人人范文网 证明

重要极限证明(精选多篇)

发布时间:2020-08-14 08:32:31 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:两个重要极限的证明

两个重要的极限

1.证明:lim

sinxx

x0

1

证明:如图(a)作单位圆。当0

21

12x

12

2

时,显然有ΔOAD面积

xsinx

1cosx

tgx,sinx

2

或1

sinxx

cosx

2

x0

时也成立。

图(a)

故(1)式对一切满足不等式0|x|的x都成立。

sinxx

1。

由limcosx=1及函数极限的迫敛性定理立刻可得lim

x0

x0

函数f(x)=

sinxx

的图象如图(b)所示。

2.证明:lim(1)n存在。

n

n

证明:先建立一个不等式,设b>a>0,于是对任一自然数n有

b

n1

图(b)

n1

a

n1

ba

(n1)b或b

n

n1

a

n1

(n1)b(ba),整理后得不等式a

n(1) b[(n1)anb]。

n

令a=1+故有(1

1n1)

n1

,b=1+

1n)

1n

n

,将它们代入(1)。由于(n1)anb(n1)(1

1n1

)n(1

1n

)1,

n1

(1

12n

,这就是说{(1)n}为递增数列。

n

12n)

12

再令a=1,b=1+代入(1)。由于(n1)anb(n1)n(1

12n)

2n

,故有1(1

12n

)

n

12

,2(1

12n1n

)

n

不等式两端平方后有4(1,它对一切自然数n成立。联系数列的单调性,由此又推得数列{(1)n}

是有界的。于是由单调有界定理知道极限lim(1)n是存在的。

n

n

3.证明:lim(1)xe。

x

x

证明:所求证的极限等价于同时成立下述两个极限:

x

lim(1

1x

)e

x

(1)

x

lim(1

1x

)e

x

(2)

现在先应用2中数列极限lim(1)ne,证明(1)式成立。

n

n

设n≤x

1n1

1

1x

1

1n

及(1

1n1

)

n

1n1

)(1

n

1x

)(1

x

1n

)

n1

, (3)

作定义在[1,+)上的阶梯函数。f(x)(1,n≤x

n

由(3)有f(x)

x

x

n

11n1

(1

)lim

n

n

n1

11

n

)

n1

e

xlimg(x)lim(1n1n)n1lim(1n1n)(1n1

n)e,根据迫敛性定理便得(1)式。

11

y)y现在证明(2)式。为此作代换x=-y,则(1)x(1x(11

y1)(1y1

y1)y1(11

y1)

因为当x→-∞时,有y-1→+∞,故上式右端以e为极限,这就证得lim(1)xe。

x1x

以后还常常用到e的另一种极限形式lim(1a)ae a0

1x(4) 1

a0因为,令a1x,则x→∞和a→0是等价的,所以,lim(1)lim(1a)a。 xx

推荐第2篇:两个重要极限

2.5.1两个重要极限(第一课时)

——新浪微博:月牙LHZ

一、教学目标

1.复习该章的重点内容。

2.理解重要极限公式。

3.运用重要极限公式求解函数的极限。

二、教学重点和难点

重点:公式的熟记与理解。

难点:多种变形的应用。

三、教学过程

1、复习导入

(1)极限存在性定理:xlimfx(x)Alimf(x)limf(x)A 0xx0xx0

(2)无穷大量与无穷小量互为倒数,若f(x)(xx0),

1f(x)(0xx0)

(3)极限的四则运算:

limf(x)g(x)limf(x)limg(x) limf(x)g(x)limf(x)limg(x) limf(x)

g(limf(x)

x)limg(x)limgx0

(4)limcf(x)climf(x)(加法推论)

(5)limf(x)klimf(x)k(乘法推论)

(6)lim无穷小量有界变量0(无穷小量的性质) eg: limsinxlim

xx1sinx0 xx则

那么,lim

sinxx

?呢,这是我们本节课要学的重要极限

x0

2、掌握重要极限公式lim

sinxx

x0

1公式的特征:(1)型极限;

(2)分子是正弦函数;

(3)sin后面的变量与分母的变量相同。

3、典型例题 【例1】求 lim解:lim

sinxkx

x0

sinxkxsinxxtanxx

x0

k

0

1k1

1k

=

1k

lim

x0

【例2】求 lim解:lim

tanxx

x0

sinx1

lim111 lim

x0cosxcosxx0x

1x0

sin

=lim

x0

x

x

(推导公式:lim

tanx

x0

【例3】求 lim解:lim

sin5xx

x0

1)

xsin5xx5x

x0

lim5

x0

sin5x

5lim

sin5x5x

x0

51

54、强化练习(1)lim

sinx3x

x0

x0

(2)lim

sinx

sinkxxsinxxsinkxkx

x0

k

1

30(3)lim

1

sin5x3x

x0

(4) lim

tan2xx

x0

解:(1)lim(2) lim(3)lim

x0(4)lim

x0

3xsinkxx

=

13

lim

x0

limk

x0

klim

3sinkxkx

x0

k1k

sin5x3xtan2xx

sin5x55sin5x5

5limlim1x033x05x335x=limx0

sin2xx

x0

sin2x1

lim2111 2lim

x0x0cos2xcos2x2x

四、小结:

本节课我们学习了一个重要的极限,并运用这个公式求解一些函数的极限。在运用这个公式时,要注意两点:一是分子中的三角函数转换为正弦函数,二是分子sin后面的变量与分母的变量相同。

五、布置作业:(1)sinx(2)sin3x (3)sin5x (4) tan3x

limlim

x0

5x

x0

x

lim

x0

2x

lim

x0

x

2.5.2两个重要极限(第二课时)

————新浪微博:月牙LHZ

一、教学目标 1.理解重要极限公式。

2.运用重要极限公式求解函数的极限。

二、教学重点和难点 重点:公式的熟记与理解。 难点:多种变形的应用。

三、教学过程

1、复习导入:

本节课我们学习一个重要的极限公式。首先我们一起复习一下指数运算。 (1)ab(2) (3)

a

n

ab

n

nn

m

nm

aa

a

nm

a

n

m

2、掌握重要极限公式

lim(1

x

1x

)

x

e

3、典型例题 【例1】 lim解:lim(1x

2x

x

(1

2x

)

x

1x

2x

)lim[(1

x

x

)2][lim(1

x

1x2

x

)2]e

22

(构造法)

(1x)x 【例2】limx0

1z

1xz

解:lim(1x)

x0

x

lim(1

1z

)e(换元法)

z

(推导公式:lim(1x)x

x0

e)

【例3】 lim解:lim

x

x

(1

x

1x

)

x

1x

)

x

(1

1x

)lim[(1

x

]

1[lim(1

x

1x

)

x

]

1

e

1

1e

(构造法)

【例4】 lim(

x

xx1

)

x

11

1x)lim

x

解:lim(

x

xx1

)lim(

x

x

11

1

x

x

x

1e

(构造法)

4、强化练习(1)lim(1

x

5x

)

x

(1x)x(3)lim(2)lim

x05x

1x

5x

x

(1

2x

)

x

(4) lim(

x

2xx

1)

x

(1解:(1)limx

)lim[(1

x

x

)5][lim(1

x

1x5

x

)5]e

55

(2)lim(1x)x

x0(3) lim(1

x

lim(1x)xx0



lim(1x)x

x0

1z

lim(1)

zz

x

2e

2x

)lim[(1

x

x

1x2

)

x2

]

2

[lim(1

x

1x2

)]

2

e

2

1e

(4)

2xx

)1x

2

lim1xx1

lim1xx

x

lim[(1

x

1x2

x

)]

[lim(1

x

1x2

x

)]

lim(

x

x2x1

1

)lim(

x

x

x

1

e

e

e

e

e

四、小结:

本节课我们学习了另一个重要的极限,并运用这个公式求解一些函数的极限。学会巧妙地运用换元法和构造法把它转化为公式的形式,从

而求得极限。

五、布置作业: (1)lim(1

x

3x

)

x

(2)lim(12x)x(3)lim

x0

x

(1

1x

)

2x

(4) lim

x

(

x3x1

)

x

推荐第3篇:极限的证明

极限的证明

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=/2

且Xn=/2>√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.

对原始两边求极限得A=/2.解得A=√a

同理可求x0

综上,数列极限存在,且为√

(一)时函数的极限:

以时和为例引入.

介绍符号:的意义,的直观意义.

定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.

定义函数极限的“”定义.

几何意义.

用定义验证函数极限的基本思路.

例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义:介绍半邻域然后介绍等的几何意义.

例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.

例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.

5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.

例1(利用极限和)

例2例3註:关于的有理分式当时的极限.

例4

例5例6例7

推荐第4篇:极限 定义证明

极限定义证明

趋近于正无穷,根号x分之sinx等于0

x趋近于负1/2,2x加1分之1减4x的平方等于

2这两个用函数极限定义怎么证明?

x趋近于正无穷,根号x分之sinx等于0

证明:对于任意给定的ξ>0,要使不等式

|sinx/√x-0|=|sinx/√x|

|sinx/√x|^2sinx^2/ξ^2,

∵|sinx|≤1∴只需不等式x>1/ξ^2成立,

所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|

同函数极限的定义可得x→+∞时,sinx/√x极限为0.x趋近于负1/2,2x加1分之1减4x的平方等于2

证明:对于任意给定的ξ>0,要使不等式

|1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|

需要0

|1-4x^2/2x+1-2|=|2x+1|

由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2.

注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0.

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M

注意到f2的极限小于等于a,那么存在N2,当x>N2时,0

同理,存在Ni,当x>Ni时,0

取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n

所以a/M

对n取极限,所以a/M

令x趋于正无穷,

a/M

注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。

令M趋于正无穷,b趋于a;

有a

这表明limg(x)=a;

证毕;

证明有点古怪是为了把a=0的情况也包含进去。

还有个看起来简单些的方法

记g(x)=lim^(1/n),n趋于正无穷;

g(x)=max{f1(x),....fm(x)};

然后求极限就能得到limg(x)=max{a1,...am}。

其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。

有种简单点的方法,就是

max{a,b}=|a+b|/2+|a-b|/2从而为简单代数式。

多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式,

故极限可以放进去。

2一)时函数的极限:

以时和为例引入.

介绍符号:的意义,的直观意义.

定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.

定义函数极限的“”定义.

几何意义.

用定义验证函数极限的基本思路.

例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义:介绍半邻域然后介绍等的几何意义.

例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.

例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.

5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.

例1(利用极限和)

例2例3註:关于的有理分式当时的极限.

例4

例5例6例7

2

推荐第5篇:证明极限不存在

证明极限不存在

二元函数的极限是高等数学中一个很重要的内容,因为其定义与一元函数极限的定义有所不同,需要定义域上的点趋于定点时必须以任意方式趋近,所以与之对应的证明极限不存在的方法有几种.其中有一种是找一种含参数的方式趋近,代入二元函数,使之变为一元函数求极限.若最后的极限值与参数有关,则说明二重极限不存在.但在证明这类型的题目时,除了选y=kx这种趋近方式外,许多学生不知该如何选择趋近方式.本文给出证明一类常见的有理分式函数极限不存在的一种简单方法.例1证明下列极限不存在:(1)lim(x,y)→(0,0)x4y2x6+y6;(2)lim(x,y)→(0,0)x2y2x2y2+(x-y)2.证明一般地,对于(1)选择当(x,y)沿直线y=kxy=kx趋近于(0,0)时,有lim(x,y)→(0,0)x4y2x6+y6=limx→0k2x6(1+k6)x6=k21+k6.显然它随着k值的不同而改变,故原极限不存在.对于(2)若仍然选择以上的趋近方式,则不能得到证明.实际上,若选择(x,y)沿抛物线y=kx2+x(k≠0)(x,y)→(0,0)趋近于(0,0),则有l..2是因为定义域D={(x,y)|x不等于y}吗,从哪儿入手呢,请高手指点

沿着两条直线y=2x

y=-2x趋于(0,0)时

极限分别为-3和-1/3不相等

极限存在的定义要求延任何过(0,0)直线求极限时极限都相等

所以极限不存在

3lim(x和y)趋向于无穷大(x^2-5y^2)/(x^2+3y^2)

证明该极限不存在

lim(x^2-5y^2)/(x^2+3y^2)

=lim(x^2+3y^2)/(x^2+3y^2)-8y^2/(x^2+3y^2)

=1-lim8/

因为不知道x、y的大校

所以lim(x和y)趋向于无穷大(x^2-5y^2)/(x^2+3y^2)

极限不存在

4

如图用定义证明极限不存在~谢谢!!

反证法

若存在实数L,使limsin(1/x)=L,

取ε=1/2,

在x=0点的任意小的邻域X内,总存在整数n,

①记x1(n)=1/(2nπ+π/2)∈X,有sin=1,

②记x2(n)=1/(2nπ-π/2)∈X,有sin=-1,

使|sin-L|

和|sin-L|

同时成立。

即|1-L|

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

所以,使limsin(1/x)=L成立的实数L不存在。

推荐第6篇:函数极限证明

函数极限证明

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/MN2时,0Ni时,0

那么当x>N,有

(a/M)^n

推荐第7篇:两个重要的极限(推荐)

《数学分析》教案

§4 两个重要的极限

教学目的:掌握两个重要极限,并能熟练应用。

教学要求:掌握两个重要极限,牢记结论;掌握证明的基本思路和方法,并能灵活运用。 教学重点:两个重要极限的证明及运用。

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。

教学程序:

一关于函数极限的性质

1)性质1-性质4常用于说明函数极限的一些性质。

例1. 设f(x)0,limf(x)

A,证明:limxx0xx0例2. 设limf(x)A,limg(x)B.(1)若在某U0(x0)内有f(x)g(x),问是否有AB?xx0xx0

为什么?(2)证明:若AB,则在某U0(x0)内有f(x)g(x).2)性质5-性质6(迫敛性、四则运算)常用于计算。

x21x2121P51: 1: (1)lim2(sinxcosxx)2;(2)lim2;(3)lim2;

x0x122xx12xx13x22

2(3x6)70(8x5)203708204(6)(8)lim.;9090xx(5x1)532: limxsinx0.xx2

4sinx1.例 limx0x

二、关于归结原则(Heine定理)

1. 定理的内容:

2. 定理的意义:

3. 定理的用途:

1) 说明极限不存在,如limsinx01的极限不存在; x

2) 利用数列极限的性质证明函数极限的性质。

例1. 证明函数极限的唯一性。

例2. 证明函数极限四则运算。

例3. 证明单调有界定理。

3) 利用函数极限求数列极限。

例4.

例5. limnsinn1.nlim(1n112).nn

4. 归结原则有不同的叙述(在不同的极限形式下),要注意灵活应用。

三、关于单调有界定理

1. 内容。

2. 意义。

四、关于Cauchy准则

1. 内容

2. 意义

3. 用途:

1) 证明limf(x)存在; x

2) 证明limf(x)不存在。如limsinxx1。 x

证明中用到归结原则,数列极限的Cauchy准则。

§4 两个重要的极限

sinx1的证明 x0x

sinx1的应用 二 limx0x

sinx例1. 求lim.xx

1cosx例2. 求lim.x0x2一 lim

limnsin1,直接利用limsinx1是不严格的;注:利用归结原则,可求数列极限。如求limx0nn1xn

n

sinx,1故取xn,(n1,2,,)但已知li则xn0(n),从而由归结原则x0xn

1sin0.limf(xn)limnnn

tgx例3. 求lim.x0xsin

11三 证明lim1e或lim1e.0xxx

四 应用

例1. 求lim12xx0

x1x.例2. 求lim1x.x0

例3. 求lim(1n11n2).nn

练习:P39 4 (1

1n)为递增数列。 n1

nP39 9 (1)n1为为递减数列。

P55 2 设f为定义在[a,)上的增(减)函数,证明:limf(x)存在f在[a,)上x

有上(下)界。

推荐第8篇:极限存在准则,两个重要极限

西南石油大学《高等数学》专升本讲义

极限存在准则 两个重要极限

【教学目的】

1、了解函数和数列的极限存在准则;

2、掌握两个常用的不等式;

3、会用两个重要极限求极限。

【教学内容】

1、夹逼准则;

2、单调有界准则;

3、两个重要极限。

【重点难点】

重点是应用两个重要极限求极限。

难点是应用函数和数列的极限存在准则证明极限存在,并求极限。

【教学设计】从有限到无穷,从已知到未知,引入新知识(5分钟)。首先给出极限存在准则(20分钟),并举例说明如何应用准则求极限(20分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(40分钟);课堂练习(15分钟)。

【授课内容】

引入:考虑下面几个数列的极限

1000

1、limni

1n1ni1

ni221000个0相加,极限等于0。

2、limni1无穷多个“0”相加,极限不能确定。

3、lim

xn,其中xn=n

x1=

对于

2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则:

一、极限存在准则

1.夹逼准则

准则Ⅰ如果数列xn,yn及zn满足下列条件:

(1)ynxnzn

n(n1,2,3)n(2)limyna,limzna,

n 那么数列xn的极限存在, 且limxna.证:yna,zna,0,N10,N20,使得

当nN1时恒有yna, 当nN2时恒有zna,

取N=max{N1,N2},上两式同时成立,即ayna, azna, 当n>N时,恒有 aynxnzna,即xna成立, limxna.n

上述数列极限存在的准则可以推广到函数的极限 准则Ⅰ′ 如果当xU(x0,) (或xM)时,有

o

(1)g(x)f(x)h(x),

(2)limg(x)A,limh(x)A,

xx0(x)

xx0(x)

那么limf(x)存在, 且等于A.

xx0(x)

准则 和准则 \'称为夹逼准则。

【注意】利用夹逼准则求极限的关键是构造出yn与zn,并且yn与zn的极限是容易求的。

1求n

+

++

解:

n

11n

++

n

lin

1,

又lim

n

nnn

lim 1,lin

n1

1n

2由夹逼定理得:lim(

n

1n1

1n2



1nn

)1.

【说明】夹逼准则应恰当结合“放缩法”使用

2.单调有界准则

准则Ⅱ单调有界数列必有极限.

加的;如果数列xn满足条件x1x2x3xnxn1,就称数列xn是单调减少的。单调增加和单调减少的数列统称为单调数列。

几何解释:

如果数列xn满足条件x1x2x3xnxn1,就称数列xn是单调增

例2

证明数列xn=【分析】已知xn1

23nn1

A

n重根式)的极限存在

2xn,x12,求limxn。首先证明是有界的,然后证明是

n

单调的,从而得出结论

证:

1、证明极限存在 a) 证明有上界

x12,设xnxn12,则xn12xn2

2所以对任意的n,有xn2 b) 证明单调上升

xn1xn2xnxnxnxnxn2xnxnxnxnxn0

所以limxn存在

n

2、求极限

设limxnl,则l

n

2l,解得l2(l1舍去)

所以limxn=

2n

二、两个重要极限

1.lim

sinx

1x0x

如右图所示,设单位圆O,圆心角AOBx,(0x

),

作单位圆的切线,得ACO.扇形OAB的圆心角为x,OAB的高为BD,于是有sinxBD,

x弧AB,

tanxAC,

sinx

1,上式对于x0也成立.

sinxxtanx, 即cosxx2xx2x

2当0x时,0cosx1cosx 2sin,2() 

2222

sinxx2

1.lim0, lim(1cosx)0,limcosx1, 又lim11, lim

x0x0x0x0x02x

例3求下列极限 (1)lim

1-cosx

.

x®0x2

2sin2

解:原极限=lim

x®0

xxx

sin2sin

1lim()2 112 1.1lim

222x0(x)22x0xx2

22

(2)limxsin

x

x

解:原极限=lim

1siny

=1(令y=)

y0xy

(3)lim

x

sinx x

解:原极限=lim

sin(x)1; xx

1x1n

2.lim(1)e,lim(1x)xe,lim(1)e;“1”型

xnx0xn

【说明】

(1)上述三种形式也可统一为模型lim1x

(x)0

(x)

e

(2)第二个重要极限解决的对象是1型未定式。 例如,lim2x

x1

2x1



lim1x1x1e2 x1

例4求下列极限 (1)lim(1-x

1x).x

x

解:原极限=lim[(1+

1-x-1

] lim

x-x

11

.xe(1)

x

x2

(2)lim

xx3

5解:原极限=lim1xx3

x

x35x

5x

3=e

5xxx3lim

=e

5【补充】“1”型计算公式:lim1f(x)

xx0

g(x)

e

xx0

limg(x)f(x)

其中xx0时,f(x)0,g(x)。

证明:lim1f(x)

xx0

g(x)

limeg(x)In1f(x)exx0

xx0

limg(x)In1f(x)

e

xx0

limg(x)f(x)

例5求下列极限

(1)lim(1tanxsinx)

x0

x

【分析】是幂指数函数,“1”型,考虑用“1”型计算公式

x



解:lim(1tanxsinx)=e

x0

1x

tanxsinxx0xlim

=e

sinx(1cosx)

x0xcosxlim

=e

x3

x02xlim

=1

(2)lim(cosxsinx)

x0

【分析】是幂指函数,“1”型,考虑用“1”型计算公式。

21

2x

12x

sin2xx02xlim



解:原极限lim(cosxsinx)

x0

lim(1sin2x)

x0

ee。

(3)lim(

x

x2x

) x3

【分析】是幂指数函数,“1”型,考虑用“1”型计算公式,但它不是标准型,通过“加1减1”变成标准型。

5xxlim

lim(1)=ex3e5 解:原极限=xx3

【思考题1】设有k个正数a1,a2,„,ak,令a=max{a1,a2,„,an},求

nn

(“大数优先”准则)。 lima1na2ak

nn

ana1na2akananankanka

5x

n

解:a

nnn

而limkaa,所以由夹逼准则:limna1a2aka n

n

【思考题2】设x00,xn1

12

(xn),求limxn

n2xn

212

2,所以数列{xn}有下界。 (xn)xnxn2xn

解:显然 xn0。因为xn1

121xn2xn

又因为xn1xn(xn)xn0,所以数列{xn}单调下降,即

2xnxn22xn

n

limxn存在。设limxn=l,则l

n

12

(l),解得l2,所以limxn=2

n2l

【思考题3】求limcos

n

xxx

cos2cosn; 222

解:原极限=lim

n

sinx2nsin

x

2n

lim

sinx

1(x0)

nx

【思考题4】求极限lim39

x

x

1xx

解:lim39

x

x

1xx

lim9

x

1xx

11

x1 9lim1x

x33

x

3x



13x

9e9

n

【课堂练习】求 lim

i

n

2

in

ni

1

解:

n(n1)212n

n2nnn2nnn2nnn2

nn

?

12n2+n+1n2+n+2++n

n2+n+n

?

12nn(n+n2+n+1

n2+n+1++n2+n+1=1)2

n2

+n+1

而n(n1)21n(nlimn2nn2,

limn1)2nn2n112

所以 原极限1

【内容小结】 o

1、夹逼准则

xU(x0,)时,有

f(x)g(x)h(x)xlimxf(x)A=limh(x),则lim0

xx0

xxg(x)A。

2、单调有界准则

(1)单调上升有上界的数列,极限一定存在; (2)单调下降有下界的数列,极限一定存在。

3、两个重要极限(1)lim

sinx

x0x

1

(x为弧度);

(2)lim(111

x

)x

e,limx0(1x)xxe

推荐第9篇:极限平均值的证明

1、设limanA,证明:limna1a2anA。nn

证明:因为limanA,所以对任意的0,存在N0,当nN时,有 n

|anA|,于是

|a1a2anaa2aNaN1anA||1A| nn

a1a2aNaN1annA| n

a1a2aNNAaan(nN)A||N1| nn

a1a2aNNA1|[|aN1A||anA|] nn|||

|a1a2aNNAnN| nn

因为lim|a1a2aNNA|0(注意分子为常数),所以存在N1N,当nn

aa2aNNAnN1时,有|1|,于是当nN1时,有 n

aa2aNNAnNa1a2anA||1|2, nnn|

有极限的定义有lima1a2anA。 nn

n

2、设limanA且an0,A0,证明:lim12nA。n

证明:因为a1a2ana1a2an, n

a1a2ann111aa2an1111, a1a2anna1a2ana1a2an, n所以111a1a2an

111aa2an1111lim, 又因为lim,利用第1题结论,有lim1

nnananAAnn

所以limn

111a1a2annA,同理lima1a2anlimanA,由夹逼定理nnn得

lima1a2anA。 n

3、设an0,且liman1A,证明:limanA。nnan证明:limanlimnnaaa1a2nlimnA。 1a1an1nan1

推荐第10篇:中心极限定理证明

中心极限定理证明

一、例子

高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.

如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且

那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.

二、中心极限定理

设是独立随机变量序列,假设存在,若对于任意的,成立

称服从中心极限定理.设服从中心极限定理,则服从中心极限定理,其中为数列.

解:服从中心极限定理,则表明

其中.由于,因此

故服从中心极限定理.

三、德莫佛-拉普拉斯中心极限定理

在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则

用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,

由此即得

第一类问题是已知,求,这只需查表即可.

第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.

第三类问题是已知,求.

解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:.

抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?

解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:

的随机变量.求.

解:

因为很大,于是

所以

利用标准正态分布表,就可以求出的值.

某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.

解:以表示第个分机用不用外线,若使用,则令;否则令.则.

如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,

查表得,,故取.于是

取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.

根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.

解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.

由德莫佛—拉普拉斯极限定理,有

其中,即有

四、林德贝格-勒维中心极限定理

若是独立同分布的随机变量序列,假设,则有

证明:设的特征函数为,则

的特征函数为

又因为,所以

于是特征函数的展开式

从而对任意固定的,有

而是分布的特征函数.因此,

成立.在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.

设有个数,它们的近似数分别是,.,.令

用代替的误差总和.由林德贝格——勒维定理,

以,上式右端为0.997,即以0.997的概率有

设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.

证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有

由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.

作业:

p222EX32,33,34,3

5五、林德贝尔格条件

设为独立随机变量序列,又

令,对于标准化了的独立随机变量和

的分布

当时,是否会收敛于分布?

除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,,这时

(1)若是连续型随机变量,密度函数为,如果对任意的,有

(2)若是离散型随机变量,的分布列为

如果对于任意的,有

则称满足林德贝尔格条件.

以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.

证明:令,则

于是

从而对任意的,若林德贝尔格条件成立,就有

这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.

六、费勒条件

设是独立随机变量序列,又,,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.

七、林德贝尔格-费勒中心极限定理

引理1对及任意的,

证明:记,设,由于

因此,,其次,对,

用归纳法即得.由于,因此,对也成立.

引理2对于任意满足及的复数,有

证明:显然

因此,

由归纳法可证结论成立.

引理3若是特征函数,则也是特征函数,特别地

证明定义随机变量

其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.

林德贝尔格-费勒定理

定理设为独立随机变量序列,又.令,则

(1)

与费勒条件成立的充要条件是林德贝尔格条件成立.

证明:(1)准备部分

(2)

显然(3)

(4)

以及分别表示的特征函数与分布函数,表示的分布函数,那么(5)

这时

因此林德贝尔格条件化为:对任意,

(6)

现在开始证明定理.设是任意固定的实数.

为证(1)式必须证明

(7)

先证明,在费勒条件成立的假定下,(7)与下式是等价的:

(8)

事实上,由(3)知,又因为

故对一切,

把在原点附近展开,得到

因若费勒条件成立,则对任意的,只要充分大,均有

(9)

这时

(10)

对任意的,只要充分小,就可以有

(11)

因此,由引理3,引理2及(10),(11),只要充分大,就有

(12)

因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.

(2)充分性

先证由林德贝尔格条件可以推出费勒条件.事实上,

(13)

右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.

其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,

当时,

当时,

因此

(14)

对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.

(3)必要性

由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,

(15)

上述被积函数的实部非负,故

而且

(16)

因为对任意的,可找到,使,这时由(15),(16)可得

故林德贝尔格条件成立.

八、李雅普诺夫定理

设为独立随机变量序列,又.令,若存在,使有

则对于任意的,有

第11篇:如何证明极限不存在

如何证明极限不存在

反证法

若存在实数L,使limsin(1/x)=L,

取ε=1/2,

在x=0点的任意小的邻域X内,总存在整数n,

①记x1(n)=1/(2nπ+π/2)∈X,有sin=1,

②记x2(n)=1/(2nπ-π/2)∈X,有sin=-1,

使|sin-L|

和|sin-L|

同时成立。

即|1-L|

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

所以,使limsin(1/x)=L成立的实数L不存在。

反证法:

一个数列{an}极限存在,另一个数列{bn}极限不存在

假设两数列之和{cn}的极限存在,那么bn=cn-an极限也存在(两个数列和的极限等于两个数列极限的和)

矛盾

所以原命题成立

令y=x,lim(x,y)趋于(0,0)xy/x+y

=lim(x趋于0)x^2/(2x)=0

令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y

=lim(x趋于0)x^3-x^2/x^2=-1

两种情况极限值不同,故原极限不存在

2答案:首先需要二项式定理:

(a+b)^n=∑C(i=0–i=n)nia^(n-i)*b^i(式一)

用数学归纳法证此定理:

n=1(a+b)^1a^(1-0)*b^0+a^(1-1)*b^1

a+b

故此,n=1时,式一成立。

设n1为任一自然数,假设n=n1时,(式一)成立,即:

(a+b)^n1=∑C(i=0–i=n1)n1ia^(n1-i)*b^i(式二)

则,当n=n1+1时:

式二两端同乘(a+b)

*(a+b)=*(a+b)

=(a+b)^(n1+1)=∑C(i=0–i=(n1+1))(n1+1)ia^((n1+1)-i)*b^i(据乘法分配律)

因此二项式定理(即式一成立)

下面用二项式定理计算这一极限:

(1+1/n)^n(式一)

用二项式展开得:

(1+1/n)^n=1^n+(n/1)(1/n)+*(1/n)^2+*(1/n)^3+…+*(1/n)^(n-2)+*(1/n)^(n-1)+*(1/n)^n

由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n-+∞,得0。因此总的结果是当n-+∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1。余下分母。于是式一化为:

(1+1/n)^n=1+1+1/2!+1/3!+1/4!+1/5!+1/6!+…+1/n!(式二)

当n-+∞时,你可以用计算机,或笔计算此值。这一数值定义为e。

第12篇:极限的计算、证明

极限的论证计算,其一般方法可归纳如下

1、直接用定义N,等证明极限

0例、试证明limn1n

证:要使0,只须n,故 

11nN0,N,,有10 n1n1

2、适当放大,然后用定义或定理求极限或证明极限

an

0,a0例、证明:limnn!

证:已知a0是一个常数

正整数k,使得ak aaa0 ,n n!n!k!k1nk!nk!nanakaaakk1

ak11,当nN时,有 0,Nk!

an0 n!

3、用两边夹定理在判定极限存在的同时求出极限

例、求limn352n1 2462n解:1352n13572n11462n12462n1 2462n2462n22n352n12n1352n14n

1352n11  2462n4n2

两边开2n次方:

11352n11211

1

2462n4n22n

1352n11

2462n由两边夹:limn

4、利用等价性原理把求一般极限的问题化为无穷小量的极限问

例、设Snl0n,p0为常数,求证:Snln

p

p

证:0SnlSnl0 ,得 Snln记 Snln,其中 n0n

n

再记Snlnl1l

p

p

l1n,其中nn0n l

则有Snl1np。 若取定自然数Kp,则当n1时1n1np1n

K

K

l1nl1npSnl1n

p

K

p

p

p

K

由两边夹得证。

5、通过分子有理化或分子分母同时有理化将表达式变形使之易

求极限

例、求极限limsinn21

n



sinnn21n解:limsinn21lim

n

n



1sinn1n lim1sinlimn

n



n

2

n1n

n

0

6、换变量后利用复合函数求极限法则求极限例、求极限lim

x0

1x

x

1K

1

,其中K是自然数

解:令 y1x1

当x1时,有 1x1x1x,所以x0y0利用复合函数求极限法则可得lim

x0

1K

1K

1x

x

1K

1

lim

y0

y

1yK1

lim

y0

y

Ky

KK1y2yK

1 K

7、进行恒等变形化成已知极限进行计算

xx2

例、lim

1cosx2sin2sinx0x2limx0x2

lim1x021 x22

8、用等价无穷小量进行变量替换后求极限例、求极限lim

1cosx

x0

1cos

x2

解:1cosx~12x2,1cosx2~12x

2

x0

12

lim1cosx

x

x01cosxlimx01x24 222

9、利用存在性定理确定极限的存在性并求极限例、x1xn

n1

x

,n1,2,,x1a0 n2

证明:limn

xn存在,并求此极限。证明:xn0x1n1

xxn21xn

2 n2xnx1x

2x2

nn1xnnx2xn2x0,xn1xn

nn

且 xn2,limn

xn存在令 llimxn,有 l1ln

l2

,l22,l2

10、利用海涅定理解决极限问题

例、试证明函数fxsin1x

当x0时极限不存在证:取x1n

,yn

2n2n

0 n 

02

而 fxn1,fyn0,得证

11、把求极限问题化为导数问题计算例、求极限lim

1x

1K

1

x0x,其中K是自然数

1解:lim

1xK

1

x0

x

1

xK\'1x1K 

12、利用洛必达法则求极限

例、limtgx2x

x

0解:令Alimtgx2x

x

0lnAlnlimtgx2xlimlntgx2x

x

 2

0x2

0

lim2xlntgxlimlntgx

sec2xx

2

0x2

0

2x1

lim

x

0

22x2

tgx

lim12x2

142xx202sinxcosx2lim0x20sin2x

所以limtgx2x

Ae01 x

0

13、把求极限的表达式化为积分和的形式,用定积分进行计算

例、设Sn

1n11n21

2n

,求limnSn解:S111

n11nn1n22n,lim

S11ni1n1in01x

ln2 n

14、利用第一积分中值定理处理定积分的极限问题

例、求lim

xn

n

01xdx解:由第一积分中值定理

1

xn1

01xdx

1n

n0

xdx

11

,0n1 nn1

所以lim

xn

n

01xdx0

15、利用收敛级数的必要条件求极限

例、求xn

limnn!

解:已知指数函数的幂级数展开式x



xn

e!

对于一切xR收敛n0n而收敛级数的一般项趋于0,故得lim

xn

nn!

0

16、用带有皮亚诺余项的泰勒展开式求函数或序列的极限

例、limxx2ln1

x



1x

解:xx2

ln11xxx2111011o1

2x2xx2x

2x2

原式

1、利用柯西收敛准则处理极限问题

17

例、用Cauchy收敛准则证明xn1证:取00,N0,任取nN,pn,有

xnpxnx2nxn

11

2n12n3

1135

无极限.2n1

15

1nn1

.4n14n14n4

故由Cauchy收敛准则知,xn为发散数列.

第13篇:定义证明二重极限

定义证明二重极限

就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A

关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点p(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=/2

且Xn=/2>√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.

对原始两边求极限得A=/2.解得A=√a

同理可求x0

综上,数列极限存在,且为√

(一)时函数的极限:

以时和为例引入.

介绍符号:的意义,的直观意义.

定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.

定义函数极限的“”定义.

几何意义.

用定义验证函数极限的基本思路.

例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义:介绍半邻域然后介绍等的几何意义.

例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.

例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.

5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.

例1(利用极限和)

例2例3註:关于的有理分式当时的极限.

例4

例5例6例7

第14篇:极限不存在的证明

不如何证明极限不存在

一、归结原则

原理:设f在U0(x0;\')内有定义,limf(x)存在的充要条件是:对任何含于

xx0

U(x0;)且以x0为极限的数列xn极限limf(xn)都存在且相等。

\'

n

例如:证明极限limsin

x0

1x

不存在

12n

证:设xn

1n

,xn

2

(n1,2,),则显然有

xn0,xn0(n),si由归结原则即得结论。



00,si11(n)xnxn

二、左右极限法

原理:判断当xx0时的极限,只要考察左、右极限,如果两者相等,则极限存在,否则极限不存在。例如:证明f(x)arctan(因为limarctan(

x0

1x

)

当x

0

时的极限不存在。

1x)

1x

)

2

x=0,limarctan(

x0

2

,limarctan(

x0

1x

)limarctan(

x0

1x

),

所以当x0时,arctan(

1x

)的极限不存在。

三、证明x时的极限不存在

原理:判断当x

时的极限,只要考察x与x时的极限,如果两者

相等,则极限存在,否则极限不存在。例如:证明f(x)ex在x

x

时的极限不存在

x

x

xxxx

因为lime0,lime;因此,limelime

x

所以当x

四、柯西准则

时,ex的极限不存在。

0\'

原理:设f在U(x0;)内有定义,limf(x)存在的充要条件是:任给

xx0

0

,存

在正数(),使得对任何x,xU0(x0;),使得f(x)f(x)0。 例如:在方法一的例题中,取01,对任何0,设正数n

x1

n,x1

n1,令

2即证。

五、定义法

原理:设函数f(x)在一个形如(a,)的区间中有定义,对任何AR,如果存在

00,使对任何X0都存在x0X,使得f(x0)A0,则f(x)在x

x时没有极限。 例如:证明limcosx不存在

设函数f(x)cosx,f(x)在(0,)中有定义,对任何AR,不妨设A取0120,,于是对任何0,取00 反证法(利用极限定义) 数学归纳法

第15篇:数列极限的证明

例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限;

n

xn1xn(Ⅱ)计算lim。 n

xn

解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得

0x2sinx1x1,

设0xn,则

0xn1sinxnxn,

所以xn单调下降且有下界,故limxn存在。

n

记alimxn,由xn1sinxn得

x

asina,

所以a0,即limxn0。

n

(Ⅱ)解法1 因为

sinxlimx0

x

1xlime

x0

1sinxlnx2x

lime

x0

1cosx1



2xsinxx

xsinx6x2

xcosxsinx

lime

x0

2x3

lime

x0

e

16

又由(Ⅰ)limxn0,所以

n

1xn

xn1sinxnxn2

limlimnnxxnn

sinx

limx0x

解法2 因为

1xxe

6

sinxx

sinxx

sinxx1x

xsinxx



x3

又因为

limsinxx1sinxx,lim1x0x36x0x

xnxsinxxe,

sinx6所以lim, ex0x1

11xlimn1nxnxnsinxnlimnxn

sinxlimx0xxn1x e1

6.

第16篇:数列极限的证明

数列极限的证明

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|

以此类推,改变数列下标可得|Xn-A|

|Xn-1-A|

……

|X2-A|

向上迭代,可以得到|Xn+1-A|

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1

设x(k)

x(k+1)=√

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

4

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0

第17篇:数列极限的证明

数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会

|Xn+1-A|

|X2-A|

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1

x(k+1)=√[2+3x(k)]

1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x\'/(t^x)\'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明

3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞

(2)lim[(3n+1)/(2n+1)]=3/2 n→∞

(3)lim[根号(n+1)-根号(n)]=0 n→∞

(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

第18篇:ln2极限的证明

111()ln2.证明:limnn1n22n

Pf:①利用积分放缩,再用迫敛性:

1 首先,观察图像 ynx

S1是以1和其中,

21n11S2dx0nx为边长的矩形的面积,

11,S31nxdx,显然有S2S1S3,因此有

1ln(n2)ln(n1)ln(n1)lnn,

n11ln(n3)ln(n2)ln(n2)ln(n1)同理, n21ln(n4)ln(n3)ln(n3)ln(n2)…

n31ln(2n1)ln2nln2nln(2n1),

2n所以,

n11ln(2)ln(2n1)ln(n1)ln2nlnnln2,

n1i1ni111()ln2.由夹逼准则得limnn1n22n证毕

②利用幂级数展开以及收敛数列的子列收敛于同一极限: 首先,在(1,1]上,有以下的幂级数展开:

(1)ln(x1)nn1n112(1)xxx2nnn1xn.令x1,有

1(1)k11(1)k1ln21lim[1].k2k2kk1k11(1)1(1)令ak12k,那么数列{ak}{12k}收敛于ln2.现在,取数列{ak}的偶数项组成数列{bn}n1,即

11b1a21,

2211111b2a41,

23434…

1(1)bna2n1 22n111122n12n 111111(1)2()

22n12n242n11111(1)(1)

22n12n2n1111 n1n22n12n2n1由于数列{bn}n1是数列{ak}的一个子列,因此

limbnlimakln2.

nk证毕

第19篇:一个重要_数列的极限存在问题_的证明总结完成

一个重要数列的极限存在问题的证明总结

摘要:用两种方法对一个重要的数列的极限存在问题的证明总结,这个重要的数列是{yn=(1+1n)} n

关键词:数列,极限,存在问题

在《数学通报》,2006.6一期中,有一篇《一个重要的极限的证 明》。对数列{yn=(1+)n}的极限的存在问题给出了一种新的简明证 法。下面,我对这个极限的存在问题的证法进行总结。

n

1n*(n1)1n*(n1)(n2)3*2*11yn=1+n*+*2++ nn2!n!nn

11112112=1+1+(1-)+(1-)(1-)++(1-)(1-)2!nnnn!nn3!n1(1-) n1n证法一:对{yn=(1+)n}应用二项式展开,可得:

yn-1=1+1+

1-1111211(1-)+(1-)(1-)++(1-)(2!n13!n1n1n1(n1)!2n)(1-) n1n1

11但,(1-)﹤(1-) nn1

22(1-)﹤(1-) nn1 

n1n1 (1-)﹤(1-) nn1

所以,yn中的每一项都小于yn+1中的相应项,而yn+1中还多出最后一项.且,这项显然大于零,因此,yn﹤yn+1故{yn}是单调

增加数列.现在来证明{yn}的有界性,因 yn的展开式的每一项括号内的因子都是小于1的,所以有, 0﹤yn﹤1+1+

111111+++﹤1+1+ +++2!3!n!1*22*3(n1)*n

=1+1+(1-)+(-)++(=1+1+1-

1n

12112311-) n1n

)ne 存在。 即,{yn}为有界数列,根据夹值定理, lim(1n

证法二:预备知识:基本不等式——a1*a2*an(

n

1n

a)(ai0)

ii1

n

n

11

令xn=(1+ )n则由基本不等式——a1*a2*an(

nn111nnn11

(n+1+*n)]n+1 [n1n1n+1

=(1+)

n1

a)

ii1

n

n

得,

xn=1*(1+)(1+)(1+)

=xn+1

于是,数列{xn}单调不减

令zn=(1+)n+1则再由上面的不等式有:(

n1n*(n1)n+2

)n+1[(1+)] n1n1n2

n2n+2 =()n1

1n

又由于幂级数的运算法则——“底数颠倒,指数反号,其值不变”,有, yn =(1+)n+1 >=(

nn2n+2

) n1

= yn+1

于是,对任意给定的 n 属于N,均有yn4 ,又由于

xn=(1+

1n1

)(1+)n+1= yn+1 nn

故数列{xn}单调不减且有上界(上界为4) 根据数列极限的 存在准则,数列{xn=(1+

1n

) }极限存在 n

由于这个极限首先被瑞士科学家欧拉(L.Euler

)ne 1707-1783)记为e,因此有:lim(1n

1n

参考文献:陈传璋等编,《数学分析》(第二版)上册,高等教育出版

社,1983年7月 《数学通报》 2006年6月

第20篇:极限是一个重要的概念

极限是一个重要的概念

极限可分为数列极限和函数极限,分别定义如下。

首先介绍刘徽的\"割圆术\",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1

数列极限:

设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为数列的极限,或称数列收敛于a,记为liman=a。或:an→a,当n→∞。

数列极限的性质:

1.唯一性:若数列的极限存在,则极限值是唯一的;

2.改变数列的有限项,不改变数列的极限。

几个常用数列的极限:

an=c 常数列 极限为c

an=1/n 极限为0

an=x^n 绝对值x小于1 极限为0

函数极限的专业定义:

设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0

|f(x)-A|

那么常数A就叫做函数f(x)当x→x。时的极限。

函数极限的通俗定义:

1、设函数y=f(x)在(a,+∽)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∽时函数f(x)的极限。记作lim f(x)=A ,x→+∽。

2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。

函数的左右极限:

1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.函数极限的性质:

极限的运算法则(或称有关公式):

lim(f(x)+g(x))=limf(x)+limg(x)

lim(f(x)-g(x))=limf(x)-limg(x)

lim(f(x)*g(x))=limf(x)*limg(x)

lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 )

lim(f(x))^n=(limf(x))^n

以上limf(x) limg(x)都存在时才成立

lim(1+1/x)^x =e

x→∞

lim(1+1/x)^x =e

x→0

无穷大与无穷小:

两个重要极限:

1、lim sin(x)/x =1 ,x→0

2、lim (1 + 1/x)^x =e ,x→0 (e≈2.7182818...,无理数)

举两个例子说明一下

一、0.999999……=1?

谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。

二、“无理数”算是什么数?

我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。

结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。

类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。几个常用数列的极限

an=c 常数列 极限为c

an=1/n 极限为0

an=x^n 绝对值x小于1 极限为0

真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师.所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。

举两个例子说明一下

一、0.999999……=1?

谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。

二、“无理数”算是什么数?

我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。

结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。

类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。

重要极限证明
《重要极限证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档