人人范文网 其他心得体会

线性代数心得体会(精选多篇)

发布时间:2020-05-29 08:37:09 来源:其他心得体会 收藏本文 下载本文 手机版

推荐第1篇:线性代数心得体会

线性代数心得体会

本学期选修了田亚老师《线性代数精讲》的课程,而且这个学期我们的课程安排中也是有线性代数的,正好和选修课相辅相成,让我的线性代数学的更好。

本来这门学修课是准备面向考研生做近一步拔高的,但是有很多同学没有学过线性代数,或者说像我们一样是正在学习线性代数的,所以老师还是很有耐心的从基础开始讲,适当的增加一些考研题作为提高,这样就都可以兼顾大家。

线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下, 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。

我觉得线代是一门比较费脑子的课,因为这门课中的概念、运算法则很多,而且大多都很抽象,所以一定要注重对基本概念的理解与把握,应整理清楚不要混淆,正确熟练运用基本方法及基本运算。而且,线代作为一门数学,各知识点之间有着千丝万缕的联系,其前后连贯性很强,所以学习线代一定要坚持,循序渐进,注意建立各个知识点之间的联系,形成知识网络。除此之外,代数题的综合性与灵活性也较大,所以我们在平时学习中一定要注重串联、衔接与转换。一定要掌握矩阵、方程组和向量的内在联系,遇到问题才能左右逢源,举一反三,化难为易。

在此我要感谢田亚老师细心、认真的教育和无微不至的照顾。田老师大一时教我们高数,从那时起就是这样认真,负责,上课准备的很充分,讲课也很细致,有问题也会耐心、认真的为我们讲解。本学期选修田老师的课还是很开心的,一是讲课方式比较熟悉,二是田老师的课确实讲的细致有条理。除了讲授课本的知识以外,田老师还会讲一些有关考研,人生规划之类的事情,我觉得这对激励我们努力学习有很大的帮助。

线代本身作为数学,其实是比较枯燥乏味的,所以如果在选修课中能加入一些比较有趣味性的东西,那讲课效果应该更好。

微风细雨,润物无声。再次感谢田老师本学期的教诲。老师辛苦了!

推荐第2篇:线性代数心得体会

浅谈线性代数的

心得体会

系别:XXX系 班级:XXX班 姓名:XXX

线性代数心得

姓名:XXX 学号:XXX 通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。

在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。但是线性代数教学却对线性代数的应用涉及太少,课本上涉及最多的应用只有算解线性方程组,但这只是线性代数很初级的应用。而线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为天书,足见这门课给同学们造成的困难。我认为,每门课程都是有章可循的,线性代数也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易。

线性代数课程特点比较鲜明:概念多、运算法则多内容相互纵横交错正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大,

线性代数的概念多比如代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,矩阵的秩,线性组合与线性表示,线性相关与线性无关等。

线性代数中运算法则多比如行列式的计算,求逆矩阵,求矩阵的秩,求向量组的秩与极大线性无关组,线性相关的判定,求基础解系,求非齐次线性方程组的通解等。

应用到的东西才不容易忘,比如高等数学。因为高等数学在很多课程中都有广泛的应用,比如在开设的大学物理和机械设计课中。所以要尽可能地到网上或图书馆了解线性代数在各方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理。

线性代数作为数学的一门,体现了数学的思想。数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎了。

在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

推荐第3篇:线性代数心得体会

矩阵——1张神奇的长方形数表

关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具

在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中帮助研究线性变换、向量的线性相关性及线性方程的解法,还能为日常许多数据统计与分析中看似杂乱无章毫无关系的数据按一定的规则清晰展现,并能通过矩阵的运算刻画其内在联系,这对于审计专业的我们将来开展财务数据统计与分析能带来巨大的帮助。

在运用矩阵解方程组时,可以将线性方程组简化为矩阵形式:AX=B,来进行矩阵计算,这种方法不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,给线性方程组的讨论带来很大的便利。

在具体的矩阵运算过程中,我们可以通过等式两边同时左乘−1来求X,这就引出了第二章第三节的逆矩阵概念,逆在以前高中的实数乘法中便起着重要作用,在学习线性代数课程中,逆矩阵也是一个重要概念,且因为两矩阵乘积的定义,我们需要注意所讨论的矩阵是方阵形式,否则就会带来运算上的错误。

而对于高阶的复杂矩阵,还可以利用分块矩阵,将大矩阵的运算化成若干小矩阵,间接使高阶矩阵转化成多个低阶矩阵来运算,以及矩阵的初等变换规律对矩阵进行转换:如通过公式(AE)

(−1)可以对前面逆矩阵的运算起到简化作用,通过公式(AB)初等行变换初等行变换

(−1B)则可以借此求解矩阵方程AX=B。通过一步一步的学习,我慢慢对线性代数矩阵这一章节有了进一步的理解掌握,发现各个章节看似无关的概念,其实最后都可以联系在一起,为求解线性方程组、甚至后面章节的线性变换、线性相关性等都起到极大的铺垫基础作用。

谈了这么多矩阵对于求解线性方程组过程中的体会,更吸引我的是矩阵对于数据处理方面的作用,作为审计专业的学生,未来工作中会遇到很多处理产品成本的核算的问题,而通过矩阵这一工具,可以通过特殊的“数型结合”恰当的显示出各种数据间的内在联系,例如:可12以用矩阵(12)来表示一个公司的单位产品成本构成(两列分别代表产品1和产品2,121三行分别代表材料成本、劳动力成本、其他辅助成本),当与产品产量矩阵()

211+22相乘时,则可以得出两种材料的总成本矩阵( 11+22 )将产品总成本的构成以更清晰

11+22明了的方式呈现出来,可以为财务数据的处理带来很大的助益。

推荐第4篇:学习线性代数心得体会

学习线性代数心得体会

线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.

一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,学习时要注重串联、衔接与转换。

三、注重逻辑性与叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

推荐第5篇:浅谈线性代数的心得体会

浅谈线性代数的心得体会

线性代数是代数学的一个分支,“代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。

线性代数主要处理的是线性关系的问题,通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。

线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

没有应用到的内容很容易忘,我现在高数还基本记得。因为高数在很多课程中都有广泛的应用,比如在国贸专业中的会计课中。线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。

线代是一门比较费脑子的课,如果你觉得上课跟不上老师的思路那么请预习。预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。适当多做些题对学习是有帮助的。

线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能从生活实际想到甚至朦朦胧胧地想到它的“所以然”就行了。

做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路“存档”,即“做完题后要总结”。

线性代数作为一门数学,体现了数学的思想。

数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

通过思想方法上的联系和内容上的联系,线性代数中的内容以及线性代数与高数甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎。 我感觉“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”很重要。

学习线性代数的心得体会真的很深,在从一个对线性代数很畏惧变成现在一个很喜欢学习数学的我来讲,在线性代数的学习中真的感受到了学习的快乐还有解出题后的欣喜。

推荐第6篇:浅谈线性代数的心得体会

浅谈线性代数的心得体会

线性代数是代数学的一个分支,“代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。

线性代数是一门对理工科学生极其重要数学学科。线性代数主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大。它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。

通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。

线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

没有应用到的内容很容易忘,就像现代一样,我现在高数还基本记得。因为高数在很多课程中都有广泛的应用,比如在开设的大学物理课中。所以,如果有时间的话,要尽可能地到网上或图书馆了解线性代数在各方面的应用。如:《线性代数》(居余马等编,清华大学出版社)上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理,如老的高中解析几何课本上的转轴公式,它就可以用线性代数中的过渡矩阵来证明。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能从生活实际想到甚至朦朦胧胧地想到它的“所以然”就行了。 学习线代及其它任何学科时都要静下心来,如果学习前“心潮澎湃”就拿出一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。

做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路“存档”,即“做完题后要总结”。

线性代数作为一门数学,体现了数学的思想。

数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

通过思想方法上的联系和内容上的联系,线性代数中的内容以及线性代数与高数甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎。 方法真的很难讲,而方法包含许多细节的内容很难讲出来甚至我都意识不到,但它们会对学习起很大的作用。我感觉“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”很重要。 以上就是我学习线性代数的心得。

推荐第7篇:学习线性代数的心得体会

学习线性代数的心得体会

线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。

线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能从生活实际想到甚至朦朦胧胧地想到它的“所以然”就行了。学习线代及其它任何学科时都要静下心来,如果学习前“心潮澎湃”就拿出一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路“存档”,即“做完题后要总结”。

线性代数作为一门数学,体现了数学的思想。

数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

通过思想方法上的联系和内容上的联系,线性代数中的内容以及线性代数与高数甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎。方法真的很难讲,而方法包含许多细节的内容很难讲出来甚至我都意识不到,但它们会对学习起很大的作用。我感觉“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”很重要。

推荐第8篇:线性代数

线性代数在[参数1]数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们在这里,提醒广大的2012年的考生们必须注重计算能力.线性代数在数学

一、

二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,我们将线代中重点内容和典型题型做了总结,希望对2012年[参数1]的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.。矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程.

向量组的线性相关性是线性代数的重点,也是[参数1]的重点.提醒2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题.

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题.特征值、特征向量是线性代数的重点内容,是[参数1]的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题.。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

推荐第9篇:线性代数的学习方法和心得体会

线性代数的学习方法和心得体会

一、学习方法

今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。

首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。

总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。

我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1.由很多(实际上是无穷多个)位置点组成;2.这些点之间存在相对的关系;3.可以在空间中定义长度、角度;4.这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,

认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。 因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。

下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:

1.空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?

2.线性空间中的运动如何表述的?也就是,线性变换是如何表示的? 我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:

L1.最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0, x1, ..., xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。

下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题。

线性空间中的运动,被称为线性变换。也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。那么,线性变换如何表示呢?很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。 简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

是的,矩阵的本质是运动的描述。如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。(chensh,说你呢!)

可是多么有意思啊,向量本身不是也可以看成是n x 1矩阵吗?这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示。能说这是巧合吗?如果是巧合的话,那可真是幸运的巧合!可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系。

接着理解矩阵、、、

我们说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念。而连续这个事情,如果不定义极限的概念,根本就解释不了。古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论)搞得死去活来。因为这篇文章不是讲微积分的,所以我就不多说了。有兴趣的读者可以去看看齐民友教授写的《重温微积分》。我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理。

“矩阵是线性空间里跃迁的描述”。

可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。因此我们最后换用一个正牌的数学术语——变换,来描述这个事情。这样一说,大家就应该明白了,所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁。比如说,拓扑变换,就是在拓扑空间里从一个点到另一个点的跃迁。再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁。附带说一下,这个仿射空间跟向量空间是亲兄弟。做计算机图形学的朋友都知道,尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的。说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的。想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间。而仿射变换的矩阵表示根本就是4 x 4的。又扯远了,有兴趣的读者可以去看《计算机图形学——几何工具算法详解》。

一旦我们理解了“变换”这个概念,矩阵的定义就变成: “矩阵是线性空间里的变换的描述。”

到这里为止,我们终于得到了一个看上去比较数学的定义。不过还要多说几句。教材上一般是这么说的,在一个线性空间V 里的一个线性变换T,当选定一组基之后,就可以表示为矩阵。因此我们还要说清楚到底什么是线性变换,什么是基,什么叫选定一组基。线性变换的定义是很简单的,设有一种变换T,使得对于线性空间V中间任何两个不相同的对象x和y,以及任意实数a和b,有: T(ax + by) = aT(x) + bT(y), 那么就称T为线性变换。

接着往下说,什么是基呢?这个问题在后面还要大讲一番,这里只要把基看成是线性空间里的坐标系就可以了。注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”。这样一来,“选定一组基”就是说在线性空间里选定一个坐标系。就这意思。

好,最后我们把矩阵的定义完善如下:

“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。” 同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢?同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢?如果是同一个线性变换的不同的矩阵描述,那就是本家兄弟了,见面不认识,岂不成了笑话。

好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是: 若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:

A = P-1BP 线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义。没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。按照这个定义,同一头猪的不同角度的照片也可以成为相似照片。俗了一点,不过能让人明白。

而在上面式子里那个矩阵P,其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系。关于这个结论,可以用一种非常直觉的方法来证明(而不是一般教科书上那种形式上的证明),如果有时间的话,我以后在blog里补充这个证明。

这样一来,矩阵作为线性变换描述的一面,基本上说清楚了。但是,事情没有那么简单,或者说,线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉。

二、学习心得

线性代数是一门对理工科学生极其重要数学学科。线性代数主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大。它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。

线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

没有应用到的内容很容易忘,就像现代一样,我现在高数还基本记得。因为高数在很多课程中都有广泛的应用,比如在开设的大学物理课中。所以,如果有时间的话,要尽可能地到网上或图书馆了解线性代数在各方面的应用。如:《线性代数》(居余马等编,清华大学出版社)上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理,如老的高中解析几何课本上的转轴公式,它就可以用线性代数中的过渡矩阵来证明。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。

数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

方法真的很难讲,而方法包含许多细节的内容很难讲出来甚至我都意识不到,但它们会对学习起很大的作用。我感觉“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”很重要。

以上就是我学习线性代数的心得。

推荐第10篇:线性代数试题答案

2004年10月自学考试线性代数答案

第一部分 选择题(共20分)

一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设行列式A.-81 B.-9 C.9 D.8l

等于 ( ) 2.设A是m×n 矩阵,B是S×n 矩阵,C是m×s矩阵,则下列运算有意义的是 ( ) A.AB B.BC

3.设A,B均为n阶可逆矩阵,则下列各式中不正确的是( )

4.已知线性表出的是( ) A.(1,2,3) B.(1,-2,0) C.(0,2,3) D.(3,0,5) 5.设A为n(n>2)阶矩阵,秩(A)

( )

,则下列向量中可以由6.矩阵

2004年10月自学考试线性代数答案

的秩为( )

1 A.1 8.2 C.3 D.4 7.设是任意实数,则必有 ( )

8.线性方程组

的基础解系中所含向量的个数为( ) A.1 B.2 C.3 D.4 9.n阶方阵A可对角化的充分必要条件是 ( ) A.A有n个不同的特征值 B.A为实对称矩阵

C.A有n个不同的特征向量 D.A有n个线性无关的特征向量 10.设A是n阶正定矩阵,则二次型A.是不定的 B.是负定的

C.当n为偶数时是正定的 D.当n为奇数时是正定的

( ) 第二部分 非选择题(共80分)

二、填空题(本大题共l0小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。错填或不填均无分。 11.行列式

2004年10月自学考试线性代数答案

2 的值为_________.

12.设A为2阶方阵,且

13.设向量α=(6,-2,0,4),β=(一3,l,5,7),则由2α+γ=3β所确定的向量y=_________. 14.已知向量组

线性相关,则k=___.

有解的充分必要条件是t=____.

16.设A是3阶矩阵,秩(A)=2,则分块矩阵

的秩为——.

17.设A为3阶方阵,其特征值为3,一l,2,则|A|=____. 18.设n阶矩阵A的 n个列向量两两正交且均为单位向量,则19.设A=2是可逆矩阵A的一个特征值,则矩阵20.实二次型

_______

必有一个特征值等于__________. 的规范形为____

三、计算题(本大题共6小题。每小题8分,共48分) 21.计算行列式的值.

22.设矩阵23.已知向量组 ,求矩阵B,使A+2B=AB.

2004年10月自学考试线性代数答案

分别判定向量组24.求与两个向量25.给定线性方程组

的线性相关性,并说明理由。

均正交的单位向量.

(1)问λ在什么条件下,方程组有解?又在什么条件下方程组无解? (2)当方程组有解时,求出通解. 26.已知二次型数c及二次型经正交变换化成的标准形(不必写出正交变换).

四、证明题(本大题共2小题,每小题6分,共12分) 27.已知A,B,c均为72阶矩阵,且C可逆.若

,若Aa≠0,但线性无关.

,证明:当|A|

,证明:向量组a,Aa的秩为2,求参

参考答案

一、单项选择题(本大题共l0小题.每小题2分,共20分) 1.A 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.D 10.B

二、填空题(本大题共l0小题,每小题2分,共20分) 11.0 12.2 13.(-21,7,15,13) 14.2 15.1 16.5

2004年10月自学考试线性代数答案

4 17.-6 18.E

三、计算题(本大题共6小题,每小题8分,共48分) 21.解法一

解法二

经适当的两行对换和两列对换

22.解 由A+28=AB,有(A-2E)B=A,

2004年10月自学考试线性代数答案

23.解

24.解 设与均正交的向量为

,则

这个方程组的一个基础解系为

(一β也是问题的答案) 25.解

2004年10月自学考试线性代数答案

6 所以,当

方程组有无穷多解.

时,方程组无解;

(2)当

26.解 此二次型对应的矩阵为

四、证明题(本大题共2小题,每小题6分,共12分) 27.证 由行列式乘法公式

2004年10月自学考试线性代数答案

7 28.证

2004年10月自学考试线性代数答案

第11篇:线性代数 教学计划

《线性代数》教学计划

Linear Aigebra

课程性质:必修

适用专业:理工,,经管,医药,农林等专业

总学时数:32学时 学分数:2

一、内容简介

内容包括:行列式,矩阵,线性方程组的基本理论及解法,向量的线性相关性与线性空间,特征值与特征向量的概念与计算,矩阵的相似对角阵及用正交变换化对称矩阵为对角阵的方法,化二次型为标准形。

二、本课程的地位、作用、目的和任务

线性代数是高等学校理工科和经济学科等有关专业的一门重要基础课。它不但是其它数学课程的基础,也是各类工程及经济管理课程的基础。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已经成为科技人员常遇到的课题,因此本课程所介绍的方法广泛地应用各个学科,这就要求学生具备本课程有关的基本知识,并熟练地掌握它的方法。

线性代数是以讨论有限维空间线性理论为主的课程,具有较强的抽象性与逻辑性。通过本课程的学习,使学生获得应用科学中常用的矩阵方法、线性方程组等理论及其有关基本知识,并具有熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力,从而为学习后继课程及进一步扩大数学知识面奠定必要的数学基础。

三、本课程与其它课程的关系

本课程的先修课是高等数学中的“空间解析几何与向量代数”部分。作为基础课,它是许多后继课,如计算方法、数理统计、运筹学以及其他专业基础课和专业课的基础。

随着对教学内容的改革,本课程可以与高等数学中的某些部分结合起来讲授,如向量代数;又可在多元函数的微分学中介绍其部分应用,如二次型的正定性。

四、本课程的基本要求、课时分配,教学计划

通过本课程的学习,要求学生熟练掌握行列式的计算,矩阵的初等变换,矩阵秩的定义和计算,利用矩阵的初等变换求解方程组及逆阵,向量组的线性相关性,利用正交变换化对称矩阵为对角形矩阵等有关基础知识,并具有熟练的矩阵运算能力和利用矩阵方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学基础。

教学计划具体如下: 第一章 行列式(5学时)

1.了解行列式的定义,掌握行列式的性质。

2.掌握行列式的计算,知道克莱姆法则。

第二章 矩阵(7学时)

1.了解矩阵的定义,掌握常见的特殊矩阵及其性质;2.掌握矩阵的线性运算、乘法运算、转置运算及其规律;

3.了解逆矩阵的概念、掌握逆矩阵的性质及其求逆方法;4.了解分块矩阵及其运算。

3.理解矩阵秩的概念,掌握矩阵秩的计算;

4.熟练掌握矩阵的初等变换;了解初等矩阵的性质及与初等变换的关系;

5.熟练掌握用初等变换求逆矩阵。

第三章 线性方程组(2学时)

1.理解线性方程组的基本概念

2.熟练掌握方程组的求解过程(高斯消元法)

3.熟练掌握线性方程组解的理论,理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

第四章 向量的线性相关性(8学时)

1.n维向量的概念;

2.了解向量组的线性相关、线性无关的定义及有关结论;

3.了解等价向量组、最大无关组与秩的概念,会求向量组的最大无关组与秩;

4.理解齐次线性方程组的基础解系、通解的概念; 5.理解非齐次线性方程组解的结构及通解的概念; 6.掌握用初等变换法求线性方程组的通解;

7.线性空间的概念与基本性质,线性空间的维数、基与向量的坐标。 第五章 相似矩阵(6学时)

1.理解特征值、特征向量的概念及性质,掌握特征值、特征向量的计算法; 2.了解相似矩阵的概念与性质,理解矩阵可对角化的条件; 3.了解内积定义,标准正交基,正交矩阵。

4.了解实对称矩阵的特征值特征向量性质,掌握实对称矩阵正交对角化方法。

第六章 二次型(4学时)

1.掌握用正交变换化二次型为标准形的方法; 2.知道二次型的秩、惯性律、规范形;

3.掌握二次型和对应矩阵的正定性及其判别方法。

五、考核方式:平时作业和期末闭卷考试

六、教材《线性代数》,方卫东,吴洪武,华南理工大学出版社,广州,2008.2,第一版。

七、本课程的教学方式

本课程的特点是理论性强,逻辑性强,其教学方式应注重启发式、引导式,讲授时应注意以矩阵作为教学的主线,将其它的内容与矩阵有机联系起来。

八、执行大纲时应注意的问题

1、如果条件允许,可以安排一定学时的数学实验课,用MATLAB语言实现一些繁琐的计算,如矩阵求逆、线性方程组求解等。

2、本课程的概念较多,讲授时需注意前后概念之间的联系。

第12篇:0910线性代数

2009年10月线性代数(经管类)试题

说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,A表示方阵A的行列

式,r(A)表示矩阵A的秩.

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

0111

1.行列式1011

1101第二行第一列元素的代数余子式A21=()

1110

A.-2 B.-1

C.1 D.2

2.设A为2阶矩阵,若3A=3,则2A()

A.1

2 B.1

C.4

3 D.2

3.设n阶矩阵A、B、C满足ABCE,则C1()

A.AB B.BA

C.A1B1 D.B1A1

4.已知2阶矩阵Aab1

cd的行列式A1,则(A*)()

A.abcd B.dbca

C.dbca D.abcd

5.向量组1,2,,s(s2)的秩不为零的充分必要条件是()

A.1,2,,s中没有线性相关的部分组 B.1,2,,s中至少有一个非零向量

C.1,2,,s全是非零向量 D.1,2,,s全是零向量

6.设A为mn矩阵,则n元齐次线性方程组Ax0有非零解的充分必要条件是(

A.r(A)n B.r(A)m

C.r(A)n D.r(A)m

7.已知3阶矩阵A的特征值为-1,0,1,则下列矩阵中可逆的是()

A.A B.EA

C.EA D.2EA

8.下列矩阵中不是初等矩阵的为() ..

100A.010

101

100C.020

001100B.010 101100D.110 101

9.4元二次型f(x1,x2,x3,x4)2x1x22x1x42x2x32x3x4的秩为()

A.1

C.3 B.2 D.4

00110.设矩阵A010,则二次型xTAx的规范形为()

100

222A.z1 z2z3

222C.z1 z2z3222B.z1 z2z3222D.z1 z2z

3二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。

11.已知行列式a1b1

a2b2a1b1a4,则1a2b2a2b1b2______.

12.已知矩阵A(1,2,1),B(2,1,1),且CATB,则C2=______.

1001113.设矩阵A220,则A______.2333

1011,B14.已知矩阵方程XAB,其中A2110,则X______.

15.已知向量组1(1,2,3)T,2(2,2,2)T,3(3,2,a)T线性相关,则数a______.

16.设向量组1(1,0,0)T,2(0,1,0)T,且112,22,则向量组1,2的秩为______.

211101,若该方程组无解,则a 的取值为______.17.已知3元非齐次线性方程组的增广矩阵为0a1

00a10

18.已知3阶矩阵A的特征值分别为1,2,3,则|E+A|=______.19.已知向量α(3,k,2)T与β(1,1,k)T正交,则数k______.

22220.已知3元二次型f(x1,x2,x3)(1a)x1正定,则数a的最大取值范围是______.x2(a3)x

3三、计算题(本大题共6小题,每小题9分,共54分)

x1111

1x11121.计算行列式D的值.11x11

111x1

2122.设矩阵A12,E为2阶单位矩阵,矩阵B满足BABE,求|B|.

x1x2a123.已知线性方程组x2x3a2

xxa133

(1)讨论常数a1,a2,a3满足什么条件时,方程组有解.

(2)当方程组有无穷多解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).

24.设向量组1(1,4,1,0)T,2(2,1,1,3)T,3(1,0,3,1)T,4(0,2,6,3)T,

求该向量组的秩及一个极大无关组,并将其余向量用此极大无关组线性表示.

1250TT,B25.设矩阵A,存在,使得A151, (1,2),(1,1)124321

A22;存在1(3,1)T,2(0,1)T,使得B151,B22.试求可逆矩阵P,使得P1APB.

26.已知二次型f(x1,x2,x3)2x1x22x1x32x2x3,求一正交变换xPy,将此二次型化为标准形.

四、证明题(本题6分)

27.设向量组1,2,3线性无关,且k11k22k33.证明:若k1≠0,则向量组,2,3也线性无关.

第13篇:线性代数题

已知:A是三阶方阵,A*A不等于零向量,A*A*A等于零向量。

问:1)能否求出A的特征值?说明原因。

2)A能否和一个对角阵相似,若能侧求出;否则,说明原因。

2.证明:与基础解系等价的线性无关向量组也是基础解系。

解:

(1)∵A^3=0 ∴|A|^3=0 ∴|A|=0,即|A-0E|=0,∴0是矩阵A的一个特征 设λ为矩阵A的任一特征值,则存在非零向量x,使得Ax=λx

上式两边同左乘矩阵A,得AAx=(A^2)x=A(λx)=λAx=(λ^2)x

∴λ^2是3阶矩阵A^2的特征值。同理,λ^3是矩阵A^3的特征值。

即(A^3)x=(λ^3)x

又∵A^3=O,∴(A^3)x=(λ^3)x=0∵x≠0 ∴λ^3=0 即λ=0

即三阶方阵A的3个特征值全为0.

(2)这题我觉得不能。

∵矩阵A能和对角阵相似的充分必要条件是存在n个线性无关的特征向量。 对于题中的三阶方阵A,由(1)的讨论可知其三个特征值全为0.

下面用反证法证明。

假设三阶方阵A能与对角阵相似。

则A存在3个线性无关的特征向量。

则齐次线性方程组Ax=0的基础解系中有三个向量,即Ax=0的解集的秩为3 设Ax=0的解集为S,则R(A)+R(S)=n=3

∵R(S)=3,∴R(A)=0

即矩阵A的秩为0.当且仅当A=O

又∵根据题设条件,A^2≠O,显然A≠O,与上面推出的A=O矛盾

∴假设不成立,即A不能和一个对角阵相似

2、证明:

设齐次线性方程组Ax=0的基础解系为α1,α2,...,αr,设其基础解系的秩为r 设向量组β1,β2,...,βn是与Ax=0的基础解系等价的线性无关的向量组 ∵向量组β1,β2,...,βn线性无关∴向量组的秩R(β1,β2,...,βn)=n 又∵向量组α1,α2,...,αr与向量组β1,β2,...,βn等价

∴R(α1,α2,...,αr)=R(β1,β2,...,βn)=n即n=r

向量组β1,β2,...,βn中有r个向量β1,β2,...,βr

且向量组β1,β2,...,βr可由向量组α1,α2,...,αr线性表示

即对于其中任何一个向量βi=ki1*α1+ki2*α2+...+kir*αr

∴向量组β1,β2,...,βr中的每一个向量都是齐次线性方程组Ax=0的一个解向量 又∵齐次线性方程组Ax=0的解集中的最大无关组的秩为r

∴向量组β1,β2,...,βr是Ax=0的解集中的一个最大无关组

即向量组β1,β2,...,βr是Ax=0的一个基础解系,命题得证

第14篇:线性代数范围

1.1:求逆序数

1.2:五个性质和推理

1.3和1.4不考

习题一有选择和填空

2.2矩阵的乘法P46的性质P47第4题 (选择、填空)

P52对称矩阵反对称矩阵(要会判断)

P62的逆矩阵

求逆(大题目给矩阵方程X,第

2、6节例

5、6的形式)

习题2(A组)

第三章:

1、n维基本单位向量组线性无关

一个向量构成一个向量组的情况

两个向量的情况

P9

9、P100定理3.6推论

1、

2、3

P101例2线性相关和线性无关

3.3的性质

定理3.15P115P119定理3.16

P123性质1P126例10P127例11的结论

习题三(A组) P139第25题

证明题:

1、第三章

3、4和3.3中例题中的证明题

2、第二章习题二第20题

3、证明线性无关(看书上例题)

大题目:

1、计算行列式

2、矩阵方程

3、求方程的解(先划分行简化阶梯形矩阵,在求特解,在求导出组的基础解系,再求通解)

4、求特征值和特征向量

5、极大无关组:其余向量用极大无关组线性表示,先化成行简化阶梯形矩阵

第四章:

1、内积的计算

2、长度、夹角

3、正交向量组一定线性无关

4、向量空间要回判断

5、正交矩阵(定义和性质)

6、正交向量保持向量的长度

P161性质

第五章:

P176性质3性质4

第15篇:线性代数学习心得

怎样学好线性代数?

感觉概念好多,非常讨厌。

满意答案:

线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。

线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.

一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。

线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:

行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有

r(B)≤n-r(A)即r(A)+r(B)≤n

进而可求矩阵A或B中的一些参数

上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。

三、注重逻辑性与叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

第16篇:线性代数证明题

4.设A、B都是n阶对称矩阵,并且B是可逆矩阵,证明:AB1B1A是对称矩阵.A、B为对称矩阵,所以ATA,BTB

TTT11111证明:因为(AB1B1A)T(AB1)T(B1A)T(B)AA(B)BAABABBA则矩阵5.设T1

AB1B1A 是对称矩阵。

n1n阶矩阵的伴随矩阵为*,证明:**

0时,*0.*0,则知*可逆,

*1.证明:因为

⑴当用反证法:假设在等式**O左右两边同时右乘,得到O,

于是O,这与假设矛盾,

n1可知当0时, 有*0;

⑵ 当0时,在等式*两边同时取行列式,得

**n

两边同时约去,得*n1.6.设向量b能由1,2,3这三个向量线性表示且表达式唯一, 证明:向量组1,2,3线性无关。 证明:(反证法)如果a1,a2,a3线性相关,则有一组不全为0的系数1,2,3使1a1由已知设b(1), 2a23a3=0 112233,结合(1)式得

b0b(11)a1(22)a2(33)a3 (2)

由于1,2,3不完全为零,则17.设1,2,3是1,22,33与1,2,3不同,这与b表示法惟一相矛盾,故向量组1,2,3线性无关。

n阶方阵A的3个特征向量,它们的特征值不相等,记123,证明:不是

A的特征向量。

证明:假设AAA123A1A2A3112233,

又: 123A112233

从而: 1122330,

由于特征值各不相等,所以1,2,3线性无关, 所以的1230123,矛盾。故不是

A的特征向量。

8.已知向量组a1,a2,a3线性无关,b12a1a2,b23a2a3,b3a14a3,证明向量组b1,b2,b3线性无关.证明 把已知的三个向量等式写成一个矩阵等式

20130 b1,b2,b3a1,a2,a31,记BAK,

014设Bx0,以BAK代入得A(Kx)0,

因为矩阵A的列向量组a1,a2,a3线性无关,知Kx0的系数行列式K250,知齐次线性方程组 Kx0只有零解x0。

0只有零解x0,故矩阵B的列向量组b1,b2,b3线性无关。 所以,齐次线性方程组Bx9.设η0是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 (1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b的解;(2)η0,η1,η2线性无关。

证 由假设Aη0=b,Aξ1=0,Aξ2=0.(1)Aη1=A(η0+ξ1)=Aη0+Aξ1=b,同理Aη2= b, 所以η1,η2是Ax=b的2个解。 (2)考虑k0η0+k1η1+k2η2=0,

即 (k0+k1+k2)η0+k1ξ1+k2ξ2=0.则k0+k1+k2=0,否则η0将是Ax=0的解,矛盾。 所以 k1ξ1+k2ξ2=0.又由Ax=0的一个基础解系, 所以,ξ1,ξ2线性无关,所以k1=k2=0,从而 k 0=0 .故η0,η1,η2线性无关。

10.设A是n阶矩方阵,E是n阶单位矩阵,AE可逆,且f(A)(EA)(EA)1。

f(A))(EA)2E;(2) f(f(A))A。 证明(1) (E证明 :(1)(Ef(A))(EA)[E(EA)(EA)1](EA)(EA)(EA)(EA)1(EA)(EA)(EA)2E

(2)f(f(A))[Ef(A)][Ef(A)]1

f(A)]1由(1)得:[E1(EA),代入上式得 2111f(f(A))[E(EA)(EA)1](EA)(EA)(EA)(EA)1(EA)22211(EA)(EA)A 2211.设A与B相似,证明:AT与BT相似。

A与B相似,故存在可逆矩阵P,使得 证明:因为 B则 BTP1AP

(P1AP)TPTAT(P1)TPTAT(PT)1

T 且 P是可逆矩阵

于是

12.证明:矩阵AT与BT相似。

A与B是正定矩阵,证明:AB也是正定矩阵.证明:由题设,对任意x0都有 xTAx0,AB也正定矩阵.

xTBx0xT(A+B)x0(x0),

由正定矩阵的定义,则13.一个n级行列式,假设它的元素满足aijaji,i,j1,2,,n,证明,当n为奇数时,此行列式为零。

aa12a1na22a2nan2ann11aaanaaaan,则A21证明:设Aananannan1的元素满足

aijaji,i,j1,2,,n,

所以,

a11ATa12a1n于是,当a21an1a22an2a2nanna11a21an1a12a1nA(1)nA,

a22a2nan2annn为奇数时,由 AAT(1)nAA0.

14.设矩阵A正交,证明:对于数k,若kA也正交,则k1

证明:因为A正交,所以ATA1。从而

kA正交(kA)T(kA)111A, k又ATA1,所以,(kA)TkATkA1kA111A, kk21k1.15设

1,证明:矩阵AB、AB 是正交矩阵。 A、B为n阶正交矩阵,证明:因为A、B为n阶正交矩阵,所以AATE,BBTE

T

因为(AB)(AB)所以 ABBTATAEATAATE

AB是正交矩阵。

(即两个同阶的正交矩阵的乘积也是正交矩阵)

因为B是正交矩阵,所以B1也是正交矩阵(P115)

由以上结论得:AB1也是正交矩阵。

16.若0是可逆矩阵A的特征值,是A的属于的特征向量,

证明:1是A1的特征值,是A1的属于

1的特征向量;

证明:因为

1A1AA1 从而 A1

1111即 是A的特征值,是A的属于的特征向量。 A,则

第17篇:线性代数教学大纲

《线性代数》课程教学大纲

一.课程基本信息

开课单位:数理学院

课程编号:05030034a

英文名称:linear algebra

学时:总计32学时,其中理论授课28学时,习题课4学时。 学分:2.0学分

面向对象:全校工科专业

教材:

《线性代数》,同济大学教学教研室 编著,高等教育出版社,2007年5月 第五版

主要教学参考书目或资料:

1.线性代数》,奕汝书 编著,清华大学出版社

2.《线性代数》,武汉大学数学系

3.《线性代数辅导》,胡元德等 编著,清华大学出版社 4.《线性代数试题选解》(研究生试题选),魏宗宣 编著

二.教学目的和任务

线性代数是高等学校理工科有关专业的一门重要基础课。它不但是其它数学课程的基础,也是各类工程课程的基础。为适应培养面向21世纪人才的需要,要求学生比较系统理解线性代数的基本概念,基本理论,掌握线性代数的基本计算方法.要求较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。本课程所讲的理论和方法,早已被广泛应用于各个学科和各个领域。它是建立在多维空间多元素基础上的,在计算机日益普及的今天,它作用更能充分发挥出来。所以本课程的社会地位和作用也日益显得突出和重要。工科大学生必须具备本课程的知识,才能更好地适应社会主义建设的需要。

通过本课程的学习,应使学生获得在应用科学中常用的矩阵方法,线性方程解法、二次型理论等实用性极强的基础知识,使学生能用这些方法解决一些实际问题,提高学生解决实际问题能力。同时,也为学生今后扩大知识面打下必要的数学基础。

三.教学目标与要求

通过对这门课的学习,使学生了解行列式、矩阵、向量组的定义和性质,掌握行列式的计算,矩阵的初等变换,矩阵秩的定义和计算,利用矩阵的初等变换求解方程组及逆矩阵、向量组的线性相关性,利用正交变换化对称矩阵为对角形矩阵等有关基础知识,并具有熟练的矩阵运算能力和利用矩阵方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学基础。

四.教学内容、学时分配及其基本要求

第一章 n阶行列式 (6学时)

(一)教学内容

1、二阶与三阶行列式

2、全排列及逆序数

3、n阶行列式定义

4、对换

5、行列式性质

6、行列式按行列展开

7、克莱姆法则

(二)基本要求

1、知道n阶行列式定义,了解行列式性质,熟练掌握

二、三阶行列式计算法。

2、了解按行(列)展开行列式的方法,掌握四阶和四阶以上行列式的计算法。

3、掌握用克莱姆法(Gramer法则)解线性方程组的方法。第二章 矩阵及其运算 (4学时)

(一)教学内容

1、矩阵

2、矩阵的运算

3、逆矩阵

4、矩阵分块法

(二)基本要求

1、理解矩阵概念,知道单位阵、对角阵、对称阵、三角阵、正交阵等常用矩阵及其性质。

2、熟练掌握矩阵加法、乘法、转置、方阵行列式的运算及其运算规律。

3、理解逆矩阵概念及逆阵存在的充要条件,掌握逆矩阵的求法。

4、掌握分块矩阵的运算和分块对角阵的性质及其应用。第三章 矩阵的初等变换与线性方程组 (6学时)

(一)教学内容

1、矩阵的初等变换

2、初等矩阵

3、矩阵的秩

4、线性方程组的解

(二)基本要求

1、掌握矩阵的初等变换和初等方阵的基本理论及其应用。

2、理解矩阵秩的概念,会求矩阵的秩,知道满秩矩阵的性质。

3、掌握利用系数矩阵的秩和增广矩阵的秩的大小比较及与未知元个数n的关系判别线性方程组有无解;有多少组解(即解的存在性与唯一性的判别)的基本方法

第四章 向量组的线性相关性 (8学时)

(一)教学内容

1、向量组及其线性组合

2、向量组的线性相关性

3、向量组的秩

4、线性方程组的解的结构

5、向量空间

6、习题课

(二)基本要求

1、理解n维向量的概念并掌握其运算规律。

2、理解向量组的线性相关、线性无关的概念。

3、了解向量组线性相关、线性无关的几个重要性质。

4、理解向量组的秩的概念,会求向量组的秩和最大无关组,并会用最大无关组表示其余的向量。

5、了解n维向量空间中的空间、基、维数、坐标等概念,会求基,会用基来线性表示所属空间的其余向量。

第五章 相似矩阵及二次型 (8学时)

(一)教学内容

1、向量的内积,长度及正交性

2、方阵的特征值与特征向量

3、相似矩阵

4、实对称阵的相似对角阵

5、二次型及其标准形

6、用配方法化二次型为标准形

7、正定二次型

8、习题课

(二)基本要求

1、理解矩阵的特征值和特征向量的概念,并掌握其求法。

2、了解相似矩阵的概念和性质。

3、了解矩阵对角化的充要条件,会求实对称阵的相似对角阵。

4、掌握将线性无关向量组正交规范化的施密特(Schmidt)法。

5、掌握二次型及其矩阵表示法。

6、掌握用正交变换法化二次型为标准形。

7、了解惯性定律、二次型的秩、二次型的正定性及其判别法。

五.教学方法及手段

采用启发式教学方法,配合多媒体教学,充分使用现代化教学手段。

六.考核方式及考核方法

考核方式为“闭卷考试”。成绩评定:平时成绩30%+考核成绩70%。

七.其它说明

如果条件允许,可以安排一定学时的数学实验课,用MATLAB语言实现一些繁琐的计算,如矩阵求逆、线性方程组求解等。

(制定人: 徐江 审定人: 章婷芳 )

第18篇:线性代数教学大纲

《线性代数》教学大纲

课程名称:《线性代数》 英文名称:Linear Algebra 课程性质:学科教育必修课 课程编号:D121010 所属院部:城市与建筑工程学院 周 学 时:3学时 总 学 时:48学时 学

分:3学分

教学对象(本课程适合的专业和年级): 给排水科学与工程与土木工程专业二年级学生

课程在教学计划中的地位作用:高等学校各专业的一门重要的基础理论课 教学方法:讲授 教学目的与任务

线性代数是讨论代数学中线性关系经典理论的课程,它具有较强的抽象性与逻辑性,是高等学校本科各专业的一门重要的基础理论课。

通过本课程的教学,使得学生在系统地获取线性代数的基本知识、基本理论与基本方法的基础上,初步熟悉和了解抽象的、严格的代数证明方法,理解具体与抽象、特殊与一般的辩证关系,提高抽象思维、逻辑推理的能力,并具有较熟练的运算能力。学会理性的数学思维技术和模式,培养学生的创新意识和能力,能运用所获取的知识去分析和解决问题,并为后继课程的学习和进一步深造打下良好的基础。

课程教材:同济大学数学系编《工程数学线性代数》(第六版),高等教育出版社

参考书目:

1、上海交通大学数学系线性代数课程组编.线性代数(第二版).北京:高等教育出版社, 2012.

2、吴赣昌主编.线性代数(理工类.第四版).北京:中国人民大学出版社, 2011.

3、杨刚、吴惠彬主编.线性代数.北京:高等教育出版社, 2008.考核形式:考试

编写日期:2018年9月制定

课程内容及学时分配(含教学重点、难点): 第1章 行列式 (9学时) (1)教学目的和要求

了解行列式的定义和性质,掌握

二、三阶列式的计算法,会计算简单n阶行列式,掌握克拉默法则。(2)主要内容

二阶与三阶行列式定义,并用它们解二元、三元线性方程组。从二阶、三阶行列式概念入手,用展开法引出n阶行列式定义,并介绍从定义出发求简单行列式的值。行列式的性质,并举例如何应用这些性质求行列式的值,行列式按某行(列)展开法则及其结论的推论,克拉默法则及其推论。 (3)重点、难点

重点:二阶、三阶行列式的计算,四阶数字行列式的计算。 难点:n阶行列式的计算。 第2章 矩阵及其运算 (9学时) (1)教学目的和要求

熟悉矩阵的概念,了解单位矩阵、对角矩阵及其性质,掌握矩阵的线性运算、乘法、转置及其运算规律,理解逆矩阵的概念,掌握逆矩阵存在的条件与矩阵求逆方法,了解分块矩阵及其运算 。 (2)主要内容

矩阵的定义、对角阵、单位阵、矩阵的加法及其运算规律,数与矩阵相乘及其运算规律、矩阵与矩阵的相乘及运算规律、矩阵的转置及运算规律、方阵的行列式及性质、逆矩阵定义、可逆条件、公式法求逆矩阵方法、分块矩阵定义及其运算。 (3)重点、难点

重点:矩阵加、减、乘、逆的运算、逆矩阵存在条件与求逆矩阵的方法。 难点:逆矩阵存在的充要条件。

第3章 矩阵的初等变换与线性方程组 (6学时) (l)教学目的和要求

掌握矩阵的初等变换,熟悉矩阵秩的概念并掌握其求法,了解满秩矩阵、初等阵定义及其性质,了解线性方程组的求解方法。 (2)主要内容

初等变换、行阶梯形矩阵、等价类、矩阵的秩、两矩阵等价条件、满秩矩阵、齐次线性方程组有非零解条件,非齐次线性方程组有解判别方法、求解方法、初等矩阵定义及性质、求逆矩阵的第二种方法。 (3)重点、难点

重点:矩阵初等变换、求矩阵秩、利用初等变换求逆矩阵。 难点:含参数的线性方程组的求解。 第4章 向量组的线性相关性 (12学时) (1)教学目的和要求

熟悉n维向量的概念,熟悉向量组线性相关、线性无关的定义,了解有关向量组线性相关、线性无关的重要结论,了解向量组的最大无关组与向量组的秩的概念,了解n维向量空间、子空间基底、维数等概念 ,理解齐次线性方程组的基础解系及通解等概念,理解非齐次线性方程组的解的结构及通解等概念,掌握用行初等变换求线性方程组通解的方法。 (2)主要内容

n维向量及例子、线性组合、线性表示、向量组等价、线性相关、线性无关的概念及重要结论、最大线性无关组、有关秩的重要结论、向量空间、基、维数、齐次线性方程组的性质、基础解系概念及求法、非齐次性方程组的解的性质、解的结构.用行初等变换求线性方程组通解的方法。 (3)重点、难点

重点:线性相关性、最大线性无关组、用行初等变换求线性方程组的通解的方法。 难点:线性相关性证明。

第5章 相似矩阵及 二次型 (12学时) (1)教学目的和要求

熟悉矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量,了解相似矩阵的概念、性质及矩阵对角化的充要条件,会求与实对称矩阵相似的对角形矩阵,了解把线性无关的向量组正交规范化的施密特(Smidt)方法,了解正交矩阵概念及性质, 了解二次型及其矩阵表示, 了解二次型的秩的概念, 会用正交变换法化二次型为标准型, 了解二次型的正定性及其判别法。 (2)主要内容

向量内积、正交向量组及性质、施密特正交化过程、规范正交基、正交变换、特征值、特征向量、特征方程、特征多项式、特征值、特征向量的性质、相似矩阵、相似变换、相似矩阵的性质、方阵的对角化条件、对称矩阵特征值性质、对称矩阵的对角化、二次型定义及矩阵表示、二次型的秩、二次型可化为标准型、配方法化二次型为标准到举例、正定二次型概念及判定。 (3)重点、难点

重点:矩阵的特征值与特征向量、对称矩阵化为对角矩阵。 难点:矩阵可对角化的有关结论。

第19篇:线性代数(21)

《线性代数》模拟试卷(二十一)

一、填空题(每小题3分,共15分) 1.当n阶矩阵A的秩小于n时,则|A|_______.x1x22x312.当常数____时,方程组2x1x27x32有解.x2xx12313.A32411,B21ab4.行列式cbc215.矩阵A00121bcaca201cabab221,C4011111______________.11002,则A(BC)________.111的特征值为2____________.二.选择题(每小题3分,共15分) 1.当n个向量1,2,...,n线性相关时成立的常数k1,k2,...,kn为()(B)任意一组不全为零的常常数(D)唯一的一组不全为零的1

,使等式k11k22....knn0数常数(A)任意一组常数(C)某些特定的不全为零的32.设A为n阶矩阵,且A0,则矩阵(EA)等于((A)EAA2)2(B)EAA2(C)EAA(D)EAA23.设有向量1(1,1,1,0),2(1,2,1,0),3(0,1,1,1),4(2,2,1,1),则以下结论正确的是(A)1线性相关(C)1,2,3线性相关()(B)1,2线性相关(D)1,2,3,4线性相关4.设A为n阶矩阵(n2),且其秩r(A)1,则下列命题中正确的是(A)r(A*)0(C)r(A*)n15.设A2()(B)r(A*)1(D)以上都不正确()E,则以下结论中正确的是(A)AE可逆(C)AE时,AE可逆(B)AE可逆(D)AE时,AE不可逆

111

三、(本题满分12分)设A=111111111114,求r(A),A.11

四、(本题满分16分,每小题8分)

1A241.已知AX=b,其中

111212,b4,求X.24

2.若A,B均为n阶可逆矩阵,且AT=A-1,BT=B-1,

T证明(AB)(AB)=E

五、(本题满分16分)

1设A201a23ax11b2,3,xx2,试就a,b各取值的可能性3xa2b31Ax的解,如有解,就求出解.,讨论非齐次线性方程组

六、(本题满分16分)

求正交变换把二次曲面化为标准方程222

方程2x15x25x34x1x24x1x38x2x31.,并指出其形状

七、(本题满分10分)

假设为n阶可逆矩阵(1)1A的一个特征值为A的伴随矩阵,证明:A的特征值.*

为A的特征值;(2)1|A| 答案

35一.1.0;2.1;3.172三.r(A)1,A4136195;4.0;5.1,3.二.1.C;2.B;3.D;4.A;5.D.064A.111四.1.X2.2.(AB)(AB)\'(AB)(B\'A\')ABB2AE.五.当ab,且a0时,方程有唯一解11ax11,x2ax30,当a0时,无解;.当ab0时,有无穷多组解11ax101,x2k1ax130

132六.XPY323255550251245222Y,10y1y2y31,旋转椭球面.1553

第20篇:线性代数发展史

线性代数发展史

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。

线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l\'analyse des lignes courbes alge\'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 \' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。

高斯( Gau ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯约当”消去法中的约当。

矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J.Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,

数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Gramann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P.A.M.Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。

矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

线性代数心得体会
《线性代数心得体会.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档