人人范文网 岗位职责

数据挖掘岗位职责职业规划(精选多篇)

发布时间:2020-04-25 08:34:00 来源:岗位职责 收藏本文 下载本文 手机版

推荐第1篇:数据挖掘

第4章 无监督学习

4.1基本概念

图4.1数据点的三个自然

4.2k-均值聚类

4.2.1k-均值算法

图4.2k-均值算法

计算机组成原理(第三版)

图4.3k-均值算法的运行实例

4.2.2k-均值算法的硬盘版本

图4.4一个简单的k-均值算法硬盘版本

计算机组成原理(第三版)

3 4.2.3优势和劣势

图4.5存在和不存在异常值情况下的聚类

图4.6不理想的初始种子(聚类中心)

图4.7理想的初始种子(聚类中心) 4

计算机组成原理(第三版)

图4.8自然(不规则)聚类和k-均值聚类

4.3聚类的表示

4.3.1聚类的一般表示方法

图4.9聚类的规则描述

4.3.2任意形状的聚类

图4.10两个自然聚类以及

计算机组成原理(第三版)

5 4.4层次聚类

图4.11层次聚类的一个例子

图4.12合并层次聚类算法

图4.13合并层次聚类算法的工作

4.4.1单链接方法

图4.14单链接方法的连锁反应

计算机组成原理(第三版) 4.4.2全链接方法

图4.15采用全链接方法聚类

4.4.3平均链接方法 4.4.4优势和劣势

4.5距离函数

4.5.1数值的属性(Numeric Attributes) 4.5.2布尔属性和符号属性(Binary and Nominal Attributes)

图4.16两个只具有布尔属性数据点的混合矩阵

计算机组成原理(第三版)

7 4.5.3文本文档

4.6数据标准化 4.7混合属性的处理 4.8采用哪种聚类算法 4.9聚类的评估

图4.17带有熵和纯度值的混合矩阵

计算机组成原理(第三版) 4.10发现数据区域和数据空洞

图4.18用决策树来区分数据区域和空洞区域

推荐第2篇:数据挖掘心得体会

心得体会

这次数据挖掘实验结束了,期间我们小组明确分工并积极去完成,虽然有点辛苦,但我感觉充实而有收获感!

根据老师给的一些资料,我们决定采用SQL Server 2000中的Northwind数据库里的数据作为我们的实验数据。根据表Order Details中的数据,我们分别根据ProductID和OrderID字段,并结合我们规定的最小支持度阀值对数据进行筛选。依次筛选出1项频繁集、2项频繁集和3项频繁集,其中还会使用游标的方式来遍历2项集与3项集的候选集,分别选出2项频繁集和3项频繁集。

由于数据较多,因此过程比较复杂,要编写很多的查询语句,建立许多数据表,包括临时表。开始不知道则操作,但经过我们各自多次重复的建表与查询,逐渐的理解和有了自己的思路。尤其是在运用游标的方法进行遍历这块,因为我们比较陌生而不理解,操作时一时无法实现结果,但经过我们在网上查询了解相关知识,最终得以解决。

经过该次实验,使我对数据库的操作更加熟练,而且还使我对课本上的“挖掘频繁模式”这块知识有了很好的掌握,今后我会多做实验,使我在实际操作过程中学得更好!

推荐第3篇:数据挖掘作

第二章

2.1使用STATISTIC分析软件中的关联规则对数据集bnkserv.sta中的各类银行服务进行关联分析。使用Statistics菜单下的Data-Mining命令,选择Sequence下的Aociation and Link Analysis模块。通过一系列的变量等的设置,最终得到的频繁项集如表2.11所示: 表2.11

Summary of sequential rules (bnkserv)Min: support = 20.0%, confidence = 10.0%Max.size of an itemset = 10Body==>HeadSupport(%)Confidence(%)1( CKING )==>( SVG )54.1734563.150982( CKING )==>( SVG ), ( ATM )24.8529628.971553( CKING ), ( SVG )==>( ATM )24.8529645.876654( CKING )==>( ATM )36.1907142.188185( CKING )==>( CD )20.9861124.463896( SVG )==>( ATM )25.6914041.52508

从表2.11中我们可以看出,这13种银行服务经STATISTIC软件中的关联规则分析总共生成6个频繁项集,其中序列规则If(CKING)Then(SVG)的支持度和置信度是最大的,分别为54.17%、63.15%。每一频繁项集的支持度和置信度一一对应,下面的图2.1-1和图2.1-2比较直观的将各频繁项集的最小支持度和最小置信度表现出来了。

单击“ASCResult”窗口中的“Support graph”就可得到如图2.11所示的结果。

Support bar chartMin: support = 20.0%, confidence = 10.0%Max.size of an itemset = 10图2.11

从该图中我们可以直观、清晰地看出各个规则支持度的大小。例如,同其他规则相比较,If (CKING)Then(CD)的支持度是最小的。

单击“ASCResult”窗口中的“Confidence graph”就可得到如图2.12所示的结果。

Confidence bar chartMin: support = 20.0%, confidence = 10.0%Max.size of an itemset = 10

图2.12 从这个图中我们可以直观、清晰地看出各个规则置信度的大小。例如,同其他规则相比较,If (CKING)Then(CD)的置信度是最小的。

通过对以上各银行服务组合的支持度和置信度的分析,我们发现不同的银行服务组合在总的业务组合中所占的比例不同,据此我们可以推测不同的银行服务组合所面向的客户群不同。

单击“Rule graph”按钮得到图2.13,该图直观清晰的显示出各银行服务组合间的关联性。

Rule graphNode size: Relative support of each itemColor darkne: Relative confidence0.2450.632CDATMBodySVGCKINGCKINGSVGHeadATMCD图2.13 我们以圆点的大小和颜色代表支持度和置信度的大小。从图中我们可以得到与前面相同的结论: CKING和SVG之间的序列关联是最强的;CKING和CD之间的序列关联最弱。

2.2使用STATISTIC分析软件中的关联规则对数据集gz3g.sta中的各3G业务进行关联分析。使用Statistics菜单下的Data-Mining命令,选择Sequence下的Aociation and Link Analysis模块。通过一系列的变量等的设置,最终得到的频繁项集如表2.21所示

推荐第4篇:数据挖掘总结

数据挖掘总结(职业篇)

数据分析微信公众号datadw——关注你想了解的,分享你需要的。 前面对数据挖掘相关资源等等进行了总结。但是,很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想想这方面发展的朋友共享:

BI职业发展方向:数据分析师---商业分析师--管理者

但是在每个公司,可能有不同的发展方向,但是大致上是从数据挖掘工程师起步。 DMFighter:

数据挖掘从业人员工作分析 1.数据挖掘从业人员的愿景:

数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。

A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等) B:做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等) C:数据分析师(在存在海量数据的企事业单位做咨询、分析等) 2.数据挖掘从业人员切入点: 根据上面的从业方向倒序并延伸来说说需要掌握的技能。

C,数据分析师:需要有深厚的数理统计基础,可以不知道人工智能和计算机编程等相关技术,但是需要熟练使用主流的数据挖掘(或统计分析)工具。从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《中文版 数据挖掘原理》 等书籍那就更好了。

B,程序设计开发:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。要想扮演好这个角色,你不但需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和操作,对数据挖掘基础课程有所了解,读过《数据挖掘概念与技术》(韩家炜著)、《人工智能及其应用》。有一点了解以后,如果对程序比较熟悉的话并且时间允许,可以寻找一些开源的数据挖掘软件研究分析,也可以参考如《数据挖掘:实用机器学习技术及Java实现》等一些教程。

A.做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,也是B,C的归宿,那么相应的也就需要对B、C的必备基础知识了。

----------- 数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。

一、专业技能

硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验

熟练掌握常用的数据挖掘算法

具备数理统计理论基础,并熟悉常用的统计工具软件

二、行业知识

具有相关的行业知识,或者能够很快熟悉相关的行业知识

三、合作精神

具有良好的团队合作精神,能够主动和项目中其他成员紧密合作

四、客户关系能力

具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望

具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力

进阶能力要求

数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。

具有数据仓库项目实施经验,熟悉数据仓库技术及方法论

熟练掌握SQL语言,包括复杂查询、性能调优

熟练掌握ETL开发工具和技术

熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术

善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性操作方案

五、应用及就业领域

当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation &Claification)、背景分析(Profile Analysis)、交叉销售(Cro-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问著名的亚马逊网上书店(www.daodoc.com),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book alsobought”,这背后就是数据挖掘技术在发挥作用。

数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Busine First, techniquesecond”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。

数据采集分析专员

职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。

求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。

市场/数据分析师

1.市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing (直接面向客户的市场营销) 吧,自90年代以来,Direct Marketing越来越成为公司推销其产品的主要手段。根据加拿大市场营销组织(Canadian MarketingAociation)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有更多的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。

2.行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。

现状与前景

数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较著名的有中科院计算所、复旦大学、清华大学等。另外,政府机构和大型企业也开始重视这个领域。

据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。

根据IDC(International DataCorporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。

现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。

众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地!

职业薪酬

就目前来看,和大多IT业的职位一样,数据仓库和数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺,在二线成熟,高端数据仓库和数据挖掘方面的人才尤其稀少。高端数据仓库和数据挖掘人才需要熟悉多个行业,至少有3年以上大型DWH和BI经验,英语读写流利,具有项目推动能力,这样的人才年薪能达到20万以上。

推荐第5篇:数据挖掘试题

《数据挖掘》总复习题

1.数据挖掘系统可以根据什么标准进行分类?

答:根据挖掘的数据库类型分类、根据挖掘的知识类型分类、根据挖掘所用的技术分类、根据应用分类

2.知识发现过程包括哪些步骤?

答:数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示3.什么是概念分层?

答:一个映射序列,将低层概念映射到更一般的较高层概念。 4.多维数据模型上的 OLAP 操作包括哪些?

答:上卷、下钻、切片和切块、转轴 / 旋转、其他OLAP操作5.OLAP 服务器类型有哪几种?

答:关系 OLAP 服务器(ROLAP)、多维 OLAP 服务器(MOLAP)、混合 OLAP 服务器 (HOLAP)、特殊的 SQL 服务器6.数据预处理技术包括哪些?

答:聚集、抽样、维规约、特征子集选择、特征创建、离散化和二元化、变量变换。 7. 什么是数据清理?

答:填写缺失的值,平滑噪声数据,识别、删除离群点,解决不一致性 8. 什么是数据集成?

答:集成多个数据库、数据立方体或文件 9.什么是数据归约?

答:得到数据集的压缩表示,它小得多,但可以得到相同或相近的结果 10.数据清理的内容包括哪些?

答:缺失值、噪声数据、数据平滑、聚类、回归11.将下列缩略语复原

OLAP——on-line analytical proceing DM——data mining

KDD——knowledge discovery in databases OLTP——on-line transaction proceingDBMS——database management system DWT——discrete wavelet transform

(DMQL)--Data Mining Query Language 12.什么是数据挖掘?

答:简单地说,数据挖掘是从大量数据中提取或挖掘知识。 具体地说,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际 应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和 知识的过程。 13.什么是关联规则? 答:(关联规则是形如X→Y的蕴涵式,其中且, X和Y分别称为关联规则的先导和后继。) 假设I是项的集合。给定一个交易数据库,其中每个事务(Transaction)t是I的非空子集,即,每一个交易都与一个唯一的标识符TID(Transaction ID)对应。关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率;置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。关联规则是有趣的,如果满足最小支持度阈值和最小置信度阈值。这些阈值是根据挖掘需要人为设定。

(关联规则反映一个事物与其它事物之间的相互依存性和关联性,如果两个事物或者多个事物之间存在一定的关联关系,那么其中一个事物就能够通过其他事物预测到。) 15.什么是概念描述?什么是特征化?什么是属性相关分析?

答:概念描述:用汇总的、简洁的和精确的方式描述各个类和概念可能是有用的。 特征化:是目标类数据的一般特性或特征的汇总。

属性相关分析:可能需要在分类和预测之前进行,它试图识别对于分类或预测过程无用的属性。这些属性应当排除。

16.什么是数据仓库?其主要特征是什么?

答:数据仓库是一个提供决策支持功能的数据库,它与组织机构的操作数据库分别维护。它允许将各种应用系统集成在一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。

特征:面向主题、数据集成、随时间而变化、数据不易丢失 (数据不易丢失是最明显特征) 17.什么是数据集市?

答:数据集市包含企业范围数据的一个子集,对于特定的用户群是有用的。其范围限于选定的主题。

(是完整的数据仓库的一个逻辑子集,而数据仓库正是由所有的数据集市有机组合而成的)18.数据库中的知识发现过程由哪几个步骤组成?

答:数据清理、数据仓库、任务相关数据、数据挖掘、模式评估、知识表示 19.典型的数据挖掘系统有哪几个主要成分?

答:数据库、数据仓库、万维网或其他信息库;数据库或数据仓库服务器;知识库;数据挖掘引擎;模式评估模块;用户界面

20.从软件工程的观点来看,数据仓库的设计和构造包含哪些步骤?

答:规划、需求研究、问题分析、仓库设计、数据集成和测试、部署数据仓库。 21.在数据挖掘系统中,为什么数据清理十分重要?

答: 脏数据的普遍存在,使得在大型数据库中维护数据的正确性和一致性成为一个极其困难的任务。

22.脏数据形成的原因有哪些?

答:滥用缩写词、数据输入错误、数据中的内嵌控制信息、不同的的惯用语、重复记录、丢失值、拼写变化、不同的计量单位、过时的编码23.数据清理时,对空缺值有哪些处理方法?

答:忽略元组、人工填写缺失值、使用一个全局变量填充缺失值、使用属性的平均值填充缺失值、使用与给定元组属同一类的所有样本的属性均值、使用最可能的值填充缺失值 24.什么是数据变换?包括哪些内容?

答:将数据转换或统一成适合于挖掘的形式。 包括:光滑、聚集、数据泛化、规范化、属性构造 25. 数据归约的策略包括哪些?

答:数据立方体聚集、性子集选择、维度归约、数值归约、离散化和概念分层产生 26.提高数据挖掘算法效率有哪几种思路?

答:减少对数据的扫描次数;缩小产生的候选项集;改进对候选项集的支持度计算方法 27.假定属性income的最小值与最大值分别为12000和980到区间[0.0,1.0],根据 min-max 规范化,income的值73600将变为_3631/551_。

28.假定属性income的平均值和标准差分别为54000和16000,使用 Z-score 规范化,值73600被转换为_1.225_。

29.假定A的值由-986到917.A的最大绝对值为986,使用小数定标规范化,-986被规范化为_-0.986_

30.从结构角度来看,有哪三种数据仓库模型。 答:企业仓库、数据集市、虚拟仓库

31.什么是聚类分析?它与分类有什么区别?

答:将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程 区别:分类有监督 聚类无监督 分类要靠学习聚类要靠启发式搜索 32.与数据挖掘类似的术语有哪些?

答:数据库中挖掘知识、知识提取、数据/模式分析、数据考古和数据捕捞。 33.解释下列术语 34.翻译下列术语

Data Mining 数据挖掘Data warehousing 数据仓库Data Mart 数据集市

drill-down 下钻roll-up上卷OLAP 联机分析处理Data cube 数据立方体 Aociation rule 关联规则Data cleaning数据清理Data integration 数据集成 Data transformation数据变换Data reduction 数据归约

35.可以对按季度汇总的销售数据进行___B___,来观察按月汇总的数据。A 上卷 B 下钻 C 切片 D 切块

36.可以对按城市汇总的销售数据进行____A__,来观察按国家总的数据。A 上卷 B 下钻 C 切片 D 切块

37.通过不太详细的数据得到更详细的数据,称为____B____。A 上卷 B 下钻 C 细化 D 维规约

38.三层数据仓库结构中,从底层到尾层分别是_仓库数据服务器、OLAP服务器、前端客户层__。

42.常用的四种兴趣度的客观度量。

答:简单性 确定性 实用性 新颖性43.四种常用的概念分层类型。

答:模式分层、集合分组分层、操作导出的分层、基于规则的分层45.如何理解现实世界的数据是“肮脏的”?答:不完整的、含噪声的、不一致的、重复的 46.多维数据仓库有哪几种概念模型?

答:星形模式、雪花形模式或事实星座形模式。

48.在多路数组聚集算法中,如何尽量少地占用内存?

答:将最小的平面放在内存中,将最大的平面每次只是提取并计算一块。 49.给出方体的维数,会计算各D方体有多少,总的方体个数有多少?2^n50.什么是离群点?离群点都需要删除吗?为什么?

答:离群点:一些与数据的一般行为或模型不一致的孤立数据。不需要。通常离群点被作为“噪音”或异常被丢弃,但在欺诈检测中却可以通过对罕见事件进行离群点分析而得到结论。

【51.所有模式都是有趣的吗?

答:一个模式是有趣的,如果(1) 它易于被人理解 ;(2)在某种程度上,对于新的或测试数据是有效的;(3)具有潜在效用;(4)新颖的;(5)符合用户确信的某种假设。】

推荐第6篇:数据挖掘实习报告

通过半年的实习,我在这里得到了一次较全面的、系统的锻炼,也学到了许多书本上所学不到的知识和技能。以下是我这次的实习鉴定。

经历了实习,对社会也有了基本的实践,让我学到了书本以外的知识,实习期间,我努力尽量做到理论与实践相结合,在实习期间能够遵守工作纪律,不迟到、早退,认真完成领导交办的工作。在实习鉴定中,我参与了整个数据分析工作,从数据获取到数据清洗、数据报表的制定到模型的建立以及模型监控等等,让我充分学习了数据分析岗位的实际操作。

在实习初期,项目经理安排了我参与数据获取的相关工作,主要是编写SQL代码在linux上用Perl语言调用获取数据。起初觉得自己对SQL语言了解较多,以为这份工作非常简单。但实际操作起来才知道,在数据量达到几百兆甚至上GB级别的时候,所学的SQL根本解决不了问题。经向项目经理学习,这才知道了如何使用分层次操作等速度较快的SQL技巧。通过这两个月的实习充分认识到所学知识远远不够。

完成数据获取阶段之后,项目经理开始安排数据清洗以及数据报表制定的相关工作。接到这份工作之初,对数据清洗并没有太多的认识,以为很多都是按照《数据挖掘》教材中步骤进行就可以的。但经过项目经理指导之后才知道数据清洗之前首先要对项目业务进行一定的了解,只有清晰了业务数据的来源、数据的实际意义才知道哪些数据可以称为极端值,哪些数据又是不正常的,制定报告或者交给模型分析师时需要去除的等等。同时,在制定数据报表的同时学习了很多excel函数的使用,透视表的使用,PPT报告的书写等等。

在实习的后三个月,开始接触了模型的分析与监控。在学习《机器学习》以及《数据挖掘》书本时,总会想到各种各样的分类模型,也总会认为模型准确率高的模型才会是好模型。在运用统计模型之前,项目经理首先向实习生介绍了目前挖掘部门常用的分类模型以及具体的一些使用方法。其中逻辑回归模型、决策树模型是常用的分类模型,回归分析和时间序列模型是常用的预测模型,这与平日所学基本一致。正当好奇为什么不使用支持向量机以及神经网络模型之时,项目经理说,由于模型结果都是要给市场部门的同事报告的,所以模型结果最好能够简单易懂的。在实际工作才知道,一般除了用模型准确率来衡量模型的效果外,还有例如灵敏度、ROC曲线、RA曲线等等指标值。而模型的操作过程也不是想象的那么简单,并不是用R软件上的几个函数,几行代码就能解决的,选择什么参数、选择什么样的模型,当然最重要的还是选择什么样的基础数据作为模型的训练数据才是最重要的,这才发现项目经理之前提到的业务知识是多么的重要。

在模型建立之后就是模型监控了,由于是我负责的项目,所以项目经理也将监控这一任务交给了我。数据挖掘模型通常情况下都是要上线的,但模型的效果会随着数据的变化而变化,当模型的指标达到一定程度时就需要修改模型。在这一阶段,充分锻炼了我的程序编写能力。

在整一个实习过程,非常感谢项目经理给予了我数据挖掘整一个流程学习的机会,让我真正对数据挖掘的实际工作有了一定的认识,也让我学习到了很多学校学习中学不到的实际操作能力,在此表示衷心的感谢。

推荐第7篇:数据挖掘讲课心得体会

数据挖掘讲课心得体会

今年的数据仓库与数据挖掘课程,任课老师布置每人讲一章,并课中研讨的授课方式,我非常赞同这种自己备课,自己上去讲课并课中和同学研讨、最终老师点评的做法,因为他能让自己更好理解文章,同时又可以锻炼自己的表达能力。

我主讲《数据仓库与数据挖掘技术》中的第二章“知识发现过程与应用结构”,在整个备课和讲课当中,存在很多不足,备课时参考的书目太少,使得在讲课时关于概念和文章出现的例子不能进行相关扩展和补充,也不能用生活中通熟易懂的例子来阐述书本中的抽象概念;讲课时更多的按着PPT所写进行概略性的讲述,没有形成自己的逻辑思维体系,我也知道,讲课是门艺术,不是几次就能掌握的,要经过不断的实践积累经验,不断的研读相关书目,形成自己的“知识树”的基础上,才能对所讲的知识融会贯通。台湾有位教育家曾说:如果你要讲一门,至少要对该门课的五至六本经典教材研读几遍,形成相应的知识树之后才好授课,这是题外话。

关于数据挖掘每一章算法的授课,我认为在有限的时间里先把一个核心算法解释清楚,对其他算法可以简略带过(最后一次课XXX对PageRank的讲解就很到位),因为,后面算法一般是前面所讲算法的一种改进。算法讲解时,除了要对该算法的原理和概念讲述清楚之外,要对该算法的实例最好用板书的形式解释清楚,并演算每一步,而不是拘泥于PPT进行讲解。板书字体可大可小,速度可快可慢,可以写写停停,也可以一气呵成,可以边写边讲,也可以只写不讲。而PPT是则是死的东西,参考的内容也是书上的步骤,而不是授课人自己的理解,在讲解过程中,不利于学生的理解和认识。讲解的过程中,语速要适当放慢,语速太快是所有人刚开始讲课的通病,我也不例外,讲课讲得很快,自己的思维被打乱不说,主要下面的同学不能理解,毕竟讲课不是演讲。

对于上学期的一页纸开卷,我非常赞同这种考试方式,毕竟对于理工类课程,公式很长,又特别难记,我们在理解其思想的基础上,完全没必要再记很长的公式,在考试的过程中,可以相应的记录些公式带入考场。

以上是我个人在讲课和听课过程、及其考试过程中的一些总结和体会。

推荐第8篇:数据挖掘研究现状

一、时代的挑战

近十几年来,人们利用信息技术生产和搜集数据的能力大幅度提高,千万万个数据库被用于商业管理、政府办公、科学研究和工程开发等等,这一势头仍将持续发展下去。于是,一个新的挑战被提了出来:在这被称之为信息爆炸的时代,信息过量几乎成为人人需要面对的问题。如何才能不被信息的汪洋大海所淹没,从中及时发现有用的知识,提高信息利用率呢?要想使数据真正成为一个公司的资源,只有充分利用它为公司自身的业务决策和战略发展服务才行,否则大量的数据可能成为包袱,甚至成为垃圾。因此,面对"人们被数据淹没,人们却饥饿于知识"的挑战,数据挖掘和知识发现(DMKD)技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。

数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。还有很多和这一术语相近似的术语,如从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持等。人们把原始数据看作是形成知识的源泉,就像从矿石中采矿一样。原始数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本、图形、图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门很广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。

特别要指出的是,数据挖掘技术从一开始就是面向应用的。它不仅是面向特定数据库的简单检索查询调用,而且要对这些数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指导实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。

二、研究现状

KDD一词首次出现在1989年8月举行的第11届国际联合人工智能学术会议上。迄今为止,由美国人工智能协会主办的KDD国际研讨会已经召开了7次,规模由原来的专题讨论会发展到国际学术大会,人数由二三十人到七八百人,论文收录比例从2X1到6X1,研究重点也逐渐从发现方法转向系统应用,并且注重多种发现策略和技术的集成,以及多种学科之间的相互渗透。其 谌莸淖ㄌ饣嵋橐舶咽萃诰蚝椭斗⑾至形樘庵?成为当前计算机科学界的一大热点。

此外,数据库、人工智能、信息处理、知识工程等领域的国际学术刊物也纷纷开辟了 KDD专题或专刊。IEEE的Knowledge and Data Engineering 会刊领先在1993年出版了KD D技术专刊,所发表的5篇论文代表了当时KDD研究的最新成果和动态,较全面地论述了KDD 系统方法论、发现结果的评价、KDD系统设计的逻辑方法,集中讨论了鉴于数据库的动态性冗余、高噪声和不确定性、空值等问题,KDD系统与其它传统的机器学习、专家系统、人工神经网络、数理统计分析系统的联系和区别,以及相应的基本对策。6篇论文摘要展示了KDD在从建立分子模型到设计制造业的具体应用。

不仅如此,在Internet上还有不少KDD电子出版物,其中以半月刊Knowledge Discove

ryNuggets最为权威,另一份在线周刊为DS*(DS代表决策支持),1997年10月7日开始出版。在网上,还有一个自由论坛 DM Email Club, 人们通过电子邮件相互讨论DMKD的热点问题。而领导整个潮流的DMKD开发和研究中心,

当数设在美国EMDEN的IBM公司开发部。 至于DMKD书籍,可以在任何计算机书店找到十多本,但大多带有商业色彩。

三、内容和本质

随着DMKD研究逐步走向深入,人们越来越清楚地认识到,DMKD的研究主要有3个技术支柱,即数据库、人工智能和数理统计。

数据库技术在经过了80年代的辉煌之后,已经在各行各业成为一种数据库文化或时尚,数据库界目前除了关注万维网数据库、分布式数据库、面向对象数据库、多媒体数据库、查询优化和并行计算等技术外,已经在开始反思。数据库最实质的应用仅仅是查询吗?理论根基最深的关系数据库最本质的技术进步点,就是数据存放和数据使用之间的相互分离。查询是数据库的奴隶,发现才是数据库的主人;数据只为职员服务,不为老板服务! 这是很多单位的领导在热心数据库建设后发出的感叹。

由于数据库文化的迅速普及,用数据库作为知识源具有坚实的基础;另一方面,对于一个感兴趣的特定领域——客观世界,先用数据库技术将其形式化并组织起来,就会大大提高知识获取起点,以后从中发掘或发现的所有知识都是针对该数据库而言的。因此,在需求的驱动下,很多数据库学者转向对数据仓库和数据挖掘的研究,从对演绎数据库的研究转向对归纳数据库的研究。

专家系统曾经是人工智能研究工作者的骄傲。专家系统实质上是一个问题求解系统 ,目前的主要理论工具是基于谓词演算的机器定理证明技术——二阶演绎系统。领域专家长期以来面向一个特定领域的经验世界,通过人脑的思维活动积累了大量有用信息。

在研制一个专家系统时,知识工程师首先要从领域专家那里获取知识,这一过程实质上是归纳过程,是非常复杂的个人到个人之间的交互过程,有很强的个性和随机性。因此 ,知识获取成为专家系统研究中公认的瓶颈问题。

其次,知识工程师在整理表达从领域专家那里获得的知识时,用if-then等类的规则表达,约束性太大,用常规数理逻辑来表达社会现象和人的思维活动局限性太大,也太困难, 勉强抽象出来的规则有很强的工艺色彩,差异性极大,知识表示又成为一大难题。

此外,即使某个领域的知识通过一定手段获取并表达了,但这样做成的专家系统对常识和百科知识出奇地贫乏,而人类专家的知识是以拥有大量常识为基础的。人工智能学家 Feigenbaum估计,一般人拥有的常识存入计算机大约有100万条事实和抽象经验法则,离开常识的专家系统有时会比傻子还傻。例如战场指挥员会根据"在某地发现一只刚死的波斯猫"的情报很快断定敌高级指挥所的位置,而再好的军事专家系统也难以顾全到如此的信息。

以上这3大难题大大限制了专家系统的应用,使得专家系统目前还停留在构造诸如发动机故障论断一类的水平上。人工智能学者开始着手基于案例的推理,尤其是从事机器学习的科学家们,不再满足自己构造的小样本学习模式的象牙塔,开始正视现实生活中大量的、不完全的、有噪声的、模糊的、随机的大数据样本,也走上了数据挖掘的道路。

数理统计是应用数学中最重要、最活跃的学科之一,它在计算机发明之前就诞生了, 迄今已有几百年的发展历史。如今相当强大有效的数理统计方法和工具,已成为信息咨询业的基础。信息时代,咨询业更为发达。然而,数理统计和数据库技术结合得并不算快,数据库查询语言SQL中的聚合函数功能极其简单,就是一个证明。咨询业用数据库查询数据还远远不够。一旦人们有了从数据查询到知识发现、从数据演绎到数据归纳的要求,概率论和数理统计就获得了新的生命力,所以才会在DMKD这个结合点上,立即呈现出"忽如一夜春风来,千树万树梨花开"的繁荣景象。一向以数理统计工具和可视化计算闻名的美国SA S公司,领先宣布进入DMKD行列。

数据挖掘所能发现的知识有如下几种:广义型知识,反映同类事物共同性质的知识; 特征型知识,反映事物各方面的特征知识;差异型知识,反映不同事物之间属性差别的知识 ;关联型知识,反映事物之间依赖或关联的知识;预测型知识,根据历史的和当前的数据推测未来数据;偏离型知识,揭示事物偏离常规的异常现象。所有这些知识都可以在不同的概念层次上被发现,随着概念树的提升,从微观到中观再到宏观,以满足不同用户、不同层次决策的需要。

四、发展方向

当前,DMKD研究正方兴未艾,预计在21世纪还会形成更大的高潮,研究焦点可能会集中到以下几个方面:研究专门用于知识发现的数据挖掘语言,也许会像SQL语言一样走向形式化和标准化;寻求数据挖掘过程中的可视化方法,使得知识发现的过程能够被用户理解 ,也便于在知识发现过程中的人机交互;研究在网络环境下的数据挖掘技术,特别是在Int ernet上建立DMKD服务器,与数据库服务器配合,实现数据挖掘;加强对各种非结构化数据的挖掘,如文本数据、图形图像数据、多媒体数据。但是,无论怎样,需求牵引,市场驱动是永恒的,DMKD将首先满足信息时代用户的急需,大量基于DMKD的决策支持软件工具产品将会问世

推荐第9篇:数据挖掘课程体会

数据挖掘课程体会

学习数据挖掘这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门课程的一些技术有了一定的了解,并明确了一些容易混淆的概念,以下主要谈一下我的心得体会。

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。

要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统所需的数据,供决策支持或数据分析使用。

数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。主要是可以做以下几件事:分类、估计、预测、关联分析、聚类分析、描述和可视化、复杂数据类型挖掘。在这里就不一一介绍了。

在学习关联规则的时候,提出了一个关于啤酒与纸尿布的故事:在一家超市里,纸尿布与啤酒被摆在一起出售,但是这个奇怪的举措却使得啤酒和纸尿布的销量双双增加了。其实,这是由于这家超市对其顾客的购物行为进行购物篮分析,在这些原始交易数据的基础上,利用数据挖掘方法对这些数据进行分析和挖掘。从而意外的发现跟纸尿布一起购买最多的商品竟是啤酒。按我们的常规思维,啤酒与纸尿布是两个毫无关联的商品,但是借助数据挖掘技术对大量交易数据进行挖掘分析后,却可以寻求到这一有价值的规律。这个故事在一定程度上说明了数据挖掘技术的巨大价值。

总之,非常感谢周教员在这十余周的精彩授课,让我受益匪浅,我会继续学习这门课程,努力为今后的课题研究或论文打好基础。

推荐第10篇:数据挖掘实验三

实验三 设计并构造AdventureWorks数据仓库实例

【实验要求】

在SQL Server平台上,利用AdventureWorks数据库作为商业智能解决方案的数据源,设计并构造数据仓库,建立OLAP和数据挖掘模型,并以输出报表的形式满足决策支持的查询需求。 【实验内容】

步骤1:需求分析:以决策者的视角分析和设计数据仓库的需求; 步骤2:根据所设计的需求,确定本数据仓库的主题和主题与边界; 步骤3:设计并构造逻辑模型;

步骤4:进行数据转换和抽取,建立数据仓库:创建数据源,,建立OLAP和挖掘模型,使用多维数据集进行分析,建立数据挖掘结构和数据挖掘模型,创建报表。 【实验平台】

Win7操作系统,SQL Server 2005 【实验过程】

一、创建 Analysis Services 项目

1.打开 Busine Intelligence Development Studio。

2.在“文件”菜单上,指向“新建”,然后选择“项目”。

3.确保已选中“模板”窗格中的“Analysis Services 项目”。

4.在“名称”框中,将新项目命名为 AdventureWorks。

5.单击“确定”。

二、创建数据库和数据源

1.运行AdventureWorks sql server 2005示例数据库.msi,然后用SQL Server Management Studio 附加数据库AdventureWorks_Data.mdf 。

(1)运行AdventureWorks sql server 2005示例数据库.msi

(2)用SQL Server Management Studio附加数据库AdventureWorks_Data.mdf

2.在解决方案资源管理器中,右键单击“数据源”文件夹,然后选择“新建数据源”。3.在“欢迎使用数据源向导”页面中,单击“下一步”按钮。

4.在“选择如何定义连接”页上,单击“新建”向 Adventure Works 数据库中添加连接。 5.在“连接管理器”的“提供程序”列表中,选择“本机 OLE DB\SQL Native Client”。 6.在“服务器名称”列表中,键入或选择承载 AdventureWorks 的服务器的名称。 7.在“登录到服务器”组中,选择身份验证方法,并输入凭据。

8.在“选择或输入一个数据库名”列表中,选择 AdventureWorks,然后测试连接。若连接成功,再单击“确定”按钮。

9.单击“下一步”按钮进入向导的下一页。

10.在“模拟信息”页中,选择“使用服务帐户”,再单击“下一步”。11.请注意,在“完成向导”页中,数据源名称默认为 Adventure Works。

12.单击“完成”。

新的数据源 Adventure Works 将显示在解决方案资源管理器的“数据源”文件夹中。

三、创建数据源视图

1.在解决方案资源管理器中,右键单击“数据源视图”,选择“新建数据源视图”。系统将打开数据源视图向导。

2.在“欢迎使用数据源视图向导”页上,单击“下一步”。 3.在“选择数据源”页的“关系数据源”下,系统将默认选中您在上一个任务中创建的 Adventure Works DW 数据源。 单击“下一步”。 若要创建新数据源,请单击“新建数据源”,启动数据源向导。

4.在“选择表和视图”页上,选择下列各表,然后单击右箭头键,将这些表包括在新数据源视图中:

5.单击“下一步”。

6.在“完成向导”页上,默认情况下,系统将数据源视图命名为 Adventure Works 。 单击“完成”。

系统将打开数据源视图设计器,显示 Adventure Works 数据源视图。

四、定义维度

1.在解决方案资源管理器中,右键单击“维度”,然后单击“新建维度”。

2.在“欢迎使用维度向导”页上,单击“下一步”。

3.在“选择生成方法”页上,验证是否选择了“使用数据源生成维度”选项,然后单击“下一步”。

4.在“选择数据源视图”页上,验证是否选择了 Adventure Works 数据源视图。

5.在“选择维度类型”列表中,选择“标准维度”。

6.在“选择主维度表”中,点击“下一步”。

7.在“选择维度属性”中,点击“下一步”。

8.在“指定维度类型”中,点击“下一步”。9.在“定义父子关系”中,点击“下一步”。

10.“检测层次结构”中,点击“下一步”。

11.点击“下一步”,然后点击“完成”。

五、使用多维数据集进行分析

1.在解决方案资源管理器中,右键单击“多维数据集”并选择“新建多维数据集”启动多维数据集向导。

2.在“欢迎使用多维数据集向导”页上,单击“下一步”。 3.在“选择生成方法”页上,确认已选中“使用数据源生成多维数据集”选项,然后单击“下一步”。

4.在“选择数据源视图”页上,点击“下一步”。

5.在“检测事实数据表和维度表”页上,点击“下一步”。

6.在“时间维度表”页上,如下所示。

点击“下一步”。

7.在“查看共享维度”页上,点击“>”,然后“下一步”。

8.在“选择度量值”页上,选择可用度量值。

点击“下一步”。

9.在“检测层级结构”页上,查看结果,点击“下一步”。

10.在“查看新建维度”中,选择新建维度,然后点击“下一步”。

11.在“完成向导”页,多维数据集名称为“Adventure Works”。在“预览”中,可以看到“度量值组”和“维度”。

12.点击“完成”。

13.在多维数据集设计器的工具栏上,将“缩放”级别更改为 50 %,以便更轻松地查看多维数据集内的维度和事实数据表。注意,事实数据表是黄色的,维度表是蓝色的。

14.在“文件”菜单上,单击“全部保存”。

六、创建用于个人客户方案的挖掘结构

1.在解决方案资源管理器中,右键单击“挖掘结构”并选择“新建挖掘结构”启动数据挖掘向导。

2.在“欢迎使用数据挖掘向导”页上,单击“下一步”。

3.在“选择定义方法”页上,确保已选中“从现有关系数据库或数据仓库”,再单击“下一步”。

4.在“创建数据挖掘结构”页的“您要使用何种数据挖掘技术?”下,选择“Microsoft 决策树”。

5.单击“下一步”。

6.在“选择数据源视图”页上,请注意已默认选中 Adventure Works 。在数据源视图中,单击“浏览”查看各表,然后单击“关闭”返回该向导。

7.单击“下一步”。

8.在“指定表类型”页上,选中 vIndividualCustomer 表旁边“事例”列中的复选框,再单击“下一步”。

9.在“指定定型数据”页上,确保已选中 CustomerID 列旁边 Key 列中的复选框。据源视图中的源表表示一个键,则数据挖掘向导将自动选择该列作为模型的键。

10.选中 FirstName和LastName 列旁边的“输入”和“可预测”。

如果数

11.单击“建议”打开“提供相关列建议”对话框。

只要选中至少一个可预测属性,即可启用“建议”按钮。“提供相关列建议”对话框将列出与可预测列关联最密切的列,并按照与可预测属性的相互关系对属性进行排序。值大于 0.05 的列将被自动选中,以包括在模型中。

12.阅读建议,然后单击“取消”忽略建议并保留向导设置的原始值。15.选中以下各列旁边的“输入”复选框: StateProvinceName MiddleName CountryRegionName

16.单击“下一步”。

17.在“指定列的内容和数据类型”页上,单击“检测”以运行对数值数据进行取样并确定数值列是否包含连续或离散值的算法。例如,某列可包含薪金信息,用以作为连续的实际薪金值,也可包含整数,用以表示离散的编码薪金范围(例如 1 =

18.单击“检测”后,请查看“内容类型”和“数据类型”列中的各项;如有必要,请进行更改,以确保设置与下表所示一致。

通常,向导会检测数值,并分配相应的数值数据类型;但有些情况下,您可能想要将数值作为文本处理。

19.单击“下一步”。

20.在“完成向导”页上的“挖掘结构名称”中,键入Individual Customer。 21.在“挖掘模型名称”中,键入 TM_Decision_Tree。 22.选中“允许钻取”复选框。

23.单击“完成”。

七、挖掘模型和挖掘结构如下图。

八、创建查询

8.1创建预测查询的第一步是选择挖掘模型和输入表。

1.在数据挖掘设计器“挖掘模型预测”选项卡的“挖掘模型”框中,单击“选择模型”。

系统将打开“选择挖掘模型”对话框。

2.在整个树中导航到“个人客户”结构,展开该结构并选择 TM_Decision_Tree,再单击“确定”。

3.在“选择输入表”框中,单击“选择事例表”。 系统将打开“选择表”对话框。

4.在“数据源”中,选择 Adventure Works 。

5.在“表/视图名称”中,选择 Department(HumanResources)表,再单击“确定”。 选择输入表之后,预测查询生成器便会根据各列的名称在挖掘模型和输入表之间创建默认映射。

8.2生成预测查询

1.在“挖掘模型预测”选项卡上的网格内的“源”列中,单击第一个空行中的单元格,然后选择 Department。

2.在 Department 行的“字段”列中,选择 DepartmentID。

3.在“源”列中,单击下一个空行,然后选择 TM_Decision_Tree。 4.在 TM_Decision_Tree 行的“字段”列中,选择 First Name。 这将会输出 Microsoft 决策树模型中作为预测目标的列。

5.在“源”列下,单击下一个空行,然后选择“预测函数”。6.在“预测函数”行的“字段”列中,选择 PredictProbability。 预测函数提供有关模型如何进行预测的信息。PredictProbability 函数提供有关正确预测的概率信息。您可以在“条件/参数”列中指定预测函数的参数。 7.在 PredictProbability 行的“条件/参数”列中,键入 [TM_Decision_Tree].[Bike Buyer]。 这将指定 PredictProbability 函数的目标列。有关函数的详细信息,请参阅数据挖掘扩展插件 (DMX) 函数参考。

8.3查看结果

1.通过单击“切换到查询设计视图/切换到查询结果视图”按钮(即工具栏上的第一个按钮)旁边的箭头并选择“查询”,可以运行查询。

2.通过点击“单独查询”,结果如下:

【总结】

通过本次实验,我对SQL Server有了更深的了解。知道SQL Server不等于SQL Server Management Studio,还有SQL Server Busine Intelligence Development Studio和其他一些模块。在这次实验中,遇到了一些困难:1.SQL Server 2000和SQL Server 2005有一些不同,利用SQL Server 2000中的Analysis service做完实验二后发现实验三不知道怎么做了,左右通过查找一些资料才解决问题;2.在新建数据源时,在“连接管理器”页上,“测试连接”一直失败,不知道是什么原因,老师给的AdventureWorks sql server 2005示例数据库.msi也一直不知道该怎么用,经过不断尝试才发现原来在运行AdventureWorks sql server 2005示例数据库.msi后会产生一个数据库文件,我们应该利用SQL Server Management Studio把它附加进数据库文件夹下,而且在“连接到服务器”页时,应该注意“服务器类型”、“服务器名称”、“身份验证”等的选择,否则会出错。虽然本次实验中遇到了一些麻烦,耗费了一些时间,但是通过不断尝试、不断努力将问题解决,也是一种很大的收获。

第11篇:数据挖掘背景文摘

数据挖掘是通过仔细分析大量数据来揭示有意义的新的关系、趋势和模式的过程.其出现于 20 世纪 80年代后期,是数据库研究中一个很有应用价值

的新领域,是一门交叉性学科 ,融合了人工智能、数据库技术、模式识别、机器学习、统计学和数据可视化等多个领域的理论和技术

数据挖掘产生于应用 ,且应面向于应用

数据挖掘的任务就是发现隐藏在数据中的模式 .其可以发现的模式一般分为两大类 :描述型模式和预测型模式 .描述型模式是对当前数据中存在的事实做规范描述 ,刻画当前数据的一般特性 ;预测型模式则是以时间为关键参数,对于时间序列型数据 ,根据其历史和当前的值去预测其未来的值 .

数据挖掘一词起源于 KDD(Knowledge Discovery in Database , 数据库中的知识发现), 可以追溯到 20 世纪 80 年代末。KDD 这个名词的正式形成是在 1989 年美国底特律市召开的第一届 KDD 国际学术会议上,而第一届知识发现和数据挖掘(Data Mining,DM)国际学术会议是在 1995 年加拿大召开的,会议上将数据库里存放的数据生动地比拟成矿床,从而“数据挖掘”这个名词很快就流传开来[3]。

RIC是由美国教育资源信息中心整理的已出版的和未出版的教育方面文献的一个指南,涵盖数千个教育专题,提供了最完备的教育书刊的书目信息,包括对发表在Resources in Education (RIE) 月刊上的非期刊资料与每个月发表在Current Index to Journals in Education (CIJE) 上的期刊文章的注释参考,涵盖了从1966年到现在的有关教育方面的几乎所有资料。ERIC收录了1,000多种的期刊和其它资料,共有记录140多万条,包括一个ERIC叙词表,可免费阅读约24万篇全文文章。主题有成人教育、职业教育、教育评估、残疾与天才教育、小学与幼儿教育、高等教育、城市教育、教育管理、信息与技术、语言学与语音学、阅读与交

第12篇:数据挖掘与电子商务

数据挖掘与电子商务

姓名:龚洪虎

学号:X2009230111

[摘 要] 企业的竞争优势并不取决于信息的拥有量,而是取决于信息的处理利用能力。如何化信息优势为竞争优势,是企业制胜于市场的一个法宝。本文论述了一种信息处理利用的有效工具——数据挖掘方法及其在电子商务中的应用。

[关键词] 数据挖掘 方法 电子商务 应用

随着网络技术和数据库技术的成熟,传统商务正经历一次重大变革,向电子商务全速挺进。这种商业电子化的趋势不仅为客户提供了便利的交易方式和广泛的选择,同时也为商家提供了更加深入了解客户需求信息和购物行为特征的可能性。数据挖掘技术作为电子商务的重要应用技术之一,将为正确的商业决策提供强有力的支持和可靠的保证,是电子商务不可缺少的重要工具。

一、电子商务和数据挖掘简介。

电子商务是指个人或企业通过Internet网络,采用数字化电子方式进行商务数据交换和开展商务业务活动。目前国内已有网上商情广告、电子票据交换、网上订购,网上银行、网上支付结算等多种类型的电子商务形式。电子商务正以其成本低廉、方便、快捷、安全、可靠、不受时间和空间的限制等突出优点而逐步在全球流行。

数据挖掘(DataMining)是伴随着数据仓库技术的发展而逐步完善起来的。数据挖掘主要是为了帮助商业用户处理大量存在的数据,发现其后隐含的规律性,同时将其模型化,来完成辅助决策的作用。它要求从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取人们事先不知道的但又是潜在有用的信息和知识。数据挖掘的过程有时也叫知识发现的过程。

而电子商务中的数据挖掘即Web挖掘,是利用数据挖掘技术从www的资源(即Web文档)和行为(即We服务)中自动发现并提取感兴趣的、有用的模式和隐含的信息,它是一项综合技术涉及到Internet技术学、人工智能、计算机语言、信息学、统计学等多个领域。

二、何谓数据挖掘及方法

确切地说,数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database,KDD),是指从大型数据库或数据仓库中提取隐含的、未知的、非平凡的及有潜在应用价值的信息或模式。它融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。比较典型的数据挖掘方法有关联分析、序列模式分析、分类分析、聚类分析等。它们可以应用到以客户为中心的企业决策分析和管理的各个不同领域和阶段。

1.关联分析。关联分析,即利用关联规则进行数据挖掘。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如”90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。

2.序列模式分析。序列模式分析和关联分析相似,但侧重点在于分析数据间的前后序列关系。它能发现数据库中形如”在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识,序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要由用户输入最小置信度C和最小支持度S。

3.分类分析。设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个②

记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其他数据库中的记录进行分类。

4.聚类分析。聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道,通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。

应用数据挖掘技术,较为理想的起点就是从一个数据仓库开始,数据挖掘可以直接跟踪数据并辅助用户快速做出商业决策,用户还可以在更新数据的时候不断发现更好的行为模式,并将其运用于未来的决策当中。

三、选择数据挖掘技术的两个重要依据。

数据挖掘使用的技术很多,其中主要包括统计方法、机器学习方法、和神经网络方法和数据库方法。统计方法可细分为回归分析、判别分析、聚类分析、探索性分析等。机器学习方法可细分为归纳学习方法(决策树、规则归纳)、基于范例学习、遗传算法等。神经网络方法可细分为钱箱神经网络(BP算法)、自组织神经网络等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。由于每一种数据挖掘技术都有其自身的特点和实现的步骤,对数据的形式有具体的要求,并且与具体的应用问题密切相关,因此成功的应用数据挖掘技术以达到目标过程本身就是一件很复杂的事情,本文主要从挖掘任务和可获得的数据两个角度来讨论对数据挖掘技术的选择。

三、数据挖掘在电子商务中的应用

数据挖掘能发现电子商务客户的的共性和个性的知识、必然和偶然的知识、独立和关联的知识、现实和预测的知识等,所有这些知识经过分析,能对客户的消费行为如心理、能力、动机、需求、潜能等做出统计和正确地分析,为管理者提供决策依据。具体应用如下:

1.分类与预测方法在电子商务中的应用。在电子商务活动中,分类是一项非常重要的任务,也是应用最多的技术。分类的目的是构造一个分类函数或分类模型,通常称作分类器。分类器的构造方法通常由统计方法、机器学习方法、神经网络方法等。这些方法能把数据库中的数据映射到给定类别中某一个,以便用于预测,也就是利用历史数据记录,自动推导出给定数据的推广描述,从而对未来数据进行预测。

2.聚类方法在电子商务中的应用。聚类是把一组个体按照相似性原则归成若干类别。对电子商务来说,客户聚类可以对市场细分理论提供有力的支持。市场细分的目的是使得属于同一类别的个体之间的距离尽可能小,而不同类别的个体之间的距离尽可能大,通过对聚类的客户特征的提取,电子商务网站可以为客户提供个性化的服务。

3.数据抽取方法在电子商务中的应用。数据抽取的目的是对数据进行浓缩,给出它的紧凑描述,如求和值、平均值、方差值、等统计值、或者用直方图、饼状图等图形方式表示,更主要的是他从数据泛化的角度来讨论数据总结。数据泛化是一种把最原始、最基本的信息数据从低层次抽象到高层次上的过程。可采用多维数据分析方法和面向属性的归纳方法。在电子商务活动中,采用维数据分析方法进行数据抽取,他针对的是电子商务活动中的客户数据仓库。在数据分析中经常要用到诸如求和、总计、平均、最大、最小等汇集操作,这类操作的计算量特别大,可把汇集操作结果预先计算并存储起来,以便用于决策支持系统使用。

4.关联规则在电子商务中的应用。管理部门可以收集存储大量的售货数据和客户资料,对这些历史数据进行分析并发现关联规则。如分析网上顾客的购买行为,帮助管理者规划市场,确定商品的种类、价格、质量等。通常关联规则有两种:有意义的关联规则和泛化关联规则,有意义的关联规则,即满足最小支持度和最小可信度的规则。最小支持度,它表示一组对象在统计意义上的需满足的最低程度,如电子商务活动中的客户数量、客户消费能力、

消费方式等。后者即用户规定的关联规则的最低可靠度。第二是泛化规则,这种规则更实用,因为研究对象存在一种层次关系,如面包、蛋糕属西点类,而西点又属于食品类,有了层次关系后,可以帮助发现更多的有意义的规则。

5、优化企业资源

节约成本是企业盈利的关键。基于数据挖掘技术,实时、全面、准确地掌握企业资源信息,通过分析历史的财务数据、库存数据和交易数据, 可以发现企业资源消耗的关键点和主要活动的投入产出比例, 从而为企业资源优化配置提供决策依据, 例如降低库存、提高库存周转率、提高资金使用率等。通过对Web数据挖掘,快速提取商业信息,使企业准确地把握市场动态,极大地提高企业对市场变化的响应能力和创新能力,使企业最大限度地利用人力资源、物质资源和信息资源,合理协调企业内外部资源的关系,产生最佳的经济效益。促进企业发展的科学化、信息化和智能化。

例如:美国运通公司(American Expre)有一个用于记录信用卡业务的数据库,数据量达到54亿字符,并仍在随着业务进展不断更新。运通公司通过对这些数据进行挖掘,制定了“关联结算(Relation ship Billing)优惠”的促销策略,即如果一个顾客在一个商店用运通卡购买一套时装,那么在同一个商店再买一双鞋,就可以得到比较大的折扣,这样既可以增加商店的销售量,也可以增加运通卡在该商店的使用率。

6、管理客户数据

随着“以客户为中心”的经营理念的不断深入人心, 分析客户、了解客户并引导客户的需求已成为企业经营的重要课题。基于数据挖掘技术,企业将最大限度地利用客户资源,开展客户行为的分析与预测,对客户进行分类。有助于客户盈利能力分析,寻找潜在的有价值的客户,开展个性化服务,提高客户的满意度和忠诚度。通过Web资源的挖掘,了解客户的购买习惯和兴趣,从而改善网站结构设计,推出满足不同客户的个性化网页。利用数据挖掘可以有效地获得客户。比如通过数据挖掘可以发现购买某种商品的消费者是男性还是女性,学历、收入如何, 有什么爱好,是什么职业等等。甚至可以发现不同的人在购买该种商品的相关商品后多长时间有可能购买该种商品, 以及什么样的人会购买什么型号的该种商品等等。在采用了数据挖掘后, 针对目标客户发送的广告的有效性和回应率将得到大幅度的提高, 推销的成本将大大降低。同时,在客户数据挖掘的基础上,企业可以发现重点客户和评价市场性能,制定个性化营销策略,拓宽销售渠道和范围,为企业制定生产策略和发展规划提供科学的依据。通过呼叫中心优化与客户沟通的渠道,提高对客户的响应效率和服务质量,促

①进客户关系管理的自动化和智能化。

三、结束语

电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。利用数据挖掘技术,充分发挥企业的独特优势,促进管理创新和技术创新,使企业在在电子商务的潮流中立于不败之地。随着数据挖掘算法的不断发展和成熟,数据挖掘一定会有更加广阔的应用前景。

参考文献:

(1)《浅谈数据挖掘在电子商务中的运用》 钟连福;

(2)《电子商务中商业数据的挖掘方法》 中国电子商务研究中心;

(3)《在电子商务中如何正确有使用数据挖掘技术》 侠名;

(4)《曾贞:数据挖掘在电子商务中的应用》 甘肃农业,2004(7) ;

(5)《冯艳王坚强:数据挖掘在电子商务上的应用》 2002(3);

(6)《吕延杰徐华飞:中国电子商务发展研究报告》北京邮电大学出版社 ;

(7)《数据挖掘与电子商务》 邓鲲鹏,周延杰,严瑜筱 。 ①

第13篇:数据挖掘与数据仓库教学大纲

数据挖掘与数据仓库(教学大纲)

Data mining and data warehouse

课程编码:05405140 学分: 2.5 课程类别: 专业方向课 计划学时: 48 其中讲课:32 实验或实践: 上机:16 适用专业:信息管理与信息系统、电子商务 推荐教材:

陈文伟,数据仓库与数据挖掘教程,清华大学出版社,2008 参考书目:

1.Richard J.Roiger, Michael W.Geatz.Data Mining: A Tutorial-Based Primer.2003.2.Ian H.Witten, Eibe Frank.Data Mining: Practical Machine Learning Tools and Techniques (第二版).机械工业出版社(影印版),2005.3.Jiawei Han, Micheline Kamber.Data Mining: Concepts and Techniques.2001.5.4.数据仓库与数据挖掘技术(第2版),陈京民 编著,电子工业出版社,2007.11 5.数据仓库和数据挖掘,苏新宁 等编著,清华大学出版社,2006.4 6.数据挖掘Clementine应用实务,谢邦昌 主编,机械工业出版社,2008.4

课程的教学目的与任务

本课程将系统介绍数据挖掘的基本概念、基本原理和应用基础,通过课堂讲授、实例分析,提高学生数据挖掘技术的认识,熟悉基本工具应用,并掌握设计和开发数据挖掘算法和系统的初步能力。

课程的基本要求

1、了解数据仓库及数据挖掘的概念、特征、应用范围,以及主要数据挖掘工具

2、了解OLTP 和 OLAP的区别;熟悉OLAP 的体系结构,以及如何评价OLAP工具;掌握多维分析的基本分析动作。

3、了解数据质量,掌握数据预处理方法,

4、掌握数据挖掘的定性归纳技术、关联挖掘、聚类分析、分类方法、预测方法、文本挖掘、WEB挖掘

5、熟练掌握数据挖掘软件Clementine在各类挖掘任务中的应用。各章节授课内容、教学方法及学时分配建议(含课内实验)

第一章.数据仓库与数据挖掘概述 建议学时:2 [教学目的与要求] 了解数据仓库及数据挖掘的概念、特征、应用范围,以及主要数据挖掘工具。 [教学重点与难点] 数据仓库及数据挖掘的概念

[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 1.1 为什么要数据挖掘 1.2 数据挖掘的应用示例 1.3 数据挖掘方法简介

1.4 数据挖掘与其他学科的关系 1.5 商务智能的三大块 1.6 常用数据挖掘工具简介

第二章 数据仓库技术

建议学时:4 [教学目的与要求] 了解数据仓库的概念,区分与传统数据库技术的不同;掌握数据仓库存储的抽取、转换和装载

[教学重点与难点] 数据仓库存储的抽取、转换和装载;数据仓库存储的数据模型 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 2.1 数据仓库的概念

2.2 数据仓库存储的数据模型 2.3 数据仓库的体系结构

2.4 数据仓库应用的抽取、转换和装载

第三章 数据仓库开发模型

建议学时:4 [教学目的与要求] 了解数据仓库开发模型的概念,了解数据仓库开发过程,掌握数据仓库三种概念模型:星型模式、雪花模式、或事实星座模式,掌握数据粒度概念,元数据概念。

[教学重点与难点] 数据仓库三种概念模型,数据粒度概念,元数据概念 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 3.1 数据仓库开发模型的概念

3.2 数据仓库的概念模型 3.3 数据仓库的逻辑模型 3.4 数据仓库的物理模型 3.5 数据仓库的生成

3.6 数据仓库的使用和维护

3.7 数据仓库的粒度、聚集和分割 3.8 元数据

第四章 联机分析处理(OLAP)技术 建议学时:4 [教学目的与要求] 了解OLTP 和 OLAP的区别;熟悉OLAP 的体系结构,以及如何评价OLAP工具;掌握多维分析的基本分析动作。 [教学重点与难点] OLAP 的体系结构;多维分析的基本分析动作 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 4.1 从OLTP 到 OLAP 4.2 OLAP 的基本概念

4.3 多维分析的基本分析动作 4.4 OLAP 的数据组织 4.5 OLAP 的体系结构 4.6 OLAP 工具及评价

4.7 Codd 关于 OLAP 产品的十二条评价准则

第五章 数据挖掘的原理与技术 建议学时:4 [教学目的与要求] 了解为什么要数据挖掘、数据挖掘与其他学科的关系,熟悉常用数据挖掘方法和工具,掌握数据挖掘的原理与技术。

[教学重点与难点] 数据挖掘的原理与技术,数据挖掘与其他学科的关系 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 5.1 知识发现的过程

5.2 数据挖掘的方法和技术 5.3 数据挖掘的知识表示

第六章 数据的获取和管理 建议学时:4 [教学目的与要求] 了解数据的数据获取和管理,掌握数据质量的多维度量,掌握数据预处理方法 [教学重点与难点] 数据质量,数据预处理方法

[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 6.1 数据仓库的数据获取 6.2 数据管理 6.3 系统管理 6.4 数据的预处理

6.5 数据质量的多维度量 6.6 数据预处理的主要方法

第七章 定性归纳

建议学时:2 [教学目的与要求] 了解数据挖掘的定性归纳技术,掌握ID3算法、C5.0算法。 [教学重点与难点] ID3算法、C5.0算法

[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 7.1 基本概念 7.2 数据泛化 7.3 属性相关分析 7.4 挖掘概念对比描述

7.5 挖掘大数据库的描述型统计信息

第八章 关联挖掘

建议学时:2 [教学目的与要求] 了解关联挖掘和的方法,掌握Apriori算法 [教学重点与难点] Apriori算法

[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 8.1 基本概念

8.2 单维布尔逻辑关联规则挖掘 8.3 多层关联规则挖掘 8.4 多维关联规则挖掘

8.5 关联规则聚类系统(ARCS) 8.6 关联规则其它内容

第九章

聚类分析

建议学时:2 [教学目的与要求] 了解什么是聚类分析、聚类和分类的区别,掌握聚类分析的算法。 [教学重点与难点] 聚类分析的算法

[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 9.1 什么是聚类分析

9.2 聚类分析中的数据类型 9.3 主要聚类算法的分类

第十章 分类 建议学时:2 [教学目的与要求] 了解什么是数据挖掘的分类,掌握KNN(K-Nearest Neighbor)分类和Bayes分类 [教学重点与难点] KNN(K-Nearest Neighbor)分类和Bayes分类 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 10.1 10.2 10.3 10.4 10.5

第十一章 预测 建议学时:2 [教学目的与要求] 了解预测算法,掌握回归预测、广义线性GenLin模型预测、支持向量机预测 [教学重点与难点] 回归预测、广义线性GenLin模型预测、支持向量机预测 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 11.1 11.2 预测的基本知识 预测的数据准备 分类的基本知识 决策树分类 支持向量机分类

KNN(K-Nearest Neighbor)分类 Bayes分类 11.3 11.4 11.5 11.6

预测的主要方法 回归预测

广义线性GenLin模型预测 支持向量机预测

撰稿人:蔡永明 审核人:

第14篇:数据仓库与数据挖掘论文

决策树在教学评价中的应用研究

摘 要 决策树学习是人们广泛使用的一种归纳推理形式。先就决策树和决策树学习算法进行介绍,然后用实例阐述决策树在教育信息处理中的应用,主要以在教学评价中的应用为例来加以介绍。

关键词 决策树;数据挖掘;教育信息处理;教学评价

当今社会处于一个信息爆炸的时代,海量的数据可以用来选择和发掘信息,然而有时却让人无从下手,因此数据挖掘技术受到人们的高度关注。数据挖掘是从大量的、不完全的、有噪声的、模糊的或者随机的数据中提取人们事先不知道的但又是有用的信息和知识的过程。它的方法很多,其中决策树是一种解决实际应用分类问题的数据挖掘方法。在教育教学中,根据决策树算法的实际特点,它可以在教育信息处理中的信息采集上发挥很大的作用。

1 决策树介绍

决策树学习是人们广泛使用的一种归纳推理形式。决策树起源于概念学习系统,其思路是找出最有分辨能力的属性,把数据库划分为许多子集(对应树的一个分枝),构成一个分枝过程,然后对每一个子集递归调用分支过程,直到所有子集包含同一类的数据。最后得到的决策树能对新的例子进行分类。它一般是从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它一般需要给定一组训练例子,训练例子一般被看成用于创建模型的数据集。由此可以看出,决策树是一个类似于流程图的树结构,其中每一个内部结点表示对一个属性的测试,每一个分支代表一个决策输出,而每个叶节点代表一个目标分类。决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子结点即为实例所属的分类,树上每个节点说明对实例的某个属性的测试,节点的每个后继分支对应于该属性的一个可能值。假如需要根据人员的外貌特征对人员进行分类,用于人员的外貌特征有3个,外貌列表={高度,发色,眼睛};各属性的值域分别为:高度={高,矮},发色={黑色,红色,金色},眼睛={黑色,棕色}。分类结果有两种:种类={+,-}。提供的训练例子集为:T={,,,,,,,}。上述文字可构造图1所示决策树。

2 决策树学习算法

决策树算法有几种,如ID

3、C4.5、CA RT等。其中ID3算法是最经典的算法,该算法从根节点开始,这个根结点被赋予一个最好的属性。随后对该属性的每个取值都生成相应的分支,在每个分支的终点上又生成新的节点。然后按照该属性的取值将每个训练例子都分别赋给一个相应的新节点。如果没有任何训练例子能赋给某个节点,那么该节点连同相应的分支都将被删除。这时,将每一个新节点都视作一个新的根节点,重复执行整个过程。这里,最好属性的选择要基于信息增益这个统计特性。在定义信息增益前,先要了解另一统计特性:熵。

给定一组有c个分类的训练例子,对属性a来说,它有值v,其中pi是在第i类中属性a取值为v的概率。为了能选出最好的属性,需要使用度量信息增益。一属性的信息增益就是按照该属性对训练例子进行划分所带来的熵的减少量。其中,T是训练例子的集合,Tj是属性A取值为j的训练例子集合,为T的一个子集。

3 决策树在教育中的应用

在教育教学中,尤其是在高等教育体系中,学校的数据库中存贮着大量的教育教学信息,其中一部分和教学有关,如学校的开课排课情况、教师情况;一部分和学生有关,如学生历年的考试、测验成绩等。这些大量的数据后面隐藏着大量的信息,只要加以分析,就能得到许多有用的信息,如教育规律、学生的培养模式、学生学科间的差异性和相关性的一些规律。这些规律对教育管理决策来说是相当重要的,对教育教学改革有指导性的意义。

3.1 决策树在教育信息处理中的应用

决策树表示的是一个离散值函数,树中每一个节点表示一个属性,同时目标分类具有离散的输出值信息。教育中的大量信息,一般都是对一些离散的数据进行分析,比如学习成绩一般分成优、良、中、差,外语六级成绩分成过与未过,这些信息都可以用决策树来加以分类归纳,对于连续的属性值,也可以进行离散化处理后再利用决策树来加以分析。

3.2 决策树在教学评价中的应用案例

决策树在教育信息处理中的应用很广泛,下面以决策树在教学评价中的应用为例,来说明在教育信息处理中是如何使用决策树来分析的。教学评价在教育中是一个重要的问题,它是指依据一定的教学目标与教学规范标准,通过对学校教与学等教育情况的系统检测与考核,评定其教学效果与教学目标的实现程度。教学评价具有复杂性、多因素性和模糊性等特点。如何客观、科学、全面地对教学进行评价,是教学评价中一个重要的课题,下面尝试将决策树应用于教学评价。

在评价之初要有一个数据采集的过程,之后可以用决策树来加以分析。课堂教学评价指标体系分为若干项,从教师的角度可以分为授课态度A

1、授课方法A

2、授课内容A

3、授课效果A

4、教学评价A5,可以取训练例子如表1所示。

对给定的训练例子数据是把连续的数据离散化的结果,A为评分90~100,B为评分80~89,C为评分70~79,D为评分60~69,E为评分

如果利用前面的ID3算法建立决策树,先检验所有信息增益的特征属性,选择信息增益最大的属性作为决策树的结点,由该特征的不同取值建立分支,对此分支的实例子集递归该方法建立决策树的结点和分支,直到某一子集中的例子属于同一类。

对给定训练例子的熵为:E(T)= 1.295 46。

表1 训练例子

N1 A1 A2 A3 A4 A5 1 B B B B 良 2 B B B B 良 3 B B B C 良 4 A A A A 优 5 B C C C 中 6 C C C C 中 7 B C B B 良 8 B B C C 良 9 C B C C 中

10 A A B B 良

以属性A1为例,A1的值={A,B,C},由表中可以看出A3的信息增益最大,所以选A3属性作为根节点的测试属性,并根据其值向下分支,利用ID3算法进一步划分,当根节点到当前节点的路径上包括所有属性或当前节点的训练样本同属一类时,算法结束。根据以上分析给出图2所示决策树。

图2 决策树

可以根据生成的决策树,方便地提取其描述的知识,比如授课内容A3在这里产生的信息增益最大等信息。

4 小结

在教育信息中存在隐藏在数据中的规则,这些规则可以用不同的方法被挖掘。本文只是对决策树中的分类ID3算法在数据处理中的应用进行研究,目的是得到教育教学中存在的规则,利用发现的规则对教育管理决策提供有参考意义的信息。

参 考 文 献

[1]Callan R.人工智能[M].北京:电子工业出版社,2004 [2]尹朝庆.人工智能与专家系统[M].北京:中国水利水电出版社,2003 [3]朱福喜,等.人工智能原理[M].武汉:武汉大学出版社,2002 [4]陈翔,刘军丽.应用决策树方法构建评价指标体系[J].计算机应用,2006,26(2):368-370 [5]谷琼,等.基于决策树技术的高校研究生信息库数据挖掘研究[J].电子技术应用,2006,32(1):20-22 [6]王中辉,等.决策树在教学评价中的应用[J]甘肃科技,2006,22(3):125-126,106

第15篇:数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。

1、数据挖掘

数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤!

由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。

数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进!

2、数据分析

数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

由上可见,数据挖掘和数据分析虽然概念上层次清晰,作用上分工明确(数据分析主要以上数理统计为主,数据挖掘主要是挖掘算法为主)。但很明显的是,数据挖掘必须借助数据分析的有关方法来挖掘出有效的,对目标应用有意义的模式和知识。或者可以说:数据挖掘也可以是数据分析的一种!

在这样一个信息迅速膨胀的时代,数据挖掘和分析都与大量数据打交道。两者都离不开一种80年代后期兴起的一种高级数据分析技术:数据仓库和联机分析处理。

3、数据仓库

数据仓库是一个从多个数据源收集的信息存储库,存放在一致的的模式下,并且通常驻留在单个站点上。数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。为便于决策,数据仓库中的数据围绕主题组织。数据存储从历史的角度提供信息,并且通常是汇总的。数据仓库提供一些数据分析能力,称作联机分析处理(OLAP)。

数据仓库有以下四种关键特征:

面向主题的:数据仓库围绕一些重要主题,如顾客、供应商、产品、和销售组织。数据仓库关注决策者的数据建模与分析,而不是单位的日常操作和事务处理。因此,数据仓库通常排除对于决策无用的数据,提供特定主题的简明视图。

集成的:通常,构造数据仓库是将多个异构数据源,使用数据清理和数据集成技术,确保命名约定,编码结构,属性度量等的一致性。

时变的:数据存储从历史的角度提供信息。数据仓库中的关键结构都隐式或显式地包含时间元素。

非易失的:数据仓库总是物理地分离存放数据,这些数据源于操作环境下的应用数据。由于这种分离,数据仓库不需要事务处理、恢复和并发控制机制。通常,它只需要两种数据访问操作:数据的初始化装入和数据访问。

4、分类及算法

分类是一种重要的数据分析形式,它提取刻画重要数据类的模型。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。

分类算法主要有决策树归纳、贝叶斯分类、使用IF-THEN规则分类、神经网络、支持向量机等。

5、聚类分析

聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。

常用的算法有:

划分方法:k-均值算法,k-中心点算法。

层次方法:层次聚类算法、平衡迭代归约和算法、Chameleon(变色龙)、基于密度的方法:DBSCAN算法,OPTICS算法,DENCLUE算法。 基于网格的方法:STING(统计信息网格),CLIQUE

6、广泛应用

作为一个应用驱动的领域,数据挖掘融汇来自其他一些领域的技术。这些领域包括统计学、机器学习、数据库和数据仓库系统,以及信息检索。数据挖掘研究与开发的多学科特点大大促进了数据挖掘的成功和广泛应用。

数据挖掘已经有许多成功的应用,如商务智能,Web搜索,生物信息学,卫生保健信息学,金融,数字图书馆和数字政府等。

7、学习总结

数据挖掘技术已经形成很广泛的应用空间,而目前JDMP的版本也在完善当中,大多数数据挖掘开发工具涌现出来。各种相关的框架如Hadoop也如雨后春笋纷纷出现。这些现象的出现,正是因为数据挖掘的发展会有越来越广泛的天空。然而数据挖掘还是有很多需要面临并且急需解决的问题„„而我们也希望其越来越深刻的研究和改进。

对于数据挖掘的学习,还是要注重算法的研究和开发。目前我还很欠缺这一块知识。包括统计学、概率论,机器学习等。数据挖掘是个繁复的过程,需要我们长此以往的研究!

第16篇:数据仓库与数据挖掘学习心得.

数据仓库与数据挖掘学习心得

通过数据仓库与数据挖掘的这门课的学习,掌握了数据仓库与数据挖掘的一些基础知识和基本概念,了解了数据仓库与数据库的区别。下面谈谈我对数据仓库与数据挖掘学习心得以及阅读相关方面的论文的学习体会。

《浅谈数据仓库与数据挖掘》这篇论文主要是介绍数据仓库与数据挖掘的的一些基本概念。数据仓库是支持管理决策过程的、面向主题的、集成的、稳定的、不同时间的数据集合。主题是数据数据归类的标准,每个主题对应一个客观分析的领域,他可为辅助决策集成多个部门不同系统的大量数据。数据仓库包含了大量的历史数据,经集成后进入数据仓库的数据极少更新的。数据仓库内的数据时间一般为5年至10年,主要用于进行时间趋势分析。数据仓库的数据量很大。

数据仓库的特点如下:

1、数据仓库是面向主题的;

2、数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出来,进行加工与集成,统一与综合之后才能进入数据仓库;

3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询;

4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求,它在商业领域取得了巨大的成功。

作为一个系统,数据仓库至少包括3个基本的功能部分:数据获取:数据存储和管理;信息访问。

数据挖掘的定义:数据挖掘从技术上来说是从大量的、不完全的、有噪音的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。

数据开采技术的目标是从大量数据中,发现隐藏于其后的规律或数据间的的关系,从而服务于决策。数据挖掘的主要任务有广义知识;分类和预测;关联分析;聚类。

《数据仓库与数据挖掘技术在金融信息化中的应用》论文主要通过介绍数据额仓库与数据挖掘的起源、定义以及特征的等方面的介绍引出其在金融信息化中的应用。在金融信息化的应用方面,金融机构利用信息技术从过去积累的、海量的、以不同形式存储的数据资料里提取隐藏着的许多

重要信息,并对它们进行高层次的分析,发现和挖掘出这些数据间的整体特征描述及发展趋势预测,找出对决策有价值的信息,以防范银行的经营风险、实现银行科技管理及银行科学决策。

现在银行信息化正在以业务为中心向客户为中心转变6银行信息化不仅是数据的集中整合,而且要在数据集中和整合的基础上向以客为中心的方向转变。银行信息化要适应竞争环境客户需求的变化,创造性地用信息技术对传统过程进行集成和优化,实现信息共享、资源整合综合利用,把银行的各项作用统一起来,优势互补统一调配各种资源,为银行的客户开发、服务、综理财、管理、风险防范创立坚实的基础,从而适应日益发展的数据技术需要,全面提高银行竞争力,为金融创新和提高市场反映能力服务。沃尔玛利用信息技术建设的数据仓库,在1997年圣诞节进行市场技术建立的数据仓库,即分析顾客最可能一起购买那些商品,结果产生了经典的“啤酒与尿布”的故事,这便是借助于数据仓库系统

第17篇:电子商务数据挖掘方法论文

摘要: 电子商务是现代商业的主流趋势,如何充分利用网络技术和数据库技术发挥企业优势,成为企业制胜的法宝。本文介绍了常用的数据挖掘方法,以及在电子商务领域的应用,分析了利用数据挖掘技术建设动态、高效电子商务的可行性。

关键词:数据挖掘 电子商务 数据库

一、引言

电子商务是指以Internet网络为载体、利用数字化电子方式开展的商务活动。随着网络技术和数据库技术的飞速发展,电子商务正显示越来越强大的生命力。电子商务的发展促使公司内部收集了大量的数据,并且迫切需要将这些数据转换成有用的信息和知识,为公司创造更多潜在的利润。利用数据挖掘技术可以有效地帮助企业分析从网上获取的大量数据,发现隐藏在其后的规律性,提取出有效信息,进而指导企业调整营销策略,给客户提供动态的个性化的高效率服务。

二、数据挖掘技术

1.数据挖掘

数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database, KDD),是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘是一门广义的交叉学科,它汇聚了不同领域尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的知识。数据挖掘技术从一开始就是面向应用领域,它不仅是面向特定数据库的简单检索查询调用,而且,要对数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指定实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。数据挖掘技术在金融、保险、电信、大型超市等积累有大量数据的电子商务行业有着广泛的应用,如信用分析、风险分析、欺诈检验、用户聚类分析、消费者习惯分析等。

2.数据挖掘过程

挖掘数据过程可以分为3个步骤:数据预处理、模式发现、模式分析。

(1)数据预处理。实际系统中的数据一般都具有不完全性、冗余性和模糊性。因此,数据挖掘一般不对原始数据进行挖掘,要通过预处理提供准确、简洁的数据。预处理主要完成以下工作:包括合并数据,将多个文件或多个数据库中的数据进行合并处理;选择数据,提取出适合分析的数据集合;数据清洗、过滤,剔除一些无关记录,将文件、图形、图像及多媒体等文件转换成可便于数据挖掘的格式等。

(2)模式发现。模式发现阶段就是利用挖掘算法挖掘出有效的、新颖的、潜在的、有用的以及最终可以理解的信息和知识。可用于Web的挖掘技术有路径选择、关联分析、分类规则、聚类分析、序列分析、依赖性建模等等。

(3)模式分析。模式分析是从模式发现阶段获得的模式、规则中过滤掉不感兴趣的规则和模式。通过技术手段,对得到的模式进行数据分析,得出有意义的结论。常用的技术手段有:关联规则、分类、聚类、序列模式等。

三、电子商务中几种常用的数据挖掘方法

1.关联规则

关联规则是数据挖掘研究的主要模式之一,侧重于确定数据中不同领域之间的关系,找出满足给定条件下的多个域间的依赖关系。关联规则挖掘对象一般是大型数据库,该规则一般表示式为:A1∧A2∧…Am=>B1∧B2∧…Bm,其中,Ak(k=1,2,…, m),Bj(j=1,2,…,n)是数据库中的数据项。有Support(A=>B)=p(A∪B),Confidence(A=>B)=p(A|B)。数据项之间的关联,即根据一个事务中某些数据项的出现可以导出另一些数据项在同一事务中的出现。 关联分析的目的是挖掘出隐藏在数据间的相互关系。关联规则用于寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。关联分析的典型例子是购物篮分析,描述顾客的购买行为,可以帮助零售商决定商品的摆放和捆绑销售策略。如著名的(面包+黄油→牛奶)例子就属于关联分析:在超市中,90%的顾客在购买面包和黄油的同时,也会购买牛奶。直观的意义是:顾客在购买某种商品时有多大的倾向会购买另外一些商品。找出所有类似的关联规则,对于企业确定生产销售、产品分类设计、市场分析等多方面是有价值的。

2.聚类分析方法

类聚分析就是直接比较样本中各事物之间的性质,将性质相近的归为一类,而将性质差别较大的分在不同的类。对变量聚类计算变量之间的距离,对样本聚类则计算样本之间的距离。它的目的是使得属于同一类别的个体之间的距离尽可能小,而不同类别上的个体间的距离尽可能大。

聚类分析用于把有相似特性的客户、数据项集合到一起。在电子商务中, 聚类分析常用于市场细分。根据已有客户的数据,利用聚类技术将市场按客户消费模式的相似性分为若干细分市场,以进行有针对性的市场营销,提供更适合、更满意的服务。如自动给一个特定的客户聚类发送销售邮件,为一个客户聚类动态地改变一个特殊的站点等。通过对聚类的客户特征的提取,电子商务网站还可以为客户提供个性化的服务。

3.分类分析

分类系统是基于遗传算法的机器学习中的一类,它包括一个简单的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统。分类系统正在被人们越来越多地应用于科学、工程和经济领域中,是目前遗传算法研究领域中一个非常活跃的领域。

分类分析是数据挖掘中应用最多的方法。分类要解决的问题是为一个事件或对象归类, 既可以用于分析已有的数据,也可以用来预测未来的数据。分类通过分析已知分类信息的历史数据,总结出一个预测模型,预测哪些人可能会对邮寄广告、产品目录等有反应,可以针对这一类客户的特点展开商务活动,提供个性化的信息服务。

4.序列模式

序列模式挖掘就是要挖掘出交易集之间有时间序列关系的模式。它挖掘的侧重点在于分析数据间的前后或因果关系,找到那些“一些项跟随另一些项”,以预测未来的访问模式。序列模式分析和关联分析类似,其目的也是为了挖掘数据之间的联系,但序列模式分析的侧重点在于分析数据间的前后序列关系。它能发现数据库中形如“在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A-B-C出现的频率较高”之类的知识。序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要有用户输入最小置信度C和最小支持度S。

序列模式便于进行电子商务的组织,预测客户的访问模式,对客户开展有针对性的广告服务或者主动推荐客户感兴趣的页面,以满足访问者的特定要求。

四、结束语

电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。利用数据挖掘技术来分析大量的数据,可以挖掘出商品的消费规律与客户的访问模式,帮助企业制定有效的营销策略,充分发挥企业的独特优势,促进管理创新和技术创新,提高企业竞争力。

随着电子商务发展的势头越来越强劲, 面向电子商务的数据挖掘将是一个非常有前景的领域。它能自动预测客户的消费趋势、市场走向,指导企业建设个性化智能网站,带来巨大的商业利润,可以为企业创建新的商业增长点。但是在面向电子商务的数据挖掘中也存在很多问题急需解决,比如怎样将服务器的日志数据转化成适合某种数据挖掘技术的数据格式,怎样解决分布性、异构性数据源的挖掘,如何控制整个Web上知识发现过程等。随着硬件环境、挖掘算法的深入研究及应用经验的积累,数据挖掘技术及在电子商务中的应用必将取得长足的进展。

第18篇:移动数据挖掘项目工作总结

移动数据挖掘项目工作总结

--2012年10月23日,中山大学,园东区203

电信行业是数据挖掘技术应用的传统行业,其挖掘题材之丰富,其挖掘应用之广泛,一直令不少数据挖掘专家迷恋不已。移动凭借其自身行业的特性,以及成熟稳定的客户群体等诸多优势,从挖掘题材的创新、挖掘技术的运用以及后期营销活动的开展,都走在了行业领域的前列。

本文主要是作者在移动行业方面的一些经验分享、工作总结以及思考感悟。移动数据挖掘项目具有设计简单、重视应用、开发周期短等特点,其中的一些挖掘分析思想值得我们借鉴学习。

从数据说起

我们所说的数据分析,或者数据挖掘,就是期望从数据中获取有用的信息。数据,对数据分析人员来说,就像厨师做菜所需要的各种食材。好的食材,再加上适当的烹饪,就可以做出美味可口的饭菜。同样地,好的数据,也是进行有效数据挖掘的基础。

一个行业,或者一个企业,是否能够广泛而成熟地运用数据分析来辅助进行营销决策,较大程度上取决于我们从数据层面知道关于客户信息的多少。最理想的情况下,我们期望能够获得描述客户心理活

动方面的数据,但现实中这方面的数据其实是不可能获得的。而数据挖掘,更多的是力图从企业现有的数据中探寻有用的信息。

现在回过头来看,移动的行业特性,及其刻画用户的数据维度较为全面,使得移动能够广泛成熟地应用数据挖掘技术来辅助营销决策。一般地,移动有几大方面的数据:

1) 客户基本信息,

2) 账务信息,

3) 通话行为,

4) 数据业务,

5) 集团业务,

6) 渠道使用,

7) 交往圈,

8) 终端特征,

9) 位置信息,

10) 客服数据

相比之下,其他行业的数据就不那么全面了。移动数据的特点,也使得数据挖掘在营销决策方面有很大作为。从客户流失、客户分群、

客户价值、客户偏好、精确营销到客户生命周期等经典的挖掘题材,都有良好的数据支持。

咨询的方法、业务的思路、挖掘的技术

数据挖掘项目从业务问题出发,致力于从数据中寻找解决之道,最后回到业务层面上,提出应用建议,支持营销决策。业务,实际上是贯穿数据挖掘模型的整个过程。分析人员应该基于业务,忠于业务,时刻保持对业务的那种敏感性。不懂业务,不算一个优秀的分析人员。不懂业务,就会使我们分析的方向越来越偏离挖掘的最终目标。不懂业务,分析结果就仅仅只是一堆数据,从当中得不到太多有意义的信息。

因此,对业务问题的分析思路还是要基于业务来确定。在业务的基础上灵活设计分析模型,可确保模型结果较好地运用到营销决策之上。

值得注意的是,对业务问题的分析过程,挖掘只是其中的一部分,而不是全部。我们需要逻辑思考,我们也需要咨询的方法论来指导我们去剖析业务问题,以便让业务问题的解决顺理成章,让业务部门更好地明白我们对业务问题的分析思路。

这里举个客户流失的例子来加以说明吧。对于客户流失,可能其他行业只是开发一个客户流失预警模型出来,就差不多了。但在移动,这会做得更多。对于流失客户,我们首先想知道客户流失的总体情况、

客户流失轨迹如何、流失客户群体有什么样的特征等等。进一步地,我们也想知道客户为什么流失、客户流失之后的去向如何。除了这些,我们还需要知道哪些客户容易流失、这些客户有什么样的偏好特征等等。从这我们可以知道,业务问题的分析需要遵循一定的逻辑性,需要像讲故事一样非常自然合理的解决思路。

我必须得告诉你,这就是一般逻辑性思考的套路。我们也看到,利用数据挖掘技术(如Logistic回归)开发挖掘模型,可能就只是我们分析思路中的一部分工作而已。

另外,需强调一点,我们在分析过程中,应当为业务人员想得更多。这点不多加说明。

我认为,在数据挖掘项目中,关键在人,业务是其次的,第三才是技术。建模应当遵循简单有效的原则。所谓简单,即是力求模型避繁就简。比如说,训练指标设计,可以基于业务先衍生出几个含义明显且计算逻辑简单的指标,尽量避免衍生出那些业务不明显且计算复杂的指标。再者,训练指标不能太多,否则会耗费太多时间在搭建训练宽表上。又如在挖掘技术的选择上,如果用Logistic回归、决策树和神经网络训练模型,得到相差不大的结果,一般选用Logistic回归来训练模型,因为它原理简单并且结果可读性好。

着眼于应用

我们的项目成果是否有价值,我们开发的模型是否有效,最终得看应用。从项目一开始,我们就应着眼于成果的应用。我们必须顾及业务人员的感受。有时候,我们得站在业务人员的角度来思考我们所分析的问题。

我们还应该告诉业务人员,我们的模型怎么用。这是我们的职责。我们还需要告诉他们,模型有何局限性。如果有必要,我们也可以告诉他们整个分析过程,从目标定义、数据处理、指标选取、模型训练到结果应用。让他们知晓这个过程,是为了让他们对模型有一个正确的认识,既不会完全否定模型的作用,也不会过于看重模型的效果。这里存在着模型效果衰减的问题。模型自身的效果会受到各种营销因素的影响而降低,导致最终营销效果不好。举个例子,从客户流失预警模型中获取的目标客户名单,从模型自身效果来看,会有比较高的命中率。但业务人员对这部分客户进行挽留关怀,也收到挽留策略等因素的影响,导致成功率不高。这是难以避免的问题。我们能做的只是采取措施减少这样的影响。

由于行业特性以及移动自身的优势,挖掘项目成果在移动得到了很好的应用。移动的渠道发展趋于多元化,营销方式多样化,客服体系成熟,客户规模庞大,这都使得挖掘成果得到有效的应用起来。其实,当你收到来自10086的优惠短信,很有可能,你就是经过挖掘分析得到的结果,你就是被锁定的目标客户。不过,不要惊慌,这很正常。这表明移动对你重视了。

结束语

说来说去,挖掘就是那么一回事儿。文章转载自:学子网 个人工作总结 栏目。

第19篇:数据挖掘教学方法研究论文

摘要:在本科高年级学生中开设符合学术研究和工业应用热点的进阶课程是十分必要的。以数据挖掘课程为例,本科高年级学生了解并掌握数据挖掘的相关技术,对于其今后的工作、学习不无裨益。着重阐述数据挖掘等进阶课程在本科高年级学生中的教学方法,基于本科高年级学生的实际情况,以及进阶课程的知识体系特点,提出有针对性的教学方法参考,从而提高进阶课程的教学效果。

关键词:数据挖掘;进阶课程;教学方法研究;本科高年级

学生在本科高年级学生中开设数据挖掘等进阶课程是十分必要的,以大数据、数据挖掘为例,其相关技术不仅是当前学术界的研究热点,也是各家企事业单位招聘中重要岗位的要求之一。对于即将攻读硕士或博士学位的学生,对于即将走上工作岗位的学生,了解并掌握一些大数据相关技术,尤其是数据挖掘技术,都是不无裨益的。在目前本科教学中,对于数据挖掘等课程的教学,由于前序课程的要求,往往是放在本科四年级进行。如何激发本科四年级学生在考研,找工作等繁杂事务中的学习兴趣,从而更好地掌握数据挖掘的相关技术是本课程面临的主要挑战,也是所有本科进阶课程所面临的难题之一。

1数据挖掘等进阶课程所面临的问题

1.1进阶课程知识体系的综合性

进阶课程由于其理论与技术的先进性,往往是学术研究的前沿,工业应用的热点,是综合多方面知识的课程。以数据挖掘课程为例,其中包括数据库、机器学习、模式识别、统计、可视化、高性能技术,算法等多方面的知识内容。虽然学生在前期的本科学习中已经掌握了部分相关内容,如数据库、统计、算法等,但对于其他内容如机器学习、人工智能、模式识别、可视化等,有的是与数据挖掘课程同时开设的进阶课程,有的已经是研究生的教学内容。对于进阶课程繁杂的知识体系,应该如何把握广度和深度的关系尤为重要。

1.2进阶课程的教学的目的要求

进阶课程的知识体系的综合性体现在知识点过多、技术特征复杂。从教学效益的角度出发,进阶课程的教学目的是在有限的课时内最大化学生的知识收获。从教学结果的可测度出发,进阶课程的教学需要能够有效验证学生掌握重点知识的学习成果。1.3本科高年级学生的实际情况本科高年级学生需要处理考研复习,找工作等繁杂事务,往往对于剩余本科阶段的学习不重视,存在得过且过的心态。进阶课程往往是专业选修课程,部分学分已经修满的学生往往放弃这部分课程的学习,一来没有时间,二来怕拖累学分。

2数据挖掘等进阶课程的具体教学方法

进阶课程的教学理念是在有限的课时内,尽可能地提高课程的广度,增加介绍性内容,在授课中着重讲解1~2个关键技术,如在数据挖掘课程中,着重讲解分类中的决策树算法,聚类中的K-Means算法等复杂度一般,应用广泛的重要知识点,并利用实践来检验学习成果。

2.1进阶课程的课堂教学

数据挖掘等进阶课程所涉及的知识点众多,在课堂上则采用演示和讲授相结合的方法,对大部分知识点做广度介绍,而对需要重点掌握知识点具体讲授,结合实践案例及板书。在介绍工业实践案例的过程中,对于具体数据挖掘任务的来龙去脉解释清楚,尤其是对于问题的归纳,数据的处理,算法的选择等步骤,并在不同的知识点的教学中重复介绍和总结数据挖掘的一般性流程,可以加深学生对于数据挖掘的深入理解。对于一些需要记忆的知识点,在课堂上采用随机问答的方式,必要的时候可以在每堂课的开始重复提问,提高学习的效果。

2.2进阶课程的课后教学

对于由于时间限制无法在课上深入讨论的知识点,只能依靠学生在课后自学掌握。本科高年级学生的课后自学的动力不像低年级学生那么充足,可以布置需要动手实践并涵盖相关知识点的课后实践,但尽量降低作业的工程量。鼓励学生利用开源软件和框架,基于提供的数据集,实际解决一些简单的数据挖掘任务,让学生掌握相关算法技术的使用,并对算法有一定的了解。利用学院与大数据相关企业建立的合作关系,在课后通过参观,了解大数据技术在当前企业实践中是如何应用的,激发学生的学习兴趣。

2.3进阶课程的教学效果考察进阶课程的考察不宜采取考试的形式,可以采用大作业的形式。从具体的数据挖掘实践中检验教学的成果,力求是学生在上完本课程后可以解决一些简单的数据挖掘任务,将较复杂的数据挖掘技术的学习留给学生自己。

3结语

数据挖掘是来源于实践的科学,学习完本课程的学生需要真正理解,掌握相关的数据挖掘技术,并能够在实际数据挖掘任务中应用相关算法解决问题。这也对教师的教学水平提出了挑战,并直接与教师的科研水平相关。在具体的教学过程中,发现往往是在讲授实际科研中遇到的问题时,学生的兴趣较大,对于书本上的例子则反映一般。进阶课程在注重教学方法的基础上,对于教师的科研水平提出了新的要求,这也是对于教师科研的反哺,使教学过程变成了教学相长的过程。

参考文献:

[1]孙宇,梁俊斌,钟淑瑛.面向工程的《数据挖掘》课程教学方法探讨[J].现代计算机,2014(13).[2]蒋盛益,李霞,郑琪.研究性学习和研究性教学的实证研究———以数据挖掘课程为例[J].计算机教育,2014(24).

[3]张晓芳,王芬,黄晓.国内外大数据课程体系与专业建设调查研究[C].2ndInternationalConferenceonEducation,ManagementandSocialScience(ICEMSS2014),2014.

[4]郝洁.《无线传感器网络》课程特点、挑战和解决方案[J].现代计算机,2016(35).

[5]王永红.计算机类专业剖析中课程分析探讨[J].现代计算机,2011(04).

第20篇:《数据挖掘导论》读书报告

数据收集和数据存储技术的快速进步使得各组织机构可以积累海量数据。然而,提取有用的信息已经成为巨大的挑战。通常,由于数据量太大,无法使用传统的数据分析丁具和技术处理它们。有时,即使数据集相对较小,但由于数据本身具有一些非传统特点,也不能使用传统的方法处理。在另外一些情况下,面临的问题不能使用已有的数据分析技术来解决。这样,就需要开发新的方法。

数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据挖掘为探査和分析新的数据类型以及用新方法分析旧有数据类型提供了令人振奋的机会。本章,我们概述数据挖掘,并列举本书所涵盖的关键主题。

数据挖掘技术可以用来支持广泛的商务智能应用,如顾客分析、定向营销、工作流管理、商店分布和欺诈检测等。数据挖掘还能帮助零售商回答一些重要的商务问题,如“谁是最有价值的顾客? ”“什么产品可以交叉销售或提升销售? ”“公司明年的收入前景如何? ”这些问题催生了一种新的数据分析技术。

医学、科学与工程医学、科学与工程技术界的研究者正在快速积累大量数据,这些数据对获得有价值的新发现至关重要。例如,为了更深入地理解地球的气候系统,NASA己经部署了一系列的地球轨道卫星,不停地收集地表、海洋和大气的全球观测数据。然而,由于这些数据的规模和时空特性,传统的方法常常不适合分析这些数据集。数据挖掘开发的技术可以帮助地球科学家回答如下问题:“千旱和飓风等生态系统扰动的频度和强度与全球变暖之间有何联系?”“海洋表面温度对地表降水量和温度有何影响?”“如何准确地预测一个地区的生长季节的开始和结束?”

什么是数据挖掘

数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。数据挖掘技术用来探査大型数据库,发现先前未知的有用模式。数据挖掘还可以预测未来观测结果,例如,预测一位新的顾客是否会在一家百货公司消费100美元以上。

并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎査找特定的Web页面,则是信息检索领域的任务。虽然这些任务非常重要,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,人们也在利用数据挖掘技术增强信息检索系统

的能力。

数据挖掘与知识发现

数据挖掘是数据库中知识发现(knowledge discovery in database, KDD)不可缺少的一部分, 而KDD是将未加工的数据转换为有用信息的整个过程。该过程包括一系列转换步骤,从数据的预处理到数据挖掘结果的后处理。输入数据可以以各种形式存储(平展文件、电子数据表或关系表),并且可以驻留在集中的数据存储库中,或分布在多个站点上。数据预处理(preproceing)的目的是将未加工的输入数据转换成适合分析的形式。数据预处理涉及的步骤包括融合来自多个数据源的数据,清洗数据以消除噪声和重复的观测值,选择与当前数据挖掘任务相关的记录和特征。由于收集和存储数据的 方式多种多样,数据预处理可能是整个知识发现过程中最费力、最耗时的步骤。

“结束循环”(dosing the loop)通常指将数据挖掘结果集成到决策支持系统的过程。

数据挖掘岗位职责职业规划
《数据挖掘岗位职责职业规划.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档