色体的关系;核小体的结构与染色体的包装模型。 §6.5 真核生物基因的丢失、扩增与重排

基因丢失及意义;基因扩增的原理及意义;基因重排的原理及意义。 §6.6 遗传标记

同工酶标记;RFLP标记;AFLP标记;RAPD标记;微卫星标记;染色体步查标记。

遗传重组

§7.1遗传重组的类型

遗传重组的类型;同源重组的特征;位点专一性重组的特征;异常重组的特征。 §7.2同源重组的分子机制

同源重组的断裂重接模型;同源重组的Holliday模型;线形和环状DNA分子重组的遗传后果;基因转变及类型;基因转变的分子机理;Meselson-Radding模型;共转换;负干涉;极化子。

§7.3细菌的同源重组

细菌同源重组的特点;RecA蛋白在细菌同源重组中的作用;细菌转化重组的机制;细菌结合和转导重组的机制。 §7.4位点专一性重组

λ噬菌体整合和切除的机理;参与位点专一性重组的序列。 §7.5原核生物的转座子

转座子的特点;插入序列及特征;转座、转座子和转座酶;转座噬菌体。 §7.6转座的机理及遗传学效应

转座的机制;转座的遗传学效应。

细胞质遗传

§8.1母性影响的性质和特点

母性影响;短暂的母性影响;持久的母性影响。 §8.2 核外遗传的性质和特点

核外遗传;核外遗传及其特点;紫茉莉枝条颜色的遗传;草履虫的放毒型遗传;果蝇的感染性遗传。 §8.3 线粒体遗传和分子基础

线粒体遗传的性质;线粒体遗传的特点;细菌的线粒体遗传;酵母的线粒体遗传;人类的线粒体遗传;植物的线粒体遗传;其它细胞质基因的遗传:附加体的遗传,共生体的遗传 §8.4 叶绿体遗传与分子基础

叶绿体遗传的性质;叶绿体遗传的特点;衣藻叶绿体的遗传;玉米叶绿体的遗传;叶绿体遗传与和核遗传的关系。 §8.5植物雄性不育的遗传

植物雄性不育的类别及其遗传特点;植物核雄性不育;植物核质互作雄性不育;三系法育种的原理。

染色体变异

§9.1 染色体结构变异

果蝇唾液腺染色体的特征;染色体结构变异的类型;染色体缺失的类别;缺失的形成过程及其细胞学特征;缺失的遗传效应;假显性;染色体重复的类别;重复的形成过程及其细胞学特征;重复的遗传效应;染色体倒位的类别;倒位的形成过程及其细胞学特征;倒位的遗传效应;交换抑制因子;平衡致死系;染色体易位的类别;易位的形成过程及其细胞学特征;易位遗传效应;假连锁;易位的位置效应。 §9.2 染色体数目变异

染色体组;染色体倍性;二倍体、单倍体的特征;同源多倍体的表型特征及减数分裂过程中基因分离的规律;异源多倍体的特征;多倍体小麦的起源;单体、缺体及三体的遗传学效应;染色体数目异常与疾病。 §9.3 染色体结数目变异的进化意义

利用染色体数目差异分析物种之间的亲源关系。

基因突变

10.1 基因突变的概念

基因突变和突变体的概念;基因突变的类型;基因突变的类型和性质。 §10.2 基因突变的分子基础

自发突变的类型;DNA复制错误的类型和原理;自发损伤的类型和原理;诱发突变的类型及机理;碱基替换的遗传学效应;移码突变的遗传学效应;突变热点和增变基因;诱发突变对人类肿瘤形成的影响;定点诱变技术;反求遗传学。 §10.3突变修复的机制

光复活修复的原理及特点;切除修复的机理及特点;重组修复的机理及特点;SOS修复启动的操纵子调节机理和意义;电离辐射损伤修复的机理和类型;修复缺陷与人类疾病。 §10.4 基因突变的检测

大肠杆菌营养缺陷型突变的检测;真菌营养缺陷型突变的检测;果蝇伴性隐性致死突变的ClB法和Muller-5法检测;果蝇常染色体隐性致死突变的平衡致死系法检测;植物突变的检测。

数量性状遗传

§11.1 数量性状的特征

数量性状的概念及其特征;数量性状和质量性状的区别和相互关系;多基因假说的实验依据;多基因假说及其含义;主基因、微效多基因和修饰基因;阈性状及其特征;。 §11.2 数量性状遗传分析的统计基础

平均数、方差、标准差的分析及意义;直线回归分析;协方差、回归系数计算及其意义。 §11.3 数量性状遗传率

数量性状表型值及分量;数量性状的方差及分量;群体基因型值的平均数;广义遗传率和狭义遗传率的定义;广义遗传率、狭义遗传率的估算及意义;遗传率的性质。 §11.4近亲繁殖与杂种优势

近交;杂交;自交;近交和杂交的遗传效应;近交系数、血缘系数的定义;近交系数和血缘系数的推算;显性假说;超显性假说。

注:1.原核生物与真核生物基因表达及调控的内容纳入《分子生物学》中讲解; 2.体细胞遗传学的内容纳入选修《细胞工程》中讲解;

3.免疫遗传、遗传与人类健康的内容纳入选修课《医学遗传学》中讲解。

第17篇:医学遗传学

《医学遗传学》期末重点复习题

一、名词解释 1.不规则显性:P582.分子病:P94 3.移码突变:P18 4.近婚系数:P86 5.罗伯逊易位:P436.遗传咨询:P127 7.交叉遗传:P63 8.非整倍体:P47 9.常染色质和异染色质:P23 10.易患性:P100 11.亲缘系数:P86 12.遗传性酶病:P1OO 13.核型:P31 14.断裂基因:P13 15.遗传异质性:P63 16.遗传率:P63 17.嵌合体:P47 18.外显率和表现度:P63 (以上均为学习指导的页码)

三、选择题

1.下列碱基中不是DNA成分的为(E)。A 腺嘌呤 B 鸟嘌呤 C 胞嘧啶 D 胸腺嘧啶 E 尿嘧啶 2.与苯丙酮尿症不符的临床特征是(A)。A 患者尿液有大量的苯丙氨酸 B 患者尿液有苯丙酮酸 C 患者尿液和汗液有特殊臭味 D 患者智力发育低下 E 患者的毛发和肤色较浅

3.细胞在含BrdU的培养液中经过一个复制周期,制片后经特殊染色的中期染色体(E)。A 可检出姊妹染色单体交换 B 可检出非姊妹染色单体交换 C 可检出同源染色体交换 D 两条姊妹染色单体均较浅 E 两条姊妹染色单体均深染 4.DNA分子中脱氧核糖核苷酸之间连接的化学键是(C)。A 离子键 B 氢键 C 磷酸二酯键 D 糖苷键 E 高能磷酸键

5.HbH病患者的可能基因型是(E)。A ――/―― B -a/-a C ――/aa D -a/aa E aacs/―― 6.下列不符合常染色体隐性遗传特征的是(D)。 A.致病基因的遗传与性别无关,男女发病机会均等 B.系谱中看不到连续遗传现象,常为散发 C.患者的双亲往往是携带者

D.近亲婚配与随机婚配的发病率均等 E.患者的同胞中,是患者的概率为1/4,正常个体的概率约为3/4 7.人类a珠蛋白基因簇定位于(E)。 A 11p13 B 11p15 C 11q15 D 16q15 E 16p13 8.四倍体的形成可能是由于(C)。 A 双雄受精 B 双雌受精 C 核内复制 D 不等交换 E 部分重复 9. 在蛋白质合成中,mRNA的功能是(C)。 A 串联核糖体 B 激活tRNA C 合成模板 D 识别氨基酸 E 延伸肽链

10. 在一个群体中,BB为64%,Bb为32%,bb为4%,B基因的频率为(D)。 A 0.64 B 0.16 C 0.90 D 0.80 E 0.36 11.一个个体中含有不同染色体数目的三种细胞系,这种情况称为(C)。 A 多倍体 B 非整倍体 C 嵌合体 D 三倍体 E 三体型 12.某基因表达的多肽中,发现一个氨基酸异常,该基因突变的方式是(E)。 A 移码突变 B 整码突变 C 无义突变 D 同义突变 E 错义突变

13.一种多基因遗传病的群体易患性平均值与阈值相距越近(A)。 A 群体易患性平均值越高,群体发病率也越高 B 群体易患性平均值越低,群体发病率也越低 C 群体易患性平均值越高,群体发病率越低 D 群体易患性平均值越低,群体发病率迅速降低 E 群体易患性平均值越低,群体发病率越高 14.染色质和染色体是(D)。 A 不同物质在细胞周期中不同时期的表现 B 不同物质在细胞周期中同一时期的表现形式 C 同一物质在细胞周期中同一时期的不同表现形式 D 同一物质在细胞周期中不同时期的两种不同存在形式 E 以上都不是

15.下列碱基置换中,属于转换的是(C)。 A、AC B、AT C、TC D、GT E、GC

16.通常表示遗传负荷的方式是(D)。 A 群体中有害基因的多少 B 一个个体携带的有害基因的数目 C 群体中有害基因的总数 D 群体中每个个体携带的有害基因的平均数目 E 群体中有害基因的平均频率 17.性染色质检查可以对下列疾病进行辅助诊断的是(A)。

A Turner综合征 B 21三体综合征 C 18三体综合征 D 苯丙酮尿症 E 地中海贫血 18.一个正常男性核型中,具有随体的染色体是(D)。

A 中着丝粒染色体 B近中着丝粒染色体 C 亚中着丝粒染色体 D近端着丝粒染色体 E Y染色体 19.母亲是红绿色盲(XR)患者,父亲是正常人,预计四个儿子中色盲患者有(E)。 A 1个 B 2个 C 3个 D 0个 E 4个

20.真核生物的转录过程主要发生在(B)。 A 细胞质 B 细胞核 C 核仁 D 溶酶体 E 细胞膜

21.短指症常表现为常染色体显性遗传,外显率为100%,一个该病患者(Aa)与正常人婚配,每生一个孩子是患者的概率为(C)。 A 2/3 B 1/4 C 1/2 D 3/4 E 0 22.DNA复制时新链的合成方向是(D)。

A 3'→5' B 3'→5'或5'→3' C 5'→3'或3'→5' D 5'→3' E 有时3'→5',有时5'→3' 23.基因型为b0/b+的个体表现为(A)。

A 重型b地中海贫血 B 中间型b地中海贫血 C 轻型b地中海贫血 D静止型a地中海贫血 E 正常 24.若某人核型为46,XX,dup(3)(q12q21)则表明在其体内的染色体发生了(E)。 A 缺失 B 倒位 C 易位 D 插入 E 重复

25.通常表示遗传密码的是(D)。 A、DNA B、RNA C、tRNA D、mRNA E、rRNA 26.减数分裂前期Ⅰ的顺序是(D)。 A 细线期-粗线期-偶线期-双线期-终变期

B 细线期-粗线期-双线期-偶线期-终变期 C 细线期-偶线期-双线期-粗线期-终变期

D 细线期-偶线期-粗线期-双线期-终变期 E 细线期-双线期-偶线期-粗线期-终变期 27.胎儿期红细胞中的主要血红蛋白是HbF,其分子组成是(B)。

A 22

B 22

C 22

D 22

E 22

28.真核生物结构基因中,内含子两端的结构特征为(D)。

A 5'AG…GT3' B 5'GT…AC3' C 5'AG…CT3' D 5'GT…AG3' E 5'AC…GT3' 29.着丝粒染色体之间通过着丝粒融合而形成的易位称为(A)。 A 单方易位 B 串联易位 C 罗伯逊易位 D 复杂易位 E 不平衡易位

30.断裂基因中的编码序列是(C)。 A 启动子 B 增强子 C 外显子 D 内含子 E 终止子 31.应用Edward公式估计多基因遗传病复发风险,要求群体发病率为(E)。 A 1/10000 B 1/4 C 1/1000 D 1%~10% E 0.1%~1%

32.根据ISCN,人类的X染色体属于核型中(C)。 A A组 B B组 C C组 D D组 E G组 33.PCT味盲为常染色体隐性性状,我国汉族人群中PTC味盲者占9%,相对味盲基因的显性基因频率为(D)。 A 0.09 B 0.49 C 0.42 D 0.7 E 0.3

34.真核生物的一个成熟生殖细胞(配子)中全部染色体称为一个(B)。 A 染色体组型 B 染色体组 C 基因组 D 二倍体 E 二分体

35.应进行染色体检查的疾病为(A)。A 先天愚型 B a地中海贫血 C 苯丙酮尿症 D 假肥大型肌营养不良症 E 白化病

36.人类第五号染色体属于(B)。

A 中着丝粒染色体 B 亚中着丝粒染色体 C近端着丝粒染色体 D 端着丝粒染色体 E近中着丝粒染色体 37.苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺乏导致(E)。

A 代谢终产物缺乏 B 代谢中间产物积累 C 代谢底物积累 D 代谢终产物积累 E 代谢副产物积累 38.一对夫妇表现正常,生有一个半乳糖血症(AR)的女儿和一个正常儿子,儿子是携带者的概率为(C)。 A 1/9 B 1/4 C 2/3 D 3/4 E 1

39.遗传漂变指的是(D)。A 基因频率的增加 B 基因频率的降低 C 基因由A变为a或由a变为A D 基因频率在小群体中的随机增减 E 基因在群体间的迁移

40.不规则显性是指(C)。 A 隐性致病基因在杂合状态时不表现出相应的性状

B 杂合子的表现型介于纯合显性和纯合隐性之间 C 由于环境因素和遗传背景的作用,杂合体中的显性基因未能形成相应的表现型 D 致病基因突变成正常基因 E 致病基因丢失,因而表现正常

41.人类精子发生的过程中,如果第一次减数分裂时一个初级精母细胞发生了同源染色体的不分离现象,而第二次减数分裂正常进行,则其可形成(D)。 A 一个异常性细胞 B 两个异常性细胞 C 三个异常性细胞 D 四个异常性细胞 E 以上都不是

42.下列不属于RNA成分的碱基为(D)。 A 腺嘌呤 B 鸟嘌呤 C 胞嘧啶 D 胸腺嘧啶 E 尿嘧啶 43.染色体臂上作为界标的带(E)。

A 一定是深带 B 一定是浅带 C 一定是染色多态区 D 一定是染色体次缢痕区 E 可以是深带或浅带 44.一个体和他的外祖父母属于(B)。 A 一级亲属 B 二级亲属 C 三级亲属 D 四级亲属 E 无亲缘关系 45.减数分裂过程中同源染色体分离,分别向细胞两极移动发生在(C)。 A 前期Ⅰ B 中期Ⅰ C 后期Ⅰ D 中期Ⅱ 后期Ⅱ 46.镰形细胞贫血症患者的血红蛋白是HbS,其分子组成是(E)。

A 26谷赖

B 2226谷赖

C 2

226谷缬

D 2

6谷缬

E 22

6谷缬

47.复等位基因是指(D)。 A 一对染色体上有三种以上的基因 B 一对染色体上有两个相同的基因 C 同源染色体的不同位点有三个以上的基因 D 同源染色体的相同位点有三种以上的基因 E 非同源染色体的相同位点上不同形式的基因

48.人类b珠蛋白基因簇定位于(B)。 A 11p13 B 11p15 C 11q15 D 16q15 E 16p13 49.Turner综合征除了做染色体检查之外,还可用来进行辅助诊断的是(B)。

A 核型分析 B 性染色质检查 C 酶活性检测 D 寡核苷酸探针直接分析法 E RFLP分析法 50.某人核型为46,XX,del(1)(pter→q21;)则表明在其体内的染色体发生了(A)。 A 缺失 B 倒位 C 易位 D 插入 E 重复

51.人类1号染色体长臂分为4个区,靠近着丝粒的为(B)。 A 0区 B 1区 C 2区 D 3区 E 4区

52.DNA分子中碱基配对原则是指(A)。

A A配T,G配C B A配G,G配T C A配U,G配C D A配C,G配T E、A配T,C配U 53.人类次级精母细胞中有23个(D)。 A 单价体 B 二价体 C 单分体 D 二分体 E 四分体 54.46,XY,t(2;5)(q21;q31)表示(B)。

A 一女性体内发生了染色体的插入 B 一男性体内发生了染色体的易位

C 一男性带有等臂染色体 D 一女性个体带有易位型的畸变染色体 E 一男性个体含有缺失型的畸变染色体 55.MN基因座位上,M出现的概率为0.38,指的是(B)。

A 基因库 B 基因频率 C基因型频率 D 亲缘系数 E近婚系数

56.真核细胞中的RNA来源于(D)。 A DNA复制 B DNA裂解 C DNA转化 D DNA转录 E DNA翻译 57.脆性X综合征的临床表现有(D)。 A 智力低下伴眼距宽、鼻梁塌陷、通贯手、趾间距宽 B 智力低下伴头皮缺损、多指、严重唇裂及腭裂 C 智力低下伴肌张力亢进。特殊握拳姿势、摇椅足

D 智力低下伴长脸、大耳朵、大下颌、大睾丸 E 智力正常、身材矮小、肘外翻、乳腺发育差、乳间距宽、颈蹼 58.基因型为b/b的个体表现为(A)。 0AA 重型b地中海贫血 B 中间型地中海贫血

C 轻型地中海贫血 D 静止型a地中海贫血 E 正常

59.慢性进行性舞蹈病属常染色体显性遗传病,如果外显率为90%,一个杂合型患者与正常人结婚生下患者的概率为(B)。 A 50% B 45% C 75% D 25% E 100% 60.嵌合体形成的原因可能是(E)。 A 卵裂过程中发生了同源染色体的错误配对

B 卵裂过程中发生了联会的同源染色体不分离 C 生殖细胞形成过程中发生了染色体的丢失 D 生殖细胞形成过程中发生了染色体的不分离 E 卵裂过程中发生了染色体丢失 61.人类成人期红细胞中的主要血红蛋白是HbA,其分子组成是(A)。

A 2

2 B 22

C 22

D 22

E 22

62.生殖细胞发生过程中染色体数目减半发生在(C)。

A 增殖期 B 生长期 C 第一次成熟分裂期 D 第二次成熟分裂期 E 变形期

63.关于X连锁隐性遗传,下列错误的说法是(C)。 A 系谱中往往只有男性患者 B 女儿有病,父亲也一定是同病患者C 双亲无病时,子女均不会患病 D 有交叉遗传现象 E 母亲有病,父亲正常,儿子都是患者,女儿都是携带者

64.引起镰形细胞贫血症的b珠蛋白基因突变类型是(B)。

A 移码突变 B 错义突变 C 无义突变 D 整码突变 E 终止密码突变 65.如果在某体细胞中染色体的数目在二倍体的基础上增加一条可形成(D)。 A 单倍体 B 三倍体 C 单体型 D 三体型 E 部分三体型 66.基因表达时,遗传信息的流动方向和主要过程是(D)。

A、RNA→DNA→蛋白质 B hnRNA→mRNA→蛋白质 C、DNA→tRNA→蛋白质 D、DNA→mRNA→蛋白质 E、DNARNA蛋白质

67.14/21易位型异常染色体携带者的核型是(E)。A 46,XX,del(15)(q14q21) B 46,XY,t(4;6)(q21q14) C 46,XX,inv(2)(p14q21) D 45,XX,-14,-21,+t(14,21)(p11;q11) E 46,XY,-14,+t(14,-21)(p11;q11)

68.人类Hb Lepore的类b珠蛋白链由db基因编码,该基因的形成机理是(D)。 A 碱基置换 B 碱基插入 C 密码子插入 D 染色体错误配对引起的不等交换 E 基因剪接

69.性染色质检查可以辅助诊断(A)。 A Turner综合征 B 21三体综合征 C 18三体综合征 D 苯丙酮尿症 E 地中海贫血

70.染色体不分离(E)。 A 只是指姊妹染色单体不分离 B 只是指同源染色体不分离

C 只发生在有丝分裂过程中 D 只发生在减数分裂过程中 E 可以是姊妹染色单体不分离或同源染色体不分离

71.断裂基因转录的正确过程是(E)。 A 基因→mRNA B 基因→hnRNA→剪接→mRNA

C 基因→hnRNA→戴帽和加尾→mRNA D 基因→前mRNA →hnRNA→ mRNA E 基因→前mRNA→剪接、戴帽和加尾→mRNA

72.应进行染色体检查的是(A)。 A 先天愚型 B 苯丙酮尿症 C 白化病 D 地中海贫血 E 先天性聋哑

73.基因中插入或丢失一或两个碱基会导致(C)。 A 变化点所在密码子改变 B 变化点以前的密码子改变

C 变化点及其以后的密码子改变 D 变化点前后的几个密码子改变 E 基因的全部密码子改变 74.用人工合成的寡核苷酸探针进行基因诊断,错误的是(D)。 A 已知正常基因和突变基因核苷酸顺序 B 需要一对寡核苷酸探针

C 一个探针与正常基因互补,一个探针与突变基因互补 D 不知道待测基因的核苷酸顺序 E 一对探针杂交条件相同

75.轻型a地中海贫血患者缺失a珠蛋白基因的数目是(C)。 A 0 B 1 C 2 D 3 E 4

四、简答题1.某医院同日生下四个孩子,其血型分别是O、A、B和AB,这四个孩子的双亲的血型是O与O;AB与O;A与B;B与B。请判断这四个孩子的父母。指导P71第六小题

2.一个色觉正常的女儿,可能有一个色盲的父亲吗?可能有色盲的母亲吗?一个色盲的女儿可能有色觉正常的父亲吗?可能有色觉正常的母亲吗?指导P72第十小题

3.下面是一个糖原沉积症Ⅰ型的系谱,简答如下问题:(1)判断此病的遗传方式,写出先证者及其父母的基因型。(2)患者的正常同胞是携带者的概率是多少?指导P71第八小题

4.何谓基因突变?有哪些主要类型?

5.一个大群体中A和a等位基因的频率分别为0.4和0.6,则该群体中基因型的频率是多少? 6.简述人类结构基因的特点。P19

五、问答题

1.高度近视是常染色体隐性遗传病,此系谱图是一个高度近视的家系,问Ⅲ1和Ⅲ2结婚后生出患儿的风险是多少?(写出计算过程)书P117

2.减数分裂前期Ⅰ分为哪几个小期?联会和交叉现象各发生在哪个小期?交叉现象有何遗传学意义?指导P30 3.请写出先天性卵巢发育不全综合征的主要临床表现及其主要异常核型。指导P31第五小题 4.基因有哪些生物学功能?P9

5.何谓血红蛋白病?它分几大类型?指导P103第一小题

6.判断该系谱符合哪种遗传方式?根据是什么?写出患者及其双亲的基因型。指导P73第B小题

7.三大定律的内容是什么?以其中一个定律为例来分析其细胞学基础。P56 8.简述苯丙酮尿症的分子机理及其主要临床特征。指导P103第六小题

9.根据显性性状的表现特点,常染色体显性遗传分为哪五种类型?在何种类型中会出现隔代遗传的现象?P59

第18篇:遗传学教学大纲

本科生教学大纲

教 学 单 位: 畜牧兽医学院 课程编号: 09281058 课程名称:课程英文名称:授课对象:课程性质:学时数:学分数:执笔人:审核人:编写日期:动物遗传学B Animal Genetics

动物科学、实验动物专业本科生 学科基础必修课 60学时(理论:40学时,实验:20学时)3 闫守庆 孙博兴

2009年8月20日

课程的性质和任务:

动物遗传学是动门课重,它要

是物

业专

业基

一础

遗传学的一个分支,主要研究动物的各种性状的遗传规律和遗传改良的原理与方法;主要内容包括细胞遗传学、分子遗传学、群体遗传学、免疫遗传学及数量遗传学的基础理论及遗传规律。

本课程的任务是使学生掌握动物遗传学的基本知识、基础理论和基本的实验方法,为解释、解决生产实践中的有关问题提供理论依据、思路和方法,并为学生进一步学习动物育种学,动物繁殖学及动物科学各论打下坚实的理论基础。

教学目的和要求

1.了解遗传学的发展史、遗传学的相关分支学科、研究进展以及今后的发展趋势 2.掌握遗传的染色体及核酸基础。 3.掌握遗传信息的传递规律。

4.掌握遗传的基本定律及非孟德尔遗传现象。 5.掌握群体遗传的基本规律。 6.掌握数量性状的遗传规律。

7.了解生物技术在动物生产中的应用。

主要教学内容及学时分配

课程学分: 3学分

课程总学时:60学时,其中理论40学时,实验20学时 主要理论教学内容及学时分配:

讲授内容 学时

2 第一章 绪论

6 第二章 遗传的物质基础

4 第三章 遗传信息的传递

4 第四章 遗传信息的改变

6 第五章 遗传的基本定律及其扩展

4 第六章 群体遗传学基础

4 第七章 数量遗传学基础

2 第八章 免疫遗传学基础

2 第九章 动物基因组学

2 第十章 非孟德尔遗传 第十一章

动物基因工程

2

一、理论部分

1、教学方法与手段

本课程始终在注重培养学生分析问题和解决问题的能力的基础上,培养学生的自我学习能力。教学过程中采用多媒体教学方法,以课堂教学为主,课外阅读为辅。指定课外阅读参考书。授课以教师为主导,学生为主体,激发学生学习的主动性和积极性,在教、学双方良好互动的氛围下,完成教学任务。

2、本课程与其它课程的联系与分工

本课程的前导课程为动物生物化学、动物学、高等数学和生物统计等。

3、选用教材及参考教材 教材: 《动物遗传学》(第二版) 李宁著 中国农业出版社 2003 主要参考教材:

1、《动物遗传学》 刘娣等著 北京理工大学出版社书 1999

2、《遗传学》上册(第二版) 刘祖洞著 高等教育出版社 1998

3、《遗传学》下册(第二版) 刘祖洞著 高等教育出版社 1994

4、《遗传学——基因与基因组分析》(第五版,影印版) [美] Daniel L.Hartl著 科学出版社 2002

4、考核方式:

笔试、闭卷。 考试题型与分数比例:

名词解释 20% 选择 20% 填空 10% 简答 25% 计算题 15% 论述题 10%

5、理论课程教学内容:

第一章 绪论 学时数:2学时 教学目的与要求:本章以遗传学的发展历史及主要历史事件为主线,论述遗传学的产生与发展。

教学内容:

1.什么是遗传学? 2.遗传学的发展简史 本章重点:遗传学发展史 本章难点:无

第二章 遗传的物质基础 学时数:6学时 教学目的与要求:了解核酸是遗传物质的证据;掌握核酸的化学结构及基因的一般结构特征;掌握染色体的结构与功能;掌握细胞有丝分裂和减数分裂的具体过程及生物学意义。 教学内容:

1.遗传物质-核酸 2.核酸的结构 3.基因的结构特征 4.染色质与染色体 5.细胞分裂

本章重点:基因的结构特征和染色体的结构与功能 本章难点:基因的结构特征 第三章 遗传信息的传递 学时数:4学时

教学目的与要求:掌握遗传物质-核酸DNA的复制、转录与翻译的基本过程,了解原核生物基因的表达调控。 教学内容: 1.DNA的复制 2.DNA的转录

3.蛋白质的生物合成 4.基因表达调控

本章重点:核酸DNA的复制、转录与翻译的基本过程。 本章难点:真核生物转录后加工。

第四章 遗传信息的改变 学时数:4学时 教学目的与要求:掌握染色体结构畸变的种类及遗传效应;了解染色体数目变异的生物学意义及应用;掌握基因突变的类型、分子机制、原因及应用;了解突变的抑制与修复机制;了解重组与转座的概念。 教学内容: 1.染色体畸变 2.基因突变

3.突变的抑制与DNA的修复 4.重组与转座

本章重点:染色体结构畸变与基因突变的类型及遗传效应。 本章难点:染色体结构畸变的遗传效应

第五章 遗传的基本定律及其扩展

学时数:6学时

教学目的与要求:掌握分离定律和独立分配定律的实质;掌握连锁现象的发现、解释及证明的过程;掌握重组率的计算和连锁图谱构建的方法;掌握性别决定与伴性遗传 教学内容: 1.分离定律 2.独立分配定律 3.基因互作 4.连锁与互换

5.性别决定与伴性遗传

本章重点:三大遗传定律基本内容与发展。

本章难点:连锁图谱构建

第六章 群体遗传学基础 学时数:4学时

教学目的与要求:掌握基因频率与基因型频率的概念及计算;掌握哈代-温伯格遗传平衡定律的主要内容;掌握影响基因频率及基因型频率的因素;了解遗传多样性的意义、保护和保存的方法;了解分子进化学说。 教学内容:

1.基因频率与基因型频率 2.遗传平衡定律

3.影响基因频率与基因型频率的因素 4.遗传多样性 5.分子进化

本章重点:基因频率与基因型频率的概念及计算,哈代-温伯格遗传平衡定律的主要内容 本章难点:基因频率与基因型频率的计算

第七章 数量遗传学基础 学时数:4学时

教学目的与要求:掌握数量性状的遗传特征;掌握通径系数的概念、定理及通径链的追溯规则;掌握重复力、遗传力和遗传相关的基本概念、计算方法及用途。 教学内容:

1.数量性状的遗传特征 2.通径分析 3.重复力 4.遗传力 5.遗传相关

6.线性模型与非线性模型

本章重点:重复力、遗传力和遗传相关的基本概念、计算及用途。 本章难点:重复力、遗传力和遗传相关的计算。

第八章 免疫遗传学基础

学时数:2学时

教学目的与要求:了解免疫学的基本概念及抗体多样性的分子遗传机制 教学内容:

1.免疫学的基本概念 2.抗体

3.主要组织相容性复合体 4.T细胞抗原识别与活化 5.补体系统

本章重点:免疫球蛋白基因及基因重排;主要组织相容性复合体。

本章难点:主要组织相容性复合体I类和II类分子。

第九章 动物基因组学 学时数:2学时

教学目的与要求:掌握动物遗传标记的概念、种类及标记原理与方法;掌握基因图谱与连锁图谱的概念及构建方法;了解数量性状与质量性状基因的定位方法;了解动物基因组计划及研究进展。 教学内容:

1.动物遗传标记 2.基因图谱 3.基因定位方法 4.动物基因组学

本章重点:遗传标记的概念、种类及用途。 本章难点:遗传标记的用途。

第十章 非孟德尔遗传

学时数:2学时 教学目的与要求:掌握母体效应、剂量补偿效应与基因组印迹的概念和生物学效应;了解核外遗传的发现及其遗传特征。 教学内容:

1.非孟德尔遗传现象 2.母体效应 3.剂量补偿效应 4.基因组印迹 5.核外遗传

本章重点:母体效应、剂量补偿效应与基因组印迹的概念

本章难点:母体效应。

第十一章 动物基因工程

学时数:4学时 教学目的与要求:掌握基因工程的概念、操作方法;了解动物转基因技术与克隆技术的原理、方法及应用。 教学内容:

1.基因工程概述

2.基因操作中的工具酶 3.基因工程的载体

4.获取真核生物目的基因的方法 5.DNA体外重组与基因转移 6.重组体的鉴定与筛选 7.转基因动物技术 8.动物克隆技术 9.基因诊断

本章重点:转基因动物和动物克隆技术。 本章难点:转基因动物制备的主要方法。

动物遗传学教学大纲

课程编号:

学 时: 70 学 分:3.5 适用对象:动物科学、动物科学教育 先修课程:生物化学、生物统计学 考核要求:考试

使用教材及主要参考书:

1.教材

李宁主编,动物遗传学,第二版,中国农业出版社,2003 2.主要参考书

刘祖洞主编.遗传学,上下册,第二版.高等教育出版社,1990 徐晋麟,徐沁,陈淳编著,现代遗传学原理,科学出版社,2001 宁国杰.实验动物遗传育种学.北京农业大学出版社,1992 C.C.Li著,吴仲贤译.群体遗传学.农业出版社,1981 拉斯里,J.F著,山西农学院译.家畜改良遗传学.科学出版社.1977 Hutt F B 《Animal Genetics》2nd ED,John Wiley & Sons,1982

一、课程的性质与任务

动物遗传学是畜牧专业的一门重要的专业基础课,是畜牧专业主干课程之一。通过本课程的学习,使学生掌握遗传学的基本理论和研究方法,深刻理解遗传与变异的基本规律及其机理,为进一步学习家畜育种学及有关专业课奠定坚实基础。

二、教学目的与要求

遗传学是一门理论性强,发展迅速,直接涉及生物延续与进化的理论科学,又是一门紧密联系生产实际、指导育种工作的基础科学,直接间接为生产服务。教学中应达到以下基本目的和要求:

1.对每一名词术语必须进行科学、准确阐述。

2.对遗传规律的阐述应遵循从感性到理性的认识规律,从现象入手,通过分析现象,总结出规律。

3.对遗传变异机制的讲解做到从宏观到微观,从细胞水平到分子水平。

4.理论联系实际,对遗传变异规律的讲解要举一反三,启发思维,做到能熟练运用遗传规律分析生产和生活中的现象。

5.对相近的概念、理论要进行比较分析,如伴性遗传、从性遗传与限性性状,遗传力与重复率,杂种优势与超亲遗传等。

6.对实验课要求做到严肃认真,严格要求,并有严密的组织安排,防止草率了事,通过实验使学生掌握遗传学的基本实验方法和技能,增强动手能力,提高观察分析能力。 7.遗传学发展史就是一部生命进化史,应贯彻辩证唯物主义与历史唯物主义观点。 8.要启发学生勤思考,多做练习,教师要善于设疑,引导学生善于解疑。

三、学时安排 本课程共70学时,其中理论教学50学时,实验实习20学时,计3.5学分,具体安排如下:

教学内容与学时分配表

章 节 1 2 3 4 5 6 7 8 9 10 11 教 学 内 容 绪 论 遗传的物质基础 遗传信息的传递 遗传信息的改变 遗传的基本定律及其扩展

群体遗传学基础 数量遗传学基础 免疫遗传学基础 动物基因组学基础 非孟德尔遗传 动物基因工程

合 计

学 时 2 4 4 4 8 6 6 4 4 4 4 50

四、教学中应注意的几个问题

1.遗传学发展很快,随着研究的深入,已形成许多分支学科和交叉学科,如细胞遗传、生化遗传、分子遗传、免疫遗传、发育遗传、群体遗传、数量遗传等。本课程为普通遗传学,在讲述遗传学基本原理的前程下,根据本专业性质,着重讲授细胞遗传、群体遗传、数量遗传学的基本原理与应用。

2.动物遗传学在畜牧类专业中是一门专业基础课,具有承前启后的地位,应注意处理好与前期课组织胚胎学、生物化学、生物统计学以及后期课家畜育种学、畜牧生产学的衔接,既不要重复,也不要脱节。

3.学生在中学时都学过生物学,遗传学的三大规律等内容在中学阶段已学过,在讲授时应注意了解学生的基础情况,在学生已有知识的基础上深化,并注意启发思维,切忌简单重复。 4.遗传学的发展经历了一个由孟德尔的经典遗传学到以分子遗传学为代表的现代遗传学的发展过程,在讲授中要处理好经典与现代、继承与发展的关系,在继承的基础上讲解现代新概念。

5.遗传学的理论性强,但又密切结合生产实际,讲授中应注意理论联系实际,从实践中分析遗传现象,总结上升为理论,然后又以遗传学理论指导育种实践,学以致用。 6.在教学中应及时补充一些新动态、新概念、新成就,以丰富和更新教学内容,激发学生的学习兴趣和学习主动性。

五、理论教学内容

第一章 绪 论

1.基本内容

遗传学的基本概念;遗传与变异的概念以及相互关系;遗传学发展简史与主要分支;遗传学与农业、工业、医学的关系;遗传学的研究方法。

2.教学基本要求

了解遗传学的基本内容与研究方法;了解遗传学的发展概况。

3.教学重点难点

遗传与变异的概念及其相互关系。

4.教学建议

注意引导学生对学习本课程兴趣与积极性。

第二章 遗传的物质基础

1.教学基本内容

核酸是遗传物质的直接、间接证据;DNA的分子结构;基因的结构特征;真核生物基因组的特点;细胞的结构;染色体的结构与组成;常见动物的染色体数目;细胞分裂。

2.教学基本要求

了解DNA的分子结构;DNA作为遗传物质的主要依据;掌握染色体的结构、组成、主要畜禽的染色体数;了解减数分裂及有丝分裂过程中染色体的行为;了解基因的一般结构特征和真核生物基因组的特点。

3.教学重点难点

重点:染色体的结构、组成,染色体在减数分裂及有丝分裂中的行为。

难点:染色体的四级结构、核型、细胞的减数分裂过程;C值矛盾;DNA重复序列的有关概念。

4.教学建议

建议DNA是遗传物质的直接、间接证据、DNA的分子结构等内容,不作重点讲授。

第三章 遗传信息的传递

1.基本内容

DNA的复制、转录、翻译过程;原核生物与真核生物基因表达调控。

2.教学基本要求

掌握DNA的复制、转录与翻译过程,原核生物与真核生物基因表达调控的基本原理。 3.教学重点难点

重点:DNA的复制、转录和翻译过程;基因表达调控的一般原理。

难点:DNA的复制、转录与翻译过程;真核生物在转录水平上基因表达调控中顺式作用元件与反式作用元件的相互作用。

4.教学建议

本章内容与动物遗传学第一版内容相比有较大改动,基本反应了学科的发展趋势,比较难学,注意学生对讲授内容的接受程度。

第四章 遗传信息的改变

1.基本内容

染色体畸变;基因突变概念、频率、时期、表现及一般特性;突变的抑制与DNA的修复;重组的类型;转座子的概念。

2.教学基本要求

掌握基因突变的概念及特性;染色体结构及数目变异的机制与遗传效应;重组与转座的有关概念。

3.教学重点难点

重点:变异的区分;变异的遗传效应;转座子的概念。

难点:基因突变的分子机制;染色体结构变异的机制;同源重组的Holliday模型;转座的机制。

4.教学建议

基因突变与染色体诱变的方法可结合在一起讲;突变的抑制与DNA的修复建议自学。

第五章 遗传的基本定律及其扩展

1.教学基本内容

遗传学的三大定律理论要点、验证方法及其理论与实践意义;非孟德尔遗传型式:不完全显性现象、致死基因、复等位基因、基因互作、“多因一效”与“一因多效”;性别决定与伴性遗传。

2.教学基本要求

掌握遗传学的三大定律理论基本论点和验证方法;掌握有关名词术语;了解孟德尔遗传规律的条件性及孟德尔遗传的扩展现象,包括不完全显性、致死基因、复等位基因,基因的互补、上位、重叠,“多因一效”与“一因多效”等遗传现象与遗传规律;掌握性别决定与伴性遗传的基本原理。

3.教学重点难点

重点:遗传学的三大定律的理论实质;孟德尔遗传扩展现象;基因连锁定位。

难点:三点测交及交换率的计算;自由组合定律与连锁定律的异同点;从性性遗传、限性遗传与伴性遗传的异同。

4.教学建议

为避免与中学生物学重复,建议尽量结合畜牧方面例子。

第六章群体遗传学基础

1.基本内容

基因频率、基因型频率的概念及相互关系;哈代—温伯格定律;基因频率的计算;影响群体基因频率和基因型频率变化的因素;遗传多样性;分子进化理论。

2.教学基本要求

了解基因频率、基因型频率等群体遗传学基本概念;掌握哈代一温伯定律的基本论点及有关证明;学会基因频率的计算方法;掌握群体基因频率及基因型频率变化的规律;掌握分子进化钟理论与中性学说。

3.教学重点难点

重点:哈代—温伯格定律;影响群体基因频率及基因型频率变化的因素。

难点:基因频率的计算;平衡群体的检验;分子进化的中性学说。

4.教学建议

遗传多样性中的保护遗传学内容与家畜育种学的相关内容重复,建议学生自学。

第七章数量性状遗传基础

1.基本内容

数量性状的遗传特征与通径系数;重复率的概念、性质、计算原理与方法,重复率的用途;遗传力的概念、性质、计算遗传力的原理,母女相关法及同胞相关法,遗传力的主要用途;遗传相关的概念;遗传相关与表型相关、环境相关的关系,遗传相关的估算原理与方法,遗传相关的用途。

2.教学基本要求

准确了解三个遗传参数(重复率、遗传力、遗传相关)的概念、估算原理与方法、用途。

3.教学重点难点

重点:三个遗传参数的估算原理、方法及其主要用途;通径系数的概念与性质。 难点:三个遗传参数的估算原理与方法。

4.教学建议

线性模型与非线性模型的基本概念与模型分析建议学生自学。

第八章 免疫遗传学基础

1.教学基本内容

免疫学的基本概念,抗体的概念及多样性原理主要组织相容性复合体,T细胞抗原识别和活化,补体系统。 2.教学基本要求

了解补体系统的经典途径与替代途径,掌握抗体的概念,主要组织相容性复合体的概念。

3.教学重点难点

重点:抗原、抗体的概念,MHC的概念。 难点:免疫球蛋白基因的基因重排。

4.教学建议

补体系统建议学生自学。

第九章 动物基因组学基础

1.教学基本内容

动物遗传标记,基因遗传图谱和物理生图谱的概念及构建方法,基因定位方法动物基因组学的概念及研究进展。

2.教学基本要求

了解分子遗传标记在动物遗传育种中的应用,遗传图谱和物理图谱的构建方法,基因定位方法,动物基因组研究进展,掌握分子遗传标记,遗传图谱物理图谱的概念。

3.教学重点难点

分子遗传标记的类型概念及多态性原理基因图谱的概念。

4.教学建议

本章内容较多且有些内容较难建议基因定位的方法由学生自学。

第十章 非孟德尔遗传

1.教学基本内容

母体效应的概念及原理;剂量补偿效应的概念及原理;基因组印迹的概念及原理;核外基因的遗传特征;线粒体DNA的结构特征。

2.教学基本要求

了解线粒体DNA的结构、转录、翻译过程掌握由核基因控制的母体效应、剂量补偿效应,基因组印迹的概念及原理,核外基因的遗传特征。

3.教学重点难点

母体效应、剂量补偿效应和基因组印迹的概念及原理。

4.教学建议

注意区分孟德尔遗传与非孟德尔遗传的区别,核基因遗传与核外基因遗传的区别。

第十一章 动物基因工程

1.教学基本内容

基因工程的概念;基因操作中的工具酶、载体的种类及作为载体的条件;基因工程的步骤;重组体的鉴定与筛选;转基因动物的方法;动物克隆的概念及一般步骤、基因诊断。

2.教学基本要求

了解基因工程的工具酶;转基因动物的方法;动物的克隆的概念及一般步骤;基因诊断;掌握载体的种类及作物载体的条件;基因工程的一般步骤。

3.教学重点难点

重点:基因工程的一般步骤。 难点:重组体的鉴定与筛选。

4.教学建议

本章内容较多,且有些内容与畜牧生产实践联系较少,建议基因诊断由学生自学。

动物遗传学教学教案

第一章 绪 论

1.基本内容

遗传学的基本概念;遗传与变异的概念以及相互关系;遗传学发展简史与主要分支;遗传学与农业、工业、医学的关系;遗传学的研究方法。

2.教学基本要求

了解遗传学的基本内容与研究方法;了解遗传学的发展概况。

3.教学重点难点

遗传与变异的概念及其相互关系。

4.教学建议

注意引导学生对学习本课程兴趣与积极性。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 2学时 8.作业:见复习思考题集

第二章 遗传的物质基础

1.教学基本内容 核酸是遗传物质的直接、间接证据;DNA的分子结构;基因的结构特征;真核生物基因组的特点;细胞的结构;染色体的结构与组成;常见动物的染色体数目;细胞分裂。

2.教学基本要求

了解DNA的分子结构;DNA作为遗传物质的主要依据;掌握染色体的结构、组成、主要畜禽的染色体数;了解减数分裂及有丝分裂过程中染色体的行为;了解基因的一般结构特征和真核生物基因组的特点。

3.教学重点难点

重点:染色体的结构、组成,染色体在减数分裂及有丝分裂中的行为。

难点:染色体的四级结构、核型、细胞的减数分裂过程;C值矛盾;DNA重复序列的有关概念。

4.教学建议

建议DNA是遗传物质的直接、间接证据、DNA的分子结构等内容,不作重点讲授。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第三章 遗传信息的传递

1.基本内容

DNA的复制、转录、翻译过程;原核生物与真核生物基因表达调控。

2.教学基本要求

掌握DNA的复制、转录与翻译过程,原核生物与真核生物基因表达调控的基本原理。

3.教学重点难点

重点:DNA的复制、转录和翻译过程;基因表达调控的一般原理。

难点:DNA的复制、转录与翻译过程;真核生物在转录水平上基因表达调控中顺式作用元件与反式作用元件的相互作用。

4.教学建议

本章内容与动物遗传学第一版内容相比有较大改动,基本反应了学科的发展趋势,比较难学,注意学生对讲授内容的接受程度。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第四章 遗传信息的改变

1.基本内容

染色体畸变;基因突变概念、频率、时期、表现及一般特性;突变的抑制与DNA的修复;重组的类型;转座子的概念。

2.教学基本要求

掌握基因突变的概念及特性;染色体结构及数目变异的机制与遗传效应;重组与转座的有关概念。

3.教学重点难点

重点:变异的区分;变异的遗传效应;转座子的概念。

难点:基因突变的分子机制;染色体结构变异的机制;同源重组的Holliday模型;转座的机制。

4.教学建议

基因突变与染色体诱变的方法可结合在一起讲;突变的抑制与DNA的修复建议自学。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第五章 遗传的基本定律及其扩展

1.教学基本内容

遗传学的三大定律理论要点、验证方法及其理论与实践意义;非孟德尔遗传型式:不完全显性现象、致死基因、复等位基因、基因互作、“多因一效”与“一因多效”;性别决定与伴性遗传。

2.教学基本要求

掌握遗传学的三大定律理论基本论点和验证方法;掌握有关名词术语;了解孟德尔遗传规律的条件性及孟德尔遗传的扩展现象,包括不完全显性、致死基因、复等位基因,基因的互补、上位、重叠,“多因一效”与“一因多效”等遗传现象与遗传规律;掌握性别决定与伴性遗传的基本原理。

3.教学重点难点

重点:遗传学的三大定律的理论实质;孟德尔遗传扩展现象;基因连锁定位。

难点:三点测交及交换率的计算;自由组合定律与连锁定律的异同点;从性性遗传、限性遗传与伴性遗传的异同。

4.教学建议

为避免与中学生物学重复,建议尽量结合畜牧方面例子。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 8学时 8.作业:见复习思考题集

第八章群体遗传学基础

1.基本内容

基因频率、基因型频率的概念及相互关系;哈代—温伯格定律;基因频率的计算;影响群体基因频率和基因型频率变化的因素;遗传多样性;分子进化理论。

2.教学基本要求

了解基因频率、基因型频率等群体遗传学基本概念;掌握哈代一温伯定律的基本论点及有关证明;学会基因频率的计算方法;掌握群体基因频率及基因型频率变化的规律;掌握分子进化钟理论与中性学说。

3.教学重点难点

重点:哈代—温伯格定律;影响群体基因频率及基因型频率变化的因素。

难点:基因频率的计算;平衡群体的检验;分子进化的中性学说。

4.教学建议

遗传多样性中的保护遗传学内容与家畜育种学的相关内容重复,建议学生自学。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第九章数量性状遗传基础

1.基本内容

数量性状的遗传特征与通径系数;重复率的概念、性质、计算原理与方法,重复率的用途;遗传力的概念、性质、计算遗传力的原理,母女相关法及同胞相关法,遗传力的主要用途;遗传相关的概念;遗传相关与表型相关、环境相关的关系,遗传相关的估算原理与方法,遗传相关的用途。

2.教学基本要求 准确了解三个遗传参数(重复率、遗传力、遗传相关)的概念、估算原理与方法、用途。

3.教学重点难点

重点:三个遗传参数的估算原理、方法及其主要用途;通径系数的概念与性质。 难点:三个遗传参数的估算原理与方法。

4.教学建议

线性模型与非线性模型的基本概念与模型分析建议学生自学。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 6学时 8.作业:见复习思考题集

第八章 免疫遗传学基础

1.教学基本内容

免疫学的基本概念,抗体的概念及多样性原理主要组织相容性复合体,T细胞抗原识别和活化,补体系统。

2.教学基本要求

了解补体系统的经典途径与替代途径,掌握抗体的概念,主要组织相容性复合体的概念。

3.教学重点难点

重点:抗原、抗体的概念,MHC的概念。 难点:免疫球蛋白基因的基因重排。

4.教学建议

补体系统建议学生自学。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第九章 动物基因组学基础

1.教学基本内容

动物遗传标记,基因遗传图谱和物理生图谱的概念及构建方法,基因定位方法动物基因组学的概念及研究进展。

2.教学基本要求 了解分子遗传标记在动物遗传育种中的应用,遗传图谱和物理图谱的构建方法,基因定位方法,动物基因组研究进展,掌握分子遗传标记,遗传图谱物理图谱的概念。

3.教学重点难点

分子遗传标记的类型概念及多态性原理基因图谱的概念。

4.教学建议

本章内容较多且有些内容较难建议基因定位的方法由学生自学。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第十章 非孟德尔遗传

1.教学基本内容

母体效应的概念及原理;剂量补偿效应的概念及原理;基因组印迹的概念及原理;核外基因的遗传特征;线粒体DNA的结构特征。

2.教学基本要求

了解线粒体DNA的结构、转录、翻译过程掌握由核基因控制的母体效应、剂量补偿效应,基因组印迹的概念及原理,核外基因的遗传特征。

3.教学重点难点

母体效应、剂量补偿效应和基因组印迹的概念及原理。

4.教学建议

注意区分孟德尔遗传与非孟德尔遗传的区别,核基因遗传与核外基因遗传的区别。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第十一章 动物基因工程

1.教学基本内容

基因工程的概念;基因操作中的工具酶、载体的种类及作为载体的条件;基因工程的步骤;重组体的鉴定与筛选;转基因动物的方法;动物克隆的概念及一般步骤、基因诊断。 2.教学基本要求

了解基因工程的工具酶;转基因动物的方法;动物的克隆的概念及一般步骤;基因诊断;掌握载体的种类及作物载体的条件;基因工程的一般步骤。

3.教学重点难点

重点:基因工程的一般步骤。 难点:重组体的鉴定与筛选。

4.教学建议

本章内容较多,且有些内容与畜牧生产实践联系较少,建议基因诊断由学生自学。

5.教具 多媒体

6.教学方法:讲清概念,启发思考 7.课时:理论课 4学时 8.作业:见复习思考题集

第19篇:遗传学整理

同源染色体和姊妹染色单体 双链-正负链,及线状或环状)是病毒的核心,蛋白质外减数分裂的遗传学意义

同源染色体:染色体在体细胞内成对存在的,即形态、层作为衣壳或包被(一些由来自细胞的质膜包被,如减数分裂形成的雌雄配子结合恢复了亲代的染色体数,结构、功能相似的2条染色体 HIV)。病毒核酸分子可包括

3、4个甚至上百个基因,用保证了亲子代染色体数目的恒定

姊妹染色单体:由同一着丝粒连接着的并行的两条染色于编码其复制的酶及外壳蛋白(包括识别蛋白)。蛋白外性,其次,染色体随机分离可产生不同染色体组合的子单体 壳可以是棒状或球形等形状。 细胞, 另外,非姐妹染色单体交

2、基因和等位基因基因:DNA分子链中具有互补测验与顺反测验换遗传物质增加了基因组合的多样性,有利于适应环境特定遗传功能的一段核苷酸序列 互补作用:两个独立的隐性突变是等位基因时则杂合状并为人工选择提供丰富的材料。

等 位 基 因:是指杂种体细胞内成对基因位于一对同源态下表现为突变型,而不是等位基因则杂合时表现野生受精:雌雄配子融合形成一个合子的过程。植物受精从染色体相等位置上,并决定一个单位性状的遗传及其相型,因为同源染色体可以提供有功能的基因产物。 授粉开始,授粉方式分为自花授粉 ,同一朵花或同一植对差异的一对基因顺反测验:两个突变型当其基因位于同一染色体上时(顺株的花)和异花授粉(不同植株的花朵),花粉在雌蕊柱头

3、单倍体和一倍体 式)则其同源染色体可以提供正常功能基因产物即表现上发芽形成花粉管并穿过花柱、子房、珠孔后进入胚囊,单 倍 体:具有配子染色体数目的个体 野生型,而处于不同染色体(反式)时如果表现野生型则花粉的一个精核与卵细胞结合形成合子,另一个与两个

一 倍 体:细胞核内含一个染色体组的生物体 两者不是同一基因的突变,如果表现突变型则两者属于极核结合为胚乳核,所以植物受精亦称双受精。

4、转化和转导 同一基因。因此,基因有时亦可称为顺反子,即表示功表现型和基因型的概念

转 化:细菌从外界吸收来自另一不同基因型细胞的DNA能的最小单位。 个体的基因组合称基因型,植株表现出来的性状称表现而使其基因型和表型发生变化的现象 细胞质遗传的特点:1.正反交的遗传效应不同 2.不型,是基因型和环境相互作用的结果。

转 导:通过噬菌体作为媒介,把一个细菌的基因导入另与核染色体基因连锁3.不表现孟德尔式的分离比例 4.倒位的遗传效应

一细菌的过程 核外遗传不受核置换的影响倒位虽然并不造成遗传物质的丢失,而当倒位时切除位

5、伴性遗传和从性遗传 1连锁遗传图描述基因在染色体上的排列顺序和相对距置发生在基因内部或基因调控区域则影响表现型,另外伴 性 遗 传:由性染色体上基因所控制的性状的遗离的数轴图叫连锁遗传图,又称遗传图谱 基因顺序改变其连锁关系亦发生变化亦会影响性状表传方式 2 二价体与二倍体联会后的一对同源染色体称为二价现。倒位亦是物种进化的动力之一。

从 性 遗 传:由常染色体上基因控制的性状,由于内分体,含有两个染色体组的生物个体称为二倍体。 倒位圈内非姐妹染色单体间发生交换会产生后期桥现泌等因素的影响,在表现型上受个体性别影响的现象 3颠换与转换转换:指DNA分子中一种嘌呤被另一种嘌呤象,是由交换后的双着丝点染色体形成的。无着丝点染

1、分离规律的实质是什么?怎样验证分离规 律?替换,或一种嘧啶被另一种嘧啶替换的突变方式;颠换:色体的出现和后期桥的折断常导致部分孢子不育。倒位分 离 规 律 的 实 质 是:位于一对同源染色体上指DNA分子中的嘌呤碱基被嘧啶碱基替换,或嘧啶碱基引起染色体上基因的连锁关系改变而其重组率亦发生变的一对等位基因在配子形成过程中,彼此分离,互被嘌呤碱基替换的突变方式。 化。

不干扰,各自独立地分配到不同的配子中去,每个4异固缩同一染色体上异染色质与常染色质的不同步的重复的遗传效应

配子中只含有一对基因中的一个成员。 螺旋现象。 重复不一定对个体产生有害影响,重复对表现型的效应测交法、自交法、花粉鉴定法 5重叠作用两对独立的基因对表现型产生相同的影响,与重复区段的基因有关。重复基因可产生剂量效应,如

2、细胞质基因和核基因的遗传方式有什么不 同? 它们中若有一对基因是纯合显性或杂合状态,表现一种果蝇的红色眼(v,隐性)的重复(vv)可以抵消朱红色眼细胞质基因遗传是和外基因通过母本向后代传性状(显性);都为纯合隐性时,则表现另一种性状(隐(v+)的显性效应而必须隐性性状。重复的位置效应亦是递,子代某一性状的表型由物体的核基因型决定,性),从而使F2呈现15:1的表现型比例。 明显的,如果蝇棒眼中由于X染色体的16A区段的不等而不受本身基因型的支配,从而导致子代的表型和6操纵子功能上相关的成簇的基因,加上它的调控的部交换造成的重复在一条染色体上与在不同染色体上的效母本相同。核基因遗传是核基因通过有丝分裂过程分定义为操纵子。 应是不同的,表现在红色小眼的数目不同。重复在多基中染色体的复制和分离向后代传递。它们主要不同7转座因子称移动基因,跳跃基因,它可以从染色体因家族的进化中有重要的作用。

之处在于一个具有母性一个则是要双亲 的基因。 基因组上的一个位置转移到另一个位置,甚至在不同的连锁交换定律在动植物育种方面的应用:重组产生新变

3、试比较同源多倍体.异源多倍体、节段异源 多 倍 染色体之间跃迁。 异类型生物进化,多样性;染色体作图(连锁图):确定体 减 数 分 裂 时 染 色 体 联 会 的 特 征 8无融合生殖指不经过雌雄性细胞结合,但由性器官产染色体上基因的位置;提高育种的预见性: 根据基因连同 源 多 倍 体:每区段只有两条染色体联会,联会时生后代的生殖行为,它是介于有性生殖和无性生殖之间锁程度即交换率预测杂交组合产生重组类型的频率。

候非姐妹染色单体之间交换减少,并且提早解体。的一种特殊生殖方式;或者说是有性生殖的一种特殊方缺失的遗传学效应

分离不均衡。三倍体:有两种联会方式,一是联会式或变态 缺失的基因有时可以由其同源染色体上的等位基因来补成三价体,二是联会成一个二价体和一个单价体。9母体遗传与母性影响母体遗传即细胞质遗传,由于细偿,而当等位隐性基因表现时其往往是有害的,如果缺四倍体:有四种联会方式。 胞质基因所决定性状的遗传现象与规律,有性生殖生物失了着丝点则会在减数分裂期间整条染色体将丢失其后异 源 多 倍 体:奇数倍的异源染色体无联会。偶数倍细胞质遗传物质通常来自于母本;母性影响属于细胞核果是很严重的。假显性---显性基因缺失而使得等位隐性

的:跟二倍体的联会、分离一致。基因分离定律也基因控制性状的遗传,由于后代个体的性状表现由母本基因得以表达的现象。

与二倍体一致。 基本型决定,因而在某些方面类似于母体遗传。 易位的遗传效应

节 段 异 源 多 倍 体:染色体除了同源联会成二价体10杂种优势两个遗传型不同的亲本杂交所产生的杂种易位改变了基因的连锁关系,产生了新的连锁群,许多

外,还会发生异源联会,形成三价体或四价体。造第一代(F1)在生长势、生活力、繁殖力、抗逆性、产植物的变种是从易位逐步演化而来的。易位可导致染色成一定程度的不育。 量和品质等方面比其双亲优越的现象。 体融合,造成染色体数目的改变。相互易位的易位纯合

4、引起可遗传的变异的原因有哪些?可遗传的变异是1.不完全显性是指F1表现为两个亲本的中间类型。体减数分裂时染色体正常配对而不会产生不正常的染色

由遗传物质的变化引起的变异。 共显性是指双亲性状同时在F1个体上表现出来。 单体,然而易位杂合体进行减数分裂时染色体的行为常基因重组、基因突变和染色体变异。 2.同义突变:由于遗传密码的简并性,当DNA分子上碱导致产生一些不均衡的配子,其中一些为重复而另一些基因重组是指非等位基因间的重新组合 基发生替换后产生新的密码子仍然编码原来的氨基酸,为缺失,故会产生不育的配子。减数分裂前期I的“十”基因突变是指基因的分子结构的改变,即基因中的脱氧从而不会导致所编码的蛋白质结构和功能的改变。这种字形在后期I会出现两种方式的分离:1)交替式,产生核苷酸的排列顺序发生了改变,从而导致遗传信息的改突变称为同义突变。 的二分体孢子里的两组染色体一组是正常的,另一组是变。基因突变的频率很低,但能产生新的基因,对生物4.倒位杂合体:一对同源染色体中,一条是倒位染色体,易位杂合体,基因数目不变,因此都是可育的;2)相邻的进化有重要意义。 另一条是正常染色体,这样的个体称为倒位杂合体。 式,分离的两组染色体各有一半为易位染色体造成了染染色体变异是指染色体的数目或结构发生改变。 4试比较F′、F+、F- 和Hfr的关系。 色体基因数目的重复和缺失,产生的孢子是不育的。因

+H遗传平衡定律 :一个随机交配群体如果其个体间充分F指含有F因子且F因子游离于宿主染色体外的细菌;F此,植物中易位杂合体通常产生半不育现象。

-进行随机交配,则各代基因频率和基因型频率保持不变 指不含有F因子的细菌;Hfr指F因子已整合到宿主染减数分裂的遗传学意义

定律的要点:色体上的菌株;F΄指带有宿主染色体基因的F因子。 减数分裂形成的雌雄配子结合恢复了亲代的染色体数,

+-在随机交配的大群体内,如果没有其它因素的干扰,则其中F′、F 和Hfr均可接合F菌株,只是F′带有原保证了亲子代染色体数目的恒定

各代基因频率保持一定不变; 在任何一个大群体内,不来宿主的染色体基因,可高效转移所带宿主的染色体基性,其次,染色体随机分离可产生不同染色体组合的子

-+论其基因频率和基因型频率如何,只要一代的随机交配,因,并使F菌株变为F菌株;Hfr可高效转移宿主的染细胞, 另外,非姐妹染色单体交

-++群体就可达到平衡;平衡交配群体的基因频率和基因型色体基因组,但很难让F菌株变为F菌株;F转移宿主换遗传物质增加了基因组合的多样性,有利于适应环境

-+频率的关系为:D=p2, H=2pq, R=q2 .群体的遗传平衡受的染色体基因的频率最低,但能使F菌株变为F菌株。 并为人工选择提供丰富的材料。

环境等因素影响,如通过突变、选择、迁移和杂交等可1.简述数量性状与质量性状的基本特征。

以改变群体的遗传平衡,为动植物育种提供新材料。 性状的变异有连续的和不连续的两种,表现不连续的变

连锁交换定律在动植物育种方面的应用异的性状称为质量性状,表现连续变异的性状称为数量

重组产生新变异类型生物进化,多样性;染色体作图(连性状。

锁图):确定染色体上基因的位置; 提高育种的预见性: 数量性状特征:遗传基础是微效多基因系统控制,遗传

根据基因连锁程度即交换率预测杂交组合产生重组类型关系复杂);呈连续性变异;数量性状的表现容易受环境

的频率。 影响;主要是生产、生长性状);在群体的水平用生物统

单倍体形态 :与二倍体相比,单倍体出现显著小型化,计的方法研究数量性状。

细胞、器官和植株较弱小。单倍体往往表现为高度不育。质量性状特征:遗传基础是少数主基因控制的,遗

单倍体的应用1)单倍体的单价体基因是成单出现的,若传关系较简单);呈不连续变异;质量性状的表现对环境

进行人工加倍则能得到纯合基因型个体,可缩短育种年不敏感;主要是品种特征外貌特征等性状;在家庭的水

限; 单倍体的基因由于成单出现, 故其作用可以充分表平通过系谱分析、概率论方法研究质量性状。

现,可以研究基因的作用; 异源多倍体产生的单倍体其2.什么是植物雄性不育,雄性不育有哪几种遗传类型?

染色体组是否出现联会现象是判断染色体组间的同源关雄性不育性是植物界的一个普遍现象,它是指植株在形

系的基础 成花粉或雄配子时,由于自身或环境的原因不能形成正

人工诱导多倍体的应用:1.克服远缘杂交的不孕性常的雄配子或不能形成雄配子现象(2分)。可遗传的雄性

2.克服远缘杂种不实性 3.创造远缘杂交育种的中间亲不育性有三种遗传类型:核不育型是由核基因决定的不

本4.育成作物新类型育类型(1分);细胞质不育型是由细胞质因子控制的不育

病毒的一般特性类型(1分);核质互作不育型是由核基因和细胞质基因相

感染型病毒仅由衣壳蛋白及其内的一个或几个核酸分子互作用共同控制的雄性不育类型(1分)。

组成。病毒是许多人类,家畜及植物疾病的载体。近交系数-一个合子中两个等位基因来自双亲共同祖

单一病毒颗粒的核酸(单一或多个的DNA或RNA:单链或先的某一基因的频率

第20篇:遗传学名词解释

名称解释:

同源染色体(homologous chromosome) :成对成双的染色体,一个来自父方,一个来自母方,在大小、形态、着丝粒的位置、染色粒的排列都相同的一对染色体

异源染色体(non-homologous chromosome) :大小、形态、着丝粒的位置、染色粒的排列都各不相同的染色体

常染色质:是指细胞分裂间期染色质丝折叠盘曲程度小,染色较浅,随着细胞分裂的进行,这些染色质区段逐步螺旋化,从而染色逐渐加深的染色质区段

异染色质:是染色体上着色较深,无论在间期还是分裂期均是高度螺旋化的区段 联会在减数第一次分裂前期,同源染色体在纵的方向上两两配对的现象叫联会。 核型分析将待测的细胞的染色体按照该生物固有的染色体形态特征和规定,进行配对、编号和分组,并进行形态分析的过程。

基因型:个体基因的组合。即体细胞或生殖细胞的控制性状的基因组成。 表型:个体基因型所表现的性状。

等位基因指位于一对同源染色体的相同位置上控制着相对性状的一对基因。 复等位基因指的是同一基因座位上具有三个以上的等位基因。这些等位基因互称为复等位基因。

基因互作非等位基因之间通过相互作用影响同一性状表现的现象。 一因多效(pleiotropism)是指一个基因决定着多种效应的现象。 多因一效(multigenic effect)是指多个基因共同作用决定一种效应。 伴性遗传:是指在遗传过程中的子代部分性状由性染色体上的基因控制,这种由性染色体上的基因所控制性状的遗传方式就称为伴性遗传,又称性连锁(遗传)或性环连。

从性遗传:控制性状的基因位于常染色体上,其表型受激素的影响,与内分泌有关,某些性状从属于某一方表达。如秃顶,羊角。

限性遗传:控制性状的基因位于Y染色体或W染色体上,其表型只限于雄性或雌性一方表达。如毛耳,睾丸女性化,子宫阴道积水。一般与性就是有关。

转座因子:转座因子是可以自由移动的DNA序列。转座因子改变位置(例如从染色体上的一个位置转移到另一个位置,或者从质粒转移到染色体上)的行为称为转座(transposition)。 SNP(单核苷酸多态性)它是人类可遗传的变异中最常见的一种。SNP:单核苷多态性,即同一基因同一位点的单个核苷酸变化导致的同一生物同一基因表现出的多态性现象。

结构基因:是决定合成某一种蛋白质分子结构相应的一段DNA。结构基因的功能是把携带的遗传信息转录给mRNA(信使核糖核酸),再以mRNA为模板合成具有特定氨基酸序列的蛋白质。

调节基因:是调节蛋白质合成的基因。它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。

假基因与正常基因相似,但丧失正常功能的DNA序列,往往存在于真核生物的多基因家族中,常用ψ表示。 内含子、断裂基因的非编码区,可被转录,但在mRNA加工过程中被剪切掉,故成熟mRNA上无内含子编码序列。

外显子、是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。

质量性状表现为不连续变异的,不易受环境的影响,往往由一对基因所控制的性状,如花色等

数量性状表现为连续变异的,易受环境影响的,往往由多对基因所控制的性状,如植株的高矮等

单体:是二倍体的基础上减少一条染色体,称为单体。用2N-1表示。

三体(trisomic)是在二倍体的基础上增加了一个染色体的个体,这类个体称为三体。 同源多倍体是指具有3套以上相同染色体组的细胞或个体。 异源多倍体指的是具有3套来源不同的染色体组的细胞或个体。 单倍体、指的是细胞核中含有一个完整染色体组的个体称为单倍体。

转化、是某一基因型的细胞从周围介质中吸收来自另一基因型的细胞的DNA而使它的基因型和表现型发生相应变化的现象。该现象首先发现于细菌。 转导由噬菌体将一个细胞的基因传递给另一细胞的过程。它是细菌之间传递遗传物质的方式之一。其具体含义是指一个细胞的DNA或RNA通过病毒载体的感染转移到另一个细胞中。 基因突变基因组DNA分子发生的突然的、可遗传的变异现象(gene mutation)。

细胞质遗传:细胞质遗传是染色体外的遗传因子控制的,其表现受母体影响的遗传现象。 细胞核遗传是指细胞核内基因控制的性状遗传,主要是DNA作为遗传物质,并且作用位置在细胞核内,与细胞质遗传相对。

雄性不育动、植物雄性细胞或生殖器官丧失生理机能的现象。

遗传学课程教案模板
《遗传学课程教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档