人人范文网 证明

证明方法(精选多篇)

发布时间:2021-02-07 08:38:00 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:证明方法

2.2直接证明与间接证明BCA案

主备人:史玉亮 审核人:吴秉政使用时间:2012年2-1

1学习目标:

1.了解直接证明的两种基本方法,即综合法和分析法。了解间接证明的一种基本方法——反证法。

2.了解综合法和分析法的思考过程与特点,并会用两种方法证明。了解反证法的解题步骤,思维过程及特点。

重点:

1.对综合法和分析法的考查是本课的重点。应用反证法解决问题是本课考查的热点。

2.命题时多以考查综合法为主,选择题、填空题、解答题均有可能出现。反证法仅作为客观题的判断方法不会单独命题。

B案

一、直接证明

1.定义:直接证明是从___________或___________出发的,根据已知的_________、________________,直接推证结论的真实性。

2.直接证明的方法:______________与________________。

二、综合法

1.定义:综合法是从___________推导到______________的思维方法。具体地说,综合法 从__________除法,经过逐步的___________,最后达到_______________。

 

 „ 

三、分析法

1.定义:分析法是从__________追溯到__________的思维方法,具体地说,分析法是从________出发,一步一步寻

求结论成立的____________,最后达到

_________或__________。

  „ 

四、反证法的定义

由证明pq转向证明prt,t与_________矛盾,或与某个________矛盾,从而判定_________,推出___________的方法,叫做反证法。

预习检测:

1.已知|x|<1,|y|<1,下列各式成立的是()

A.|xy||xy|≥2B.xyC .xy1xyD.|x||y|

ln2ln3ln5,b,c,则() 23

5A.abcB.cbaC.cabD.bac 2.若a

3.命题“三角形中最多只有一个内角是直角”的结论的否定是()

A.有两个内角是直角

B.有三个内角是直角

C.至少有两个内角是直角

D.没有一个内角是直角

4.abcd的必要不充分条件是()

A.acB.bdC.ac且bdD.ac或bd

5.“自然数a,b,c中恰有一个是偶数”的反证法设为()

A.自然数a,b,c都是奇数B.自然数a,b,c都是偶数

C.自然数a,b,c中至少有两个是偶数D.自然数a,b,c中都是奇数或至少有两个偶数

6.已知a是整数,a2为偶数,求证:a也是偶数。

C案

一、综合法

例1求证:12

3log19log1919

253log2

2.已知n是大于1的自然数,求证:log(n1)log(n2)

n(n1)

二、分析法

例2.求证

2变式突破: 已知a,b,c表示三角形的三边,m0,求证:

三、反证法:

例3.(1)证明:2不是有理数。

变式突破:若a、b、c均为实数,且ax2y

求证:a、b、c中至少有一个大于0.2abc ambmcm2,by22z3,cz22x6.

当堂检测:

1.“x

0”是“0”成立的()

A.充分非必要条件 B.必要非充分条件 C.非充分非必要条件 D.充要条件

2.设alog54,b(log53)2,clog45,则()

A.acbB.bcaC.abcD.bac

3.设x,y,zR,ax111,by,cz,则a,b,c三数() yzx

A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于

22224.若下列方程:x4ax4a30,x(a1)xa0,x2ax2a0至少有2

一个方程有实根,试求实数a的取值范围。

A案

1.A、B为△ABC的内角,∠A>∠B是sinAsinB的()

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

2.若向量a(x,3)(xR),则“x4”是“|a|5”的()

A.充分不必要条件 B.必要而不充分条件 C.充要条件D.既不充分又不必要条件

3.已知数列{an}为等比数列,Sn是它的前n项的和,若a2a32a1且a4与2a7的等差中项为5,则S5=() A.35B.33C.31D.29

44.定义在R上的函数f(x)满足f(xy)f(x)f(y)2xy(x,yR),f(1)2,则f(2)等于()A.2B.3C.6D.9

5.分析法证明问题是从所证命题的结论出发,寻求使这个结论成立的()

A.充分条件B.必要条件C.重要条件D.既非充分条件又非必要条件

6.下面四个不等式:①abc≥abbcca;②a(1a)≤2221ba;③≥2; 4ab

④(a2b2)(c2d2)≥(acbd)2,其中恒成立有()A.1个 B.2个 C.3个 D.4个

7.若x,y0且xy2,则1y1x1y1x和的值满足()A.和的中至少xxyy

有一个小于2B.1y1x1y1x和都小于2C.和都大于2D.不确定 xxyy

8.已知、为实数,给出下列三个论断:

①0;②||

5;③|||个论断为结论,写出你认为正确的命题是______________。

9.设a0,b0,c0,若abc1,则

111≥______________。 abc

推荐第2篇:数学证明方法

数学证明方法

摘要:数学证明是数学学习中非常重要的一部分,数学证明有核实作用,理解作用,发现作用和思维训练作用,数学证明常用的方法有综合法、分析法、反证法、数学归纳法等等。

关键词:数学证明;意义;方法

数学是研究现实世界空间形式和数量关系的科学,它的应用非常广泛,是学习现代科学技术必不可少的基础学科。学习数学,就离不开数学证明,这是由数学证明在数学发展中所起的作用决定的。什么是数学证明呢?许多人认为数学证明是根据相应的公理,法则等来说明结论是正确的一种活动。数学证明是数学学习中非常重要的一部分,在不同的情境中,数学证明有不同方法。

数学证明的方法

(一)综合法和分析法

综合法是从命题的条件出发,经过逐步的逻辑推理,最后达到要证的结论的方法。分析法则是从要证的结论出发,一步一步的搜索下去,最后达到命题的已知条件的方法。

1cossin

例1 求证sin=1cos

sin2sin

方法1: 左边 =sin(1cos)=1cos=右边

所以得证。

sin(1cos)sinsin(1cos)

2方法2:右边=1cos=(1cos)(1cos)=1cos sin(1cos)1cos

sin2= =sin=左边

所以得证。

2sin2sincos21cos2sincos22=tan2=方法3:sin=2cos

2sin=1cos

所以得证。

1cossin

方法4:要证sin=1cos只需要证(1cos)(1cos)sinsin

22即要证1cossin,显然,这个命题成立,故得证。

上述例题的四种解法中,前三种是用综合法解的,而第四种解法是用分析法解的。在证明的过程中,我们用到了同角三角函数的关系,半角公式等等。所以,通过数学证明我们不仅理解了这道命题的正确性,还知道了为什么正确,同时还增进了对同角三角函数的关系,半角公式等等的理解。

从例1我们可以看出,综合法的特点是从“已知”逐步推向“未知”,其逐步推理,实际是要寻找它的必要条件。分析法的特点是从“需知”逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件。

综合法和分析法各有其优缺点。从寻求解题思路来看,综合法是由已知的寻找未知的,即直接由条件证明结论。但是由条件容易导出许多其它的结论,因而不容易有效。分析法由未知的推向已知的,即由结论慢慢推出所需要的条件,这样比较容易解决问题。就表述证明的过程而论,综合法的形式比较简洁,条理清晰,分析法由于倒过来叙述,因而比较繁琐,文辞冗长。这也就是说,分析法有利于思考解决问题,综合法宜于表达问题。因此在解题时,可以把分析法和综合法结合起来使用,先以分析法为主,寻找解题思路,再用综合法有条理的表述

证明过程。

(二)反证法

通过证明论题的否定命题不真实,从而肯定论题真实性的方法叫做反证法。

反证法的一般步骤如下:

假设命题的结论不成立,即结论的否定命题成立。

从否定的结论出发,逐层进行推理,得出与公理或前述的定理,定义或题设条件等自相矛盾的结论,即说证明结论否定不成立。

据排中律,最后肯定原命题成立。

反证法有归谬法与穷举法两种。在应用反证法时如果与原命题结论相矛盾的方面只有一种可能情况,只要把这种情况推翻,就能肯定结论成立,这种反证法叫做归谬法。如果与原命题相矛盾的方面不止一种情况,就必须把矛盾方面的所有可能的情况一一驳倒,才能肯定结论成立,这种反正法叫做穷举法。

例 2求证2是无理数。 p2p

2qq2证明:假设是有理数,且为既约分数,(p>0,q>0),则=2,

p22q2,由此可见p是偶数,记为2r。同理又可得q也是偶数,这p与q是既约分数相矛盾。从而2是无理数。 在这道题目中,2只有两种可能,是无理数或者不是无理数。所以,命题的否定方面只有一种可能情况。因而,我们可以假即设其为有理数,然后推出矛盾证得该题。

例 3在四边形ABCD中,

BADBCD。 AC和BD相交于点O,已知OB=OD,求证:四边形ABCD是平行四边形。 证明:如图,假设四边形ABCD不是平行

四边形,则由于OB=OD,所以必有OAOC,即OAOC。

若OA

如果OAOC,同理可证,这也是不可能的。

所以,四边形ABCD是平行四边形。

在该题中,命题的否定方面有两种可能OAOC。所以,在利用反证法证明时要把这两种否定情况都驳倒才可以。

通过这道题的证明,可以增进人们对平行四边形特征的理解,使自己的思维更加严谨,缜密。

反证法是一种重要的证明方法,不但在初等数学中有很多的应用,就是在高等数学中也有着很重要的应用,数学中的一些重要的结论,从最基本的性质,定理到某些难度较大的世界难题,往往是用反证法得到的。

在证明该题的过程中,用到了勾股定理,全等三角形的知识。所以,通过该题,也可以使人们加强对勾股定理以及三角形全等方面的知识的理解。

需要指出的是,同一法和反正法的适用范围是不同的,同一法的局限性较大,通常只适用于符合同一原理的命题,反证法则普遍适用,对于能够用同一法证明的命题一般都能用反证法证明。

(三)数学归纳法

我们采用记号p(n)表示一个与自然数n有关的命题,把它们都写出来 p(1),p(2),p(3)„„

事实上,如果满足下面两个条件:

(1)p(1)成立(即当n1时命题成立)

(2)只要假设p(k)成立(归纳假设),由此就可得p(k1)也成立(k是自然数)就能保证这一大串(无数多个)命题p(1),p(2),p(3)„„都成立。

我们把此叫做数学归纳法原理。

根据数学归纳法原理,我们在证明时可以相应的按照以下两步进行:

(1) 验证p(1)是成立的。

(2) 假设p(k)成立,证明出p(k1)也成立。

由(1),(2)可得对于任意的自然数n,命题p(n)都成立。

这是数学归纳法最基本的形式,通常称作第一数学归纳法。

例5 证明1+3+5+„„+(2n1)=n 2

证明:(1)当n=1时,左边=1,右边=1=1等式成立。 2

2(2) 假设当n=k(k1)时等式成立,即1+3+5+„„+(2k1)=k

则n=k+1时1+3+5+„„+(2n1)=1+3+5+„„+(2k1)+[2(k1)-1] =1+3+5+„„+(2k1)+(2k1)

2=k+(2k1)=(k1) 2

所以,当n=k+1时,等式也成立。

由(1),(2)可知,对于任意自然数n,等式都成立。所以得证。 总之,一个数学命题往往可以有不同的思路来思考证明,思路不同,所产生的影响不同,证明方法也不同,对于不同的数学命题的证明也可以有许多不同的思路,不同的方法。

参考文献

[1] 李士锜PME:数学教育心理学华东师范大学出版社

[2] 蒋文蔚杨延龄数学归纳法北京师范大学出版社

[3] 侯敏义数学思维与数学方法论东北师范大学出版社

推荐第3篇:韩信点兵方法证明

关于韩信点兵问题

公式的证明

设:第一次每排A人,最后剩余a人,

第二次每排B人,最后剩余b人, 第三次每排C人,最后剩余c人。 按照求解方法的步骤是:

第一步

1找到满足下列条件的k1、k2: ○

(B×C)·k1=A·k2+

12将上面的等式两边扩大a (第一次最后剩余人数) 倍 ○

1式或: (B×C)·a ·k1=A·a·k2+a,……○

[(B×C)·a ·k1]÷A=a·k2……a第二步同法:

1找到满足下列条件的k3、k4: ○

(A×C)·k3=B·k4+1

2将上面的等式两边扩大b (第二次最后剩余人数) 倍 ○

2式或 (A×C)·b·k3=B·b·k4+b……○

[(A×C)·b·k3]÷B=b·k4……b第三步同法:

3式或 (A×B)·c ·k5 =C·c·k6+c……○

[(A×B)·c ·k5]÷C=c·k6……c

1○2○3式相加,并验证 第四步把○

1式 (B×C)·a·k1= A·a·k2+a……○

2式 (A×C)·b·k3 = B·b·k4+b……○

3式 (A×B)·c·k5= C·c·k6+c……○

1○2○3式左边相加 验证:○

1式说明左边除以A,余a ○

2式说明左边除以A,无余数; ○

3式说明左边除以A,也无余数; ○

1○2○3式相加,和除以A,余数必然是a; 把○

同理:

1○2○3式相加,和除以B,余数必然是b; 把○

1○2○3式相加,和除以C,余数必然是c; 把○

最后总结一下:

该数=(B×C)·a·ka+(A×C)·b·kb+(A×B)·c·kc其中:

ka 满足:(B×C)·ka= An+1取最小 kb 满足:(A×C)·kb = Bn+1取最小 kc 满足:(A×B)·kc= Cn+1取最小

推荐第4篇:立体几何证明方法

立体几何证明方法

一、线线平行的证明方法:

1、利用平行四边形。

2、利用三角形或梯形的中位线

3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(线面平行的性质定理)

4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理)

5、如果两条直线垂直于同一个平面,那么这两条直线 平行。(线面垂直的性质定理)

6、平行于同一条直线的两条直线平行。

二、线面平行的证明方法:

1、定义法:直线与平面没有公共点。

2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线面平行的判定定理)

3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。

三、面面平行的证明方法:

1、定义法:两平面没有公共点。

2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理)

3、平行于同一平面的两个平面平行

4、经过平面外一点,有且只有一个平面和已知平面平行。

5、垂直于同一直线的两个平面平行。

四、线线垂直的证明方法

1、勾股定理。

2、等腰三角形。

3、菱形对角线。

4、圆所对的圆周角是直角。

5、点在线上的射影。6利用向量来证明。

7、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。

8、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。

五、线面垂直的证明方法:

1、定义法:直线与平面内任意直线都垂直。

2、点在面内的射影。

3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理)

4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理)

5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面

6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。

7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。

8、过一点,有且只有一条直线与已知平面垂直。

9、过一点,有且只有一个平面与已知直线垂直。

六、面面垂直的证明方法:

1、定义法:两个平面的二面角是直二面角。

2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理)

3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。

4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

推荐第5篇:不等式证明方法

不等式证明方法

1.比较法 比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

2.综合法 利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3„ BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。

3.分析法 分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用分析法证明AB的逻辑关系为:BB1B1 B3 „ BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有„,这只需证明B2为真,从而又有„,„„这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。

4.反证法 有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法。

5.换元法 换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一

个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,y=sinθ;②若x2+y2≤1,可设x=rcosθ,

y=rsinθ(0≤r≤1);③对于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。

6.放缩法 放缩法是要证明不等式A

(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。[1]

编辑本段重要不等式

柯西不等式

对于2n个任意实数x1,x2,„,xn和y1,y2,„,yn,恒有

(x1y1+x2y2+„+xnyn)^2≤(x1^2+x2^2+„+xn^2)(y1^2+y2^2+„+yn^2)

柯西不等式的几种变形形式

1.设aiÎR,bi>0 (i=1,2,„,n)则,当且仅当bi=lai

(1£i£n)时取等号

2.设ai,bi同号且不为零(i=1,2,„,n),则,当且仅当b1=b2=„=bn时取等

柯西不等式的一般证法有以下几种: ①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2.我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论。 ②用向量来证.m=(a1,a2......an) n=(b1,b2......bn)

mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以

(b1^+b2^+......+bn^)^1/2乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以

(b1^+b2^+......+bn^)^1/2 这就证明了不等式. 柯西不等式还有很多种,

这里只取两种较常用的证法. 【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: (2/a+c)+(2/b+c)+(2/c+a)>(9/a+b+c) 分析:∵a、b、c 均为正数 ∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1)

证明

2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]=[(a+b)+(a+c)+(b+c)][1/a+b)+(1/b+c)+(1/c+a)]≥(1+1+1)(1+1+1)=9 又 a、b、c 各不相等,故等号不能成立 ∴原不等式成立。 [2]

排序不等式

对于两组有序的实数x1≤x2≤„≤xn,y1≤y2≤„≤yn,设yi1,yi2,„,yin是后一组的任意一个排列,

记S=x1yn+x2yn-1+„+xny1,M=x1yi1+x2yi2+„+xnyin,L=x1y1+x2y2+„+xnyn,那么恒有S≤M≤L。

编辑本段其他重要不等式

琴生不等式

均值不等式绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式贝努利不等式

推荐第6篇:证明不等式方法

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法

比较法是证明不等式的最基本方法,具体有\"作差\"比较和\"作商\"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用\"作差\"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈R+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同\"1\"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1) 2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。

要证c-c2-ab<a<c+c2-ab

只需证-c2-ab<a-c<c2-ab

证明:即证 |a-c|<c2-ab

即证 (a-c)2<c2-ab

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<

1证明: ∵x,y∈R+, 且x-y=1,x=secθ, y=tanθ ,(0<θ<xy )

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是\"至少\"、\"唯一\"或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2> (2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立

练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x <x2 (x≠0)

证明:设f(x)=x1-2x-x2 (x≠0)

∵f (-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0 ,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)

练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab

2构造图形法

例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑\"添项\"技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立) 证明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13 )(1+15 )…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13 )(1+15 )…(1+12n-1)]2=(

43、65…2n2n-1)(

43、65…2n2n-1)> (

54、76…2n+12n)(

43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13 )(1+15 )…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△ABC中,求证sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

练习11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈R+,a≠b且a+b=1,

求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。 要证不等式xx+2y+xx+2y≤23 ,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2 ,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+ ,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,

y2z2+z2x2≥ 2x yz2,

x2y2+z2x2≥ 2x 2yz,

以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),

两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0, n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,

∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时, xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时, (xn-yn)(xn-1-yn-1) ≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又 (xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

推荐第7篇:勾股定理证明方法

勾股定理证明方法

勾股定理的种证明方法(部分)

【证法1】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点p.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,

∴∠EGF=∠BED,

∵∠EGF+∠GEF=90°,

∴∠BED+∠GEF=90°,

∴∠BEG=180º―90º=90º.又∵AB=BE=EG=GA=c,

∴ABEG是一个边长为c的正方形.

∴∠ABC+∠CBE=90º.

∵RtΔABC≌RtΔEBD,

∴∠ABC=∠EBD.

∴∠EBD+∠CBE=90º.

即∠CBD=90º.

又∵∠BDE=90º,∠BCp=90º,

BC=BD=a.

∴BDpC是一个边长为a的正方形.

同理,HpFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

,

∴.

【证法2】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作Qp‖BC,交AC于点p.过点B作BM⊥pQ,垂足为M;再过点

F作FN⊥pQ,垂足为N.

∵∠BCA=90º,Qp‖BC,

∴∠MpC=90º,

∵BM⊥pQ,

∴∠BMp=90º,

∴BCpM是一个矩形,即∠MBC=90º.

∵∠QBM+∠MBA=∠QBA=90º,

∠ABC+∠MBA=∠MBC=90º,

∴∠QBM=∠ABC,

又∵∠BMp=90º,∠BCA=90º,BQ=BA=c,

∴RtΔBMQ≌RtΔBCA.

同理可证RtΔQNF≌RtΔAEF.

【证法3】(赵浩杰证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB=∠CFD=90º,

∴RtΔCJB≌RtΔCFD,

同理,RtΔABG≌RtΔADE,

∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

∴∠ABG=∠BCJ,

∵∠BCJ+∠CBJ=90º,

∴∠ABG+∠CBJ=90º,

∵∠ABC=90º,

∴G,B,I,J在同一直线上,

【证法4】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD.过C作CL⊥DE,

交AB于点M,交DE于点

L.∵AF=AC,AB=AD,

∠FAB=∠GAD,

∴ΔFAB≌ΔGAD,

∵ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴矩形ADLM的面积=.

同理可证,矩形MLEB的面积=.

∵正方形ADEB的面积

=矩形ADLM的面积+矩形MLEB的面积

∴,即.

勾股定理的别名

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。

证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

推荐第8篇:勾股定理证明方法

勾股定理证明方法

勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。

中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:\"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?\" 商高回答说:\"数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩\'得到的一条直角边‘勾\'等于3,另一条直角边’股\'等于4的时候,那么它的斜边\'弦\'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。\" 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。

在《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。

中国古代的数学家们最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。 赵爽创制了一幅“勾股圆方图”,

用形数结合得到方法,给出了勾股定理的详细证明。

上中间的那个小正方形组成的。

每个直角三角形的面积为ab/2;

中间的小正方形边长为b-a,则面积为(b-a)2。

于是便可得如下的式子:

4×(ab/2)+(b-a)2=c

2化简后便可得: a2+b2=c2

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加

刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入)

结果刚好填满,完全用图解法就解决了问题。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的证法。 1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法

古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

推荐第9篇:数学证明方法

数学证明方法

1 直接证明法

从正面证明命题真实性的证明方法叫做直接证法.凡是用演绎法证明命题真实性的都是直接证法.它是中学数学中常用的证明方法.综合法、分析法、分析综合法、比较法。

(1)综合法:从已知条件入手,运用已经学过的公理、定义、定理等进行一步步的推理,一直推到结论为止.这种思维方法叫综合法.这种方法是“由因导果”,即从已知到可知,从可知到未知的思维过程.

(2)分析法:从问题的结论入手,运用已经学过的公理、定义、定理,一步步寻觅使结论成立的条件,一直“追”到这个结论成立的条件就是已知条件为止.可见分析法是“执果求因”的思维过程,它与综合法的思维过程相反.分析法属于逻辑方法范畴,它的严谨体现在分析过程步步可逆。

分析法的步骤为未知需知已知。在操作中“要证”、“只要证”、“即要证”这些词语也是不可缺少的。分析法的书写形式一般为“因为......,为了证明......,只需证明......,即......,因此,只需证明......,因为......成立,所以‘......(结论)’成立”。 (3)分析综合法:把分析法和综合法“联合”起来,从问题的两头向中间“靠拢”,从而发现问题的突破口.这种思维方法叫做分析综合法.对于比较复杂的题目,往往采用这种思维方法.在证明的过程中,往往分析法、综合法常常是不能分离的。分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系。分析的终点是综合的起点,综合的终点又成为进一步分析的起点。

(4)比较法

2 间接证明法

不是直接证明论题的真实性,而是通过证明论题的否定论题的不真实,或者证明它的等效命题成立,从而肯定论题真实性的证明方法,叫做间接证明法.反证法、同一法、归纳法(不完全归纳法、完全归纳法、数学归纳法)、类比法、换元法、放缩法、判别式法、函数法 (1)反证法:反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设(即结论的否定成立);

第二步,归谬:从否定结论出发,逐层进行推理,得出与公理或前述的定理、定义或题设条件,或与临时假设等自相矛盾(即说明结论不能否定);

第三步,结论:根据排中律,说明反设不成立,从而肯定原命题成立。 (2)同一法:两个互逆或互否的命题不一定是等效的,只有当一个命题的条件和结论都唯一存在,且它们所指的概念是同一概念时,该命题与其逆命题才等效,这个原理叫做同一原理.对符合同一原理的命题,当直接证明有困难时可以改证与它的等效的逆命题,这种证明方法叫做同一法.

1当命题的条件与结论所含事项都唯一存在时,先作出符合命题结论的所有图形;同一法的步骤:○2证明所作图形符合已知条件;3根据唯一性,4最后肯定○○确定所作图形或所作图形与已知图形重合;○原命题成立.

(3)不完全归纳法:从一个或几个(但不是全部)特殊情况作出一般性结论的归纳推理。不完全归纳法又叫做普通归纳法。

(4)完全归纳法:是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法。

(5)数学归纳法

推荐第10篇:高等数学证明方法

(3)反证法

这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。

例如,证明不是的多项式.事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有

于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式.又如,证明不存在(为自然数).事实上,利用反证法,假设存在且设,则有

又因为 所以有 故

这与产生矛盾,因此不存在.

(2)分析法

这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,„„,直至已知。这种“执果溯因”的方法,叫做分析法。

分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明.利用拉格朗日中值定理及已知条件,有

单调递增

因此在时是单调递增的.又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由

所以只需,即成立.取,于是当时,就有,从而保证了希望的不等式成立.综合以上分析,就有 ,当时,,根据极限定义,有

高等数学中研究基本理论的主要方法是证明问题,证明问题的方法没有固定的程序,证题的技巧又灵活多样,因而和一般计算题比较难度较高,不易掌握。下面介绍几种常用的证明方法,以便在寻求基本思路和探索规律方面起到一定一定的引导作用,尽可能减少盲目性,提高自觉性。 (1)综合法

这种方法的基本思路是顺着想。由已知条件出发,运用已有的定义、定理、公式、性质推导出所要求的结论。即由条件推可知,再推可知,„„,直到结论。这种“由因导果”的方法,叫做综合法。

运用综合法证明问题最广泛,但在使用这种方法时,必须注意充分与必要的关系,每一步都要明确是由什么命题推证什么命题,依据是什么,这种特点充分表现了数学的严密性和逻辑性。

例如,设,证明.事实上,由已知条件可知序列有递推关系式: 当时,因有

所以为递减有界序列,故.再对递推关系式关于取极限,得,解出; 当时,令,则, 而 所以

又如,若函数对任意实数有且,证明.事实上,由已知条件:不会恒为零,由上式可得.因此就有

第11篇:弦切角定理证明方法

弦切角定理证明方法

(1)连OC、OA,则有OC⊥CD于点C。得OC‖AD,知∠OCA=∠CAD。

而∠OCA=∠OAC,得∠CAD=∠OAC。进而有∠OAC=∠BAC。

由此可知,0A与AB重合,即AB为⊙O的直径。

(2)连接BC,且作CE⊥AB于点E。立即可得△ABC为Rt△,且∠ACB=Rt∠。

由射影定理有AC²=AE*AB。又∠CAD=∠CAE,AC公用,∠CDA=∠CEA,得△CEA≌△CDA,有AD=AE,所以,AC²=AB*AD。

第一题重新证明如下:

首先证明弦切角定理,即有∠ACD=∠CBA。

连接OA、OC、BC,则有

∠ACD+∠ACO=90°

=(1/2)(∠ACO+∠CAO+∠AOC)

=(1/2)(2∠ACO+∠AOC)

=∠ACO+(1/2)∠AOC,

所以∠ACD=(1/2)∠AOC,

而∠CBA=(1/2)∠AOC(同弧上的圆周角等于圆心角的一半),

得∠ACD=∠CBA。

另外,∠ACD+∠CAD=90°,∠CAD=∠CAB,

所以有∠CAB+∠CBA=90°,得∠BCA=90°,进而AB为⊙O的直径。

2证明一:设圆心为O,连接OC,OB,。

∵∠TCB=90-∠OCB

∵∠BOC=180-2∠OCB

∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)

∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)

∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)

证明:分三种情况:

(1)圆心O在∠BAC的一边AC上

∵AC为直径,AB切⊙O于A,

∴弧CmA=弧CA

∵为半圆,

∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部.

过A作直径AD交⊙O于D,

若在优弧m所对的劣弧上有一点E

那么,连接EC、ED、EA

则有:∠CED=∠CAD、∠DEA=∠DAB

∴∠CEA=∠CAB

∴(弦切角定理)

(3)圆心O在∠BAC的外部,

过A作直径AD交⊙O于D

那么∠CDA+∠CAD=∠CAB+∠CAD=90

∴∠CDA=∠CAB

∴(弦切角定理)

编辑本段弦切角推论

推论内容

若两弦切角所夹的弧相等,则这两个弦切角也相等

应用举例

例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.

解:连结OA,OB.

∵在Rt△ABC中,∠C=90

∴∠BAC=30°

∴BC=1/2a(RT△中30°角所对边等于斜边的一半)

例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.

求证:EF∥BC.

证明:连DF.

AD是∠BAC的平分线∠BAD=∠DAC

∠EFD=∠BAD

∠EFD=∠DAC

⊙O切BC于D∠FDC=∠DAC

∠EFD=∠FDC

EF∥BC

例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,

求证:AC平分∠MCD,BC平分∠NCD.

证明:∵AB是⊙O直径

∴∠ACB=90

∵CD⊥AB

∴∠ACD=∠B,

∵MN切⊙O于C

∴∠MCA=∠B,

∴∠MCA=∠ACD,

即AC平分∠MCD,

同理:BC平分∠NCD.

第12篇:sos方法证明不等式

数学竞赛讲座

SOS方法证明不等式(sum of squares)

SABSabcSbcaScab0

性质一:若Sa,Sb,Sc0,则SABSabcSbcaScab0.222222性质二:若a,b,c,Sa,Sb,Sc且满足

(1)SaSb,SbSc,ScSa0,(2)若abc或abc,则Sb0, 那么SABS222

abcSbcaScab0

性质三:若a,b,c,Sa,Sb,Sc且满足

若abc或abc,则Sa,Sc0且Sa2Sb,Sc2Sb0,那么 SABSabc2S2

bcaScab20

性质四:若a,b,c,Sa,Sb,Sc且满足

若abc或abc,则S2

a,Sb0且bScc2Sb0,那么

SABS22

abcSbcaS2

cab0

性质五:若a,b,c,Sa,Sb,Sc且满足

(1)SaSb,SbSc,ScSa0,(2)SaSbSbScScSa0那么 SABS222

abcSbcaScab0

性质六:若a,b,c,Sa,Sb,Sc且满足

(1) 若Sa2或abc

(2) 存在0,使得若S22

aSc1Sb0;

abcbcbab

(3) scsb0或sasb0 那么

sc11b0asb0

Sa(bc)2Sb(ca)2Sc(ba)20

S=A-B=

二.常见的恒等式

(ab)2(ac)2(cb)2

(1)abcabbcac2

(2ab)(ab)2(2bc)(cb)2(2ca)(ac)2

333222(2)abcabbcac3 222(ab)(ac)(cb)(3)a3b3c33abc(abc)2

(ab)3(ac)3(cb)3

222222(4)abbccaabbcca3222

(5)a4b4c4a3bb3cc3a

(3a22abb2)(ab)2(3b22cbc2)(cb)2(3c22aca2)(ac)2

abc(6)a3bb3cc3ab3ac3ba3c3

[(ab)3(ac)3(cb)3]

1(7)a4b4c4a2b2a2c2c2b2[(ab)2(ab)2(cb)2(cb)2(ac)2(ac)2]2

三.例题

1.已知正数a,b,c,求证:(ab)(19)>= (ab)24

12.已知正数a,b,c满足min{a,b,c}max{a,b,c}4 2191(a-b)求证(ab)()>=+(ab)2416(ab)2

4.已知正数a,b,c,试求最优常数k,使 111abbcac(abc)()k29k22abcabc

5.已知正数a,b,c,试求最优常数k,使得

6.已知正数a,b,c为三角形三边,求证 bc3 b2c2ka25

abcacb(3+)2(

)3 bcacba

7.已知正数x,y,z,求证:

x2y2z2xyxzyz(

8.已知正数a,b,c,且abc=1,求证:

11131112(222)2 22abcabcaccabc9已知正数a,b,c且ab+bc+ac=1 求证:

1a2b25 (ab)22

第13篇:不等式证明方法讲义

不等式的证明方法

一、比较法

1.求证:x2 + 3 >3x

2.已知a, b, m都是正数,并且a

ab

23.已知a, b都是正数,并且a  b,求证:a5 + b5 >a2b3 + a3b2作商法1.设a, b  R,求证:ab(ab)+ababba

二、综合法

1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明2.用综合法证明不等式的逻辑关系是:AB1B2BnB

3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证例题:已知a,b,c是不全相等的正数,求证:a(bc)b(ca)c(ab)6abc

例题:已知a,b,c都是正数,且a,b,c成等比数列,求证:abc(abc)

例题:a , b, cR,求证:1(abc)(22222222221111119)92(abc)() abcabbcca

2三、分析法

例题: 求证37

2例题:已知a,b,c,d∈R,求证:ac+bd≤(ab)(cd)

例题:用分析法证明下列不等式:

(1)求证:571(2)求证:x1

(3)求证:a,b,c∈R,求证:2(+2222x2x3x4(x≥4) ababcab)3(abc) 2

3四、换元法 三角换元:

若0≤x≤1,则可令x = sin (0

22)或x = sin2 (222若xy1,则可令x = cos , y = sin (02 代数换元:“整体换元”,“均值换元”,例题: 求证:11xx2 2

2例题: 已知x >0 , y >0,2x + y = 1,求证:11322 xy

2例题:若xy1,求证:|x2xyy|2222

五、放缩法与反证法

abcd2 abdbcacdbdac

1111例题:求证:22222 123n例题:若a, b, c, dR+,求证:1

例题:(用反证法)设0

例题:已知a + b + c >0,ab + bc + ca >0,abc >0,求证:a, b, c >0

1

4六、构造法

22222222例题:已知0

2习题精选精解

例题:正数x,y满足x2y1,求1/x1/y的最小值。

例题:设实数x,y满足x(y1)1,当xyc0时,求c的取值范围。

例题:已知函数f(x)axbx(a0)满足1f(1)2,2f(1)5,求f(3)的取值范围。

例题:已知abc,求证:abbccaabbcca

例题:

222222222

例题:设fxxx13,实数a满足xa1,求证:fxfa2a1 2

注:式的最后一步省略了对a

0,a0,a0的详细分析,正式解题时不能省。分析过程用 a,b同号|ab||a||b|||a||b|||ab|;a,b异号|ab||a||b|||a||b|||ab| 例题:a、b、c(0,),abc1,求证:

例题:xy1,求证:2xy

例题:已知1≤x+y≤2,求证:

2222a2b2c213 2 122≤x-xy+y≤3. 22

第14篇:不等式证明若干方法

安康学院 数统系数学与应用数学 专业 11 级本科生

论文(设计)选题实习报告

11级数学与应用数学专业《科研训练2》评分表

注:综合评分60的为“及格”;

第15篇:余弦定理的证明方法

余弦定理的证明方法

在△ABC中,AB=c、BC=a、CA=b

则c^2=a^2+b^2-2ab*cosC

a^2=b^2+c^2-2bc*cosA

b^2=a^2+c^2-2ac*cosB

下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过A作AD⊥BC于D,则BD+CD=a

由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^

2所以c^2=(AD)^2-(CD)^2+b^2

=(a-CD)^2-(CD)^2+b^2

=a^2-2a*CD+(CD)^2-(CD)^2+b^2

=a^2+b^2-2a*CD

因为cosC=CD/b

所以CD=b*cosC

所以c^2=a^2+b^2-2ab*cosC

在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC²=AD²+DC²

b²=(sinB*c)²+(a-cosB*c)²

b²=sin²B*c²+a²+cos²B*c²-2ac*cosB

b²=(sin²B+cos²B)*c²-2ac*cosB+a²

b²=c²+a²-2ac*cosB

所以,cosB=(c²+a²-b²)/2ac

2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:

mb=(1/2)

mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

4

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√

=(1/2)√(2b^2+2c^2-a^2)

证毕。

第16篇:数学证明题证明方法

数学证明题证明方法(转)

2011-04-22 21:36:39|分类:|标签: |字号大中小 订阅

2011/04/2

2从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。

要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。证明一个命题,一般步骤如下:

(1)按照题意画出图形;

(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;

(3)在“证明”一项中,写出全部推理过程。

一、直接证明

1、综合法

(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.

2、分析法

(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.(2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.

二、间接证明

反证法

1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2、反证法的特点:

反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.3、反证法的优点:

对原结论否定的假定的提出,相当于增加了一个已知条件.

4反证法主要适用于以下两种情形:

(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;

(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形

第17篇:勾股定理的证明方法

勾股定理的证明方法

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

的平方=3的平方+4的平方

在图一中,DABC为一直角三角形,其中ÐA为直角。我们在边AB、BC和AC之上分别画上三个正方形ABFG、BCED和ACKH。过A点画一直线AL使其垂直於DE并交DE於L,交BC於M。不难证明,DFBC全等於DABD(S.A.S.)。所以正方形ABFG的面积=2´DFBC的面积=2´DABD的面积=长方形BMLD的面积。类似地,正方形ACKH的面积=长方形MCEL的面积。即正方形BCED的面积=正方形ABFG的面积+正方形ACKH的面积,亦即是AB2+AC2=BC2。由此证实了勾股定理。

这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以ML将正方形分成BMLD和MCEL的两个部分!

这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。

欧几里得(EuclidofAlexandria)约生於公元前325年,卒於约公元前265年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题47,就记载著以上的一个对勾股定理的证明。

图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为c,其余两边的长度为a和b,则由於大正方形的面积应该等於4个直角三角形和中间浅黄色正方形的面积之和,所以我们有

(a+b)2=4(1/2ab)+c2

展开得a2+2ab+b2=2ab+c2

化简得a2+b2=c2

由此得知勾股定理成立。

第18篇:用三段论方法证明

用三段论方法证明

小前提:函数x-1在[1,∞)上是增函数大前提:根号内的x在[0,∞)上是增函数结论:函数f(x)=根号x-1在[1,∞)上是增函数厉害吧哈哈

2(1)如果有一个前提是否定判断,则大前提为全称判断;(2)如果大前提是肯定判断,则小前提为全称判断;(3)如果小前提是肯定判断,则结论为特称判断;(4)任何一个前提都不能是特称否定判断;(5)结论不能是全称肯定判断;麻烦哪位大虾帮小弟证明下这五点可以吗

3四格规则:中项在大前提中作谓项,在小前提中作主项。

1、前提之一否定,大前提全称。

2、大前提肯定,则小前提全称。

3、小前提肯定,则结论特称。

4、前提中不得有特称否定判断。

5、结论不能是全称肯定判断。证明1:如果两个前提中有一个是否定的,结论也必然是否定的(前提之一否定,结论是否定的);结论否定,则大项周延(否定判断的谓项周延);大项在第四格中处于前提的主项,只有全称时主项周延;所以,大前提必须全称。证明2:如果大前提肯定,在大前提中中项不周延(肯定判断谓项不周延);只有小前提全称,中项才周延一次(全称判断主项周延);三段论要求中项至少周延一次;所以,大前提肯定,则小前提全称。证明3:如果小前提肯定,小项在前提中不周延(肯定判断谓项不周延);如果结论全称,则在结论中小项周延,违反了在前提中不周延的项在结论中也不得周延规则;所以:小前提肯定,则结论特称。证明4:如果大前提否定,结论必要否定(前提之一否定,结论是否定的);则大项在结论中周延(否定判断的谓项周延);如果大前提特称,大项在前提中不周延(特称判断的主项不周延);这样,就违反了在前提中不周延的项在结论中也不得周延规则;因此,大前提不能是特称否定。如果小前提否定,大前提必肯定(两个否定的前提推不出结论);则中项在大前提中不周延(肯定判断谓项不周延);小前提否定,中项在小前提中也不周延(特称判断的主项不周延);三段论规则要求中项在前提中至少周延一次;因此,小前提不能是特称否定。所以,前提中不得有特称否定判断。证明5:如果结论是全称肯定判断,则小项在结论中周延(全称判断主项周延);则大项在结论中不周延(肯定判断谓项不周延);则小前提必否定才使小项在前提中周延(在前提中不周延的项在结论中也不得周延);但如果小前提否定,结论必然否定(前提之一否定,结论是否定的)与结论为肯定判断矛盾;所以,结论不能是全称肯定判断。

4

在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。三段论(syllogism)是传统逻辑中的一类主要推理。又称直言三段论。古希腊哲学家亚里士多德首先提出了关于三段论的系统理论。

形式逻辑间接推理的基本形式之一,由大前提和小前提推出结论。如‘凡金属都能导电’(大前提),‘铜是金属’(小前提),‘所以铜能导电’(结论)。这称为三段论法或三段论式。

三段论属于一种演绎逻辑,是不同于归纳逻辑的,具有较强的说服力。

第19篇:平面几何常用证明方法

平面几何常见证明方法

1,分析法

分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。

分析法主要应用与的几何问题特点主要是:从证明推理的时候出现多个方向,不知道哪个方向能够成功推导到结论,也就是说从正向推导比较迷茫的时候,比较适合用分析法来解决这些问题。

例1 如图2.1.1,四边形ABCD的一条对角线BD平行于两对边之交点的连线EF,求证:AC平分BD。[1]

证明:设AC交BD于M,交EF于N

BMMD,欲证BMMD ENNF作方向猜测,只需证ENNF或 BMEN1即可。 MDNF则但我们意识到这不容易证明,

(图2.1.1)

BMMDBMEN即可。而,从而MDBMMDNFMDENMDBMMDMCBM只需证即可,又只需证即可。而,故得证。 BMNFENNFENCNNF再作方向猜测,欲证BMMD,只需证明2 综合法

综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。综合法和分析法有些不同的是分析法的思路从结论开始,综合法的思路从题设开始。

例2如图2.2.1设D是ABC底边BC上任一点,

则ADBCABCDACBDBCBDCD。[1] 证明:在ADB和ABC中 222AD2BD2AB

2 cosADB

2ADBDAD2CD2AC2

cosADC

2ADBD

由cosADBcosADC,所以

(图2.2.1) AD2BD2AB2AD2CD2AC2

2ADBD2ADBD

有AD2(BDCD)AB2CDAC2BDBDCD(BDCD)

将BDCDBC代入上式则有

ADBCABCDACBDBCBDCD,证毕。

在具体证题时,这两种方法可单独运用,也可配合运用,在分析中有综合,在综合中有分析,以进行交叉使用。由于篇幅有限在此仅归纳方法,并不做详细介绍。

但是有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法是一种典型的用间接式思路证题的方法。 2223反证法

具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的反面成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了“结论反面成立”的假设是错误的,从而得出结论的正面成立,这种证题方法就叫做反证法。当结论的反面只有一个时,否定了这一个便完成证明,这种较单纯的反证法又叫做归谬法;而当结论的反面有若干个时,就必须驳倒其中的每一个,这种较繁琐的反证法又称为穷举法。

反证法证题通常有如下三个步骤:

(1)反设。作出与结论相反的假设,通常称这种假设为反证假设。

(2)归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

(3)得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。

例3 如图2.3.1已知:在四边形ABCD中,M、N分别是AB、CD的中点,

1(ABCD)。

2求证:AD∥BC

且MN

证明:假设AD与BC不平行,连结ABD,并设P

是BD的中点,再连结MP、PN。在ABD中

由BMMA,BPPD (图2.3.1)

则MP1AD,同理可证PN2MPPN1BC 21(ABCD)

2 从而

这时,BD的中点不在MN上

若不然,则由MN∥AD,MN∥BC,得AD∥BC与

假设AD与BC不平行矛盾,于是M、P、N三点不共线。

从而

MPPNMN

② 1

1由①、②得MN(ABCD),这与已知条件MN(ABCD)相矛盾,

2

2故假设不成立,所以AD∥BC,证毕。

在几何中需要证明符合某种条件的点、线、面只有一个时,称为“唯一性”问题。

例4 过平面上的点A的直线a,求证:a是唯一的。

证明:假设a不是唯一的,则过A至少还有一条直线b,b 由a、b是相交直线,

则a、b可以确定一个平面。 设和相交于过点A的直线c。

a,b, 有

ac,bc。

这样在平面内,过点A就有两条直线垂直于c,这与定理产生矛盾。 所以,a是唯一的,证毕。

关于唯一性的问题,在几何中有,在代数、三角等学科中也有。这类题目用直接证法证明相当困难,因此一般情况下都采用间接证法。即用反证法或同一法证明,用反证法证明有时比同一法更方便。

另外,几何中有一类问题,要证明某个图形不可能有某种性质或证明具有某种性质的图形不存在。它们的结论命题都是以否定形式出现的,若用直接证法证明有一定的困难。而它的否定命题则是某个图形具有某种性质或具有某种性质的图形存在,因此,这类问题非常适宜用反证法。

例5 求证:抛物线没有渐近线。

证明:设抛物线的方程是y22px(p0)。

假设抛物有渐近线,渐近线的方程是yaxb,易知a、b都不为0。因为渐近线与抛物线相切于无穷远点,于是方程组

(1)y22px 

(2)yaxb的两组解的倒数都是0。

将(2)代入(1),得

a2x22(abp)xb20

(3)

设x

1、x2是(3)的两个根,由韦达定理,可知

2(abp)b2x1x2,x1x22 2aa则

11x1x22(abp)0

2x1x2x1x2b(4)

111a20,

(5) x1x2x1x2b2由(4)、(5),可推得p0, 这于假设p0矛盾。

所以,抛物线没有渐近线,证毕。

关于不可能问题是几何中最常见也是非常重要的一种类型。由于它的结论是以否定形式出现,采用直接证法有困难,所以这类问题一般都使用反证法加以证明。

在几何中存在一类很特殊的问题,就是证明具有某种性质的图形至少有一个或不多于几个。由于这类问题能找到直接论证的理论根据很少,用直接证法有一定困难。如果采用反证法,添加了否定结论这个新的假设,就可以推出更多的结论,容易使命题获证。

例6 已知:四边形ABCD中,对角线ACBD1。 求证:四边形中至少有一条边不小于

2。 2证明:假设四边形的边都小于

2,由于四边形中至少有一个角不是钝角(这一结论也20可用反证法证明),不妨设A90,

根据余弦定理,得

BD2AD2AB22ADABcosA,

BD2AD2AB2,

BDAD2AB2(这与已知四边形BD1矛盾。 所以,四边形中至少有一条边不小于

222)()21。 222,证毕。 2在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

第20篇:不等式的证明方法

中原工学院

1 常用方法

1.1比较法(作差法)[1]

在比较两个实数a和b的大小时,可借助ab的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:a0,b0,求证:证明 ab2ab2ab.

b)2abab2ab2ab2ab(a20,

故得 1.2作商法

.在证题时,一般在a,b均为正数时,借助作商——变形——判断(大于1或小于1).例2 设ab0,求证:aabbabba.证明 因为 ab0, 所以 而

abaab1或

ab1来判断其大小,步骤一般为:

1,ab0.

baababbabab1,

故 aabbabba.1.3分析法(逆推法)

从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:57115.证明 要证351941557115,即证1223516215,即

35215,,41516,154,1516.由此逆推即得 57115.1.4综合法

1 [2]

中原工学院

证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法.例4 已知:a,b同号,求证:证明 因为a,b同号, 所以 则

ababba2.

ab0,baabbaab0, ba2ba2,

即 1.5反证法[3]

2.先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的.例5 已知ab0,n是大于1的整数,求证:nanb.证明 假设 nanb, 则 n即

baba1,

1,

故 ba, 这与已知矛盾,所以nanb.1.6迭合法

把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证. 例6 已知:a1a2an1,b1b2bn1,求证: a1b1a2b2anbn1.222222[4]证明 因为a1a2an1,b1b2bn1, 所以 a1a2an1,b1b2bn1.由柯西不等式

a1b1a2b2anbna1a2an222222222222222b1b2bn111,

222中原工学院

所以原不等式获证.1.7放缩法[5]

在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例7 求证: 21345656999910000999910000220.01.,则 证明 令pp2123412234225622999910000121232241999910000221110001110000,

所以 p0.01.1.8数学归纳法[6]

对于含有n(nN)的不等式,当n取第一个值时不等式成立,如果使不等式在nk(nN)时成立的假设下,还能证明不等式在nk1时也成立,那么肯定这个不等式对n取第一个值以后的自然数都能成立.例8 已知:a,bR,nN,n1,求证:anbnan1babn1.证明 (1)当n2时,a2b2abab2ab,不等式成立; (2)若nk时,akbkak1babk1成立,则

ak1bk1a(ab)abkkkbk1a(ak1babk1)abkbk1

=akbabk(a2bk12abkbk1)akbabkbk1(ab)2akbabk, 即ak1bk1akbabk成立.根据(1)、(2),anbnan1babn1对于大于1的自然数n都成立.1.9换元法

在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化.例9 已知:abc1,求证:abbcca13.

中原工学院

证明 设a13t,b13at(tR),则c13(1a)t,

111111abbccatatat(1a)tt(1a)t33333313(1aa)t22

13,

13所以 abbcca1.10三角代换法

.借助三角变换,在证题中可使某些问题变易.例10 已知:a2b21,x2y21,求证:axby1.证明 设asin,则bcos;设xsin,则ycos 所以 axbysinsincoscoscos()1.1.11判别式法

通过构造一元二次方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式.例11 设x,yR,且x2y21,求证:yax1a2.证明 设myax,则yaxm 代入x2y21中得 x2(axm)21, 即 (1a2)x22amx(m21)0 因为x,yR,1a20,所以0,

即 (2am)24(1a2)(m21)0, 解得 m1a2,故yax1a2.1.12标准化法[8]

形如f(x1,x2,,xn)sinx1sinx2sinxn的函数,其中0xi,且

x1x2xn为常数,则当xi的值之间越接近时,f(x1,x2,,xn)[7]

的值越大(或不变);当x1x2xn时,f(x1,x2,,xn)取最大值,即

中原工学院

nf(x1,x2,,xn)sinx1sinx2sinxnsinx1x2xnnAB2.标准化定理:当AB为常数时,有sinAsinBsin证明:记ABC,则

f(x)sinAsinBsin22.

AB2sinAsin(CA)sin2C2, 求导得 f(A)sin(C2A), 由f(A)0得 C2A,即AB.又由 f(A)cos(BA)0, 知f(A)的极大值点必在AB时取得.由于当AB时,f(A)0,故得不等式.同理,可推广到关于n个变元的情形.例12 设A,B,C为三角形的三内角,求证:sin证明 由标准化定理得, 当ABC时, sinA2sinB2sinA2sinC2B2sin12C2A2sinB2sinC218.

, 取最大值,

8181故 sin1.13等式法

.应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明.例13(1956年波兰数学竞赛题)、a,b,c为ABC的三边长,求证:

2ab2ac2bcabc222222444.

12(abc)证明 由海伦公式SABC两边平方,移项整理得

16(SABC)2p(pa)(pb)(pc),其中p.

2ab2ac2bcabc222222444

而SABC0, 所以 2a2b22a2c22b2c2a4b4c4.1.14分解法

按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基

中原工学院

本问题,以便分而治之,各个击破,从而达到证明不等式的目的.例14 n2,且nN,求证:1证明 因为 11213112131nn(nn11).

111n(11)111n23n

2324312n1n13n1nn23243n1nnnn1.所以 11.15构造法[9-10]

n(nn11).在证明不等式时,有时通过构造某种模型、函数、恒等式、复数等,可以达到简捷、明快、以巧取胜的目的.例15 已知:x2y21,a2b22,求证:b(x2y2)2axy2.证明 依题设,构造复数z1xyi,z2abi,则z11,z22 所以 z12z2(xyi)2(abi)[a(x2y2)2bxy][b(x2y2)2axy]i

b(xy)2axyIm(z1z2)z12222z22

故 b(x2y2)2axy1.16排序法[11]

利用排序不等式来证明某些不等式.

2.排序不等式:设a1a2an,b1b2bn,则有

a1bna2bn1anb1a1bt1a2bt2anbtna1b1a2b2anbn,

其中t1,t2,,tn是1,2,,n的一个排列.当且仅当a1a2an或b1b2bn时取等号.简记作:反序和乱序和同序和.

例16 求证:a2b2c2d2abbccdda.证明 因为a,b,c,dR有序,所以根据排序不等式同序和最大, 即 a2b2c2d2abbccdda.1.17借助几何法[12]

中原工学院

借助几何图形,运用几何或三角知识可使某些证明变易.例17 已知:a,b,mR,且ab,求证:

ambmab.证明 (如图1.17.1)以b为斜边,a为直角边作RtABC.延长AB至D,使BDm,延长AC至E,使EDAD,过C作AD的平行线交DE于F,则ABC∽ADE,令CEn, 所以 aABam

又CECF,即nm, 所以

bACbnamabmambnb.

EnFCbDmBaA

图1.17.1

中原工学院

2 利用函数证明不等式

2.1函数极值法

通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例18 设xR,求证:4cos2x3sinx2证明 f(x)cos2x3sinx12sin当sinx3218.

231x3sinx2sinx2

48时, f(x)max2;

481当sinx1时,

f(x)min4.故 4cos2x3sinx22.2单调函数法[13-14]

当x属于某区间,有f(x)0,则f(x)单调上升;若f(x)0,则f(x)单调下降.推广之,若证f(x)g(x),只须证f(a)g(a)及f(x)g(x),(x(a,b))即可.例 19 证明不等式

ex1x,x0.

证明 设f(x)ex1x,则f(x)ex1.故当x0时,f(x)0,f严格递增;当x0,f(x)0,f18.严格递减.又因为f在x0处连续,

则当x0时,

f(x)f(0)0,

从而证得

ex1x,x0

2.3中值定理法

利用中值定理:f(x)是在区间[a,b]上有定义的连续函数,且可导,则存在,ab,满足f(b)f(a)f()(ba)来证明某些不等式,达到简便的目的.

中原工学院

例20 求证:sinxsinyxy.证明 设 f(x)sinx,则sinxsiny(xy)sin(xy)cos 故 sinxsiny(xy)cosxy.2.4利用拉格朗日函数

例 21 证明不等式

3(1a1b1c)13abc, 其中a,b,c为任意正实数.证明 设拉格朗日函数为对

L(x,y,z,)xyz(1x1y1z1r).

对L求偏导数并令它们都等于0,则有

Lxyzx20,

Lyzxy20,

Lzxyx20,

L1x1y1z1r0.

由方程组的前三式,易的

1x1y1zxyz.

把它代入第四式,求出13r.从而函数L的稳定点为xyz3r,(3r)4.

1x1y1z1r为了判断f(3r,3r,3r)(3r)3是否为所求条件极小值,我们可把条件看作隐函数zz(x,y)(满足隐函数定理条件),并把目标函数f(x,y,z)xyz(x,y)F(x,y)看作f与zz(x,y)的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:

zxzx22,zyzy22,

Fxyzyzx2,Fyxzxzy2,

中原工学院

F2yz3,Fzz2z22z3,

xxx3xyyxxy2xz3Fyyy3.

当xyz3r时,

Fxx6rFyy,Fxy3r,

F2xxFyyF27r20.

xy由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式xyz(3r)3(x0,y0,z0,111xyz1r).

令xa,yb,zc,则r(111abc)1,代入不等式有

abc[3(11a1b1c)]3

或 3(111ab1c)3abc(a0,b0,c0).

中原工学院

3 利用著名不等式证明

3.1利用均值不等式[15-16]

设a1,a2,,an是

n个正实数,则

a1a2anna1a2an,当且仅当

na1a2an时取等号.

nn例22 证明柯西不等式 (a22nibi)(ai)(b2i).

i1i1i1证明 要证柯西不等式成立,只要证

nnn aa2ibiib2i (1)

i1i1i1nn令 a2iA2,b2iB2, (2)

i1i1n式中A0,B0,则(1)即 aibiABi1

naibi即

i1AB1 (3)

a2b22211下面证不等式(3),有均值不等式,

a1b1A2B2A2B22,

2即

2a1b1a21ABA2b1B2,

2a22b22a22a2ABA2b2nbna2同理

nB2, ,

ABA2bnB2.将以上各式相加,得

nn2na2ib2i(abi11ABii)2i2i1AB (4)

中原工学院

根据(2),(4)式即

2AB(aibi)2.

i1n因此不等式(3)成立,于是柯西不等式得证.3.2利用柯西不等式[17-18]

n例23 设aiR,i1,2,„,n.求证:i11n2aiai.

ni12证明 由柯西不等式

nnnn2n22aiai1ai1nai.

i1i1i1i1i122两边除以n即得.

说明:两边乘以1n后开方得

1niani11n2iani1.当ai为正数时为均值不等式中的算术平均不大于平方平均. 3.3利用赫尔德不等式[19] 例24 设a,b为正常数,0xab2,nN,求证:

n22n22 nansinxcosx2bn22

n2bn2bn2aa22证明 n= sinxcosxn2 nnnsinxcosxsinxcosx2a nsinx2n2sinx22nn22bncosxn2cosx2nn2

asinxn= an2bn2

n2ancosxb2n2bn222

3.4利用詹森不等式[20] 例 25 证明不等式

abc(abc)3abc, 其中a,b,c均为正数.

abc证明 设 f(x)xlnx,x0.由f(x)的一阶和二阶导数

f(x)lnx1,f(x)1x

中原工学院

可见,f(x)xlnx在x0时为严格凸函数.依詹森不等式有

f(abc3)13(f(a)f(b)f(c)),

从而

abcabc3ln313(alnablnbclnc),

(abccbc3)abaabc.

又因3abcabc3,所以

abc (abc)3aabbcc.

证明方法
《证明方法.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档