人人范文网 范文大全

不等式的证明方法

发布时间:2020-03-02 14:03:25 来源:范文大全 收藏本文 下载本文 手机版

几个简单的证明方法

一、比较法:

ab等价于ab0;而ab0等价于a

b1.即a与b的比较转化为与0

或1的

比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:

综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:

正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:

要证ab,又已知(或易证)ac,则只要证cb,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a21a;n(n1)n;

②将分子或分母放大(或缩小);

③利用基本不等式,如:

log3lg5(

n(n1)lg3lg522)2lglglg4; n(n1);

④利用常用结论:

k1k

1k1

1k

11k1k

12k

1k

1k(k1)

1k1

1k

1k1

1k

1k(k1)1k



(程度大)

1k

1

(k1)(k1)

2k1

(

) ; (程度小)

五、换元法:

换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:

已知x2y2a2,可设xacos,yasin;

已知x2y21,可设xrcos,yrsin(0r1); 已知

xaxa

2

2

ybyb

22

1,可设xacos,ybsin;

22

22

已知

1,可设xasec,ybtan;

六、数学归纳法法:

与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:

第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则

(1)、设P(n0)成立,且对于任意的kn0,从P(k)成立可推出P(k1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1km)成立可推出

P(k1)成立,则P(n)对所有不超过m

的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n2m),使得P(n)成立,且从P(k1)成立可推出P(k)成立,则P(n)对所有n成立.

(4)、若P(且P(n)对所有满足1nk的n成立可推出P(k1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.

(6)、若P)且若P(k),P(k1)成立可推出P(k2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1n,使得P(n1)成立,则P(n)对所有n成立.

此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若

P(1)

成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k1)成

立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.

对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m1,n),P(m,n1)成立,证明P(m1,n1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明

n

k

11k

sinkx0,(0x)

就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.

第三,并不是所有含n的不等式都能用数学归纳法证明的.

七、构造法:

通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:

善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.

22

例1 已知a,bR,且ab1.求证:a2b2

252

.

证法一:(比较法)a,bR,ab1

b1a

a2b2

22

252

ab4(ab)

22

92

122(a

12)0

a(1a)4

92

2a2a

12

即a22b22

证法二:(分析法)

252

(当且仅当ab时,取等号).

a22B2

252

ab4(ab)8

22

252

b1a

225122

(a)0a(1a)4822

显然成立,所以原不等式成立.

点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.

证法三:(综合法)由上分析法逆推获证(略).

证法四:(反证法)

假设(a2)2(b2)2

252

,则 a2b24(ab)8

252

252

.

由ab1,得b1a,于是有a2(1a)212

1

所以(a)0,这与a0矛盾.

22

.

所以a2b2

252

.

证法五:(放缩法)

∵ab1

∴左边=a2b2

a2b221252ab4

222

=右

边.

点评:根据不等式左边是平方和及ab1这个特点,选用基本不等式

ab

ab2.

2

证法六:(均值换元法)

∵ab1,

所以可设a

12t

,b

12

t, 1

∴左边=a2b2(t2)2(t2)2

5525252

=右边.tt2t

2222

22

当且仅当t0时,等号成立.

点评:形如ab1结构式的条件,一般可以采用均值换元.

证法七:(利用一元二次方程根的判别式法)

设ya2b2,由ab1,有y(a2)2(3a)22a22a13, 所以2a22a13y0,

因为aR,所以442(13y)0,即y故a2b2

22

252

.

252

.

下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.

引理:设A0,B0,则(A+B)nAn+nA(n-1)B,其中nN.证明:由二项式定理可知

n

(A+B)=AniBiAn+nA(n-1)B

n

i0

(A+B)A+nA

nn(n-1)

B

不等式证明方法

证明不等式方法

sos方法证明不等式

不等式证明方法讲义

不等式证明若干方法

不等式的证明方法

证明不等式方法探析

不等式的证明方法总结

g3.1039 不等式证明方法(二)

证明不等式的基本方法

不等式的证明方法
《不等式的证明方法.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档