人人范文网 岗位职责

虚拟现实岗位职责(精选多篇)

发布时间:2020-12-26 08:37:11 来源:岗位职责 收藏本文 下载本文 手机版

推荐第1篇:虚拟现实教学大纲

《非线性编辑》课程教学大纲

课程编号:(暂不填写)

课程名称:虚拟现实

总学时数和学分:本课程计划72学时,4学分 实验或上机学时:36学时

先修及后续课程要求:三维动画设计3D、图形图像处理PS

一、课程的性质和任务

课程性质:

虚拟现实是利用计算机图形学技术,在计算机中对真实的客观世界进行逼真的模拟再现。通过利用传感器技术等辅助技术手段,让用户在虚拟空间中有身临其境之感,能与虚拟世界的对象进行相互作用且得到自然的反馈,并让人产生构想。

主要任务:

使学生掌握3ds max及VPR软件的使用方法,掌握利用3ds max软件进行前期的模型、材质、灯光以及渲染器的设置技巧,熟练使用VRP完成动画的设置。

二、基本要求

教学环节包括:课堂讲授及习题课、课外作业、实验、考试考查等

(一)、课堂讲授

1.教学方法:

通过讲授演示3ds max的使用方法让学生掌握虚拟现实前期的制作过程,通过学习VPR软件的动画设置,完成后期动画的制作。

2.教学手段:

通过多媒体设备进行教学,并采用电子教案、CAI课件、案例分析等先进教学手段。

3.外语的要求:

会看懂英文版的多媒体创作工具

(二)、教学辅助资料

拍摄的视频素材

(三)、习题课安排

给出样例让学生自己完成。

三、与其它课程的关系

在本课程开设之前,应先修三维动画设计3D,图形图像处理PS等课程,并为以后学习视频特效等课程打下基础。

四、教学内容

本课程共分七大模块,通过学习,使学生掌握3ds max软件的使用和VPR动画的设定。主要教学内容有:

第一章3ds Max建模准则

虚拟现实(VR)的建模和做效果图、动画的建模方法有很大的区别,主要体现在模型的精简程度上。VR的建模方式和游戏的建模是相通的,做VR最好做简模, 不然可能导致场景的运行速度会很慢、很卡、或无法运行。 教学重点:模型的创建与简模的制作。

教学难点:模型的简化与拓扑结构的分布。 目的要求:制作布线合理的简模。

第二章3ds Max前期材质类型的应用与基本设置。

在制作VR项目时,虽然模型的优化很重要,但材质的编辑也一样很重要,因为材质的使用需要跟烘焙操作结合在一起,不同类型的材质需要采取不同的烘焙方式。

教学重点:材质与贴图的基本设置。

教学难点:材质的调节,UV的划分与贴图的绘制。

目的要求:掌握3ds max材质的调节与贴图的正确绘制。

第三章3ds Max前期灯光设置要求与相机的创建 掌握正确的布光方法及灯光与摄像机参数的设置:

1、创建灯光并合理布光。

2、摄像机参数的调节。

教学重点:布光方案的正确选择。

教学难点:灯光的参数调节与灯光之间的关系。

目的要求:掌握灯光布光的基本方法、并熟练使用灯光、相机的各项参数设置。

第四章3ds Max前期渲染器基本参数 教学重点:

1、默认渲染器的参数设定。

2、Vray渲染器的参数设置与调节。

教学难点:Vray渲染器的参数面板设置与材质灯光的调节。 目的要求:熟练掌握渲染面板参数设置。。

第五章3ds Max前期烘焙基本参数设置 教学重点:贴图烘焙的命令和参数设置。

教学难点:烘焙的参数设置与烘焙前的渲染结果检查。

目的要求:掌握贴图烘焙与检查的方法。

第六章 前期常用动画的简单制作

教学重点:常用父子动画,路径动画,动力学动画的制作

教学难点:父子关系的设定,路径动画的参数调节与动力学动画的参数设定。 目的要求:掌握常用动画的制作。。

第七章 3ds Max的模型与动画导出技巧

教学重点:掌握部分静态模型与全部静态模型的导出与动画模型的导出方法。 教学难点:将烘焙模型正确导入到VPR软件中制作动画。 目的要求:掌握烘焙完成模型的导出技巧。

五、实践教学环节

实训要求:

使学生掌握3ds Max与VPR的使用方法,完成虚拟现实动画的制作。 实训内容:

实训一 简模的创建与布线的调整。

实训二

常用材质的参数调节,UV的划分与贴图的正确绘制。

实训三

灯光的参数设置与布光方案的正确解决。

实训四 渲染参数面板的设置。

实训五

贴图烘焙的命令与参数设置。

实训六

动画的制作,能完成父子关系、路径与简单动力学动画的制作。

实训七

导入VPR后动画的制作。

六、教学建议

1、师资要求:

要求主讲教师具有一定的行业从业经历或有相关成熟作品。

2、教学条件:

酷睿i5以上计算机或兼容机40台。注:四核CPU主频须2.6GMHz以上,内存须4G以上,硬盘须500G左右自由空间,WindowsXP系统或更高版本,3ds max 2009或以上版本,VPR软件。

七、考试与成绩评定

该课程根据平时(作业和出勤)、期中、期末等成绩按学院要求比例进行考核。

八、制定教材与教学参考书

[1]《3ds max与虚拟现实》.九州星火传媒.电子工业出版社.2006.5

九、补充说明

1.本课程须以理论与实践结合进行教学。

2.本教学大纲适用于三年制动漫设计与制作专业。

开课单位及课程所属教研室(加盖单位公章):

大纲制(修)订负责人签名:

开课单位教学主任签名:

大纲制(修)订时间: 年 月

推荐第2篇:虚拟现实简介

虚拟现实技术简介

虚拟现实(VR-Virtual Reality),也称虚拟实境或灵境,是一种可以创建和体验虚拟世界的计算机系统,它利用计算机技术生成一个逼真的、具有视、听、触等多种感知的虚拟环境,用户即可以简单的通过网页浏览、应用程序查看时键盘和鼠标的操作甚至通过使用各种交互设备,同虚拟环境中的实体相互作用,使之产生身临其境感觉的交互式视景仿真和信息交流,是一种先进的数字化人机接口技术。

与传统的模拟技术相比,虚拟现实技术的主要特征是:操作者能够看到三维实体、逼近真实的场景,结合环幕等硬件设备可以使操作者真正进入一个由计算机生成的交互式三维虚拟现实环境中,与之产生互动,进行交流。通过参与者与虚拟仿真环境中对象的相互作用,并借助人本身对所接触事物的感知和认知能力,帮助启发参与者的思维,以全方位地获取虚拟环境所蕴涵的各种空间信息和逻辑信息。这是符合人类认知过程一种计算机技术。

沉浸/临场感和实时交互性是虚拟现实的实质性特征,对时空环境的现实构想(即启发思维,获取信息的过程)是虚拟现实的最终目的。虚拟现实技术的先进特性使得该项技术应用于各行各业的模拟仿真研究中,并切实有效地指导了生产实践。自从虚拟现实技术诞生以来,它已经在军事模拟、先进制造、城市规划/地理信息系统、医学生物等领域中发挥了巨大的经济、军事和社会效益。预言家们预言虚拟现实技术在不远的将来虚拟现实技术就会象当年地计算机一样应用于社会生产实践的各个领域,它与网络、多媒体将并称为21世纪最具应用前景的三大技术。

目前已经众多国内外的公司退出了自己的虚拟现实技术解决方案,包括软件的解决方案和硬件的解决方案,更多的是软硬件结合的解决方案。好的软件也需要好的硬件来配合实现身临其境的效果,因此这是一个系统工程,技术门槛不高,但实际应用难度大。

推荐第3篇:虚拟现实 论文

XXXXXX学院

虚拟现实

学 生 姓 名:XXX 指 导 教 师:XXXX 系别:信息技术系 专业、班级:计算机科学与技术XXX班 完 成 时 间:2009年6月13日

虚拟现实技术在计算机专业教育中的应用

姓名:XXX

专业:XXX

学号:XXXX

摘要:目前,虚拟现实技术已广泛应用于航空航天、娱乐游戏,以及建筑设计等领域。在教育领域,虚拟现实技术也有广泛的用途。文章介绍了虚拟现实技术及VRML语言,探讨了虚拟现实技术在计算机教学和计算机实验中的应用。如果虚拟技术广泛应用于网络教育中,将对远程教育产生深远的影响。

关键词:虚拟现实技术;虚拟实验;VRML;计算机专业

随着我国教育的不断改革和科学技术的飞速发展,代写论文 网络教育的出现改变了传统的教学方式。尤其是计算机更新速度非常快的特点使得传统的教学方式难以满足学习的需要。虚拟现实技术作为一门新的技术,它在教育领域的发展将为教育提供新的活力。本文主要从虚拟现实技术特征和VRML语言的角度探讨其在计算机专业教育中的应用。 1 虚拟现实技术

多媒体技术与网络技术的发展为现代教育手段的现代化带来了新的机遇和挑战。随着计算机技术的快速发展,现代教育技术的应用已不再是停留在音像技术课堂中应用的常规模式层次上.而是朝着多媒体化、网络化、信息化、教育技术应用模式多样化和远程教育普及化的趋势发展,特别是基于计算机仿真技术的虚拟教学形式,是一种最新出现的教学模式,具有广阔的发展前景,代表了教育的未来和发展的方向。

1.1 虚拟现实技术概念

虚拟现实(Virtual Reality,简称VR),又称为灵境技术,代写毕业论文 它汇集了数字图象处理、计算机图形学、多媒体技术、人工智能、人机接口技术、传感器技术,以及人体行为学等多项天技术.是计算机技术的综合应用。具体地说,就是采川以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互作用,相互影响,从而产生如同真实环境的感受和体验。尽管该环境并不真实存在,但它作为一个逼真的三维环境.仿佛就在我们周围。由于用户对计算机环境中的虚拟物体产生了类似于对现实物体的存存意识或幻觉,从而使得用户在计算机所创建的维虚拟环境中处于一种全身心投入的状态。

1.2 虚拟现实系统的构成

一个虚拟现实系统由以下几部分组成:

(1)虚拟环境。它由虚拟环境发生器所产生,且可让使用者通过传感器件和作用器件与之交互,这种交互的结果是使用者有全身心进入这一环境的感觉。

(2)传感器件。它将虚拟环境中的物体的形、动作、声音等进行转换,使人能获得视觉、听觉、触觉等多方面的感觉。这些感觉与他以往在实际环境中的感觉一致。

(3)作用器件。它将人的一些约定动作(如行走、手势等)变成作用的信息,让虚拟环境有所察觉。

(4)人。虚拟现实实质上是一内含反馈的闭环系统,只有人的存在才能使这一反馈环路有效成立。代写硕士论文所以人是VR系统中不可缺少的成分。人通过传感器件感受虚拟环境的存在.又通过作用器件去影响虚拟环境,使其作出相应的变化。

(5)虚拟环境发生器。它能产生使用者所需要的虚拟环境,且能通过作用器件传来的作用信息。了解使用者的位置和动作。并对已产生的虚拟环境作出相应的修改。

1.3 虚拟现实技术基本特征

(1)沉浸性。虚拟现实技术是根据人类的视觉、听觉的生理心理特点,由计算机产生逼真的三维立体图像。使用者戴上头盔显示器和数据手套等交互设备,便可将自己置身于虚拟环境中,成为虚拟环境中的一员。使用者与虚拟环境中的各种对象的相互作用,就如同在现实世界中的一样。当使用者移动头部时。虚拟环境中的图像也实时地跟随变化,拿起物体可使物体随着手的移动而运动,而且还可以听到三维仿真声音。使用者在虚拟环境中,一切感觉都是那么逼真,有一种身临其境的感觉。

(2)交互性。虚拟现实系统中的人机交互是一种近乎自然的交互.使用者不仅可以利用电脑键盘、鼠标进行交互,而且能够通过特殊头盔、数据手套等传感设备进行交互。计算机能根据使用者的头、手、眼、语言及身体的运动,来调整系统呈现的图像及声音。使用者通过自身的语言、身体运动或动作等自然技能.就能对虚拟环境中的对象进行考察或操作。

(3)多感知性。由于虚拟现实系统中装有视、听、触、动觉的传感及反应装置,因此,使用者在虚拟环境中可获得视觉、听觉、触觉、动觉等多种感知,从而达到身临其境的感受。

1.4 虚拟现实系统的类型

虚拟现实技术按其功能,可分为以下几种类型:

(1)沉浸式虚拟现实系统

沉浸式虚拟现实系统是利用头盔显示器、数据手套、三维鼠标等传感跟踪装置与虚拟世界进行交互。由于这种系统把人的视觉、听觉和其它感觉封闭在虚拟的感觉空间,能使人全身心投入并沉浸其中。不足之处在于专用设备复杂而且昂贵,难以在教育行业普及推广。

(2)桌面式虚拟现实系统

桌面式虚拟现实系统是运用软件编程的方法在显示器上显示三维场景.用户通过键盘、鼠标等简单的设备与虚拟场景进行交互。这种系统由于用户坐在显示器前,通过屏幕观察虚拟世界并与之交互,往往会受到周围环境的影响,难以做到完全投入.但是结构简单、成本较低,易于普及推广。

(3)分布式虚拟现实系统

分布式虚拟系统是多个用户通过网络共享一个虚拟空间,共同参与虚拟活动。

(4)增强现实性虚拟现实系统

增强现实性的虚拟现实系统不仅是利用虚拟现实技术来模拟现实世界、仿真现实世界,而且要利用它来增强参与者对真实环境的感受,也就是增强现实中无法感知的感受。

1.5 虚拟现实造型语言VRML

VRML(Virtual Reality Modeling Language1即虚拟现实建

模语言,是一项和多媒体通讯、因特网、虚拟现实等领域相关的,在Intemet上营造虚拟环境的技术。它用来在网络上创建可导航的、超链接的三维虚拟场景。

VRML的基本工作原理可概括为:文本描述、远程传输和本地计算生成。所谓文本描述,是指VRML并不是用三维坐标点的数据来描述三维物体的,因为这样会有很大的数据量.在Intemet上传输会遇到很多困难.VRML是用类似HTML的标记文本语言来描述三维场景.就像我们的编程语言。比如,一个立方体的描述文本是:Box(size 3.0 3.0 3.0)。VRML就是一种描述语言标准,规定了用来描述三维场景的文本描述语言。远程传输是指用户浏览VRML描述的虚拟场景时,需要通过Intemet将描述场景的文本传送到本地。一般来说,文本描述是嵌在WEB页面中,在浏览器请求相应页面时与页面描述文本一起传送本地。本地计算生成是指描述虚拟场景的数据传送到本地后,浏览器对它进行解释计算,动态地生成虚拟场景。比如,描述球形的文本,浏览器会在屏幕上绘制一个立体的球形。概括地说,就是

用文本信息描述三维场景.在Intemet网上传输,在本地机上由VRML的浏览器解释生成三维场景.解释生成的标准规范即是VRML规范。

VRML文件主要包括四个主要成分:VRML文件头、原型、造型节点、脚本和路由。在这四个要素中.代写医学论文只有文件头部分是必须的,它用来告诉浏览器该文件符合的规范标准以及使用的字符集等信息。原型定义了创建带有指定名称、接口和整体的新节点类型。一旦成功地定义了原型,它就可以在VRML文件的其他地方随意使用。造型节点是VRML中的基本建造模块.它构成了VRML文件的主体部分,正是由于造型节点定义而产生了虚拟的VRML空间。脚本可以看作是一个节点的外壳,它有域、eventIn事件和eventOut事件。其本身没有任何动作.然而你可以通过程序脚本来赋予你脚本节点的动作。程序脚本实际上是一种简化了的应用程序,一个典型的脚本是由Java或JavaScript编程语言写成的程序。路由是一种文本描述的消息.一旦在两个节点之间创建了一个路由.第一个节点可以顺着路由传递消息给第二个节点,这样的消息被称为事件。VRML还可以包含下列条目:注释、节点和域值、定义的节点名、使用的节点名等。

设计VRML虚拟场景时。最简单的方法是直接使用文本编辑器来编辑描述文本,它类似于程序设计,这种方法简单方便.但不是很直观.对设计者的空间想象能力要求也较高,设计的效率不高。现在有很多的可视化的VRML设计工具,如CosmoWorld和WebWorld等.这些工具将VRML的标准节点都做成可视的组件,用户设计时,只需要将这些组件组全自己需要的虚拟场景就可以了.而且设计的效果在设计时就可以看到。设计完毕后,系统自动将这些可视的虚拟场景生成标准的VRML描述文本,这样,这些文本传送到用户的浏览器后.便会在用户的屏幕上重现这个虚拟场景。

VRML使得Intemet的平面世界出现了三维场景。它的问世在世界上引起了极大的反响.得到众多的软硬件厂商的支持,成为了Intemet上最有发展前景的新兴技术。VRML在各方面都展现出了强大的应用可能性。蕴藏了无限生机。在教育领域的WEB站点中,它可广泛用于学习情景创设上,以增加学习内容的形象性和趣味性。例如:创建网上三维图书馆,它的好处就在于书籍归类整理更接近真实并将高于真实,汇编或查阅时书籍只需要鼠标轻轻地点击对应的虚拟图书。另外,使用VRML做模拟训练是一种可行性极高的措施,它不仅可以减少某些情况下现实空间中操作的难度和危险.更为重要的是它可以使训练造价得到大幅度降低,这样就使得在教育方面的应用成为可能。由于这种模拟系统具有高度的真实性,所以并不会因为没有真实系统介入而造成较差的训练效果。现在虚拟校园、虚拟考场也已经陆续地出现在网络中,这些新兴的教育形式必将因其优越的一面而在未来教育领域中占有一席之地。

2 虚拟现实技术在计算机专业教育中的应用

2.1 虚拟现实技术在辅助课堂教学中的应用

众所周知,计算机课程实践性很强,在书本上体现难免会给人们的理解带来困难。利用虚拟现实技术制作的课件能够很好地解决这一问题。例如,在计算机基础课程中介绍计算机中各个组件的结构和讲解计算机组装的过程时,书本的文字难以让学习者了解组件结构和组装的过程。利用虚拟现实技术可以将文字、声音、图片、动画等几种媒体表现形式有机地结合,设计出生动活泼的界面。制作出一些三维的、交式的、具有沉浸感的内容,满足学习者从各个角度观察和学习,仿佛身临其境,更好地理解学习的内容。

制作VRML课件的基本思路是:

(1)制作一系列空间形体的三维造型和动画.并且为这些造型指定所需要的颜色、大小等。

(2)引入VRML的相关节点,建立虚拟运动空间。实现课件多媒体功能。

(3)优化VRML场景,即在构建场景的过程中,利用VRML提供的高级造型技术适当优化程序。

(4)VRML文件的输出,将已创建的空间场景输出为.wrl形式的文件。

例如,设计VRML课件来实现网上虚拟计算机组件结构和组装的辅助教学。

首先,在介绍计算机组件选择知识同时。可以在网上从各个角度来观察VRML制作的计算机组件的造型.增强感性认识,并使学习者对怎样组装计算机有个初步的了解。利用VRML的造型设计和VRML Script的动画链接.虚拟出组装计算机过程中所需的主要硬件,再通过把VRML文件嵌入到网页的方法,使学习者既能在网页中看到二维不同型号硬件的图片和一些描述硬件的文字.又能看到三维的虚拟制作出来的硬件模型。这样使学习者能真切地、直观地感受到二维和三维的不同.感受到虚拟世界的美妙。然后,通过文字和图片向学习者介绍如何将各计算机组件组装到一起。接着,通过VRML的动画节点控制和VRML Script的结合。制作出安装、注释和视点切换的效果,然后按照六个安装步骤:第一,机箱、主板的安装;第二,风扇、内存的安装;第三,光驱、软驱、硬盘的安装;第四,声卡、显卡的安装;第五,电源的安装;

第六。显示器、键盘、鼠标的安装,组合完成整个在虚拟三维世界中组装计算机的过程。 在学习的过程中,只要点击相应的按钮,就可以按相应的步骤进行安装。拖动鼠标或按钮可以随意地移动计算机组件到指定的位置进行安装。在安装完光驱和软驱后,点击光驱的开、关键,光盘托会自动拖出和送入,点击软驱的按钮,

软盘会自动取出.使学习者能动态地观看到效果。有一种身临其境的感觉来完成学习的过程。

通过VRML Script语言的链接。制作出生动有趣的动画效果和逼真的声音效果。例如.当你点击软驱上的按钮,会发出声音并弹出一张软盘;当你点击光驱按钮时,盘盒会自动地弹缩并发出逼真的声音。为了方便学习。还可以实现注释信息,当学习者的鼠标碰到硬件设备时。在对象的旁边会出现一个注释信息,说明该对象名称。

又如,在《数据结构》课程中,对于常用的数据结构的算法思想.由于其抽象程度高。使得学生很难理解。我们也可以通过虚拟技术将其制作成课件进行教学。将抽象的算法过程以浅显易懂、形象直观的形式展现出来。例如,递归算法是学生比较难理解的,因为其算法是靠隐形调用堆栈来实现,而通过虚拟技术可以将堆栈内部情况的变化动态、直观、形象地表现出来,这样学生就很容易理解。同样在讲解树和图的遍历时,可以从可视化的角度观察遍历的顺序。二叉树与树的概念的区别、Hanoi塔等问题都可以直观地表现。方便教师的教学和学生的理解。

总之,通过制作课件来辅助课堂的教学,能为学习者提供生动、逼真的感性学习材料,使抽象的学习直观化、形象化,帮助学习者解决学习中的重点和难点,提高学习者的积极性。

2.2 虚拟现实技术在计算机实验中的应用

由虚拟现实技术生成的适用于进行虚拟实验的实验系统,包括相应的实验室环境、有关的实验仪器设备、实验对象。以及实验信息资源等。虚拟实验室可以是某一现实实验室的真实再现。也可以是虚拟构想的实验室。例如,在城域网和广域网的网络建设过程中,不必真正把网络构建起来就可以亲身体验,犹如进行现场的操作。在数字电路的课程实验中,可以通过虚拟的电路器件来达到电路设计的目的,而没有购买器件问题所带来的麻烦。在电子商务课程实验中,可以虚拟商务环境,让学生进入这个虚拟环境。身临其境地体验现场交易的气氛和参与交易的过程。计算机操作系统的安装是比较基础但又是难做好的一个实验。由于在计算机上安装新的操作系统不可避免地会对原有的操作系统产生影响。

使用虚拟计算机来进行操作系统的安装试验就十分的方便了。代写工作总结使用虚拟机的软件VMware可以创建与真实计算机一模一样的虚拟机。创建的虚拟机有自己的CPU、内存、硬盘、光驱,在这个虚拟机上,可以安装Windows、Linux等真实的操作系统以及各种应用程序。通过在虚拟的操作系统环境中进行操作,熟悉操作和新技术,达到事半功倍的

效果。VMware只是一个软件。可以帮助你在一个操作系统的环境下安装另一个操作系统,而不会对当前的操作系统产生影响。

虚拟现实技术还可以对学生学习过程中所提出的各种假设模型进行虚拟.通过虚拟系统便可以直接地观察到这一假设所产生的结果或效果。利用虚拟技术。学生还可以进行网络设备设计、电路设计等方面的学习探索,设计出新型的网络设备和电子器件.从而激发学生的创造性思维,培养学生的创造能力。

通过虚拟的实验室进行实验,既可以缩短实验的时间,又可以获得直观、真实的效果,还能对那些不可见的结构原理和不可重组的精密设备进行仿真实训,避免真实实验操作带来的各种危险。并且,虚拟实验具有先进性和共享性,易扩充.易于改变教学项目,减少设备投入经费,使教学内容在虚拟的环境中不断更新.使实验实践及时跟上技术的发展。但是在采用虚拟实验进行教学的过程中,并不能完全代替真实实验。虚拟实验是虚拟的实验,缺少“实物感”,正如在网上看书与拿真实的书看时,会觉得真实的书更实在。在网络实验中,用到的网络设备像路由器、交换机等种类、型号都很多,在虚拟实验中.学生很难见到这些设备,如果在真正的实践中可能会无从下手。因此,在具体实施中,应该虚实进行结合。有目的地安排一些实验在真实环境中操作,这样,他们会对实验的设备有亲身的体会,更能加深实验的印象,提高实验的效果。

3 结束语

虚拟现实技术在计算机教育领域发展的潜力是巨大的,只有亲身去经历、亲身去体验去感受,比空洞抽象的说教更具说服力,主动地去交互与被动地观看有质的不同。虚拟现实技术能形象、生动、逼真地表现教学内容,有效地营造一个发展的教学环境。提高学生掌握知识和技能的效率和积极性,达到优化教学过程、提高教学质量的目的,从而解决传统教学方式无法解决的问题。随着计算机网络技术的飞速发展,基于WEB的虚拟现实远程教育具有广泛的应用前景,必将成为21世纪教育的主流。

参考文献:

[1]刘凤田,刘玉兰.虚拟现实技术及其在教育领域的应用研究[J].河北农业大学学报,2005,

(1).

[2]余胜泉,车皓阳,姚顾波.教育中的虚拟现实[J].现代教育技术研究所.2O00.

[3]李玲,汤小红.虚拟现实建模语言及其在工程制图教学中的应用[J].微计算机应用,2004,

(3).

[4]郭凤英.虚拟现实技术在网络教学中的应用[J].北京联合大学学报(自然科学版),2004,

(3).

[5]何来坤,徐渊.虚拟现实建模语言VRML及其应用[J].杭州师范学院学报,2005,(2).

[6]祝智庭.现代教育技术[M].北京:教育科学出版社,2004.

[7]陈晓春.虚拟现实在现代教育技术中的应用[J].铜陵学院学报,2005,(3).

[8]宣翠仙.虚拟现实技术及其在教育中的应用[J].浙江树人学报,2004,(2).

[9]杨宗凯,吴砥,刘清堂.网络教育标准与技术[M].北京:清华大学出版社。2003.

[10]阳化冰,刘忠丽.虚拟现实构造语言VRML[M].北京:北京航空航天大学出版社,2O00.

[11]金杰.远程教育中虚拟实验与虚拟仪器及技术的运用与前景[J].电脑与技术,2005.

[12]李法春,高俊文虚拟现实在“网络”课程教学中的应用[J].中国职业教育技术。2005.

[13]万寿红,徐红.数据结构远程教育的教学方法探讨[J].理工高教研究,2005,(2).

推荐第4篇:英文演讲稿虚拟现实

VRstarted for me in sort of an unusual place,---the movie:The Fast and the Furious,So this is my joy back then, I imagine I’m in movies and drive the car just like I was there with Paul Walker and Vin Diesel, we jumped the building together, enjoy every speed up, and finally with a elegant turns to behind the opponnent.I expectTheexciting adventurelike this, but it didn’t work out.I want this but I never got this.

You know drag racing is not allowed, and I get a driver license just not so long ago and feel nervous when drive so fast.most importantly, I need a car, right.Oh forget it.So I still have to live my life and put it in a dream.But One day not long ago, a technology called VR suddenly develop to be a hot topic, I was told that your dream is a piece of cake for VR, you just need a gla like this(picture).This is indeed quite shocking.Just like one day you was told you will be a superman, andin fact, you know it can really come true, in a beautiful and realistic way.

Then problems have cropped up, sometimes we trend to disagree some illusory things, as one saying goes: seeing is believing, so we may doubt what we hear and think of the VR just a commercial stunt.We can’t deny it exist part of this reason, but a series of virtual reality product from companies like google、apples have proved the feasibility of this technology.And at least The preliminary application in the field of games shows the potential of VR.Just like nVidia CEO 黄仁勋said:VR is the future of games.(picture).In fact ,a survey showed nearly 60% of people change the idea about VR when they really experienced,(figure).So no matter you believe or not, Virtual reality is coming, and we’re all going to Jump into it.And you can found the reason why it develop is the thirsty for better. We,pursuit,it,So,we,make,progre.virtual reality is the natural extension of every major technology we use today — of movies, TV, videoconferencing, the smartphone (picture)and the web.It is the ultra-immersive version of all these things, and we’ll use it exactly the same way-----to communication, to learn, and toentertain ourselves and escape.A extend .Just only a result of hunman aspiration.So on the other hand, the impact of VR is muti field, not only the games.Just imagine lying on the couch to realize shopping in variety of large shopping mall().It is just the buy+ try to accomplish .And that time maybe you will experience this(picture).Video+解说在括号中

Of course, we may also easy to experience the scene atmosphere in NBA, and you feel so close to your favorite sport stars, you may In the horror of the Westfalen Stadium to Feel the paion of football(picture),and of course, include a simple things like we mentioned at first: drive the car together with paul in the film, to feel More real human nature, because through VR, your body therein.

But if anything,Just like what is happine told us: happine is come from difficulty, the same to VR, VR still facing some difficulties, just like in buy+ shopping, the challenge is how to replay more than 1 billion commodity in 1 to1, it is important to Ensure accuracy and the needing of avoiding delay.What’s more, how to solve the problem about easy to feel tired is another critical things because it Related to user experience.And user is everything.So VR still have a long way to go.but when you’d better know a fact that several decades ago, no one believe alphago can beat world’s top che player, but it did today, and who knows whether VR may do the samething like alphagoin the future and I believe the day is not so far.never neglected the strong power of human for strive for better.

Anyhow, VR is a One of the most important technologies in this century, it exist and developed rapidly and Give us a lasting surprise.no matter you think the idea incredible.Or not ,Maybe your dream may really come true in some another way through VR.it is a progre and We may enjoy it and have a colorful life through progre.that’s the keyiues.VR is a machine,and just a machine.but through the machine, we are more expected to realize the strength power of pursuit.The pursuit ofhavingmore connection to others, to things ,to worlds, to dreams.and finally to a more meaningful life(show).

推荐第5篇:虚拟现实设计毕业论文

基于Virtools的多电机组合驱动输送辊道的虚拟演示系统

摘要:虚拟现实技术是利用计算机模拟产生一个逼真的虚拟世界,让使用者如同身临其境一般,及时、无限制地观察三维空间内的事物。被公认为是21世纪重要的发展学科及影响人们生活的重要技术之一。虚拟演示系统是虚拟现实技术的一个重要应用,它能向观众展现一个有着真实感觉的产品。本设计利用Solidworks来为输送辊道建模,并将其导入到3ds max中进行渲染,最后在Virtools中进行虚拟演示系统的制作。本文着重介绍了Virtools的使用方法以及虚拟演示系统的制作流程,可以作为虚拟现实初学者的使用手册,具有一定的学术意义和教学意义。

关键字:虚拟现实;Virtools;建模;人机交互

Based on Virtools combination of multi-motor-driven roller conveyor virtual demonstration system

Abstract: The virtual reality technology is the use of computer simulation to produce a realistic virtual world, allowing users just like being in general, timely, unrestricted observation of three-dimensional space things.Is recognized as one of the important development disciplines and affect people\'s lives in the 21st century.Virtual Presentation System is an important application of virtual reality technology, can show a product has a real feeling to the audience.This design uses SolidWorks to model the conveyor roller, and import it into 3ds max rendering, and finally in Virtools virtual demonstration system produced.This paper introduces the Virtools use and virtual demonstration system of the production proce, can be used as virtual reality beginner user manual, and has a certain academic significance and teaching significance.

Key Words: Virtual Reality; Virtools; Modeling; Interaction

目录

1、绪论„„„„„„„„„„„„„„„„„„„„„„„„„„„ 1.1 前言„„„„„„„„„„„„„„„„„„„„„„„„„ 1.2 研究背景及意义„„„„„„„„„„„„„„„„„„„„ 1.3 国内外研究现状„„„„„„„„„„„„„„„„„„„„ 1.4 本文研究内容„„„„„„„„„„„„„„„„„„„„„

2、多电机组合驱动输送辊道„„„„„„„„„„„„„„„„„„ 2.1 概念„„„„„„„„„„„„„„„„„„„„„„„„„ 2.2 特点„„„„„„„„„„„„„„„„„„„„„„„„„

3、Virtools„„„„„„„„„„„„„„„„„„„„„„„„„„ 3.1 简介„„„„„„„„„„„„„„„„„„„„„„„„„„ 3.2 基本知识„„„„„„„„„„„„„„„„„„„„„„

4、模型导入„„„„„„„„„„„„„„„„„„„„„„„„„„ 4.1 说明„„„„„„„„„„„„„„„„„„„„„„„„ 4.1 导入到3ds max中„„„„„„„„„„„„„„„„„„„„ 4.2 导入到Virtools中„„„„„„„„„„„„„„„„„„„„

5、虚拟演示系统制作流程„„„„„„„„„„„„„„„„„„„„

结论„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 主要参考文献„„„„„„„„„„„„„„„„„„„„

附录„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 外文资料翻译及原文„„„„„„„„„„„„„„„„„„„„„„

1 绪论

1.1 前言

虚拟现实技术是利用电脑模拟产生一个三维空间的虚拟世界,为使用者提供关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,及时、无限制地观察三维空间内的事物。它被应用到军事、医学、教育、科研等多个领域,被公认为是21世纪重要的发展学科及影响人们生活的重要技术之一。

虚拟现实技术具有三个主要特征:(1) 沉浸感,是指当实验者处于虚拟现实技术产生的三维环境中,有着在真实世界一样的身临其境的感觉。(2) 交互性,是指实验者即使处在虚拟现实技术所产生的虚拟环境中,也能像在真实客观世界中一样,进行多感知的交互。(3) 想象性,虚拟现实技术可以使实验者通过沉浸在虚拟环境中进行的交互活动,获取新的知识,并且通过深化概念和产生联想,使实验者得到感性和理性认识,从而得到启发人的创造性思维。

虚拟演示是一个集虚拟现实技术的“展馆”,一个运用了三维动画和虚拟现实技术的“展示器”,生动地展示了产品外观与产品内涵、结构的有机构建。基于虚拟现实技术的虚拟演示系统的开发能够获得更好的沉浸感和交互性,让用户全方位、多角度地对产品进行参观。但是也同时要求开发人员具有一定的逻辑思维能力和编程能力,开发难度有所增加。 1.2 研究背景及意义

传统的产品展示一般是通过电视、报纸、海报、展览会等形式,它们都会受到时间和空间的限制,它们只能在一定的时间和空间内进行,而且同时间所能获得的信息量是有限制的,如展览会一般都是在某个地点和某个时间段对有限的产品进行展示。虚拟演示则不受以上条件的限制,人们可以通过互联网随时、随地的对产品进行了解,甚至可以对产品的各个部件进行分析。

传统的产品展示是单向的,即产品是通过电视、海报、展览会等固定的形式向人们展示,人们没有办法与所展示的产品进行交互,即使是实物展示,也只能对有限的人进行,远远达不到效果。虚拟演示可以让很多人同时对某一个产品进行操作,还可以对产品的各个部件进行单独分析。在虚拟的环境中,人们可以充分发挥自身的想象力,根据自身的意愿行事而不会影响他人。这符合当今时代人们所追求的个性化和差异化。

对虚拟演示系统的研究符合当今时代的发展方向,可以预见,它将产生巨大的社会效益和经济效益。而且随着互联网的发展,这种趋势将变得越来越明显,并随着虚拟现实技术的发展而变得丰富多彩,最终改变社会,改变人们的生活方式。

1.3 国内外研究现状

虚拟现实技术演变发展史大体上可以分为四个阶段:1963年以前:蕴涵虚拟现实技术思想的第一阶段;1963年~1972年:虚拟现实技术的萌芽阶段;1973年~1989年:虚拟现实技术概念和理论产生的初步阶段;1990年至今:虚拟现实技术理论的完善和应用阶段。

美国是虚拟现实技术研究的发源地,第一个虚拟设备是在1962年由Morton Heiling设计的“全传感仿真器”,该仿真器仿真骑车穿越纽约市的过程,用户如同真实的车穿越纽约市,他们能感受到风、路面的颠簸、甚至是当经过饭店时闻到的食品香味。我国虚拟现实技术研究起步较晚,与国外发达国家还存在很大的差距。我国有关部门已经高度重视虚拟现实技术的研究,并将虚拟现实技术列入到九五规划、国家自然科学基金委、国家高技术研究发展计划等研究项目中。国内许多知名高校也积极投入到虚拟现实技术的研究领域中去。如北京航空航天大学计算机系是国内最早引进虚拟现实技术研究、最有权威的单位之一,并在虚拟现实中的视觉接口方面开发出部分硬件,并提出有关算法及实现方法。

虚拟现实技术在现实生活中的应用已经非常广泛,而且随着虚拟现实技术的不断发展,VR应用领域将会更加广泛和深入。近年来,为了满足应用领域的新需求,虚拟现实技术研究遵循“低成本、高性能”的原则,表现出一些新的发展趋势。如:动态环境建模技术;实时三维图形生成和显示技术;适人化、智能化人机交互设备的研制;大型网络分布式虚拟现实的研究与应用等。虚拟现实技术是一门新兴的科学技术,它与许多相关学科领域交叉、集成,应用领域非常广泛,应用前景也非常广阔。随着计算机技术飞速发展,虚拟现实技术将更为广泛地为人类的生产生活带来全新的面貌。 1.4 本文研究内容

本设计是与他人合作的项目,其中的产品设计与Solidworks建模是由他人完成的,本人负责参与产品设计环节以及完成产品的虚拟演示系统。因此本文着重研究了虚拟演示系统的开发流程,综合了常见几种的开发方法,希望能找到一种简单易行的虚拟演示系统开发方法。

2 多电机组合驱动输送辊道

2.1 概念

多电机组合驱动输送辊道装置是可以n台电机同时驱动,运行时可以调节电机的运行负载,能够环形输送物体的辊道。随着近年来工业的发展,对各种机械性能和产品质量要求的逐渐提高,辊道输送装置已经越来越得到了人们的认可。 多电机组合驱动输送辊道可广泛用于各种工业,工厂等场所,现在已经广泛应用于加工,制造,服务等各种行业。辊道主要由导板、卫板和若干个辊子,以及多个电动机及其传动轴和减速器组成。 2.2 特点

本辊道设计为多电机组合驱动,可以根据负载的大小来改变电机的数量,以达到节约能源的目的。

3 Virtools 3.1 简介

Virtools是法国达索公司发布的一款虚拟现实开发软件,它可以将现有的常用格式的文件整合在一起,如三维模型、二维图形或者音效、视频等。可以制作出许多不同用途的3D产品,如计算机游戏、多媒体、建筑设计、交互式电视、教育训练、仿真与产品展示等。它为各类使用者提供了从产品的初期设计、虚拟环境的仿真到3D互动操作的完整体验,从而使实时3D技术的应用变得更多元、更广泛。

目前全世界有超过270所大学使用Virtools, Virtools已经获得许多媒体技术学系学生的肯定和支持,越来越多的多媒体技术公司开始应用Virtools开发其产品。 3.2 基本知识

Virtools采用的是模块化编程方法,因此,使用者无需记住繁琐的命令,只需根据自己的需求将不同的BB程序模块拖入流程图即完成编程过程。下面对这一过程进行详细的介绍。 如图3.1所示,Virtools软件包含三个主要的窗口,它们分别具有不同的功能:a区域为3D Layout窗口,它能在实时3D的环境下展示正在进行的项目作品,并提供所有用来创造、圈选或操作3D组件所必须的工具及导览工具等;b区域为Building Block窗口,负责Virtools“行为模块(即BB模块)”的调整与编辑;c区域为Level View窗口和Schematic窗口,可以清楚的以树状图的形式来检视与编辑正在进行的项目作品,流程图也是在这里进行编辑的,可以说是Virtools软件中最重要的窗口了。

图3.1 Virtools窗口介绍

运用Virtools进行虚拟创作的基本流程如图3.2所示,其中制作流程图部分是整个创作过程中最重要也最复杂的部分,只有经常实践才能熟练掌握。

图3.2 虚拟创作流程

在下面的内容里将会有非常详细的制作步骤,因此在这里就不对具体步骤进行展开讲解了。

4 模型导入方法

4.1 说明

在机械设计领域,使用非常广泛的三维建模软件是Solidworks,它具有功能强大、易学易用、技术创新三个特点,使用它来进行机械建模,模型尺寸精确,装配效率高,因此本设计中采用Solidworks来进行模型创建。

但是,到目前为止,还没有一种简单的方法可以将Solidworks中的模型直接导入到Virtools中,因此在本设计中采用了一种比较常用的方法,即先将Solidworks中建好的模型导入到3ds max中,再将其导入到Virtools中,下面就这两个步骤分别进行说明。 4.2 模型导入3ds max 将模型由Solidworks导入到3ds max中一般有以下几种方法: a.将SolidWorks文件转换成.stl文件,这也是最常用的方法,此方法导入单个零件比较好,但如果导入装配体,则需将装配体保存为.stl文件后,把每个零件一一导入,比较繁琐。

b.将SolidWorks文件转换成.igs文件,.igs文件较小,但有时会出现个别面无法转换,或者是导入3ds max中出现多面和少面现象,特别是针对一些复杂曲面造型,转换误差更大。

c.将SolidWorks文件转换成.wrl文件,这种格式适用很多软件,而且可以将装配体中的多个零件同时导入3ds max中,方便快捷。

d.使用犀牛软件作为中介来将Solidworks生成的模型转成3ds max支持的格式,这种方法需要增加一个步骤来转换,加大了转换失败的概率,但是由于犀牛软件支持的三维格式非常多,因此可以将其作为一种备选方案。

本人比较推荐的方法是第一种和第三种,第一种适合于装配体中的零件比较少的情况,由于在导入过程中Solidworks会将所有的零件都转换为.stl格式,因此如果零件较多,那么生成的新文件会非常多,以本设计为例,单独一个辊道的装配模型就生成了400个左右的.stl文件,如果将这么多的零件都一一导入到3ds max中,不仅仅耗费大量的时间和精力,而且比较容易出错,效率很低,但是这种导入方法是最稳妥的方法,生成的模型不容易出错;第三种方法适用于任何情况,无论零件多少,Solidworks都会将所有的零件都组合在一个.wrl格式的文件中,只要将这一个文件导入3ds max就可以了,但是需要注意的是,在导入的过程中,由于占用了大量的资源,电脑可能会出现假死的现象,这时候最好不要强行关闭软件,而是要耐心等待转换完成,根据零件的数量,转换过程所用的时间会不尽相同。 4.3 模型导入Virtools 将模型由3ds max导入到Virtools中需要安装一个转换插件,这个插件的名称是“virtools max exporter”,在网上直接搜索就能找到,这个插件会安装在3ds max中,安装成功后可以在3ds max的导出命令窗口处发现支持Virtools的格式,如图4.1所示。

图4.1 3ds max导出窗口

在执行完导出命令后,会弹出图4.2所示的对话框,根据自己的需要勾选即可。需要注意的是:3ds max的版本最好是2009或者以前的版本,因为此插件没有说明支持2009以后的版本,而且在使用过程中,本人也分别使用了2010版和2009版来进行导入操作,发现2009版本的3ds max不容易出错,而2010版本中经常会出现导出失败或内存不足的错误情况,希望引起各位读者的注意。

图4.2 导出参数的设置窗口

5 虚拟演示系统制作流程

5.1 模型的导入

5.1.1 从Solidworks导入到3ds max 按照上文中所述的几种方法来进行格式转换,由于本设计中的模型零件较多,生成.stl格式并不适用,因此在本设计中采用的是第三种方法,即将模型保存为.wrl格式的文件,如下图5.1所示。

图5.1 在Solidworks中另存为,wrl格式

5.1.2 从3ds max导入到Virtools 按照上文中所述的方法进行导出操作,首先在3ds max中导入上一步中生成的“总装配体.wrl”文件,如图5.2所示;然后将其导出为.nmo格式文件。然而在此处出现了错误,如图5.3所示,根据错误提示以及与导师进行沟通后,决定将模型分成几个部分后分别进行导出导入操作,具体步骤与上文类似,在此不在进行赘述,最终导出的文件如图5.4所示,将这几个文件导入到Virtools中即完成了模型的导入操作,最终的效果图如图5.5所示。

图5.2 在3ds max中导入.wrl格式文件

图5.3 导出过程中的错误提示

图5.4 最后生成的.nmo格式文件

6 总结 致谢

主要参考文献

附录

推荐第6篇:虚拟现实资料收集

虚拟现实

虚拟现实

虚拟现实...........................................................................................................................................1

基本定义 ...................................................................................................................................2

概念定义: .......................................................................................................................2 详细解释: .......................................................................................................................2 实现过程 ...........................................................................................................................3 技术优点 ...........................................................................................................................3 基本特征 ...........................................................................................................................3 技术支持 ...........................................................................................................................4 计算机图形学 ...................................................................................................................4 人工智能 ...........................................................................................................................4 人体交互技术 ...................................................................................................................4 传感技术 ...........................................................................................................................4 软件要求 ...........................................................................................................................5 硬件要求 ...........................................................................................................................5 应用领域 ...................................................................................................................................5

城市规划 ...........................................................................................................................5 室内设计 ...........................................................................................................................5 文物保护 ...........................................................................................................................5 交通 ...................................................................................................................................6 房地产 ...............................................................................................................................6 游戏 ...................................................................................................................................6 军事 ...................................................................................................................................6 家电(产品) ...................................................................................................................6 教育 ...................................................................................................................................6 工业 ...................................................................................................................................7 视频 ...................................................................................................................................7 旅游类 ...............................................................................................................................7 计算机辅助设计 ...............................................................................................................7 外科手术和人体器官的模拟 ...........................................................................................7 科学研究和计算的可视化 ...............................................................................................7 研究方向 ...................................................................................................................................8

感知研究领域 ...................................................................................................................8 人机交互界面 ...................................................................................................................8 高效的软件和算法 ...........................................................................................................8 廉价的虚拟现实硬件系统 ...............................................................................................8 智能虚拟环境 ...................................................................................................................8 著名研究学者 ...................................................................................................................9 研究成果 ...................................................................................................................................9

虚拟现实在游戏中的成果 ...............................................................................................9 虚拟现实在医疗中应用的成果 .....................................................................................10

虚拟现实

虚拟现实在军事与航天工业应用的成果 .....................................................................11 虚拟现实&视景仿真技术在军事上的应用 ..................................................................12 虚拟现实在文物古迹中应用的成果 .............................................................................12 虚拟现实在游戏中应用的成果 .....................................................................................13 基本定义 概念定义:

定义1:存在于计算机系统中的逻辑环境,通过输出设备模拟现实世界中的三位物体和他们的运动规律和方式。

定义2:利用计算机发展中的高科技手段构造的,是参与者获得与现实一样的感觉的一个虚拟的境界。

定义3:一种模拟三维环境的技术,用户可以如在现实世界一样地体验和操作这个环境。 解释:虚拟现实(Virtaul Reality,简称VR,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同亲身经历一般,可以及时、没有限制的观察三度空间内的事物。

定义:VR是一项综合集成的技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者,通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,精确的3D世界影像传回产生临时感,是一种由计算机辅助生成的高技术模拟系统。

详细解释:

虚拟现实技术是一种综合应用计算机图形学、人机接口技术、传感器技术以及人工智能等技术,制造逼真的人工模拟环境,并能有效地模拟人在自然环境中的各种感知的高级的人机交互技术。

VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术模拟系统。

概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。

虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种

虚拟现实

特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。

实现过程

虚拟现实利用计算机技术生成逼真的、具备视、听、触、嗅、味等多种感知的虚拟环境。它借助于计算机生成一个三维空间,通过将用户置身于该环境中,借助轻便的多维输入输出设备(如跟踪器、头盔显示器、眼跟踪器、三维输入设备和传感器等)和高速图形计算机,并根据由此而产生的一种身临其境的感觉,去感知和研究客观世界的变化规律。

技术优点

虚拟现实的技术实质在于提供一种高级的人机接口。虚拟现实技术改变了人与计算机之间枯燥、生硬和被动的现状,给用户提供了一个趋于人性化的虚拟信息空间。

虚拟现实的出现,使人们从纷繁复杂的数据中解放出来,这种形式是传统表现方式所无法比拟的,它给人们提供了一个崭新的信息交流平台。

基本特征

多感知性(Multi-Sensory)

所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于、视觉、听觉、力觉、触觉、运动等几种。

浸没感(Immersion)

又称临场感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。

交互性(Interactivity)

指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。

构想性(Imagination)

强调虚拟现实技术应具有广阔的可想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。

虚拟现实

由于浸没感、交互性和构想性三个特性的英文单词的第一个字母均为I,所以这三个特性又通常被统称为3I特性。

一般来说,一个完整的虚拟现实系统由虚拟环境、以高性能计算机为核心的虚拟环境处理器、以头盔显示器为核心的视觉系统、以语音识别、声音合成与声音定位为核心的听觉系统、以方位跟踪器、数据手套和数据衣为主体的身体方位姿态跟踪设备,以及味觉、嗅觉、触觉与力觉反馈系统等功能单元构成。

技术支持

计算机图形学

计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。

人工智能

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。

人体交互技术

人机交互技术(Human-Computer Interaction Techniques)是指通过计算机输入、输出设备,以有效的方式实现人与计算机对话的技术。它包括机器通过输出或显示设备给人提供大量有关信息及提示请示等,人通过输入设备给机器输入有关信息及提示请示等,人通过输入设备给机器输入有关信息,回答问题等。人机交互技术是计算机用户界面设计中的重要内容之一。它与认知学、人机工程学、心理学等学科领域有密切的联系。

传感技术

传感技术同计算机技术与通信技术一起被称为信息技术的三大支柱。从仿生学观点,如果把计算机看成处理和识别信息的“大脑”,把通信系统看成传递信息的“神经系统”的话,那么传感器就是“感觉器官”。传感技术是关于从自然信源获取信息,并对之进行处理(变换)和识别的一门多学科交叉的现代科学与工程技术,它涉及传感器(又称换能器)、信息处理和识别的规划设计、开发、制/建造、测试、应用及评价改进等活动。

虚拟现实

软件要求

复杂的逻辑控制;

模拟实时的相互作用;

模拟人脑所有的智能行为;

模拟复杂的时空关系,主要涉及时间与空间的同步等问题;

感觉的表达,包括人的听觉、视觉、触觉、味觉和嗅觉的计算机表达;

实时数据采集、压缩、分析、解压缩;

支持与虚拟环境交互的定位、操纵、导航等。

硬件要求

跟踪系统:用以确定参与者的头、手和身躯的位置; 触觉系统:提供参与者感知力与压力的反馈; 音频系统:提供立体声源和判定空间位置;

高性能计算机处理系统:具有高处理速度、大存储量、强联网特性。

图像生成和显示系统:产生视觉图像和立体显示;

应用领域

虚拟现实技术已经发展很多年,虚拟现实的应用领域也越来越广泛,最初是用于军事仿真,近年来在城市规划,室内设计,文物保护,交通模拟,虚拟现实游戏,工业设计,远程教育等方面都取得了巨大的发展,虚拟无限相信,这是不可逆转的趋势,并且会运用更加广泛。

城市规划

在城市规划中经常会用到VR技术,用VR技术不仅能十分直观的表现虚拟的城市环境,而且能很好的模拟各种天气情况下的城市,而且可以一目了然的了解排水系统,供电系统,道路交通,沟渠湖泊等等。而且能模拟飓风、火灾、水灾、地震等自然灾害的突发情况。对于政府在城市规划的工作中起到了举足轻重的作用。

室内设计

在室内设计应用方面,用VR技术不仅能十分完美的表现室内的环境,而且能在三维的室内空间中自由行走。

文物保护

VR技术在文物保护方面也是应用相当广泛的,埃及的金字塔就做过网上的体验中心,运用了全景虚拟技术和三维虚拟技术,而且IBM目前正在运用VR虚拟现实技术对北京故宫进

虚拟现实

行整个故宫的数字虚拟。届时大家也许可以在网上直接看到数字三维化的故宫。

交通

无论是在空中、陆地还是海洋河流的交通规划模拟方面,VR虚拟技术都有其得天独厚的优势,不仅仅能用三维GIS技术将各种交通路线表现得十分到位,更能动态模拟各种自然灾害情况。

房地产

近几年在房地产的表现和推广应用方面,VR虚拟现实技术被得到越来越多的应用,更有逐步取代效果图和三维动画之势。用VR虚拟技术不仅可以十分完美的表现整个小区的环境,设施。还能表现不存在但即将建成的绿化带,喷泉,休息区,运动场等等。不仅如此,用户还能在整个小区中任意漫游、仔细欣赏小区的每一处风景。大大刺激了浏览者的感受。

游戏

对于游戏的开发,目前VR技术比较适合开发:角色扮演类、动作类、冒险解迷类、竞速赛车类的游戏,其先进的图像引擎丝毫不亚于目前的主流游戏引擎的图像表现效果,而且整合配套的动力学和AI系统更给游戏的开发提供了便利。

军事

VR技术就是诞生于军事应用,在军事应用方面很多,包括:模拟战场,模拟操作,模拟驾驶,模拟装配等等...都需要通过VR技术来实现。而且在相关军事工作汇报中也会有VR技术的支持。

家电(产品)

家电产品的展示、展览、发布上。运用VR技术不仅可以完美表现产品的外观,更能将其功能表现的淋漓尽致。而且家电行业产品种类繁多、数量庞大。市场需求量十分大,无论是使用全景虚拟还是视频虚拟还是三维虚拟技术都能在家电行业大有作为。

教育

VR技术在教育领域,主要是发挥其互动性和生动的表现效果,用于立体几何、物理化学等相关课件的模拟制作。而且在相关专业的培训机构,VR虚拟现实技术能够提供学员更多的辅助,比如虚拟驾驶、各种交通规则的模拟。特种器械模拟操作、模拟装备等等。

虚拟现实

工业

VR技术在工业应用上,主要运用于工业园模拟、机床模拟操作、设备管理、虚拟装配、工控仿真。由于VR技术本身的特性所以从事以上的相关工作模拟十分方便、快捷而真实准确。

视频

VR技术在视频应用上,已经相当广泛了,在各大电视台中均有虚拟演播室,而且有的电视台还运用了虚拟主持人。这种虚拟技术的运用无论是CCTV还是各个地方卫视都有应用。

旅游类

分析我们:近年来旅游业发展迅速。我们来考虑一下,除国内知名的旅游景区外,其它名气较小的景区或依托优美环境新建成的景区,他们需要自身宣传吗?答案是肯定的。

13:航天航空

美国宇航局是虚拟现实最早的研究单位和应用者。宇宙飞船及各类航空器是需耗费巨资的现代化工具,而进入宇宙有大量未知、危险的因素,因而模拟各种航空器可能遇到的环境,不仅可节省大量费用,而且是十分必要的。虚拟风洞就是一例。

计算机辅助设计

各种工业产品、建筑物均需反复构思和设计,但往往用户仍不满意。美国波音公司Butler设计了一架称为VS-X的虚拟飞机,它可使设计人员有身临其境观察飞机外形、内部结构及布局的效果。建筑设计师可在盖楼前通过虚拟建筑物,让用户自己来观察外形和内部房间部位,也便于设计师修改设计。

外科手术和人体器官的模拟

外科医生的培训是一项投资大、时间长的工作,这是因为不能随便让实习医生在病人身上动手术,可是不亲自动手,又如何学会手术呢?虚拟手术台已能部分模仿外科手术的现场。同样,提供模拟的人体器官,可让学生逼真地观察器官内部的构造和病灶,具有极高的实验价值。

科学研究和计算的可视化

各种分子结构模型、大坝应力计算的结果、地震石油勘探数据处理等,均十分需要三维(甚至多维)图形可视化的显示和交互浏览,虚拟现实技术为科学研究、探索微观形态等提供了形象直观的工具。

虚拟现实

研究方向

虚拟现实技术研究内容很广,基于现在的研究成果及国际上近年来关于虚拟研究前沿的学术会议和专题讨论,VRML技术在目前及未来几年的主要研究方向有以下几个。

感知研究领域

从目前虚拟现实技术在感知方面来说,视觉方面较为成熟,但对其图像的质量要进一步加强;在听觉方面应加强听觉模型的建立,提高虚拟立体声的效果,并积极开展非听觉研究;在触觉方面,要开发各种用于人类触觉系统的基础和VR触觉设备的计算机控制的机械装置。

人机交互界面

开展独立于应用系统的交互技术和方法的研究,建立软件技术交换机构以支持代码共享、重用和软件投资,并鼓励开发通用性软件维护工具。

高效的软件和算法

积极开发满足虚拟现实技术建模要求的新一代工具软件计算法、虚拟现实建模语言的研究、复杂场景的快速绘制及分布式虚拟现实技术的研制。

廉价的虚拟现实硬件系统

基于虚拟现实技术的硬件系统价格相对比较昂贵,是影响VRML技术应用的一个瓶颈。虚拟现实技术的主要研究方向是在外部空间的实用跟踪技术、力反馈技术、嗅觉技术及面向自然的交互硬件设备。

智能虚拟环境

智能虚拟环境是虚拟环境和人工智能与人工生命两种技术的结合。它涉及多个不同学科,包括计算机图形、虚拟环境、人工智能与人工生命、仿真、机器人等。该项技术的研究将有助于开发新一代具有行为真实感的实用虚拟环境,支持分布式虚拟环境中的交互协同工作。

虚拟现实是一个非常充满活力、具有巨大应用前景的高新技术领域。到二十一世纪,人类将进入虚拟现实的科技新时代,虚拟现实技术将是信息技术的代表。虚拟现实技术的发展历史,也可以说是一个信息环境多维化的历史。创建多维信息环境、突破数字及文字的单维表现力的局限,这是人类的共同追求,也是全世界的文化、艺术和科技工作者代代相继的奋斗目标。只有在计算机及其它科学技术高度发达的今天,这样的信息处理环境才能够被实现。

虚拟现实技术是一门很新的技术,也是一门尚在发展的技术,更确切的说是一门具有很大发展潜力的高新技术。随着VRML的逐渐推广和流行,相信这一技术将会得到更加进一步的

虚拟现实

发展。我们将会看到虚拟现实开发工具的极大丰富,而且这些开发工具对虚拟现实的支持也将是越来越完备。随着计算机技术及相关技术的发展,在PC机上实现虚拟现实技术已成为可能。

虚拟现实技术的发展与普及,改变了过去人与计算机之间的枯燥、生硬、被动的交流方式,使人机之间的交互变得更人性化。虚拟现实技术是人们世世代代所追求的人机和谐的信息处理环境的继续。

著名研究学者

陈述彭,院士,中国科学院地理科学与资源研究所

高俊,院士,信息工程大学

刘纪远,所长,中国科学院地理科学与资源研究所

鲁东明, 教授, 浙江大学人工智能研究所

游雄,教授,信息工程大学

庄大方,主任,资源与环境数据中心,中国科学院地理科学与资源研究所

林珲,主任,地球信息科学联合实验室,香港中文大学

周成虎,主任,资源与环境信息系统国家重点实验室,中国科学院地理科学与资源研究所

池天河,教授,中国科学院地理科学与资源研究所,福州大学信息科学与技术学院

董宝青,主任,北京市信息资源管理中心

李琦,教授,北京大学遥感与地理信息系统研究所

朱庆,教授,武汉大学

吴立新,教授,中国矿业大学

研讨会执行成员:

龚建华,博士,中国科学院地理科学与资源研究所

汪国平, 博士, 北京大学计算机科学技术系

研究成果

虚拟现实在游戏中的成果

《阿凡达》首先采用了虚拟现实领域的3D(3Dimension,三维)技术。由于人的两只眼睛所见角度不同,在视网膜上形成的影像也就不完全相同,但大脑会将两个图像进行合成,从而产生立体视觉。3D电影利用两台摄像机分别录制左眼和右眼的图像,放映时戴上特制的眼镜,具有立体感的画面就会跃然眼前。《阿凡达》纯熟应用了3D技术,它把观众进入如梦如画的潘多拉星球,和那维族(Na\'vi)站在一起,身临其境般感受人类的未来。

虚拟现实

虚拟现实在医疗中应用的成果

虚拟现实技术是近年发展起来的一项新技术,目前,已经广泛地应用于许多领域,尤其在医学方面。

数字解剖学就是应用数字化的技术手段,对人体的解剖结构及其功能进行数字化,并对数字化的信息进行解剖学观察、测量、虚拟操作等方面研究和应用的一门科学。利用数字化人 10

虚拟现实

体数据集可以建立人体的数字模型,如人体的几何模型和体素模型,在数字模型的基础上,结合解剖学教学的特点,可以满足断层解剖学、系统解剖学标本的演示等常规解剖学的教学需求,并能实现任意方位的断层图像的获取、无损坏标本示教、远程教学等常规解剖学研究和教学中无法实现的目的。

虚拟现实在医疗领域的应用主要有:虚拟手术,数字医院,医学模拟演示,实训模拟演示,实训教学演示,医院虚拟仿真系统,虚拟医学仿真,虚拟现实技术在医学手术仿真训练等。

虚拟现实在军事与航天工业应用的成果

模拟与练一直是军事与航天工业中的一个重要课题,这为VR提供了广阔的应用前景。美国国防部高级研究计划局DARPA自80年代起一直致力于研究称为SIMNET的虚拟战场系统,以提供坦克协同训1练,该系统可联结200多台模拟器。另外利用VR技术,可模拟零重力环境,以代替现在非标准的水下训练宇航员的方法。

虚拟现实

虚拟现实&视景仿真技术在军事上的应用

中国海警某型主力艇虚拟仿真

虚拟现实在文物古迹中应用的成果

利用虚拟现实技术,结合网络技术,可以将文物的展示、保护提高到一个崭新的阶段。首先表现在将文物实体通过影像数据采集手段,建立起实物三维或模型数据库,保存文物原有的各项型式数据和空间关系等重要资源,实现濒危文物资源的科学、高精度和永久的保存。 其次利用这

虚拟现实

些技术来提高文物修复的精度和预先判断、选取将要采用的保护手段,同时可以缩短修复工期。 通过计算机网络来整合统一大范围内的文物资源,并且通过网络在大范围内来利用虚拟技术更加全面、生动、逼真地展示文物,从而使文物脱离地域限制,实现资源共享,真正成为全人类可以“拥有”的文化遗产。使用虚拟现实技术可以推动文博行业更快地进入信息时代,实现文物展示和保护的现代化。

文物古迹复原模拟

虚拟现实在游戏中应用的成果

三维游戏既是虚拟现实技术重要的应用方向之一,也为虚拟现实技术的快速发展起了巨大的需求牵引作用。 尽管存在众多的技术难题,虚拟现实技术在竞争激烈的游戏市场中还是得到了越来越多的重视和应用。可以说,电脑游戏自产生以来,一直都在朝着虚拟现实的方向发展,虚拟现实技术发展的最终目标已经成为三维游戏工作者的崇高追求。从最初的文字MUD游戏,到二维游戏、三维游戏,再到网络三维游戏,游戏在保持其实时性和交互性的同时,逼真度和沉浸感正在一步步地提高和加强。我们相信,随着三维技术的快速发展和软硬件技术的不断进步,在不远的将来,真正意义上的虚拟现实游戏必将为人类娱乐、教育和经济发展做出新的更大的贡献。

虚拟现实

推荐第7篇:虚拟现实文献综述

《VRML虚拟现实技术在数字校园系统中应用研究》文献综述

摘要:教育部在一系列相关的文件中,多次涉及到了数字校园,阐明了数字校园的地位和作用。虚拟数字校园模拟真实世界,提供了一个生动的校园空间。将虚拟现实技术应用在数字校园系统的开发,有助于大学自身的宣传和信息的高度集中、配置和互动。它在数字校园的应用,可以大大提高校园展示效果,也能够体现校园个性方面的优势,对校园今后的推广及展示带来非常大的帮助 关键词:虚拟现实;数字校园;基本概况

前言

教育部在一系列相关的文件中,多次涉及到了虚拟校园,阐明了虚拟校园的地位和作用。建设虚拟三维数字校园可以比较直观的了解校园的各个区域,在这个三维的校园里,空间次序的视觉理解和感知变得非常容易,使浏览者对校园环境产生身临其境的感觉[1],其中的教学楼、实验楼、图书馆、宿舍楼、食堂、道路及绿化地带和种植的植物,都栩栩如生的呈现在我们的眼前,三维虚拟校园模拟真实世界,提供了一个生动的校园空间。三维虚拟校园可直接嵌入到大学的网站,直接通过网络浏览器察看,其丰富的、人性化的信息查询等功能,有效提高大学的美誉度,有助于大学自身的宣传和信息的高度集中、配置和互动。三维虚拟校园的直观特性,可以优化领导管理,对于校园信息管理、校园规划、建设等能够全局掌控。

一、虚拟现实技术的发展状况的研究

虚拟现实(Virtual Reality)技术是20世纪90年代初崛起的一种实用技术,它由计算机硬件、软件以及各种传感器构成三维信息的虚拟环境,可以真实地模拟现实中能实现的物理上的、功能上的事物和环境[2]。在虚拟现实环境中可以直接与虚拟现实场景中的事物交互,产生身临其境的感受,从而使人在虚拟空间中得到与自然世界同样的感受。该技术的兴起,为科学及工程领域大规模的数据及信息提供了新的描述方法。虚拟现实技术大量应用于建筑设计及其相关领域,该技术提供了“虚拟建筑”这种新型的设计、研究及交流的工具手段[3]。

在虚拟现实的发展过程中总结出虚拟现实系统应具有以下四个特征:(1)多感知性。指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知、甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。(2)存在感。指用户感动作为主角存在于模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。(3)交互性。指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。(4)自主性。指虚拟环境中物体依据现实世界物理运动定律动作的程度[4]。

虚拟现实技术自诞生以来,其应用一直受到科学界、工程界的重视,并不断取得进展,虚拟现实蕴藏的技术内涵与艺术魅力不断地激发着人们丰富的想象思维和创造的热情。从本质上讲,虚拟现实技术就是一种先进的人机交互技术[5],其追求的技术目标就是尽量使用户与电脑虚拟环境进行自然式的交互。因此,虚拟现实技术为我们架起了一座人与数字世界沟通的桥梁。

二、虚拟现实技术在数字校园系统的应用解析

目前,数字校园存在有2个定义,并分别带来不同的研究与实践。一种定义是从信息、网络和媒体技术发展角度,数字校园被理解为一个以计算机和网络为平台的、远程教学为主的信息主体;另一个事从因特网、虚拟现实技术、网络虚拟社区和3S技术的发展角度,数字校园被定义为对现实校园三维景观和教学环境的数字化和虚拟化,是基于对现实校园的一个三维虚拟环境,用于支持对现实校园的资源管理、环境规划和学校发展[6]。

虚拟现实技术是集影视广告,动画,多媒体,网络可以于一身的推广方式。虚拟现实技术应用在数字校园中,使用计算机技术来生成一个虚拟的三维校园环境,并赋予其可操作性,让浏览者可以与这一虚拟客体进行交流[7],是体现校园风貌、规模和实力的象征和标志,其主要核心是协助校园推广、宣传,招生等方面的需求,主要通过以下几个方面体现:

1、直观的交流方式

应用虚拟现实技术,学校领导可通过亲身感受,评估展示方案的特点与优劣,以便做出最佳展示方案,不但可以避免决策失误,而且可以大大提高校园展示的价值,从而提高校园风貌在学生心中的形象,而且保护投资。

2、方便的设计工具

虚拟现实不仅是一个演示媒体,而且还是一个设计工具。它易视觉形式反映了设计者的思想,比如当在一座大楼前模拟首先要做的事情就是对这座大厦的结构,外形做细致的构思,为之定量化,还需要许多设计图,虚拟现实可以把这种构思变成看得见得虚拟物体和环境,使以往只能借助传统的沙盘[8]的设计模式提升到数字化的即看即得的完美境界,大大提高了设计和规划的质量和效率。

3、最先进的展示手段

在校园风貌展示当中,传统的做法就是印刷宣传彩页或普通的网页展示等。由于印刷彩页是平面,普通的网页是二维的,让学生无法感受到亲临学校的感觉,而且无法将校园全部展示,只能了解校园标志性建筑,无法以正常人的视角去感受校园的规划,更无法获得人在其中的真实感受。近年来效果图和三维动画已经得到普及应用。然而,效果图只能提供静态局部的视觉体验,动画虽有较强的动态三维表现力,但不具备实时交互性,观察者只能按照事先设定好的路线和角度来浏览,很被动,信息获取不够全面。校园个性方面的优势往往无法表现。

综上所述,与传统的展示方式相比较,虚拟现实解决方案的各个指标具有明显优势。它在数字校园的应用[9],可以大大提高校园展示效果,也能够体现校园个性方面的优势,对校园今后的推广及展示带来非常大的帮助。

三、VRML虚拟现实技术在数字校园系统的应用研究

虚拟现实建模语言(VRML)源于虚拟现实技术,是20世纪末发展起来的涉及众多学科的的高新技术[10]。它是集计算机、仿真、微电子、传感与测量技术于一体的高新科技的融合。而虚拟现实建模语言(VRML)正是利用了虚拟现实,在计算机中创立一种与现实生活相同的感受,有身临其境的感觉甚至生理感受,从而实现用户与虚拟现实直接进行交互。

三维场景建模就是构建虚拟校园环境,是漫游系统设计的核心问题之一.因为VRML是一种三维造型和渲染的图形描述性语言,它把“虚拟世界”看作一个“场景”,而场景中的一切都看作是“对象”也就是“节点”,对每一个对象的描述就构成了VRL文件[11]。而要把这些枯燥的语言和符号变成动态的虚拟世界,通过浏览器解释这些语句可以实时生成虚拟的校园场景。且VRML是一个高效,优秀的VR模型开发工具,它的优势在于大场景地理环境的生成,能高效快速的实现实时场景的绘制,所以,选择VRML完成三维场景建模。 随着计算机软硬件技术的发展,利用VRML虚拟现实技术进行复杂场景的虚拟漫游已成为可能,利用这一技术我们可以游览虚拟校园欣赏校园景致,达到使用户难辨真假的程度。

作为互联网时代的宠儿,Web孵化了五花八门的网络开发语言,如Html、XML、Java、JavaScript、ActiveX等等[12]。相对而言,VRML是其中一支不可忽视的力量。VRML是一种描述交互式三维场景和对象的文件格式,它允许描述三维对象并把它们组合到作者构想的虚拟场景中,目前广泛应用于创建充满动感的三维虚拟空间[13]。与其他网络开发语言相比,VRML具有自身特定的优势:

1、VRML是目前唯一基于万维网虚拟现实模型语言的国家标准,因此能得到众多软件开发商的支持。目前包括3DS MAX、Maya、SketchUp等建筑设计中常用的3D软件都支持VRML文件格式的输入、输出、而像blaxxun、Bitmanagement Software、Parallet Graphics等众多VRML浏览器开发商纷纷通过其产品开发不断提高VRML虚拟场景的性能[14]。这些支持有力地保障了VRML虚拟建筑开发中对前期CAD数据的高效利用,而且VRML作为一种国际标准同时也保证于虚拟建筑开发成果能得到长期的应用和共享。

2、VRML是基于万维网的开放型的国际标准,具有很强的环境适应性和功能的可扩展性。VRML场景可运行在Windows、MAC、Unix等多种机型及操作系统上,适应单机、局域网、广域网、万维网等多种环境[15];同时VRML语言允许开发者将VRML场景与现有万维网中流行的各种先进的技术集成起来,从而极大得扩展VRML虚拟建筑场景的性能。

3、VRML场景的大小没有限制,场景的扩充和维护皆很方便。一个VRML场景的模型即可以使一个独立的VRML模型文件组成,也可以使由分布在网络上不同路径下的若干个分散的VRML模型文件组成。因此利于协同方式的建筑和文件管理。

4、VRML虚拟建筑是一个低成本甚至零成本投入的技术方法,开发者只需要在现有CAD软硬件系统基础上,添加一个VRML浏览器和一个VRML代码编辑器就可以进行VRML虚拟建筑的开发工作。VRML浏览器和代码编辑器都非常小型的程序,互联网上提供了大量此类工具的免费下载服务。

总结

数字校园是一项非常庞大的系统工程,它是集计算机技术、仿真、微电子、传感与测量技术于一体的高新技术的融合,是信息技术在教学领域的应用,若要超越单纯从技术视野中理解数字校园的概念,应将校园内的基础地理、自然资源、社会资源好人文资源等各种信息进行数字化采集和存储,分别建立相应的数据信息库,并建立全视角的可视化数字校园三维立体平台[16],并在此基础上实现其应用支撑系统,即实现服务的开发、利用、广告、安全、管理等一体化,实现从信息生产到信息消费的信息流有序化,最终实现信息资源的动态管理,利用和优化配置、开发和增值。

我相信,作为一门新兴的,发展中的技术,虚拟现实技术的发展潜力是巨大的,前景是广阔的,随着虚拟现实技术理论与方法的逐步建立和日趋完善,数字校园建设必将迈上一个新的台阶。在数字校园里,通过各种现代化手段,实现学校的教学、科研、管理、服务等活动的全部过程,从而达到提高教学质量、科研水平、管理水平的目的。

参考文献

[1]黄莹莹、彭敏俊、许岷.基于虚拟现实的数字校园漫游系统的设计与实现.应用科技.2005,32(5):40 [2]胡宏伟.基于VRML的虚拟园林景观设计软件的研究与实现:(硕士学位论文).北京:中国农业大学,2008.[3]曾旭东,赵昂.计算机辅助建筑设计(CACD)的发展趋势.重庆大学学报.2006 ,28(1): 21-24.[4] 姜学智,李忠华.国内外虚拟现实技术的研究现状.辽宁工程大学技术学报.2004,23(2):238-240.[5]葛艳红,李文锋.基于Java的VRML虚拟场景人机交互的实现.交通与计算机.2003,21(2): 35-37.[6] 龚建华,林珲、谭倩 虚拟香港中文大学校园的设计与初步试验.测试学报 .2002,31(1): 39.[7]张怡.虚拟技术中的主客体关系.东华大学学报.2001,1(1):5-9.[8]张凯威.基于OpenGL的军事地形仿真系统的研究与实现:(硕士学位论文).吉林:吉林大学,2008.[9]余莉.王乘 基于虚拟现实技术的数字校园三维仿真系统.计算机仿.2004,21(4): 98-101.[10]陆昌辉.VRML入门与提高.北京:北京大学出版社.2003.[11]黄涛.VRML虚拟建筑-原理·工具·方法 .北京:中国建筑工业出版.2008.[12]李新国.基于IntraWeb的学校信息管理系统的开发研究.中国教育信息化.2008,1: 42-44.[13]张金钊, VRML编程实训教程.北京:北方交通大学出版社, 2008.[14]陈阿林 胡朝晖 祁相志 校园虚拟现实三维场景建模技术及实现方法研究.重庆师范大学学报: 2007,24(4):1-4.[15]杜湘逾,黄柯棣,段红.一种基于VRML-Java的分布式虚拟环境模型及其实现.计算机工程与应用:2002(1):133-134.[16]陈健,高井祥.基于Java3D的城市三维景观的网络可视化.2005,28(4):156-159.

推荐第8篇:虚拟现实技术论文

虚拟现实技术概述总结

一、虚拟现实的概念内涵及应用领域

虚拟现实技术又称“灵境技术”、“虚拟环境”、“赛伯空间”等,是一种可以创建和体验虚拟世界的计算机技术,它利用计算机生成一种模拟环境,是一种多源信息融合交互式的三维动态视景和实体行为的系统仿真,可借助传感头盔、数据手套等专业设备,让用户进入虚拟空间,实时感知和操作虚拟世界中的各种对象,从而通过视觉、触觉和听觉等获得身临其境的真实感受。虚拟现实技术是仿真技术的一个重要方向,是仿真技术与计算机图形学、人机接口技术、多媒体技术、传感技术和网络技术等多种技术的融合,是一门富有挑战性的交叉技术。

虚拟现实技术正在广泛地应用于军事、建筑、工业仿真、考古、医学、文化教育、农业和计算机技术等方面,改变了传统的人机交换模式。

二、虚拟现实的基本特征

虚拟现实技术的基本特征可以简洁地表征为沉浸性、交互性和构想性。  沉浸性

沉浸性是指用户作为主角存在于虚拟环境中的真实程度。理想的虚拟环境应该达到使用难以分辨真假的程度例如可视场景应随着视点的变化而变化甚至超越真实如生成比现实更逼真的照明和音响效果等。  交互性

交互性是指用户对虚拟环境内的物体的可操作程度和从环境得到反馈的自然程度包括实时性。例如用户可以用手直接取虚拟环境中的物体, 这时手应该有触摸感, 并可以感觉物体的重量, 场景中被取的物体也立刻能够随着手的移动而移动。  构想性

构想是指用户沉浸在多维信息空间中, 依靠自己的感知和认知能力全方位地获取知识, 发挥主观能动性, 寻求解答方式, 形成新的概念。

三、虚拟现实的硬件设备与软件技术

在虚拟现实系统中,硬件设备主要由3个部分组成:输入设备、输出设备、虚拟世界生成设备。此外系统还需要虚拟现实的相关技术。

1、虚拟现实的输入设备

有关虚拟现实系统的输入设备主要分为两大类:一类是基于自然的交互设备,用于对虚拟世界信息的输入;另一类是三维定位跟踪设备,主要用于对输入设备在三维空间中的位置进行判定,并送入虚拟现实系统中。

虚拟世界与人进行自然交互的实现形式很多,有基于语音的、基于手的等多种形式,如数据手套、数据衣、三维控制器、三维扫描仪等。

手是我们与外界进行物理接触及意识表达的最主要媒介,在人机交互设备中也

是如此。基于手的自然交互形式最为常见,相应的数字化设备很多,在这类产品中最为常用的就是数据手套。

数据手套是美国VPL公司在1987年推出的一种传感手套的专有名称。现在,数据手套已成为一种被广泛使用的传感设备。数据手套戴在用户手上,作为一只虚拟的手用于与虚拟现实系统进行交互,可以在虚拟世界中进行物体抓取、移动、装配、操纵、控制等操作,并把手指和手掌伸屈时的各种姿势转换成数字信号传送给计算机,计算机通过应用程序识别出用户的手在虚拟世界中操作时的姿势,执行相应的操作。在实际应用中,数据手套还必须配有空间位置跟踪器,检测手在空间中的实际方位及其运动方向。

2、虚拟现实的输出设备

人置身于虚拟世界中,要体会到沉浸的感觉,必须让虚拟世界能模拟人在现实世界中的多种感受,如视觉、听觉、触觉、力觉、痛感、味觉、嗅觉等。

基于目前的技术水平,成熟和相对成熟的感知信息的产生和检测技术仅有视觉、听觉和触觉(力觉)3种。感知设备的作用是将虚拟世界中各种感知信号转变为人所能接受的多通道刺激信号,现在主要应用的有基于视觉、听觉和力觉感知的设备,基于味觉、嗅觉等的设备有待开发研究。

3、虚拟现实的生成设备

在虚拟现实系统中,计算机是虚拟世界的主要生成设备,所以有人称之为“虚拟现实引擎”,它首先创建出虚拟世界的场景,同时还必须实时响应用户各种方式的输入。

通常虚拟世界生成设备主要分为基于高性能个人计算机、基于高性能图形工作站、高度并行的计算机系统和基于分布式计算机的虚拟现实系统四大类。

① 基于高性能个人计算机虚拟现实系统主要采用普通计算机配置图形加速卡,通常用于桌面式非沉浸型虚拟现实系统;

② 基于高性能图形工作站虚拟现实系统一般配备有SUN或SGI公司可视化工作站;

③ 高度并行的计算机系统采用高性能并行体系;

④ 基于分布式计算机的虚拟现实系统则采用网络连接的分布式结构计算机系统。

4、虚拟现实的相关技术

虚拟现实系统的目标是由计算机生成虚拟世界,用户可以与之进行视觉、听觉、触觉、嗅觉、味觉等全方位的交互,并且虚拟现实系统能进行实时响应。

要实现这种目标,除了需要有一些专业的硬件设备外,还必须有较多的相关技术及软件加以保证,特别是在现阶段计算机的运行速度还达不到虚拟现实系统所需要求的情况下,相关技术就显得更加重要。

虚拟现实的相关技术主要有立体视觉显示技术,环境建模技术,真实感实时绘制技术,三维虚拟声音的实现技术,自然交互与传感技术等等。  立体视觉显示技术

人类从客观世界获得的信息的80%以上来自视觉,视觉信息的获取是人类感知外部世界、获取信息的最主要的传感通道,视觉通道成为多感知的虚拟现实系统中最重要的环节。

在视觉显示技术中,实现立体显示技术是较为复杂与关键的,立体视觉显示技术是虚拟现实的重要支撑技术。  环境建模技术

在虚拟现实系统中,营造的虚拟环境是它的核心内容,要建立虚拟环境,首先要建模,然后在其基础上再进行实时绘制、立体显示,形成一个虚拟的世界。

虚拟环境建模的目的在于获取实际三维环境的三维数据,并根据其应用的需要,利用获取的三维数据建立相应的虚拟环境模型。只有设计出反映研究对象的真实有效的模型,虚拟现实系统才有可信度。

在虚拟现实系统中,环境建模应该包括有基于视觉、听觉、触觉、力觉、味觉等多种感觉通道的建模。

但基于目前的技术水平,常见的是三维视觉建模和三维听觉建模。而在当前应用中,环境建模一般主要是三维视觉建模,这方面的理论也较为成熟。

三维视觉建模又可细分为几何建模、物理建模、行为建模等。

1) 几何建模是基于几何信息来描述物体模型的建模方法,它处理物体的几何形状的表示,研究图形数据结构的基本问题; 2) 物理建模涉及物体的物理属性;

3) 行为建模反映研究对象的物理本质及其内在的工作机理。  真实感实时绘制技术

要实现虚拟现实系统中的虚拟世界,仅有立体显示技术是远远不够的,虚拟现实中还有真实感与实时性的要求,也就是说虚拟世界的产生不仅需要真实的立体感,而且虚拟世界还必须实时生成,这就必须要采用真实感实时绘制技术。

所谓真实感绘制是指在计算机中重现真实世界场景的过程。真实感绘制的主要任务是要模拟真实物体的物理属性,即物体的形状、光学性质、表面的纹理和粗糙程度,以及物体间的相对位置、遮挡关系等等。 三维虚拟声音的实现技术

在虚拟现实系统中加入与视觉并行的三维虚拟声音,一方面可以在很大程度上增强用户在虚拟世界中的沉浸感和交互性,另一方面也可以减弱大脑对于视觉的依赖性,降低沉浸感对视觉信息的要求,使用户能从既有视觉感受又有听觉感受的环境中获得更多的信息。

四、虚拟现实技术展望

虚拟现实技术依赖于计算机的高速运算和传输。高速运算和传输能解决虚拟现实环境的复杂逼真的环境构造和海量数据处理的问题,从而解决因计算和传输滞后引起参与者的心理疾病。

虚拟体的基本属性是与几何、物理和生物行为融合的。再好的真实感也离不开虚拟体的仿真行为。虚拟现实技术的真实感主要体现在视觉和听觉上,“多感知交互”正在成为热点。对力反馈系统的进一步研究、嗅觉、味觉和体表感受都是未来虚拟现实的内容。基于互联网的虚拟现实伴随互联网的发展而成为热点。

我国的虚拟软件还处于起步的阶段,希望国内有更多的自主知识产权的开发平台。

广阔的应用领域又向虚拟现实技术提出了新的创意和难题,应进一步推动虚拟现实的发展,目前虚拟现实技术的发展仅限于人们的想象力。

五、论文小结

虚拟现实技术是一个极具潜力的前沿研究方向,是面向21世纪的重要技术之一。

它在理论,软硬件环境的研究方面依赖于多种技术的综合,其中有很多技术有待完善。可以预见,随着技术的发展,虚拟现实技术及其应用会越来越广泛。

本论文概述了虚拟现实的定义、硬件、软件和应用,并对虚拟现实技术和应用的新热点做了展望,最后对学习“虚拟现实技术”这部分知识进行了总结。

任雨佳 1205170202 计本1202班

推荐第9篇:虚拟现实技术论文

云南师范大学旅游与地理科学学院

虚拟现实技术论文(设计)

题目 虚拟现实技术 学院 旅游与地理科学学院 专业 测绘工程

学号 1443206000215 班级 14测绘工程 姓名 黄 兴 旺

《虚拟现实技术》期中论文姓名:黄兴旺学号:1443206000215

2016-2017年第一学期

1.虚拟现实技术的概念与特征 ········································································································ 3

1.1虚拟现实的概念 ················································································································· 3

1.1.1关于Virtual的释义 ································································································· 3 1.1.2关于Reality的释义 ································································································· 3 1.1.3我国对Virtual Reality的翻译 ················································································· 3 1.2虚拟现实技术的定义 ········································································································· 4

1.2.1狭义虚拟现实技术的定义 ······················································································ 4 1.2.2广义虚拟现实技术的定义 ······················································································ 4 1.2.3有关虚拟现实技术的其他定义 ·············································································· 5 1.3虚拟现实的特征和类型 ····································································································· 5

1.3.1虚拟现实技术的特征 ······························································································ 5 1.3.2虚拟现实技术的类型 ······························································································ 5

2.虚拟现实技术涉及的关键技术与问题 ························································································ 6

2.1虚拟现实技术的关键技术 ································································································· 6 2.2虚拟现实技术的几个瓶颈问题 ························································································· 7 3.虚拟现实技术的国内外研究现状 ································································································ 8

3.1国外虚拟现实技术研究现状 ····························································································· 8

3.1.1美国·························································································································· 8 3.1.2欧洲·························································································································· 9 3.1.3亚洲·························································································································· 9 3.2国内虚拟现实技术的研究现状 ······················································································· 10 4.虚拟现实技术的应用 ·················································································································· 12 4.1虚拟现实技术的应用领域 ······························································································· 12 4.1.1军事领域 ················································································································ 12 4.1.2医学························································································································ 13 4.1.3教育························································································································ 14 4.1.4工程领域 ················································································································ 14 4.2虚拟现实技术的应用案例 ······························································································· 15 5.虚拟现实技术的未来展望 ·········································································································· 18 6.总结 ············································································································································· 19

《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

虚拟现实技术

摘要虚拟现实(VirtualReality, VR)技术是近年来新兴的借助计算机及最新传感器技术创造的一种崭新的人机交互手段,其核心是建模与仿真。概括介绍了虚拟现实技术的概念、特征及原理,涉及的关键技术,研究状况,应用领域与前景展望.关键字虚拟现实技术,VR,研究现状,相关应用,信息安全

1.虚拟现实技术的概念与特征

1.1虚拟现实的概念

1989年,美国VPA(Virtual Programming Language)公司的创作者之一Lanier首先提出“VirtualReality”这个称谓,引发了科学界对这一术语的关注和研究。

1.1.1关于Virtual的释义

首先从VR这个词上进行分析,VirtualReality(VR)中的Virtual是形容词,Reality是名词,Virtual是修饰Reality的。

虽然不存在,但效果感觉存在;尽管事实并非如此,但就某些效果而言,也可以感觉是这样的。

1.1.2关于Reality的释义

VirtualReality中Reality为名词,Reality它更为复杂。

很多书籍表明,Reality具有实质的状态或者性质,是真实的实际存在着,而不是仅具有表象的事物(或衍生物)。Reality表达的是世界上存在的一切事物。

1.1.3我国对VirtualReality的翻译

我过学者和翻译家对VirtualReality有很多种不同的认识,译名也有多种多样。有翻译为“虚真实”、“临境”、“灵境”、“电象”的,也有译为“虚拟真实”、“虚拟镜像”和“虚拟现实”的。随着对VirtualReality的认识不断加深入,以及VirtualReality研究的拓展和研究事业的转换,国内学者根据自己的理解对VirtualReality给予了不同的理解。

3 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

有人认为世界的现象是现实,但不一定实在。“实在”在不同的条件和场合下将展开不同的现实,大至虚拟世界,虚拟城市,虚拟企业,虚拟图书馆等;小到虚拟分子,虚拟细胞等等。

1.2虚拟现实技术的定义

虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。

1.2.1狭义虚拟现实技术的定义

1990年在美国达拉斯召开的SIGGRAPH国际会议上,明确了VR的上要技术构成,即三维计算机图形生成技术、多功能传感式交互式接口技术及高分辨率的告诉显示技术。VR技术系统主要包括,(1)输入输出设备,如头盔式显示器、立体耳机、头部跟踪系统以及数字手套;(2)虚拟环境及其软件,用以描述具体的虚拟环境等动态特性、结构以及交互式规则;(3)计算机系统以及图形、声音合成设备等外部设备三个主要部分。

1.2.2广义虚拟现实技术的定义

所谓广义VR技术的定义,认为VR技术是对虚拟想象或真实的、多感官的三维虚拟世界模拟。换而言之,是计算机技术所创建的三维环境,这个环境可以是虚拟想象的三维环境(三维可视化的),也可以是对真实世界的三维模拟,是一个既是物理又是心里的空间,它的本质应该是“人类想象力付诸实施的想象空间”,是对人所处的自然真实环境的空间特性以及时间特性的一种扩展。VR不仅仅是一种人机接口,更主要的是对虚拟世界内部的模拟。人机交互接口采用VR的方式,对某个特定环境真实再现后,用户通过自然的方式接受或响应模拟环境的各种感官刺激,与虚拟世界中的任何物体进行思想和行为等方面的交流,使用户产生身临其境的感觉。

4 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

1.2.3有关虚拟现实技术的其他定义

有一些书上表明,VR是一种高端人机接口,包括通过听觉、视觉、触觉、嗅觉和味觉等多种感觉通道的实时模拟和实时交换。

也有一些我国学者指出,VR技术使体验者通过传感器进入虚拟世界,让体验者发生感触,沉浸其中。这个虚拟世界可以说是纯粹虚构空间,也可以是现实世界的虚拟再现。

1.3虚拟现实的特征和类型

1.3.1虚拟现实技术的特征

虚拟现实(Virtual Reality)又称灵境技术是利用三维图形生成技术、多传感交互技术以及高分辨显示技术,生成三维逼真的虚拟环境,使用者戴上特殊的头盔、数据手套等传感设备,或利用键盘、鼠标等输入设备,便可以进入虚拟空间,成为虚拟环境的一员,进行实时交互,感知和操作虚拟世界中的各种对象,从而获得身临其境的感受和体会。

虚拟现实技术具有以下五个主要特征:

(1)沉浸性使之所创造的虚拟环境能使学生产生“身临其境”感觉,使其相信在虚拟环境中人也是确实存在的,而且在操作过程中它可以自始至终的发挥作用,就像真正的客观世界一样。

(2)交互性是在虚拟环境中,学生如同在真实的环境中一样与虚拟环境中的任务、事物发生交互关系,其中学生是交互的主体,虚拟对象是交互的客体,主体和客体之间的交互是全方位的。

(3)构想性是虚拟现实是要能启发人的创造性的活动,不仅要能使沉浸于此环境中的学生获取新的指示,提高感性和理性认识,而且要能使学生产生新的构思。

(4)动作性是指学生能以客观世界的实际动作或以人类实际的方式来操作虚拟系统,让学生感觉到他面对的是一个真实的环境。

(5)自主性是虚拟世界中物体可按各自的模型和规则自主运动。

1.3.2虚拟现实技术的类型

虚拟现实技术按照不同的标准有不同的分类,通常分为以下四类:

1、桌面虚拟现实

桌面虚拟现实利用个人计算机和低级工作站进行仿真,将计算机的屏幕作为用户

5 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

观察虚拟境界的一个窗口。通过各种输入设备实现与虚拟现实世界的充分交互,这些外部设备包括鼠标,追踪球,力矩球等。它要求参与者使用输入设备,通过计算机屏幕观察360度范围内的虚拟境界,并操纵其中的物体,但这时参与者缺少完全的沉浸,因为它仍然会受到周围现实环境的干扰。桌面虚拟现实最大特点是缺乏真实的现实体验,但是成本也相对较低,因而,应用比较广泛。常见桌面虚拟现实技术有:基于静态图像的虚拟现实QuickTime VR、虚拟现实造型语言VRML、桌面三维虚拟现实、MUD等。

2、沉浸的虚拟现实

高级虚拟现实系统提供完全沉浸的体验,使用户有一种置身于虚拟境界之中的感觉。它利用头盔式显示器或其它设备,把参与者的视觉、听觉和其它感觉封闭起来,并提供一个新的、虚拟的感觉空间,并利用位置跟踪器、数据手套、其它手控输入设备、声音等使得参与者产生一种身临其境、全心投入和沉浸其中的感觉。常见的沉浸式系统有:基于头盔式显示器的系统、投影式虚拟现实系统、远程存在系统。

3、增强现实性的虚拟现实

增强现实性的虚拟现实不仅是利用虚拟现实技术来模拟现实世界、仿真现实世界,而且要利用它来增强参与者对真实环境的感受,也就是增强现实中无法感知或不方便的感受。典型的实例是战机飞行员的平视显示器,它可以将仪表读数和武器瞄准数据投射到安装在飞行员面前的穿透式屏幕上,它可以使飞行员不必低头读座舱中仪表的数据,从而可集中精力盯着敌人的飞机或导航偏差。

4、分布式虚拟现实

如果多个用户通过计算机网络连接在一起,同时参加一个虚拟空间,共同体验虚拟经历,那虚拟现实则提升到了一个更高的境界,这就是分布式虚拟现实系统。在分布式虚拟现实系统中,多个用户可通过网络对同一虚拟世界进行观察和操作,以达到协同工作的目的。目前最典型的分布式虚拟现实系统是SIMNET,SIMNET由坦克仿真器通过网络连接而成,用于部队的联合训练。通过SIMNET,位于德国的仿真器可以和位于美国的仿真器一样运行在同一个虚拟世界,参与同一场作战演习。

2.虚拟现实技术涉及的关键技术与问题

2.1虚拟现实技术的关键技术

虚拟现实技术的关键技术主要包括:

1、动态环境建模技术,它包括实现环境三维数据获取方法、非接触式视觉建模技

6 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

术等等。

2、实时、现实三维动画技术,即实时三维动画生成技术。

3、立体现实和传感技术,它包括头盔式三维立体显示器、数据手套、力觉和触觉传感器技术的研究。

4、快速、高精度的三维跟踪技术

5、系统集成技术,包括数据转换技术、语音识别与合成技术等等。

2.2虚拟现实技术的几个瓶颈问题

(1)虚拟环境表示的准确性。为使虚拟环境与客观世界相一致,需要对其中种类繁多、构形复杂的信息做出准确、完备的描述。同时,需要研究高效的建模方法,重建其演化规律以及虚拟对象之间的各种相互关系与相互作用。

(2)虚拟环境感知信息合成的真实性。抽象的信息模型并不能直接为人类所直接感知,这就需要研究虚拟环境的视觉、听觉、力觉和触觉等感知信息的合成方法,重点解决合成信息的高保真性和实时性问题,以提高沉浸感。

(3)人与虚拟环境交互的自然性。合成的感知信息实时地通过界面传递给用户,用户根据感知到的信息对虚拟环境中事件和态势做出分析和判断,并以自然方式实现与虚拟环境的交互。这就需要研究基于非精确信息的多通道人机交互模式和个性化的自然交互技术等,以提高人机交互效率。

(4)实时显示问题。尽管理论上讲能够建立起高度逼真的,实时漫游的VR,但至少现在来讲还达不到这样的水平。这种技术需要强有力的硬件条件的支撑,例如速度极快的图形工作站和三维图形加速卡,但目前即使是最快的图形工作站也不能产生十分逼真,同时又是实时交互的VR。其根本原因是因为引入了用户交互,需要动态生成新的图形时,就不能达到实时要求,从而不得不降低图形的逼真度以减少处理时间,这就是所谓的景物复杂度问题。

(5)图形生成。图形生成是虚拟现实的重要瓶颈,虚拟现实最重要的特性是人可以在随意变化的交互控制下感受到场景的动态特性,换句话说,虚拟现实系统要求随着人的活动(位置、方向的变化)即时生成相应的图形画面。

(6)智能技术(Artificial Intelligence,简称AI)。在VR中,计算机是从人的各种动作,语言等变化中获得信息,要正确理解这些信息,需要借助于AI技术来解决,如语音识别、图像识别、自然语言理解等,这些智能接口领域的研究课题是VR技术的基础,同时也是VR技术的难点。本质上,上述6个问题的解决使得用户能够

7 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

身临其境地感知虚拟环境,从而达到探索、认识客观事物的目的。概括地说,围绕着虚拟现实展开的研究都是围绕着这6个基本问题的。

3.虚拟现实技术的国内外研究现状

3.1国外虚拟现实技术研究现状

3.1.1美国

美国是VR技术的发源地。美国VR研究技术的水平基本上就代表国际VR发展的水平。目前美国在该领域的基础研究主要集中在感知、用户界面、后台软件和硬件四个方面。

美国宇航局的Ames实验室:将数据手套工程化,使其成为可用性较高的产品。在约翰逊空间中心完成空间站操纵的实时仿真。大量运用了面向座舱的飞行模拟技术。对哈勃太空望远镜的仿真。现在正致力于一个叫“虚拟行星探索”(VPE)的试验计划。现在NASA己经建立了航空、卫星维护VR训练系统,空间站VR训练系统,并且已经建立了可供全国使用的VR教育系统。

北卡罗来纳大学(UNC)的计算机系是进行VR研究最早最著名的大学。他们主要研究分子建模、航空驾驶、外科手术仿真、建筑仿真等。

Loma Linda大学医学中心的David Warner博士和他的研究小组成功地将计算机图形及VR的设备用于探讨与神经疾病相关的问题,首创了VR儿科治疗法。

麻省理工学院(MIT)是研究人工智能、机器人和计算机图形学及动画的先锋,这些技术都是VR技术的基础,1985年MIT成立了媒体实验室,进行虚拟环境的正规研究。

SRI研究中心建立了“视觉感知计划”,研究现有VR技术的进一步发展。1991年后,SRI进行了利用VR技术对军用飞机或车辆驾驶的训练研究,试图通过仿真来减少飞行事故。

华盛顿大学华盛顿技术中心的人机界面技术实验室(HIT Lab)将VR研究引入了教育、设计、娱乐和制造领域。伊利诺斯州立大学研制出在车辆设计中支持远程协作的分布式VR系统。

8 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

乔治梅森大学研制出一套在动态虚拟环境中的流体实时仿真系统。从90年代初起,美国率先将虚拟现实技术用于军事领域,主要用于以下四个方面:一是虚拟战场环境。二是进行单兵模拟训练。三是实施诸军兵种联合演习。四是进行指挥员训练。

3.1.2欧洲

在欧洲,英国在VR开发的某些方面,特别是在分布并行处理、辅助设备(包括触觉反馈)设计和应用研究方面,在欧洲来说是领先的。英国Bristol公司发现,VR应用的交点应集中在整体综合技术上,他们在软件和硬件的某些领域处于领先地位。英国ARRL公司关于远地呈现的研究实验,主要包括VR重构问题。他们的产品还包括建筑和科学可视化计算。

欧洲其它一些较发达的国家如:荷兰、德国、瑞典等也积极进行了VR的研究与应用。

瑞典的DIVE分布式虚拟交互环境,是一个基于Unix的,不同节点上的多个进程可以在同一世界中工作的异质分布式系统。

荷兰海牙TNO研究所的物理电子实验室(TNO-PEL)开发的训练和模拟系统,通过改进人机界面来改善现有模拟系统,以使用户完全介入模拟环境。

德国在VR的应用方面取得了出乎意料的成果。在改造传统产业方面,一是用于产品设计、降低成本,避免新产品开发的风险;二是产品演示,吸引客户争取定单;三是用于培训,在新生产设备投入使用前用虚拟工厂来提高工人的操作水平。

2008年10月27-29日在法国举行的ACM Symposium on Virtual Reality Software and Technology大会,整体上促进了虚拟现实技术的深入发展。

3.1.3亚洲

在亚洲,日本虚拟现实技术研究发展十分迅速,同时韩国、新加坡等国家也在积极开展虚拟现实技术方面的研究工作。

在当前实用虚拟现实技术的研究与开发中日本是居于领先地位的国家之一,主要致力于建立大规模VR知识库的研究。另外在虚拟现实的游戏方面的研究也做了很多工作。

东京技术学院精密和智能实验室研究了一个用于建立三维模型的人性化界面。

9 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

NEC公司开发了一种虚拟现实系统,它能让操作者都使用“代用手”去处理三维CAD中的形体模型,该系统通过数据手套把对模型的处理与操作者手的运动联系起来。

京都的先进电子通信研究所(ATR)正在开发一套系统,它能用图像处理来识别手势和面部表情,并把它们作为系统输入。

日本国际工业和商业部产品科学研究院开发了一种采用X、Y记录器的受力反馈装置。

东京大学的高级科学研究中心将他们的研究重点放在远程控制方面,最近的研究项目是主从系统。该系统可以使用户控制远程摄像系统和一个模拟人手的随动机械人手臂。

东京大学原岛研究室开展了3项研究:人类面都表情特征的提取、三维结构的判定和三维形状的表示、动态图像的提取。

东京大学广濑研究室重点研究虚拟现实的可视化问题。为了克服当前显示和交互作用技术的局限性,他们正在开发一种虚拟全息系统。

筑波大学研究一些力反馈显示方法,开发了九自由度的触觉输入器,虚拟行走原型系统。

富士通实验室有限公司正在研究虚拟生物与VR环境的相互作用。他们还在研究虚拟现实中的手势识别,已经开发了一套神经网络姿势识别系统,该系统可以识别姿势,也可以识别表示词的信号语言。

3.2国内虚拟现实技术的研究现状

和一些发达国家相比,我国VR技术还有一定的差距,但已引起政府有关部门和科学家们的高度重视。根据我国的国情,制定了开展VR技术的研究。九五规划、国家自然科学基金委、国家高技术研究发展计划等都把VR列入了研究项目。在紧跟国际新技术的同时,国内一些重点院校,已积极投入到了这一领域的研究工作。国内最早开展此项技术试验的是挂靠在西北工业大学电子工程系的西安虚拟现实工程技术研究中心。该中心的成立,对发挥学校电子信息工程学院等其他院系和研究所在虚拟现实、虚拟仿真与虚拟制造等方面的研究优势将具有积极作用。

北京科技大学虚拟现实实验室成功开发出了纯交互式汽车模拟驾驶培训系统。由于开发出的三维图形非常逼真,虚拟环境与真实的驾驶环境几乎没有什么差别,因此投入使用后效果良好。到目前为止,已经有150余人通过这个系统的学习取得驾驶执照,路考通过率达到98%。

10 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

国防科技大学研制的虚拟空间会议系统1999年12月在长沙通过专家鉴定。虚拟空间会议系统随着虚拟现实技术的发展而被提出,是国际上公认的前沿性高难度课题,具有\"终极会议系统\" 之称。国防科技大学于1995年开始进行前期研究,1997年正式立项,研究人员经过5年的艰苦探索,大胆创新,终于解决了对象提取、三维虚拟对象、会场合成、场景感知、视音频压缩与传输及高分辨率显示等一系列关键技术,使中国虚拟现实技术获得突破性进展。虚拟会议空间通过多个大屏幕投影机无缝组成虚拟会场显示环境,采用视频合成技术构造一个超高分辨率、宽视角、一体化的虚拟会议空间,实现了与会者之间相互关注及对会场虚拟场景的感知等普通多媒体会议系统无法实现的功能。在虚拟会议空间系统中,所有与会者仿佛在同一个会议室开会,每个与会者所处的空间位置、行为动作及面部表情都能相互感知,并能通过多种形式进行信息交流。发言人也可通过对每个与会者的反应和提出的问题,调整讲话内容、回答有关问题。

北京航空航天大学计算机系也是国内最早进行VR研究、最有权威的单位之一,他们首先进行了一些基础知识方面的研究,并着重研究了虚拟环境中物体物理特性的表示与处理;在虚拟现实中的视觉接口方面开发出部分硬件,并提出有关算法及实现方法;实现了分布式虚拟环境网络设计,建立了网上虚拟现实研究论坛,可以提供实时三维动态数据库,提供虚拟现实演示环境,提供用于飞行员训练的虚拟现实系统,提供开发虚拟现实应用系统的开发平台,并将要实现与有关单位的远程连接。

浙江大学CAD&CG国家重点实验室开发出了一套桌面型虚拟建筑环境实时漫游系统,采用了层面迭加绘制技术和预消隐技术,实现了立体视觉,同时还提供了方便的交互工具,使整个系统的实时性和画面的真实感都达到了较高的水平。另外,他们还研制出了在虚拟环境中一种新的快速漫游算法和一种递进网格的快速生成算法。

哈尔滨工业大学已经成功地虚拟出了人的高级行为中特定人脸图像的合成,表情的合成和唇动的合成等技术问题,并正在研究人说话时头势和手势动作,话音和语调的同步等。

清华大学计算机科学和技术系对虚拟现实和临场感的方面进行了研究,例如球面屏幕显示和图像随动、克服立体图闪烁的措施和深度感实验等方面都具有不少独特的方法。他们还针对室内环境水平特征丰富的特点,提出借助图像变换,使立体视觉图像中对应水平特征呈现形状一致性,以利于实现特征匹配,并获取物体三堆结构的新颖算法。

西安交通大学信息工程研究所对虚拟现实中的关键技术——立体显示技术进行了研究。他们在借鉴人类视觉特性的基础上提出了一种基于JPEG标准压缩编码新方

11 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

案,并获得了较高的压缩比、信噪比以及解压速度,并且己经通过实验结果证明了这种方案的优越性。

中国科技开发院威海分院主要研究虚拟现实中视觉接口技术,完成了虚拟现实中的体视图像对算法回显及软件接口。他们在硬件的开发上己经完成了LCD红外立体眼镜,并且已经实现商品化。

北方工业大学CAD研究中心是我国最早开展计算机动画研究的单位之一,中国第一部完全用计算机动画技术制作的科教片《相似》就出自该中心。关于虚拟现实的研究已经完成了2个“863”项目,完成了体视动画的自动生成部分算法与合成软件处理,完成了VR图像处理与演示系统的多媒体平台及相关的音频资料库,制作了一些相关的体视动画光盘。

另外,北京邮电大学自动化学院、西北工业大学CAD/CAM研究中心、上海交通大学图像处理模式识别研究所,长沙国防科技大学计算机研究所、华东船舶工业学院计算机系、安徽大学电子工程与住处科学系等单位也进行了一些研究工作和尝试。

4.虚拟现实技术的应用

4.1虚拟现实技术的应用领域

虚拟现实技术应用非常广泛,它可以用于军事、教育训练、设计规划、产品建模、心理学治疗及艺术与娱乐等多方面。

4.1.1军事领域

虚拟现实技术已成为军事和航天领域的先锋技术虚拟技术最初是美国航空航天局与军事部门为了模拟训练而开发的。现在广泛用于各兵种部队的战术研究、演习、模拟训练和培训等,战斗实验室已成为数控战士的战场。“司令部军事演习”也已成为一种军事演习的重要形式,这类演习可用于为未来战争组织装备、主导原则和综合训练等决策提供参考数据。美国航空航天局埃姆斯研究中心还建立了一座虚拟实验室,它所拥有的飞机模型器无论从规模上还是从逼真程度来看都处于世界之最,主要用于研究现在的或拟议中的飞机飞行控制、制导、座舱显示、自动化和操纵的品质,它能够获得有关飞机性能的实时数据和视图,并且航空研究人员和设计师坐在家里就可以“进入”该实验室进行操作,其灵敏度远远高于现在的任何其他此类研究手段。

12 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

虚拟现实技术在军事领域中发挥着重要的作用,被广泛的应用于军事训练、武装装备的研究和生产以及军事教育等各个方面。目前的军事模拟训练大多是虚拟现实系统。在海湾战争中,美国士兵原本对周边环境非常陌生,是虚拟

现实技术把他们带到那漫无边际的风尘黄沙中,让他们“身临其境”感受到大漠的荒凉。英国国防部向外界公开了全世界最大和最精确地模拟作战训练系统“合成兵战术训练师”,由170辆全面联网的高技术战车模拟器组成,全面革新了装甲战斗集群的战术仿真训练。NASA虚拟工作站是美国航空航天局与军事部门为了模拟训练而开发的。美国陆军的自动虚拟实验室CAVE是一个典型的虚拟现实系统。至2000年,美国陆军已拥有一个包括综合作战系统环境所用作战单元CCTT的模拟仿真器。目前美国正在开发空军的任务支援系统(AFMSS)和海军的特种作战部队计划和演习系统(SOFPARS)。我国赵沁平教授从1996年开始研究“分布式虚拟环境”,在863计划的资助下,以北京航空航天大学计算机系为系统集成单位,中科院软件所、国防科技大学等单位为关键技术单位,包括合成环境、虚拟士兵、武器等研究,目前已达到美国同类产品的水平。

4.1.2医学领域

2003年年初,我国第一军医大学宣布完成了国内首例女虚拟人的数据采集,获得了8556个切片,切片间距为0.2 mm,而美国人公布的切片间距为男性1 mm、女性0.33 mm。切片精度对于获取数据的整体质量至关重要,因为切片建模是数字化虚拟人研究的基础,但又不是全部。国家863计划“数字化虚拟人体若干关键技术”课题组组长李华博士解释说“目前我们所完成的还不是真正意义上的虚拟人,准确的提法是可视人,而且现阶段还是在探索数字化虚拟人的关键技术,还不可能完成虚拟人”。从1989年美国国立医院图书馆发起的可视人计划,到1996年美国橡树林国家实验室牵头酝酿的虚拟人创新计划,1999年美国橡树林国家实验室向国会提出的虚拟人计划,再到我国的数字化虚拟人计划,其真正的目的是设想构建能对外界有反应的“物理人”,即会像真人一样对外界有反应;骨头会断、血管会出血。比如说,在作汽车碰撞试验时,“虚拟人”可以提供人体意外创伤的数据,帮助改进汽车的安全防护体系等。虚拟技术在医学教学、临床诊断和手术等方面的应用前景极为广阔。对于第一次走上手术台的医生来说,难免会感到紧张和恐慌,而在虚拟技术的帮助下,他们就可以非常轻松地在显示器上一遍又一遍地作模拟手术,移动人体器官等,以寻找最佳手术方案。医生们凭借虚拟技术所产生的图像可以“步行”到人体内部去查看肿瘤,以便制定有效的治疗方案并检查治疗效果。利用这一技术手段还可以确保放射治疗的辐射只聚集到肿瘤部位,而不致伤害周

虚拟现实技术在医学领域可以用于教学及复杂手术的规划。并且可以提供操作和对手术结果进行预测,进行人体解剖仿真、外科手术仿真等,利用虚拟的医疗手术治疗

13 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

系统,对患者进行远程的救治。2003年,我国第一军医大学宣布完成了首例女虚拟人的数据采集。首都医科大学对虚拟中国女性数据集的高分辨率可视化和上海交通大学对虚拟人体运动建模的研究各有特色。1985年美国国立医学图书馆(NLM)就开始人体解剖图像数字化研究和利用,目前已经有虚拟人体模型可供下载。虚拟现实技术可以遥感外科手术。在偏远的山区,通过远程的医疗虚拟现实系统,医生只需要对虚拟病人模型进行手术,通过网络将医生动作传送到另一端的手术机器人,由机器人对病人实施远程手术。手术实时进展的情况也可以通过机器人摄像机实时传给医生的头盔立体显示器,以便医生实时的掌握手术情况。

4.1.3教育领域

虚拟现实技术应用于教育是教育发展的一个飞跃。它使传统的“以教促学”的学习方式被取而代之为学习者通过自身与信息环境的相互作用来得到知识。国内利用虚拟现实技术开发了多媒体教学软件,如邹湘军、周荣安等人开发的机械制造工程学多媒体教学软件,效果逼真。该软件已在南华大学和国防科技大学指挥专业的教学中使用。利用虚拟现实技术进行仿真教学和实验,可以模拟显现那些在现实中存在的、但在课堂教学环境下不容易做到或要花费很大代价才能显现的各种事物,供学生学习和探索。美国一个“虚拟物理实验室”系统的设计就使得学生可以通过亲身的做、看、听来学习的方式成为可能。

4.1.4工程领域

“身临其境”和“可视化”是虚拟现实技术的两个最基本特征。他借助于计算机图形学等技术手段,被誉为科学技术之眼,因而在工程技术设计方面显示出无可比拟的优越性。设计人员可以在交互式虚拟空间中精心设计,并对所涉及的产品加以观察、操作和反复试验。

虚拟现实技术在工程领域的应用有很多方面,如城市建设、机械制造等。在机械制造中,利用它的直观性和交互性可以帮助设计人员进行产品的设计和制造。虚拟现实技术在我国工业产品开发中也有非常广泛的应用,如严隽琪教授开发的“虚拟产品开发技术的理论体系研究”、孙健教授的“虚拟环境下啤酒灌装生产线”的研究等均取得了一定的成果。在现代城市建设中,设计人员更关心的是建筑的整体设计效果。利用虚拟现实技术在设计阶段就可以动态的、可视的、多方位的展现建筑物的外貌、地理环境 和辅助设施,设计人员可以在虚拟建筑物中漫游,来查看自己的设计是否合理得当。利用虚拟现实技术,日本开发了虚拟东京古罗马时代最宏伟的建筑——

14 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

Trajan广场再现。我国浙江大学开发了虚拟故宫,武汉大学开发的数码城市系统,这些都是虚拟现实技术的应用。

4.2虚拟现实技术的应用案例

数字城市

数字城市应用解决方案介绍。虚拟现实技术可以通过三维建模逼真地模拟现在和未来的城市,支持数据分析、方案论证和优化,支持地理信息系统等,通过这些详实的数据和相关资料可以是直观真实固化方案评估、审核以及管理等日常工作,更为重要的是它可以为多部门参与和协同工作提供了有效的平台。

场馆仿真

场馆仿真应用解决方案介绍。利用虚拟现实技术,通过计算机将在建或已建的场馆虚拟出来,达到一个触手可及的真实三维环境,以提前展示场馆面貌,供市民浏览,从而对场馆的规划设计进行现场评估。通过市民虚拟游览后的反馈意见,及时发现并解决场馆存在的问题。

地产漫游

地产漫游应用解决方案介绍地产漫游是集影视广告、动画、多媒体、网络科技于一身的最新型的房地产营销方式。通过虚拟现实技术可以让购房者看到直观的样板房形象,让购房者在电脑上亲眼看到几年后才建成的小区,游观赏到优美的小区环境设计,甚至能够在电脑上选户型,从而帮助地产开发商在逆境中求生存,顺境中谋发展。

室内设计

室内设计应用解决方案介绍。虚拟现实不仅仅是一个演示媒体,而且还是一个设计工具。它以视觉形式反映了设计者的思想,把这种构思变成看得见的虚拟物体和环境,使以往只能借助传统的设计模式提升到数字化的即看即所得的完美境界,大大提高了设计和规划的质量与效率。

旅游教学

旅游教学应用解决方案介绍。旅游和导游专业教学过程中存在实习资源匮乏而实地参观成本又高的难题。虚拟现实技术可以按照旅游专业的教学要求和实施特点,开发出适用于导游实训、旅游模拟、旅游规划的功能和模块,让师生足不出户,就能在三维立体的虚拟环境中遍览遥在万里之外的风光美景。形象逼真,细致生动。从而,通过情景化的学习界面、人机交互式的模拟旅游体验,改善教学环境、优化教学过程、增强教学效果。

15 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

文物古迹

文物古迹应用解决方案介绍。虚拟现实技术可以将文物建筑、文物景点、文物物品、古代人像及行为、古代自然现象及天体现象等进行虚拟展示和虚拟复原,从而使文物脱离地域限制,实现资源共享,真正成为全人类可以“拥有”的文化遗产。

工业仿真

工业仿真应用解决方案介绍。虚拟现实仿真平台,具有强大的物理实时计算功能,能够真实模拟场景重力、环境阻尼等环境特性,真实的模拟刚体动力学特性,提供了多种动力学交互手段,并能支持多种高速运算的碰撞替代体。为广大工业仿真需求用户轻而易举将此前许多只能停留于想法的优秀互动仿真创意方案完美的呈现于眼前,为国内广大工业仿真用户带来了仿真手段和技术实现水平的革命性进步。

汽车仿真

汽车仿真应用解决方案介绍。虚拟现实高画质渲染技术及汽车动力学仿真物理系统,将使汽车设计的数字化模型以更直观的方式在网络上展示出来,使世界各地的用户都可以更快捷得到丰富准确的汽车信息,实现人与计算机之间无缝连接。

道路桥梁

道路桥梁应用解决方案介绍。虚拟现实平台依靠其精美绝伦的三维视觉表现力,照片级的真实效果,使设计中的道路桥梁直观的呈现在人们面前,使得我们可以提前对其视觉效果和使用效率进行评估和预演,有效降低设计和施工风险,极大提高设计和施工效率。

油田矿井

油田矿井应用解决方案介绍。在建立油田生产和管理流程优化应用模型的基础上,利用虚拟现实技术对数据实现可视化和多维表达,并且通过智能化分析模型,为企业的经营管理提供良好的信息支撑环境。

水利电力

水利电力应用解决方案介绍。虚拟现实平台可以与电力信息系统紧密结合,逼真再现变电站现场场地、变压器、母线、断路器、隔离开关、接地刀闸、操作机构、电压互感器、电流互感器、电抗器、电容器、高压熔断器、站用变压器等一次设备的操作过程和设备运行状态,从而为电力行业提供可视化系统解决方案。

数字展馆

数字展馆应用解决方案介绍。虚拟现实技术可以与科技馆的功能进行完美的结合,充分发挥虚拟科技馆的种种优势,传统的声、光、电展览已经很难吸引观众的兴趣,

16 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

而利用虚拟现实技术把枯燥的数据变为鲜活的图形,使科技馆进入公众可参与交互式的新时代,引发观众浓厚的兴趣,从而达到科普的目的。

地质灾害

地质灾害应用解决方案介绍。虚拟现实仿真平台可以实现水利工程仿真、地震应急救援仿真、地震应急推演仿真、地址灾害仿真,实现地质灾害虚拟环境功能与展示的完美结合,通过在虚拟的环境中进行预防地质灾害的模拟演练,达到提升防灾、避灾安全意识的目的。

应急预案

应急预案应用解决方案介绍。应急虚拟现实仿真演练系统通过对各类灾害数值模拟和人员行为数值模拟的仿真,在虚拟空间中仿真灾害发生、发展的过程,以及人们在灾害环境中可能做出的各种反应;并在演练平台上,在最大限度仿真实际灾害的条件下,开展应急演练。在此基础上,制定各类企事业单位的数字化应急预案。应急仿真演练系统可以用来训练各级决策与指挥人员、事故处置人员,发现应急处置过程中存在的问题,检验和评估应急预案的可操作性和实用性,提高应急能力。

虚拟展馆

网上展馆应用解决方案介绍。虚拟现实网上三维交互功能可以将有形的实物产品三维化并且放在网上进行虚拟展示,还能嵌入相应音频和视频等多媒体元素,用户可以对虚拟场景中的物品进行实时的交互操作,例如开门、打开电视和播放音乐等等。相比目前网上主流的以图片、Flash、视频等展示方式来说,vrpie让用户有了浏览的自主感,可以以自己想看的角度去观察,还可以添加许多特效和互动操作,让用户体验身临其境上网冲浪的美妙感觉。

网上看房

网上看房应用解决方案介绍。虚拟现实网上三维交互功能可以虚拟房屋设计,展现独特的设计风格,使客户足不出户就可对房屋的全貌了如指掌,互动浏览,可以任意变换自己在房间中的位置,去观察设计的效果,了解房屋的精心布局。可以实现房屋三维户型图全景展示,使客户全面了解房屋内部结构,走进虚拟现实样板房。

网上产品

网上产品应用解决方案介绍。虚拟现实技术能够虚拟各类产品,以一种全新的方式演绎各类产品,使客户全方位全角度的了解最新产品。实现产品在互联网上的全新展示,让客户提前体验产品功能,更清楚的了解产品的特性及结构。将销售产品展示做成在线三维的形式,顾客通过对之进行观察和操作能够对产品有更加全面的认识了解,决定购买的几率必将大幅增加,为销售者带来更多的利润。展现出产品外形的方

17 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

方面面,加上互动操作,演示产品的功能和使用操作,充分利用互联网高速迅捷的传播优势来推广公司的产品。

网上看车

网上看车应用解决方案介绍。随着虚拟现实技术的发展,对汽车的一种全新演绎方式产生。通过虚拟现实仿真平台可以实现网上看车及交互功能,提供使用者关于视觉、听觉、触觉等感官的模拟,及时、没有限制地观察三度空间内的汽车。总结

随着虚拟现实技术的发展,虚拟现实技术的应用领域也越来越广泛,相信在不久的将来,虚拟现实技术能够给更多的领域带来革命性的变化。

5.虚拟现实技术的未来展望

VR技术的实质是构建一种人为的能与之进行自由交互的“世界”,在这个“世界”中参与者可以实时地探索或移动其中的对象。沉浸式虚拟现实是最理想的追求目标,实现的方式主要是戴上特制的头盔显示器、数据手套以及身体部位跟器,通过听觉、触觉和视觉在虚拟场景中进行体验。可以预测短期内游戏玩家可以戴上头盔身着游戏专用衣服及手套真正体验身临其境的“虚拟现实”游戏空间,它的出现将淘汰现有的各种大型游戏,推动科技的发展。纵观VR的发展历程,未来VR技术的研究仍将延续“低成本、高性能”原则,从软件、硬件两方面展开,发展方向主要归纳如下:

(1)动态环境建模技术。虚拟环境的建立是VR技术的核心内容,动态环境建模技术的目的是获取实际环境的三维数据,并根据需要建立相应的虚拟环境模型。

(2)实时三维图形生成和显示技术。三维图形的生成技术已比较成熟,而关键是怎样“实时生成”,在不降低图形的质量和复杂程度的基础上,如何提高刷新频率将是今后重要的研究内容。此外,VR还依赖于立体显示和传感器技术的发展,现有的虚拟设备还不能满足系统的需要,有必要开发新的三维图形生成和显示技术。

(3)新型交互设备的研制。虚拟现实技术实现人能够自由与虚拟世界对象进行交互,犹如身临其境,借助的输入输出设备主要有头盔显示器、数据手套、数据衣服、三维位置传感器和三维声音产生器等。因此,新型、便宜、鲁棒性优良的数据手套和数据服将成为未来研究的重要方向。

(4)智能化语音虚拟现实建模。虚拟现实建模是一个比较繁复的过程,需要大量的时间和精力。如果将VR技术与智能技术、语音识别技术结合起来,可以很好地解决这个问题。我们对模型的属性、方法和一般特点的描述通过语音识别技术转化成建模所需的数据,然后利用计算机的图形处理技术和人工智能技术进行设计、导航以及评价,将模型用对象表示出来,并且将各种基本模型静态或动态地连接起来,最终形

18 《虚拟现实技术》期中论文姓名:黄兴旺学号:144320600021

5 2016-2017年第一学期

成系统模型。人工智能一直是业界的难题,人工智能在各个领域十分有用,在虚拟世界也大有用武之地,良好的人工智能系统对减少乏味的人工劳动具有非常积极的作用。

(5)分布式虚拟现实技术的展望。分布式虚拟现实是今后虚拟现实技术发展的重要方向。随着众多DVE开发工具及其系统的出现,DVE本身的应用也渗透到各行各业,包括医疗、工程、训练与教学以及协同设计。仿真训练和教学训练是DVE的又一个重要的应用领域,包括虚拟战场、辅助教学等。另外,研究人员还用DVE系统来支持协同设计工作。近年来,随着Internet应用的普及,一些面向Internet的DVE应用使得位于世界各地多个用户可以进行协同工作。将分散的虚拟现实系统或仿真器通过网络联结起来,采用协调一致的结构、标准、协议和数据库,形成一个在时间和空间上互相耦合的虚拟合成环境,参与者可自由地进行交互作用。特别是在航空航天中应用价值极为明显,因为国际空间站的参与国分布在世界不同区域,分布式VR训练环境不需要在各国重建仿真系统,这样不仅减少了研制费和设备费用,减少了人员出差的费用以及异地生活的不适。

6.总结

近几十年来,通信技术、计算机的同步发展和相互促进成为世界上信息技术与产业飞速发展的主要特征。特别是网络技术的迅速崛起与普及,使得信息应用系统在深度和广度上发生了质的变化。虚拟现实主要依靠人机交互的发展,目前技术上已初步解决人脑数据的读取,在不久的将来,开发者将完全解决通过神经系统自动进入虚拟现实环境的“人脑——计算机接口”问题,通过对人脑提取和反馈神经信号使人完全融入“虚拟现实”世界。当然从技术角度,我们应该对基于多用户虚拟环境进行必要的技术研究。因为将来的VR技术将越来越重视人在其中的交互。虚拟现实充满活力、具有无限的应用前景的高新技术领域,但仍然存在许多有待解决与突破的问题。为了提高系统的交互性、逼真性和沉侵性,在新型传感和感知肌理、几何与建模新方法、高性能计算,特别是高速图形图像处理,以及人工智能、心理学、社会学等方面都有许多具有挑战性的问题有待我们进一步解决。

虚拟现实技术是本世纪发展的重要技术之一,作为一门科学和艺术将会不断走向成熟,在各行各业中将得到广泛应用,并发挥神奇的作用,二十一世纪将是虚拟现实技术的时代。

19

推荐第10篇:虚拟现实技术大纲[优秀]

《虚拟现实技术》教学大纲

一、课程基本情况

总 学 时:32讲课学时:32实验学时:0

总 学 分:2.0

课程类别:专业选修

考核方式:考查

适用对象:地理信息系统专业

先修课程:地理信息系统原理

参考教材:胡小强编.虚拟现实技术与应用,高等教育出版社

二、课程的性质、任务与目的

虚拟现实技术(VR)是一门选修课,是以沉浸性、交互性和构想性为基本特征的计算机高级人机界面。它是地理信息系统与其它技术的集成,是地理信息专业的前沿课程。通过这门课程的学习,学生能了解VR的概念、分类、应用及发展现状,VR系统的软硬件设备及关键技术,掌握基本的全景技术知识、3DMax/Cult3D/SketchUp操作、VR建模语言VRML等。

三、课程内容、基本要求与学时分配

通过本课程的教学,要求学生了解VR的概念、组成、特性及在各领域的应用;虚拟世界的生成设备、感知设备、空间位置跟踪定位设备和人机交互设备的功能、特点及应用情况;与VR相关的环境建模技术、实时三维图形绘制技术、三维虚拟声音的显示技术、面向自然的交互与传感技术和碰撞检测技术及基于网络的Web3D技术。掌握全景技术的分类、特点及全景照片的拍摄方法与原则,并具有制作全景、操作3DMax/Cult3D/SketchUp,使用VRML的技能。

本课程的重点是了解全景技术的特点、全景技术的类型、常见全景技术、全景图制作硬件、全景拍摄方法与原则,掌握对象全景的制作,熟练应用3DMax/Cult3D/SketchUp,熟悉其安装与启动、作品制作流程、3DMax/Cult3D/SketchUp模型的导出、3DMax/Cult3D/SketchUp窗口及其功能、能制作基本三维演示、三维交互演示等。

本课程的难点是虚拟现实建模语言VRML,即VRML文件要素、通用语法结构、空间坐标与计量单位、在场景中建造基本几何模型、在场景中构建复杂造型(包括虚拟场景中点、线、面的集合和Coordinate节点、构造离散点的集合造型、构造空间折线造型、构造空间平面

集合造型、创建复杂表面的方法、构造空间挤出造型等)、设置虚拟造型的外观,包括设置虚拟对象的材质、为几何体添加纹理、纹理的变换等。

理论教学学时分配见下表:

(一) VR概论(2学时)

理解VR概念,了解VR应用与发展。

(二) VR的硬件设备(2学时)

了解VR技术所需设备。

(三) VR相关技术(2学时)

理解VR所需技术(例如:场景方面技术、视频技术、声音方面技术等)

(四)、3DMax/Cult3D/SketchUp操作(12)

掌握软件安装、掌握初级建模与高级建模、了解材质与渲染等

(五) VR建模语言VRML(10)

了解VRML的相关浏览器、掌握VRML语法结构、掌握节点构造、理解通道等。

(六) VRML与3DMax/Cult3D/SketchUp文件交换(2学时)

掌握VRML与3DMax/Cult3D/SketchUp文件交换

四、教学方法和手段

本课程适用多媒体技术教学。

五、成绩评定

平时作品20%,考核80%;考核形式可以是操作、开卷、闭卷等。

六、其它说明

2学时机动

教学大纲撰写人: 张凯选

地理信息科学系主任:李如仁

测绘与地理科学学院教学院长:王崇倡

第11篇:Converse3D 虚拟现实软件介绍

Converse3d虚拟现实软件介绍

北京中天灏景网络科技有限公司专门致力于三维网络游戏和虚拟现实软件的研发,公司自主研发了Converse3D虚拟现实引擎系统,同时获得了Converse3D虚拟现实引擎著作权登记证书,并将其应用于多款三维游戏和虚拟现实系列软件,均取得了很好的经济效益和社会效益。

Converse3D虚拟现实引擎的问世打破了国外同类软件独霸市场的格局,给中国的虚拟现实技术领域注入了强大的生命力。产品一经推出即被业界给与很高的评价,对游戏和虚拟现实展示良好的兼容是其他单纯的游戏引擎或虚拟现实引擎所做不到的,二者在功能上互为补充,相得益彰。

目前公司以软件开发、软件销售、项目制作、技术输出、虚拟现实内容提供为主营业务,迅速构建起了庞大的全国代理分销网络渠道和服务体系,使我们的产品和服务能最快速最优质的到达终端消费者。

我们为不同需求的用户提供了各种解决方案。既满足了一般客户的需求,又适应了特殊化需求。我们提供软件定制化定向开发,这是其他公司所不能提供的服务,在多变的市场环境下,这些都构成了我们的核心竞争力。

公司依附于强大的技术实力和完善的研发、销售、客服体系,在三维游戏和虚拟现实领域确立了其不可动摇的地位。我们在上海等各城市都有分支机构,依赖于我们强大的机构体系,相信我们的服务将做的更好。

Converse意为“颠覆”,我们是充满激情和创意的年轻人,相信我们能不断的颠覆传统,改革创新,时刻走在时代的最前列。 产品体系

产品体系

Converse3D核心引擎

核心引擎是整个虚拟现实系统的核心部分,采用DirectX9.0 和C++编写,强大而稳定。包括场景管理、资源管理、角色动画、Mesh物体生成、3dmax数据导出模块、粒子系统、LOD地形、UI、服务器模块等。采用多叉树结构组织各种资源节点、动态载入、卸载资源、视见体裁切技术,这为渲染海量三角面而性能不减提供了支持;支持3dsmax Mesh物体、角色动画、相机动画、烘焙贴图等各种数据的导出与引用;使用脚本配置粒子系统和UI,功能强大而灵活;支持顶点渲染和像素渲染。

C3D-Creator 三维场景编辑器

构建三维场景,是C3D虚拟现实系列产品所共同依赖的场景编辑器,在其中创建模型、界面、调整材质、设置交互及各种特殊效果。 C3D-SDK 二次开发工具包

用于虚拟现实项目的二次开发,可构建系统级大型项目,广泛应用于工业、农业、石油、电力、虚拟会展、虚拟商城等行业。 C3D-Web3D 三维网络展示平台 实现三维场景的网络展示,用户通过IE等主流浏览器便可浏览三维场景。广泛应用于电子产品、工业 产品、数字城市等的分布式网络展示。 C3D-Community 虚拟社区

可实现基于网页的多人在线角色扮演互动交流系统,用于虚拟会展、虚拟商城等。 C3D-Industry 工业仿真

可实现工业领域中诸如虚拟培训、虚拟装配、虚拟生产线等功能。 C3D-DigitalCity 数字城市

用于数字城市的三维图形图像展示,同时具备城市资讯查询、三维测量、光照分析、控高分析、方案对比、应急演练、多人在线互动等功能。 C3D-Traveller 旅游实训系统

实现多通道环幕立体显示软硬件系统,具有景点切换、导游回放、试题汇编、方向盘接入等功能。广泛应用于大中专院校的导游专业。 C3D-PhycX 物理引擎

用于模拟物理现象,可模拟刚体运动、流体运动、布料等物理效果,物体之间的相互作用精准而高效。涵盖了现实世界中几乎所有的物理运动。 Converse3D 多通道环幕立体投影系统

用于多通道环幕立体展示,软件弧形矫正、边缘融合,被动式立体投影,高速帧同步。

三维场景编辑器

C3D-Creator用于可视化三维场景的编辑,简单易用,面向美工,两天学会一周精通。完全可视化的材质编辑和交互设置,简单易学,节省了时间、提高了效率。可广泛应用于旅游景点、文物古建、工业产品、工厂校园、房产旅游等行业场景的制作。 特点:

支持千万面超大场景渲染 支持大批量复制

高质量画面效果 可用于虚拟社区客户端创建

操作简便 内嵌物理引擎

拟真水面效果 支持一键式Exe/网页发布

自动镜面反 内嵌脚本系统

可视化编辑功能 支持角色扮演模式

支持骨骼动画 可视化材质编辑器

支持粒子系统 可视化交互编辑器

支持LOD地形系统 内嵌三维测量工具

支持网络三维浏览 高精度抓图

支持资源复用 可嵌入flash、网页等多媒体资源

支持各种三维模型的导入,如3dsMax、AutoCAD、Pro/e、UG、Maya

二次开发工具包

定制属于您自己的VR系统

C3D-SDK是基于Converse3D引擎的二次开发包,本SDK开放了所有模块的接口,包括:场景载入、模型操作、动画、相机、UI、角色系统、虚拟社区。使用本SDK可用于各行业开发出集VR场景、数据库、业务系统等多种资源与一体的大型系统。

根据客户的需要,我们可以提供三种形式的SDK:静态库(LIB)、动态链接库(DLL)、Converse3D ActiveX控件等,可嵌入语言包括VC++、JavaScript、VB、Delphi等。 成功客户

我们的SDK应用遍布各行业,其中不乏大型企事业单位项目,如中海油三维生产辅助决策系统、富士康厂房规划辅助系统、克拉玛依油田消防演练系统、解放军总后勤部虚拟档案馆系统等。 应用范围 数字城市行业:城市规划、城市资讯系统

规划:厂房规划平台、资产管理平台

工业:电力仿真系统、工控仿真系统、虚拟装配平台、设备管理系统 石油:辅助生产决策系统、设备管理系统、应急救援演练

交通行业:道路桥梁规划设计系统、城市交通仿真系统、铁道仿真系统 文博行业:虚拟博物馆系统、虚拟美术馆系统 家具设计:家具设计平台、室内装修平台 军事:电子沙盘系统、虚拟战场 地理:气候、植被、水利模拟 教育:各学科课件管理平台

工业仿真平台

生产辅助决策

同时采用B/S和C/S两种系统架构,集三维模型、二维网页信息、数据库数据于一体,实现三部分数据的互相连接与查询,给设备管理、安全生产、应急演练等提供了很大的便利性。

* 二维网页数据和三维模型数据的动态链接与查询

* 三维场景的交互式漫游

* 实现可视化的交互控制

* 运行期动态追加设备,并可任意调整设备位置

* 实现三维空间测量功能,可以测量设备的距离、面积、体积

* 人性化的场景浏览参数设置

多人在线应急演练实训

使用Converse3D虚拟社区系统实现应急推演,以低成本、跨地域的方式进行各种救援演练,人物以化身登陆社区行使救援演练规则规定的行为,如同亲临救援现场一般。可进行应急知识考核,促进人员应急救援水平的提高。 生产技能培训 * 机械组装与拆分

* 设备操作实训

传感器实时数据采集与模拟

通过引入实时更新的数据信息到系统中,能准确地预测和分析对生产的影响。 生产线流程模拟

模拟生产线场景并与实体生产线对接,可以互相操控和实时状态交互。 虚拟装配

机械的组装与拆分,使用数据手套及键盘、鼠标等外设对虚拟设备进行类似于现实操作方式的模拟,实现了虚拟和真实的完美结合。 采用数据手套和位置跟踪器结合来完成移位和抓取动作,可以实现5指10个关节的弯曲动作的数据采集,并使用Converse3D引擎的骨骼动画系统对数据进行即时再现。

同时开启顶点捕捉来对零部件的中心点、最近点、圆心、1/4圆周等关键点进行捕捉和自动对齐。

数字城市平台

C3D-DigitalCity数字城市平台适应当今数字城市领域对数字城市三维化、功能化、信息化的要求,不仅提供了全三维的逼真的数字城市场景,而且集合城市资讯及各种功能于一体,是目前城市规划部门、建筑设计领域、城市管理部门理想的数字化平台。 系统功能:

自主浏览和自动漫游 用户可以自己控制在场景中游走的路线,方式可以是步行、飞行、鸟瞰,毫无拘束.热点规划

根据建筑的名字将重点规划中的建筑标识出来,用户可以根据自已的要求点击标识,并且可以快速到达该建筑.光照分析

可以对各个地区、各个时间段不同建筑实时阴影的模拟,很清晰的观察各个建筑之间阴影的关系,并快速的调整建筑高低,避免建筑建成后各建筑间阴影遮挡.三维测量

测量工具主要进行场景中任意点的坐标、点间的水平距离、直线距离、面积以及体积的测算 方案分析与调整,该工具可以对指定的建筑进行高低调整,可以观察该建筑阴影对其它建筑的遮挡程度,很方便的对建筑移动、缩放、旋转等操作。 属性查询

不同建筑都有不同的属性,该功能可以显示各个建筑的用途,使整个规划更一目了然.分区规划

可以将整个城市分成几个区域,每个区域用不同的颜色表示,代替不同的划分,如老城区、新城区、正在建设区等,也可以按不同功能进行分类,如住宅区、商品区、规划区等.管道模拟

可以真实的模拟整个城市管网,可以看到管道的走向、分布与它们各自的功能.消防演练

三维仿真系统可以真实的模拟消防灭火与逃生的实战演练。同时可以模拟当某一地点着火时,消防车从城市哪条路线过来抢救及人群疏散情况,让更多人知道发生火灾后,要懂得如何自救和逃生.多通道立体显示

采用多通道立体显示系统将数字城市场景进行大屏幕广角显示,使成果展示更加具有形象化和震撼效果.

旅游实训系统

C3D-Traveller虚拟旅游实训教学系统利用大屏幕拼接系统、虚拟外设系统,学校结合教学要求和内容,制作出各种虚拟场景直观地展现在学生面前,使更多的学生有机会近距离、多角度学习教师的教学演示,有利于学生的正确理解和掌握。学生独自练习时可以进行反复的实景模拟训练,可大大提高教学的效率。采用Converse3D虚拟现实系统,学生完全是在一个新奇的虚拟环境下学习,不再是传统的书本教育和普通的多媒体教学,从而极大地提高了学生的学习热情和兴趣。

虚拟社区系统

■多通道立体显示

■环幕无缝边缘融合

■高速帧同步

■极高沉浸感

■导游路线录制与回放

■实景视频录制与回放

■嵌入考试系统

■接入方向盘等外设

国内首创三维网络多人在线角色扮演虚拟社区系统

C3D-Community三维虚拟社区系统实现角色在虚拟世界的互动与交流,角色以化身形式登录三维仿真场景,角色彼此可以相见,可以通过文字、语音、视频进行聊天,亦可进行肢体互动。它的出现使三维场景不再是孤立的单体场景,而是一个生机勃勃的社会系统,是未来人们网上生活的重要组成部分。 特色

使用IE等主流浏览器操作 实现虚拟试衣功能

动态加载、无需等待 实现意见反馈板功能

支持角色换装功能 商家信息布告板功能

角色形体手动调整 可融合B2C商业系统

角色之间可文字、语音、视频聊天 与JSP、PHP无缝融合

实现角色动作互动 实现商品后台更换

支持角色组队 支持商家推荐商品、发布广告

支持加为好友、好友分类 与业务办理系统无缝融合

支持自动、人工导游 实现NPC业务自动处理

支持快速商铺定位 聊天记录存储与分析

角色多场景之间任意跳转 单台服务器支持5000人同时在线

实现二维视频的三维展现 支持服务器集群

实现单品详情查询 服务器自动平衡荷载 应用领域

虚拟商城、虚拟会展、虚拟博物馆、虚拟美术馆、城市生活、虚拟旅游景点、应急推演

多通道立体投影

Converse3D多通道环幕立体投影系统采用N+1(一台主控机和N台客户机)台主机和若干台投影仪及环形屏幕组建而成,由中天灏景自主研发的边缘融合模块和立体显示模块产生边缘融合及立体效果。多通道立体显示系统扩展了视野,使得进入视野的信息更多了,给观众以极强的沉浸感和真实感。是虚拟旅游实训、科博馆、展览馆等场所进行三维展示的最佳选择。 Converse3D多通道环幕融合模块

实现软件边缘融合、软件弧形校正,消除通道间的硬边、使画面过度自然无接缝。同时实现动画、角色、特效等动态物体在通道之间无缝穿越。 Converse3D立体投影模块

采用偏振被动式立体,可将三维场景进行视觉分离,输出为左眼、右眼两个通道,以实现立体影像,景深和立体效果可实时调整。 特色

软件边缘融合、弧形矫正,成本低

动态物体在通道边缘无缝跨越

立体深度动态调整

采用网格进行弧形矫正

通过分解色彩通道进行色差矫正

帧同步速度高

可实现任意通道环幕系统 应用范围 旅游实训

工业产品展示

虚拟会展

心理学实验室

工业仿真实验室

城市规划馆

物流实验室

粒子特效编辑器 Converse3D粒子特效编辑器支持特效的脚本配置功能,可以模拟雾、雪、雨、烟火、山崩地裂等各种特殊效果,使得制作粒子特效简单而灵活。

物理引擎系统

物理引擎通过为刚性物体赋予真实的物理属性的方式来计算它们的运动、旋转和碰撞反映。为每个游戏使用物理引擎并不是完全必要的——简单的“牛顿”物理(比如加速和减速)也可以在一定程度上通过编程或编写脚本来实现。然而,当游戏需要比较复杂的物体碰撞、滚动、滑动或者弹跳的时候(比如赛车类游戏或者保龄球游戏),通过编程的方法就比较困难了。物理引擎使用对象属性(动量、扭矩或者弹性)来模拟刚体行为,这不仅可以得到更加真实的结果,对于开发人员来说也比编写行为脚本要更加容易掌握。

Converse3D虚拟现实引起嵌入世界著名的物理引擎,可模拟刚体运动、流体运动、布料等物理效果,物体之间的相互作用精准而高效。

高尔夫球游戏采用本物理引擎研发,球飞行轨迹及球与地面碰撞、球与空气的摩擦效果无不将其性能体现的淋漓尽致。

第12篇:虚拟现实技术期末论文

《虚拟现实技术》期末论文

专业:自动化

学号:20091336069

姓名:李璐

摘要

随着科技的进步,虚拟现实技术(VR技术)越来越体现出它的应用价值,在气象、军事、医疗等各个领域都出现了虚拟现实技术应用场合。本文分成四个部分,按顺序分别介绍了虚拟现实技术在大气粉尘扩散中的应用、虚拟现实技术在电视背景以及散打运动中的应用以及自己本学期学习虚拟现实技术的心得体会。

关键词: 虚拟现实技术

天气预报

军事应用

医学 心得体会

⒈ 虚拟现实技术在大气粉尘扩散中的应用。

虚拟现实技术可以建立三维场景,立体直观的现实出粉尘扩散的三维动态场景。为了建立粉尘动态扩散模型,本文以相关数学模型为基础,采用OpenGL开发了可精确地调整流场参数和观察视角的粉尘扩散三维动态场景,以及重力风速影响和射流作用下粉尘扩散的三维场景,该方法为更好的掌握粉尘扩散规律,提供处理预防措施。

1.1.粉尘扩散模型

点源粉尘在大气中的扩散模型是建立虚拟场景的核心,其扩散过程受到气流状态、粉尘理化性质、粒子的气溶胶特性等影响。由于因素较多,情况复杂,模型常以某种假设为前提,在各方向同性物质中,符合费克定律,即穿过单位面积的扩散物质的迁移速度与该面的浓度递减成正比【2】:

FDCCx

(1)

2C2C2CD

(2)

222tyzx

1.2粉尘扩散在虚拟场景中的实现

针对粉尘在大气中的扩散过程,以数学模型为基础,采用桌面VR系统,构建了粉尘颗粒在气流中扩散的三维场景,用户通过键盘、鼠标、显示器等标准输入输出设备与系统进行交互。下图分别给出了粉尘点源在无风不考虑重力影响与有风考虑重力影响下的图像。

由于建立的场景以科学计算和粒子系统为主,场景采用OpenGL开发,编程语言采用VC,建立的虚拟场景为三维场景,采用OpenGL视角变换技术,可以通过键盘和鼠标拖动方式来对场景进行三维旋转、移动和缩放等操作,让人们从不同的视角来观察粉尘颗粒在气流中的扩散过程,除此之外,建立的场景以模型为基础,可以通过改变参数来对虚拟场景进行变化。

除此应用之外,虚拟现实技术在气象中的其他领域也有广泛的应用。比如说在天气预报当中,通过虚拟三维场景模拟出大气气流以及气压场的变化,从而可以很好的预测分析出大气气象要素的变化情况,为天气预报提供精确可靠的信息。在气象科普知识当中,通过VR技术建立气象小游戏,让群众可以通过三维场景构建的气象小游戏来了解到大气科普知识。

2.虚拟现实技术在其他领域的一些应用。

2.1.VR技术在电视节目背景中的应用

计算机、多媒体技术的飞速发展,带动了虚拟现实技术的不断改进,在近年来的各个领域影响和改变着人们原先固有的思维。传统的电视节目背景需要根据节目的不同需求来进行布置,实背景搭建和拆卸需要投入大量的人力、物力,不仅增加了节目组的成本,还会因为其使用寿命和使用风格的限制导致现实中节目背景的使用周期比较短、需要更替的频率比较频繁,造成大量不必要的浪费,而通过虚拟现实技术建立的三维虚拟场景可以解决这些问题。

实现场景虚拟化可以按照如下的步骤来进行:

  还原实际场景中的蓝箱,设定虚拟摄像机。

建立蓝箱的目的是为了建立一个虚拟场景和现实之间的一个在真实的大小尺寸和距离上可以进行对照的参照物,为场景设计提供尺寸和位置上的依据,接下来就可以围绕虚拟蓝箱进行模型的搭建了。

2.2.虚拟现实技术在武术散打中的应用

散手作为中华武术的一个分支,以其“远踢、近打、贴身摔”的独特技法名扬世界武坛。近年来,随着各国的挑战赛,使散打运动不断发展,现在结合虚拟现实技术可以很好的训练散打人员的动作技术,为研究和提高运动员的技术、战术训练水平提供了一定的理论依据和方法。

虚拟现实技术在散手运动中的运用研究:  散手运动训练场景的生产:使用Vega生产虚拟现实场景,Vega是美国Multigen-Paradigm公司生产的用于虚拟现实、实时场景仿真、声音仿真以及其他可视化领域的应用软件。该系统制造出虚拟综合训练或者比赛的场景,给运动员真实的比赛的环境,这样可以减少比赛中的由于紧张而引起的失误,同时增强运 动员在比赛中的自信心。

运用动作捕捉技术(Motion capture)建立散手动作数据库:散手运动员穿上数据衣或者在关键部位设置跟踪器,让运动员将散手动作一一演练,由动作捕捉系统

【2】 捕捉跟踪器位置,再经过计算机处理后生产数据库中数据,加上视频资料的采集以及现场拍摄的方式,收集了大量有关散手的视频信息,利用VideoStudio将各种散手的技术动作特征单元提取出来,将所有的数据分类建立多个动作数据库,来调整控制虚拟人的运动。

虚拟现实中虚拟人的建立:利用3Dsmax、maya等三维动画软件制作出三维虚拟人物模型,在计算机表示的空间中生成逼真的三维虚拟人,虚拟人是人在计算机生成空间的几何特征和行为特征的体现。

 散手对练系统的生成。

2.3虚拟现实技术在中西医当中的应用

在中医药院校中,传统的教学方法是以课堂教学为主,再结合挂图、模型、标本、人体等辅助教学工具进行教学,并配以费用较高的动物实验、尸体解剖来加深学生的理解。由于医学领域与人类有着密切的、重要的和特殊 的关系,在这个领域里,人与人之间或人与现实之间的交互方式受一定的条件限制。虚拟现实技术的引入 ,能从根本上降低教学成本,减少危险性,激发学生的学习兴趣和主观能动性、提高教学质量、弥补教学条件的不足。

2.3.1中医远程脉诊系统

作为传统医学的瑰宝,中医的诊断有其 自身特点,诊断时仅需要望、闻、问、切 ,在这四诊中切脉往往是中医看病定性时最重要的依据。尽管中医的脉象诊断相对简单,但由于过多依赖医生的经验和感觉 ,再加上不同的中医对于不同脉象的定性都不尽相同,往往给人以玄妙奠测的印象。虽然历代医家发微解难,但 由于 “脉理精微,其体难辨”,仍难免 “在心易了,指下难明”,长期以来影响着脉学的传授和发展。应用虚拟现实技术的仿真技术的优势,能对客观系统的本质属性进行抽象和重演,因此可以使医生和患者在中医远程脉诊时获得如同身临其境的感受,这使中医远程医疗、虚拟社区医院等成为可能 ,结合数据挖掘技术,可以进一步生成脉诊专家数据库系统,有效地促进中医脉诊科学化和客观化。中医远程脉诊系统由场景生成子系统、声音生成子系统脉象探测子系统、脉象处理子系统、实时控制子系统、信号传输子系统和专家决策子系统等功能基本子系统组成,构成了基于虚拟现实技术的可调闭环远程脉诊系统。其中,场景生成子系统合成医生和病人的脉诊场景环境;声音生成子系统实现医生和病人的病情问讯功能;脉象探测子系统包括脉诊仿真器和脉诊探测器两部分 ,医生和病人分别通过脉诊仿真器和脉诊探测器进行脉象感应和探测;实时控制子系统实现医生和病人的切脉过程实时互动;脉象处理子系统实现脉象信号的处理与分类 ;信号传输子系统实现视频数据、音频数据、控制数据、脉象数据和诊断数据的信号传输;专家决策子系统辅助医生和病人进行病情决策和评估。

2.3.2数字化虚拟人体和微观物质的虚拟

数字化虚拟人体是指将人体结构数字化,通过计算机技术和图像处理技术,在电脑屏幕上 出现一个看似真实的模拟人体 ,再进一步将人体功能性的研究成果加以数字化,由信息技术将其转变为电脑的语言符号,赋加到这个人体形态框架上。经过虚拟现实技术的交叉融合,通过操作者的调控 ,这个 “虚拟人”将能模仿真人做出各种各样的反应

2.3.3虚拟手术模拟

虚拟手术系统是专门用来对手术全过程进行仿真的虚拟现实应用系统,主要包括虚拟建模、医学数据的可视化、人体组织器官的应力形变仿真、传感与反馈、高速图形显示与图像处理等几部分。虚拟手术的模拟主要应用于复杂手术过程的规划、演练及预测 ,指导手术进行。学生可以在计算机产生的三维虚拟手术环境中,利用虚拟手术器械进行相关的虚拟手术流程 ,应对各种突发情况 ,具有可避免手术失误、缩短培训时间、节约实训费用、降低手术风险、减少病人损伤 、提高手术成功率等多项传统实训教学无法比拟的优势。

虚拟现实技术应用领域十分的广泛,除了上述的两个场景之外,在、军事演习【4】、土木 工程 【5】等等领域均有广阔的应用前景。

3.学习虚拟现实技术之后,我的体会与收获

本学期在刘佳老师的课程指导下,我学习而来虚拟现实技术这门很有前途的课程,在学习的过程中,我发现虚拟现实技术是一项新起的很有发展潜力的技术,现在正式起步发展阶段,在各个领域已经有了很好的应用,我觉得以后的社会发展离不开虚拟现实技术,正如我们现在的社会离不开因特网一样。下面我就说一下自己对于虚拟现实技术的认识以及感想。

随着网络通讯技术的迅猛发展.虚拟现实技术的优势越发明显,在某种意义上说它将改变人们的思维方式,甚至会改变人们对世界、自己、空间和时间的看法。它是一项发展中的、具有深远的潜在应用方向的新技术。利用它,我们可以建立真正的远程教室,在这间教室中我们可以和来自五湖四海的朋友们一同学习、讨论、游戏,就像在现实生活中一样。使用网络计算机及其相关的三维设备,我们的工作、生活、娱乐将更加有情趣。虚拟现实技术是本世纪发展的重要技术之一,作为一门科学和艺术将会不断走向成熟.在各行各业中将得到广泛应用,并发挥神奇的作用,二十一世纪将是虚拟现实技术的时代。

本学期学习内容讲的是虚拟现实技术。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者身临其境,可以及时、没有限制的观察三度空间内的事物。这段对虚拟现实的定义我最有感触的就是“可以及时、没有限制的观察三度空间内的事物”在不面对面的教学和相处过程中,大家只能凭借声音和文字去感受对方,这样似乎一切都变美好了。而关于虚拟教学这些优点也让我颇为赞同比如弥补远程教学条件的不足,避免真实实验或操作所带来的各种危险。这些优点也让我更深刻地去思考或许这种教学方式不单单是一种潮流,在更完善的技术发展过程中会有更多凸显 优点,我要拭目以待。

作为一名即将毕业的大四学生,能够在毕业前学到一门新的技术,感到很充实。虚拟现实技术作为一门新的技术,在未来的发展中会体现出更大的价值,比如拿游戏来说,应用虚拟的三维场景设计出游戏场景,让玩家可以很好的亲临其境,利用VR桌面系统可以很好的提高交互性,让玩家彻底的放松自己。现实的世界纷繁复杂,对于一个未开发的产品设计或者一个新的理念,甚至一幢设计中的建筑,我们都可以采用虚拟现实技术建立它的三维场景,当你需要推销你的楼盘时,你可以给你的楼盘建一个虚拟漫游场景,让没有进去过的人同样可以很好的领略到您的建筑的不同风格,促进购买者的兴趣,发现价值,当公司开会,您有一个好的产品设计理念时候,您可以利用虚拟现实技术创作一个您想要设计的产品原型,在公司部门的例行会议上展示新的理念产品。总之,这学期学习的虚拟现实技术是一门实用的新型的有前途的技术,在未来的科技、生活、工业等领域都会发生革命性的变化。

参考文献

【1】柳静默,陈宝智,王金波.《虚拟现实及其在粉尘扩散中的应用》.中国安全科学学报.Vol.10 No.6 【2】章海晨.《虚拟现实技术在散打运动中的应用研究》.搏击武术科学.2012.8 【3】宋清华,李静.《虚拟场景在电视节目背景中的应用》.Media Time 2012.12 【4】郑童.《浅谈土木工程中的虚拟现实技术》.工程技术.P175 【5】李湘德,彭斌.《虚拟现实技术发展综述》.创新论坛.2004.V25

一.

第13篇:虚拟现实选修学期总结

虚拟现实选修学期总结报告

转眼就到了学期末,很庆幸自己专业方向是VR,在经过这个课程的学习了解,我对自己的方向更加清楚、目标更加明确、对未来充满了期待。

------学习心得

在这个课程中我首先接触的是什么事VR,什么是VR?这个问题在老师刚提出来的时候我居然哑言,课上得其他同学也和我一样,教室一片寂然,有羞涩默不做答,或者其他我不知道的原因,这些都不重要,重要的是我是真的不知道,至少在言语表达上,我也安慰自己说:我知道,这么简单的事还用说吗,对于工科生来说我只要会用就可以。是的,我会做,你告诉我做什么我会做好,可我从来没想过我做的是什么,VR是什么?我用3Dmax建模,用unity建场景,写代码,我做的就是VR?这就是VR?当何老师问什么是VR的时候,就那么短短几个字的问题却又万钧之力狠狠的给我醒了一下脑门。那时我研究生也过了算半年多了,跟过项目,做过边边角角的事,总有一种感觉----好像我什么也没做,甚至越来越对自己的方向困惑,觉得研究生和大学没什么区别,现在我意识到我确实什么也没做,当忽视主题零零散散的去做一些事的时候只不过是一点点脑力更多的是体力劳动,而这些正是我时常会感觉自己一事无成的根结。

------课程细节

回到最开始的问题:什么是VR?

VR是一种可以创建和体验虚拟世界的计算机仿真系统的技术。它利用计算机生成一种模拟环境,利用多源信息融合的交互式三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。

这是在网络上比较普遍的一种定义,每个人的理解不一样定义也会有所不同,但从这个定义我可以清楚的认识到我该做什么,在何老师的进一步的讲解下,我又了解了VR在目前以及将来的应用,课后自己也收集了各种各样的相关资料,我对VR的认识如下:

虚拟现实(Virtual Reality,简称VR),是由美国VPL公司创建人拉尼尔(Jaron Lanier)在20世纪80年代初提出的。其具体内涵是:综合利用计算机图形系统和各种现实及控制等接口设备,在计算机上生成的、可交互的三维环境中提供沉浸感觉的技术。其中,计算机生成的、可交互的三维环境成为虚拟环境(即Virtual Environment,简称VE)。

VR(虚拟现实)技术可广泛的应用于城市规划、室内设计、工业仿真、古迹复原、桥梁道路设计、房地产销售、旅游教学、水利电力、地质灾害、教育培训等众多领域,为其提供切实可行的解决方案。

在把我们领进VR的学习进程中,经过认识VR到熟悉VR,作为未来为VR事业发展推动力的我们,何老师开始跟我们讲述VR最本质的、看起来很神秘的技术,在这里我感触最深的是何老师的教学方法,以学生为课堂的中心,全面调动学生的学习自主性,通过布置任务、推荐参考书让学生成为学习的主体,能动的去思考问题,希望学校也能借鉴这种教学模式。

在之后的课程中,何老师依次布置了很多作业,通过分组、小组讨论、小组分工,在课业中我主要的工作重点是实现立体消隐和空间曲线循迹显示动画,何老师给我们推荐了计算机图形学,经过重点学习了三维变换,初步完成了作业的基本要求,实现效果图如下:

------课业重点 在这里面首先我做的事立方体消隐问题,起初是听了何老师对消隐原理的讲解,然后完全根据自己对消隐的理解,思路是这样的,根据观察以及平时的生活经验知道立方体最多可以看到三个面,还有就是一个面,两个面,就这三种情况。这是在设计之初的分析过程,由于一个立方体被看到三个面的概率最大,所以先考虑对看到三个面的消隐,首先定义立方体的数据结构,有八个定点,在看到三个面时,恰恰又一个点看不到,所以根据对比哪个点相对摄像机最远就可以确定哪个点被遮挡,跟着可以确定哪三条线,三个面试被遮挡。最后显示出未被遮挡的面线,从而实现消隐。而对与只能看到一个面的情况,这是特殊情况,出现这种情况的条件是同时有四个点离摄像头距离一样,所以只要判断是否有四个点同时和摄像头相距最远,然后显示出另外的四个点以及它们共同构成的面线。同理,当显示两个面时,只有两个点同时和视像头等距。据此便可确定一个完整的立方体遮挡关系,完成实时动态的消隐效果。

接着我有进一步的学习了计算机图形学,之前的我所做的消隐算法完全基于我对立方体的理解,还有因为立方体的特殊性,该算法缺乏通用性,无法应用于其他几何图形的消隐,而这正是计算机图形学所要阐述的内容,计算机图形学通过利用矩阵来研究几何图形的变换关系,更加规范的描述了几何的特征以及规律,从而增强了算法的通用性,很重要的一个内容就是变换矩阵,在计算机图形学里描述的都是齐次变换矩阵,还有齐次坐标,什么叫齐次变换矩阵或者坐标?所谓齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示。这样定义的目的就是为了将所有的坐标变换用矩阵的乘积来代替,规范了计算。而我在次重写立方体消隐算法正是应用了这个齐次变换矩阵,当然在数学工具上做了调整,相应的遮挡算法也有所改变,主要思路是通过定义立方体的数据结构,还有定义了世界坐标,通过计算立方体每个面的法向量和摄像头方向向量的乘积,根据其结果的正负号来确定面的消隐,小于零就是未被遮挡,需要在屏幕上显示出来,反之则不需要显示。这个算法通用性很强,换个复杂点的图形也能很顺利的显示。在实现之前的立方体消隐的基础上我又添加了透视效果,发现比之前的算法更灵活。

在写过两个程序之后,对计算机图形学里的基本概念了解了更深刻,不过还是很惊讶前人是怎样设计出各种界面流畅的3D软件,至少在目前来看我也就做做简单的图形消隐。在这个基础上何老师又适时的给我们小小的提了个难题-----实现空间曲线循迹动画,为什么说是难题呢,因为听到这个题目我满脑一片白,连个小黑点都没有,刚才有点成就感,有瞬间发现自己是真正的小白,活到老学到老,我又开始在书里找答案,这也是我们这一代学生的通病吧,遇到问题首先想到的不是想着怎么解决,而是想着哪里有现成的答案,这回可难到我了,找计算机图形学也没用,没办法,自己动手丰衣足食,只能靠自己一个一个问题的解决了,首先我对问题做了初步的分析,这里面需要实时渲染空间几何图形,还有一条空间曲线,渲染空间几何图形之前的工作已经做了,我现在要生成一条曲线,而且需要获取曲线的空间位置以便于将每一时刻的几何图形和曲线上的相应点对应,还有曲线的的走向,也就是切向量,然后通过在不同时间渲染不同位置的几何图形,在时间帧上连续刷新从而实现动画效果,这里面最关键的一点就是要建立世界坐标系以及局部坐标系,以为要突出是空间的曲线循迹,所以我在功能上定义了是可以全方位的观察动画,所以这里我还定义了一个活动的摄像头坐标系,根据齐次变换矩阵实时获取摄像机的位置,然后从不同角度渲染显示动画。

以上是我在课程中所做的主要内容。

第14篇:走进“虚拟现实”参展感想

走进“虚拟现实”

2016年6月29日参观上海国际移动展之前,对虚拟现实的认识停留在一个概念上,只知道这是未来信息技术发展的一个新方向,也一直认为这是一个概念炒作,而何时真正实现尚未可知。参观展会之后才知道,vr作为一种新的信息技术应用的突破,已经在很多领域悄然诞生和发展,且其魅力之大影响之深给我一个非技术爱好者产生巨大震撼。

一、科普“虚拟现实”

虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统。它利用计算机生成一种模拟环境,是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真,并使用户沉浸到该环境中。

1、虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。

(1).模拟环境是由计算机生成的、实时动态的三维立体逼真图像。

(2).感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。

(3).自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。

(4).传感设备是指三维交互设备。

此次展会上展出的一个带12个摄像头的一个三维立体视频装备,带上这个酷酷的眼睛,你可以完全身临一个三维立体动态空间,通过脖子的转动实现360度的视频体验。展会人员开玩笑说,该产品除了真实的视频感知外,可以治疗颈椎病。^_^

2、虚拟现实的特征 (1).多感知性

指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。

(2).虚拟现实存在感

指用户感到作为主角存在丁模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。

(3).虚拟现实交互性

指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。

(4).虚拟现实自主性 指虚拟环境中的物体依据现实世界物理运动定律动作的程度。

二、虚拟现实的应用场景

此次展览有一个VR专区,该区域是此次展览最受欢迎的一个展区。 在这里你可以不懂技术或理论概念,只要带上装备就可以马上体验到什么是“虚拟现实技术”,并被其魅力折服。

通过这种身临其境的体验感受,再对照前述的“理论科普”,什么是虚拟现实就不言而喻了。

这么“炫”的技术到底会怎样改变我们的生活,边思考边找度娘问了下^_^,在此只介绍下本人比较感兴趣了两类应用场景:

1、教育

足不出户确身临其境地接受世界各地名师的演讲和讲座; 足不出户便可以做各种实验,获得与真实实验一样的体会; 虚拟学习环境,为学生提供生动、逼真的学习环境,如建造人体模型、电脑太空旅行、化合物分子结构显示等,在广泛的科目领域提供无限的虚拟体验,从而加速和巩固学生学习知识的过程。亲身去经历、亲身去感受比空洞抽象的说教更具说服力,主动地去交互与被动的灌输,有本质的差别。

2、娱乐

虚拟现实能够带来的全方位游戏娱乐体验,更是极大提高了游戏的吸引力。对我这种非游戏迷而言已不能抵挡其诱惑,哈哈,对于喜欢挑战极限运动和喜欢网游的人士这种体验福利已不是幻想!

三、我眼中的未来虚拟现实世界

在我看来,未来虚拟现实的应用将深度改变我们的生活,什么是现实什么是虚拟,呵呵,真真假假,不要傻傻分不清啊!记得那部小李子的烧脑电影吗?《造梦空间》。我们可以自造梦境,也可以进入别人的梦境,未来十年,虚拟现实的生活让我们拭目以待!

第15篇:虚拟现实技术室内设计论文

一、室内设计的表现方式和运用的局限性

计算机现在是运用的比较普遍的一种表现方式,有三维表现和虚拟动漫的表现形式,而现在我们运用计算机表现的形式是3D多,现在基于人们的文化修养和审美意识提高,在室内设计方面的表现手法选择性越来越多,有时候同样方案和同样的设计,但是表现手法不一样,就会给客户不一样体验和效果。而基于这种计算机和传统手法相结合的虚拟表现手法就有很大的优势,可以更加直观充分的展现给客户看了。

二、虚现实在室内设计的运用和发展目的

室内设计发展至今,已经有多种表现形式了,那么虚拟表现在室内设计中有一下几个功能和目的:

1、充分的帮助设计师讲解设计理念

在室内设计这专业出现之前,室内装修都是以业主根据自己的欣赏水平和想象来施工的,这种方式只能以亲自在现场知道工人去施工,所以也就没有施工图啊,设计方案之说,装修功能也只局限于人类的居住需求。随着社会发展才分工出设计师行业,也就有了方案和平面图包括效果图,伴随着设计师和客户交流也越来越多。但是在交流中客户和设计师都有对方案的理解,那么就能使设计师更好的修改方案,也就能和施工人员对接施工,但是这种施工固然能解决设计问题,也能更好的和施工人员交流,但是还不能满足设计师和客户之间的交流,在这个发展过程中虚拟现实运用很好的弥补了室内设计的不足,能使设计师的方案更直接的和客户交流对接,当然更加丰富了室内设计的表现手法。

2、在室内设计中优势

近年来,虚拟设计在室内设计中作为一个独立体系正在快速的发展,三维立体在虚拟现实中相比于传统手绘中的优势在于实际设计空间的真实尺寸体现。这种设计更加直观的表达出设计师的效果,更加人性化和专业化,在设计过程中更加快捷、直观、逼真。

3、灵感创作的来源

计算机更能反映空间的真实性,虚拟在空间的创作中,能把各种模型组合有利于激发设计师的创作潜能和再创作的灵感。在计算机创造中,各种模型有趣的组合,能使设计师找到源自大自然的设计,一切的设计来自大自然万物,它能使设计师在面对计算机时消除疲劳,避免单调的工作,使设计师有更多的时间来找创作作品的灵感。

4、合理的展示平面布局

计算机处理数据的强大功能,室内设计的数据一般通过计算机数据处理得来的,像室内的平面图的尺寸、标注等都可以用计算机处理得来的。传统方式则需要设计师发费大量的人力物力来计算,而且没有计算机那样精准。现在计算机的处理大大节省了时间和人力成本。

三、虚拟现实技术在运用中的不足

1、时间成本更高

以往通过传统方式手绘来与客户交流,直接可以描绘出客户的想法,而虚拟现实的制作方式则相对来说时间周期更长,也更加不好修改,在表现方式越来越多的情况下,手绘通常时间比较节省,而电脑制作的效果图相对来说也比较短,而使用的虚拟现实技术来表现方案时,通常比较漫长的,而且也不容易修改,因此虚拟技术在现实运用中的时间成本比较高。

2、价格成本偏高

虚拟技术与传统方式相比较的价格偏高由多方面的成本因素的,首先虚拟技术是一门新型的信息技术,是伴随着科技发展的成果,目前掌握这门技术的人员不是很多,这是作为一门技术表现的方式,其次是因为虚拟技术在现实操作中时间成本相对来说比较高,而且对计算机的硬件要求比较高,这也无形中增加了运行成本,因此虚拟现实运用在实际运行中有着多方面的制约因素。

3、技术人才的匮乏

目前我国教育还没有大量培养掌握这门技术的人才,而科技在前进,所以人才的匮乏不足也制约着虚拟现实技术的发展。

四、结束语

虚拟现实技术在室内设计行业中,随着科技水平的提高和人才技术的掌握,运用层面更加广阔,针对室内设计运行的问题,找到一种良好的解决方案,可以加速室内设计行业的发展,能使设计师更加直观的与客户交流,解决目前室内设计行业中遇到的问题,也可以提高室内设计行业的科技水平,为整个设计行业提供强大的技术支撑保障。

第16篇:虚拟现实(旅游)实训项目

虚拟现实(旅游)实训项目

一、背景与需求

随着社会的发展,旅游业已成为全球经济中发展势头最强劲和规模最大的产业之一。旅游业在城市经济发展中的产业地位、经济作用逐步增强,旅游业对城市经济的拉动性、社会就业的带动力、以及对文化与环境的促进作用日益显现。旅游业是中国经济发展的支柱性产业之一。这就造成从事旅游行业的专业型人才及其缺乏,为此我公司结合现代计算机虚拟现实技术、仿真技术、项目管理技术和智能控制技术为职业院校制定了“旅游模拟实训室”,为社会输送专业型旅游人才。——中国系统集成在线提供

二、适应专业

虚拟现实-旅游实训项目适合中职的旅游服务类专业和高职的旅游类专业建设。

三、解决方案

旅游实训室主要用于旅游教学、导游实训、旅游模拟、旅游规划等。该实训室提供旅游景点基础环境实训,通过旅游专业实训,使学生熟悉旅游景点讲解和旅游产品的基本构成,认识并领会旅游产品的开发。

旅游模拟实训室的硬件设备:包括,投影系统、大屏幕融合系统、图形工作站群集、音响系统及三维软件等组成的一个多通道仿真系统环境。

四、方案特点

1、强烈的“身临其境”沉浸感;

2、友好亲切的人机交互性;

3、发人想象的刺激性。

第17篇:虚拟现实技术及其教学应用

虚拟现实技术及其教学应用

2011-04-07 10:17:55 作者:李志刚 张超

摘 要 本文对虚拟现实技术的定义及特征进行了描述,对虚拟现实技术应用于教学的作用意义进行了分析探讨。

关键词 虚拟现实;教育技术;教学应用

2010年的上海世博会,参观人数超过7200万,创历届世博会参观人数之最,而同时推出的上海世博会的网上展馆,则创出了2.8亿次的点击访问量。网上世博会和电影《阿凡达》让虚拟现实技术展示了巨大的吸引力,正如澳大利亚新南威尔士大学教授罗伯特·路易斯(Robert Louise)所说:“它的作用远不只展示和娱乐”,虚拟现实技术的触角已经渗入到了人类生活的方方面面。

一、虚拟现实技术简述

虚拟现实(VirtualReality,简称VR,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术模拟系统。

虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。

虚拟现实技术具有多感知性(Multi-Sensory)、交互性(Interactivity)、浸没感(Immersion)和构想性(Imagination)四个重要特征。

所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。

交互性指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。

浸没感又称临场感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 构想性强调虚拟现实技术应具有广阔的可想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。

如今,虚拟现实技术的应用已大步走进军事航天、工业仿真、游戏动漫、教育培训、城市规划、医疗救治等领域。虚拟现实技术已经和理论分析、科学实验一起,成为人类探索客观世界规律的三大手段。

二、虚拟现实技术的教学应用

在以往的教育中,学习者始终生活在两个世界的时空环境中,一个是经验世界(实践中学习),另一个是语言文字的世界(书本中学习),两者往往相互脱节,即理论脱离实际。而由多媒体与仿真技术相结合产生的虚拟现实技术,创造出了第三个世界-----虚拟现实世界,它将成为沟通前两个世界的重要桥梁。我国学者桑新民教授在探索信息化环境下高校学习新模式的过程中,率先提出:必须把“三个世界”的学习经验综合起来,促成三者的有机结合。指出要充分利用虚拟现实情境之独特优势,去引导和促进学习者在经验世界和语言文字世界中实现学习活动与学习经验的整合,不断激励和提高学习者在“三个世界”中学习的自主性、协作性和创造性。

⒈拓宽视野,激发学习热情

通过虚拟现实技术,一方面可以再现实际生活中无法观察到的自然现象或事物的变化过程,为学习者提供生动、逼真的感性学习材料,使抽象的概念理论直观化、形象化,方便学习者对抽象概念的理解;另一方面虚拟现实技术使学习者能够按自己的需要来进行实时的交互式学习,主动地获取所需要的知识,由被动式的接受转化为主动式的发现。虚拟现实技术还可让学习者学习到和体验到现实生活中具有微观性、瞬变性、危险性、长期性且用别的方法很难观察和验证的各种事物,从而提高这类特殊知识的可接受性。在课堂上,教员可以陪同学习者一起经历虚拟境界,一边观察一边讲解;也可以让学习者自己利用虚拟景物、虚拟环境等进行仔细观察自主学习进而理解有关的概念及知识。通过这种对虚拟景物和虚拟环境的交互式学习,能有效发挥学习者的主观能动性,使学习者真正参与到教学活动中去,成为学习过程中的主体,变被动为主动,并激发出较高的学习热情和空间想象力。

⒉便于探究,培养创新能力

虚拟现实技术允许学习者对模拟的环境可交互、可操纵、可建构,可直观地观察到学习过程中所提出的各种假设所产生的结果或效果,适合开展探究性的学习。例如,有一个名叫“电子工作台”(Electronic Workbench; EWB)的软件系统,允许学习者利用它提供的元件构造各种模拟电路和数字电路,并能动态测试电路的性能;还有一个名叫“交互性物理”(Interactive Physics; IP)的软件系统,允许学习者构造属于经典力学系统的大部分实验;在虚拟的化学系统中,学习者可以按照自己的假设,将不同的分子组合在一起,电脑便虚拟出组合的物质来。利用虚拟现实技术进行探究性学习,更有利于激发学习者的创造性思维,培养学习者的创新能力。 ⒊突破瓶颈,提高实验效益

利用虚拟现实技术进行虚拟实验教学,可以有效地突破时间、空间、经费和危险性等现实条件的制约,大到宇宙天体,小至原子粒子,学习者都可以进入其内部进行观察。一些需要几十年甚至上百年才能观察的变化过程,通过虚拟现实技术,可以很快地呈现出来。例如生物中的孟德尔遗传定律,用果蝇做实验往往要几个月的时间,而虚拟现实技术在一堂实验课内就可实现。在虚拟实验室里,学习者通过各种感觉(视觉、听觉、动觉和触觉等)与虚拟的学习情境相互联系并交互作用,进一步加深了对事物现象和规律的认识,有效地促进了学习者在经验世界和语言文字世界中实现学习活动与学习经验的整合,大大提高了学习者的学习兴趣和学习效果。

⒋模拟训练,轻松掌握技能

虚拟现实的沉浸性和交互性,使学习者能够在虚拟的学习环境中扮演一个角色,并全身心地投入到该学习环境中去,这非常有利于学习者达到动作技能类教学目标要求。例如空军某学院研制的Su27驾驶模拟器,采用多通道图形生成技术,建立了大视野视景环境,配合接近实物的驾驶舱,使学习者可以完成基本驾驶技术、编队飞行以及部分空战战术的训练;澳大利亚新南威尔士大学模拟出矿坑内的常见问题,让矿工们针对瓦斯管理、煤层自燃、危险预警、隔离程序、自主逃生等各种环节进行训练等等。在这些既与现实条件相符又无任何危险的虚拟训练系统中,学习者可以不厌其烦地反复练习,直至掌握操作技能为止。 ⒌携手网络,改革教学结构

随着网络技术和虚拟现实技术的日趋成熟,教学活动不再局限于有形的教室中,而向虚拟课堂、虚拟大学、虚拟学习社区发展,基于网络的虚拟化学习,将会成为未来教育的一种全新的教学方式。虚拟现实技术不仅能向学习者提供一种可在实际生活中找到的情境和经验,还可以再现特定的环境。利用虚拟现实技术与网络结合,可以打破时间和空间的限制,进行交互式的、图文并茂的、智能型的、分布式的教学,并通过网络传输逼真的教学和学习环境,从而使学习方式由传统的“独学”变为“群学”,使学习结构从“封闭”变为“开放”,最终可以使教学从“知识传授”转变为“知识建构”。例如,在基于共享型虚拟现实系统设置的网上协同实验室中,身处不同位置的学习者组成一个个学习小组,所有学习小组构成一个学习型社区。他们一起设计实验,并通过模拟软件观看实验结果,直到认为方案成熟,才转移到真实实验环境中去完成实验。教师在整个实验过程中监控每一个成员的表现并及时进行个别化的辅导。

虚拟现实技术应用于教学的最成功案例,莫过于哈佛大学克里斯·德迪博士率领开展的一项为期十年的基于多用户虚拟环境(Multi—User Virtuai Environment, MUVE)的中学科学教育项目:River City。正如德迪博士在2009年《科学》杂志上对River City总结的那样,与传统教学相比,大部分学生在这种沉浸式的模拟环境中都获得了更多的关于科学探究的知识和技能;学生能够形成一种深度参与,非常有利于发现复杂问题的技能与发展;有利于那些成绩差的学生建立起学业上的自信。River City在北美地区产生了广泛影响,被作为新型数字化学习及评价方式的典型选入美国《2010年教育技术规划》,也受到了具有“数字未来学家”之称的唐·泰普斯科特的推崇。

由于虚拟现实所依托的软硬件技术科技含量和开发费用高、技术复杂、实现难度大等原因,目前在教育领域还只是运用于少数的教学、培训、实验、参观等方面,且尚没有形成完善的运用模式。然而虚拟现实技术作为一种新涌现的教育技术,具有令人鼓舞的美好前景。有远见的教育工作者把虚拟现实看做是基于计算机的教学系统的下一个合乎逻辑的发展步骤。人们必将应用虚拟现实技术来进一步改进学习过程和创造新的学习系统。

参考文献:

[1]南国农,李运林,祝智庭.信息化教育概论[M].北京:高等教育出版社.2004 [2]何克抗,李文光.教育技术学[M].北京师范大学出版社.2009 [3]田 屹,王军武.军事教育技术与教育技术的比较分析及特点研究[C].第一届中国教育技术发展论坛.

[4]曾芬芳.虚拟现实技术[M].上海交通大学出版社.1997 [5]梁林梅,李晓华.让技术为学生提供更强大的参与经验[J].中国电化教育,2010.9 关键词:虚拟现实技术及其

第18篇:浅谈对虚拟现实的理解

浅谈对虚拟现实的理解

摘要:虚拟现实(Virtual Reality)技术,又称灵镜技术,是一种逼真地模拟人在自然环境中视觉、听觉、运动等行为的高级计算机人机界面技术。它应用很广泛,包括:数字城市,虚拟在线旅游,大型网络游戏,交通事故再现,军事训练,课堂教育,甚至是医学上的一些模拟真实手术等。它是汇集一系列高新技术的交叉学科,包括计算机图形学、多媒体技术、人工智能、人机接口技术、传感器技术、仿真技术以及高度并行的实时计算技术,还包括人的行为学研究等多项关键技术。

关键字:虚拟现实,交通仿真,辅助分析,数字城市,虚拟旅游,网游,医学手术 正文:

虚拟现实技术技术是上世纪80年代末90年代初迅速发展起来的一种高新技术,也是近年来十分活跃的技术研究领域。它利用计算机的软硬件资源生成实时的三维虚拟现实世界,在这个世界中,人们视觉、听觉甚至触觉等的感受仿佛是在真实的环境中一样,有“身临其境”的感觉,人们可以沉浸在这个环境中与虚拟环境进行实时交互。该技术可以模仿:(1)、真实世界中的环境。这种真实环境可能是已经存在的,也可能是已经设计好但还没有建成的,或者是曾经存在但现在已经发生变化,消失或受到破坏的。通过逼真地建立几何模型和物理模型,从而逼真地模仿真实世界中的环境。(2)、人类主观构造的环境。环境可以是虚构的。(3)、模仿真实世界中的人类不可见的环境。这种真实环境是客观存在的,但是人类的视觉和听觉不能感觉得到。

虚拟现实技术会让参与者有身临其境的真实感觉:计算机使用者能融进计算机所给出的虚拟的世界中。计算机使用者还可以通过虚拟交互接口实现人与虚拟环境的互动。对虚拟环境的操纵过程还可能激发更多的灵感。

1、在交通仿真中的应用:

交通仿真是计算机技术在交通工程领域的一个重要应用,是在经验研究和数学方法的基础上,以计算机为主要工具,利用系统仿真模型模拟道路交通系统的运行状态,它可以对交通流、交通事故等各种交通现象进行动态逼真的仿真,对交通流的时空变化进行重现,对车辆、车道、驾驶员、行人及交通特征进行深入的分析,对道路设计和规划提供技术支持和依据,而且可以比较和评价各种交通参数。

交通仿真研究的核心内容是交通仿真模型的建立和交通仿真系统的开发。由于我国的交通现状是由多车组成的复杂混合交通,因此构造的虚拟交通环境必须要体现出这种交通状况的特点,即构造的交通仿真模型不仅要模拟目标环境的道路状况,还要模拟目标环境的交通状况,这就需要在仿真模型中加入行人、自行车、随机车辆等智能物体并在视景系统中对它们进行混合交通行为的控制,智能物体在虚拟驾驶环境中要实现自动加速、减速、超越、等待、变换车道等功能,则必须通过计算机复杂的控制程序来实现。

针对道路交通事故中的常见事故类型,如车辆碰撞事故的迎面正碰、追尾正碰、二维碰撞以及汽车和行人碰撞事故,利用MATLAB的虚拟现实技术对道路交通事故进行了模拟和再现,用以辅助交通事故的鉴定。

虚拟现实技术在交通事故中的应用可以辅助事故处理人员快速、高质量地进行现场勘查、参数计算和事故分析,进而研究事故发生的原因,探求避免事故、减少损失的对策和策略。

2、在虚拟旅游中应用 一般概念的旅游是旅游者到达旅游地,直接与景区接触,虽然直观,但旅途等可能会麻烦,且易受时间,经济,天气状况和危险因子等的影响。因此将景点的旅游业和虚拟GIS技术结合起来,使旅客能感受到全方位的旅游,从而达到身临其境的感受,通过场景模型建立、场景驱动过程处理、系统的开发以实现整个景区虚拟旅游系统的功能。且即便是旅客想深入景区细细观赏,虚拟旅游系统仍能帮助顾客在出游前更好的了解旅游地以做出实地旅游决策和合理的旅行安排。

在虚拟漫游系统的开发过程中可以通过造型实体运动仿真的技术的尝试以增强整个场景的生动性和逼真感。其中三维GIS是关键,三维虚拟旅游系统主要是研究旅游景区三维数据管理和可视化的各种技术,包括景区三维数据采集和处理技术、表面纹理采集与处理技术、三维对象建模技术、三维空间信息和表面纹理层次细节技术、大数据量动态调度技术等。还可以利用OpenGL进行三维虚拟园区漫游的设计和实现,运用OpenGL在VC++环境下实现可视化。

针对虚拟现实地理信息系统技术,在包括三维空间数据的获取、三维数据模型、数字地面模型和数字高程模型以及三维动态模拟和三维数据可视化的表达等理论研究的基础上,借助专业的虚拟现实建模软件Multigen Creator建造景区的三维物体和ArcGIS软件建立研究区的地形,并结合高级开发语言Delphi语言调用Arc Engine图形接口建立虚拟地质公园场景,实现动态模拟、交互漫游和自动漫游和GIS分析功能。其具体工作包括以下几个部分:

(1)数据的采集与整理。通过实地考察,利用高像素数码相机进行地物和地质遗迹的纹理采集和控制点的采集,并对采集的纹理进行筛选和处理。

(2)对景区虚拟旅游系统进行总体设计,确定景区虚拟旅游系统设计的目标和原则,再按照设计的目标和原则进行系统的功能设计并设计出系统的总体框架。

(3)场景的建立与优化。研究并实现景区的地面建筑和自然景区构建工作。在分析常用虚拟建模方法的基础之上,根据研究区的实际情况,用Multigen Creator对建筑物和自然景点进行建模,用ArcGIS建立地形,虚拟公园的构建主要包括地形模型的构建、建筑模型的构建、辅助模型的构建和模型集成。再运用成熟的场景优化技术对这些模型进行整合优化处理。

(4)虚拟旅游系统的集成开发。利用Arc Engine图形接口实现对景区实时漫游系统进行驱动开发。对场景漫游的关键技术进行研究,如视点的切换、速度的控制技术等,开发实现漫游系统的交互式漫游和自动漫游功能。实现三维场景的GIS分析功能和一些场景管理操作的辅助功能,以方便旅游者借助这些功能做出较好的旅游决策和场景的管理。

国内对虚拟旅游系统的研究还存在以下问题:(1)展示效果缺乏真实感。大多网站只是提供景点图片和文字介绍,少数提供景点360度全景图像。(2)没有对景点的内涵进行深入挖掘,缺乏文化背景等方面的信息,景点的潜在价值没有得到充分利用和开发。(3)界面交互性和可操作性不够完美。(4)旅游者与虚拟景观以及与其他旅游者之间缺乏交互,使得虚拟旅游系统缺乏趣味性。(5)未能将旅游者与商家需求很好结合。针对目前状况,怎样建立一个在外观、结构、功能和性能等方面都很完美的系统,实现高逼真度的虚拟旅游还有待进一步的研究。

3、在游戏中的应用

三维游戏既是虚拟现实技术重要的应用方向之一,也为虚拟现实技术的快速发展起了巨大的需求牵引作用。尽管存在众多的技术难题,虚拟现实技术在竞争激烈的游戏市场中还是得到了越来越多的重视和应用。可以说,电脑游戏自产生以来,一直都在朝着虚拟现实的方向发展,虚拟现实技术发展的最终目标已经成为三维游戏工作者的崇高追求。从最初的文字MUD游戏,到二维游戏、三维游戏,再到网络三维游戏,游戏在保持其实时性和交互性的同时,逼真度和沉浸感正在一步步地提高和加强。我们相信,随着三维技术的快速发展和软硬件技术的不断进步,在不远的将来,真正意义上的虚拟现实游戏必将为人类娱乐、教育和经济发展做出新的更大的贡献。

例如:现在的腾讯公司的QQ飞车和QQ炫舞应该是虚拟现实技术在游戏中的较好应用的例子,很有真实感。

4、在医学中应用

VR在医学方面的应用具有十分重要的现实意义。在虚拟环境中,可以建立虚拟的人体模型,借助于跟踪球、HMD、感觉手套,学生可以很容易了解人体内部各器官结构。虚拟外科手术训练器,包括虚拟的手术台与手术灯,虚拟的外科工具(如手术刀、注射器、手术钳等),虚拟的人体模型与器官等。借助于HMD及感觉手套,使用者可以对虚拟的人体模型进行手术。另外,在远距离遥控外科手术,复杂手术的计划安排,手术过程的信息指导,手术后果预测及改善残疾人生恬状况,乃至新型药物的研制等方面,虚拟现实技术都有十分重要的意义。

在医学院校,学生可在虚拟实验室中,进行“尸体”解剖和各种手术练习。用这项技术,由于不受标本、场地等的限制,可使培训费用大大降低。一些用于医学培训、实习和研究的虚拟现实系统,仿真程度非常高,其优越性和效果是不可估量和不可比拟的。例如:导管插入动脉的模拟器,可以使学生反复实践导管插入动脉时的操作;眼睛手术模拟器,根据人眼的前眼结构创造出三维立体图像,并带有实时的触觉反馈,学生利用它可以观察模拟移去晶状体的全过程,并观察到眼睛前部结构的血管、巩膜组织及角膜的透明度等。还有麻醉虚拟现实系统、口腔手术模拟器等。

外科医生在真正动手术之前,通过虚拟现实技术的帮助,能在显示器上重复地模拟手术,移动人体内的器官,寻找最佳手术方案并提高熟练度。另外,在远距离遥控外科手术,复杂手术的计划安排,手术过程的信息指导,手术后果预测及改善残疾人生活状况,乃至新药研制等方面,虚拟现实技术都能发挥十分重要的作用。

5、在城市规划中的应用

为充分利用当前的3维建模与可视化技术,实现对城市现状与规划3维场景的快速建立,提供城市规划设计与管理的直观、可行的可视化辅助手段,3维虚拟场景建设的基本设计思路为:整个方案能在微机平台上进行;能够充分利用现有的2维GIS、航空遥感影像等数据建立3维场景;能在较短时间内完成;对软硬件要求低,成果易于普及应用。

城市规划一直是对全新的可视化技术需求最为迫切的领域之一,虚拟现实技术可以广泛的应用在城市规划的各个方面,并带来切实且可观的利益:展现规划方案虚拟现实系统的沉浸感和互动性不但能够给用户带来强烈、逼真的感官冲击,获得身临其境的体验,还可以通过其数据接口在实时的虚拟环境中随时获取项目的数据资料,方便大型复杂工程项目的规划、设计、投标、报批、管理,有利于设计与管理人员对各种规划设计方案进行辅助设计与方案评审。规避设计风险虚拟现实所建立的虚拟环境是由基于真实数据建立的数字模型组合而成,严格遵循工程项目设计的标准和要求建立逼真的三维场景,对规划项目进行真实的“再现”。用户在三维场景中任意漫游,人机交互,这样很多不易察觉的设计缺陷能够轻易地被发现,减少由于事先规划不周全而造成的无可挽回的损失与遗憾,大大提高了项目的评估质量。加快设计速度运用虚拟现实系统,我们可以很轻松随意的进行修改,改变建筑高度,改变建筑外立面的材质、颜色,改变绿化密度,只要修改系统中的参数即可。从而大大加快了方案设计的速度和质量,提高了方案设计和修正的效率,也节省了大量的资金,提供合作平台。最重要的是打破了专业人士和非专业人士之间的沟通障碍,使得各部门能通过统一的仿真环境进行交流,能更快地找到问题、达成共识和解决一些设计中存在的缺陷。

虚拟现实技术能够使政府规划部门、项目开发商、工程人员及公众可从任意角度,实时互动真实地看到规划效果,更好地掌握城市的形态和理解规划师的设计意图。有效的合作是保证城市规划最终成功的前提,虚拟现实技术为这种合作提供了理想的桥梁,这是传统手段如平面图、效果图、沙盘乃至动画等所不能达到的。

城市3维虚拟场景的面积都在上千平方千米以上,要求系统对大场景的支持,VRMap采用了金字塔数据结构来组织数据,在浏览的数据都只是其中的一个很小部分,从这个意义上来说,无论整体的数据量有多么庞大,都不会影响到在客户端的浏览速度。在细节意义上,采用了多种图形技术来加速复杂结构的渲染,其中包括多种LOD技术,全自动遮挡排除技术,快速模型生成技术等,系统漫游中自动将能看到的3维场景进行自动加载,以此来保证系统流畅、海量数据快速处理和观看漫游。还可以通过VRMap自定义节点开发制作很多特殊效果和功能,如喷泉、爆炸、火焰、水流、雾等,包括特殊的光加强以增强效果。

6、在全站仪中的应用(特例)

研究内容:

A、三维可视地表的建立:主要利用全野外数字测图、地形图数字化、数字摄影测量以及航空航天遥感影像等方式获取地面目标区域离散点的高程数据,再利用GIS技术处理这些离散点的高程数据,按照一定的法则,生成DEM数据,建立三维地表。

B、景观模型的建立:选用AutoCAD或者3DS MAX绘制模型,保存成3DS文件。通过编程,在计算机三维环境中将这些景观和全站仪模型的再现。

C、三维模型的控制:这部分内容主要针对全站仪模型。虚拟的全站仪模型要模拟实际测图操作的过程,这就要求全站仪模型可以响应使用者的指令,按照使用者的意愿进行运动,来改变自身姿态,达到预期目的。

D、全站仪的功能模拟:模拟全站仪最基本的测量坐标和距离的功能。

E、数据记录:每台现代全站仪都内置有数据存储模块,能对实时测量的结果进行保存。这套模拟全站仪系统也需要有存储模块,可将测量后所得到的角度或者坐标信息进行保存。虚拟测量结束后,用户可以在CASS中导入这些坐标文件,进行下一步内业数字成图操作。

以上功能均用Visual C++结合OpenGL函数库进行系统集成开发,最后得到一套单机版的全站仪虚拟仿真实验系统。

7、在地震灾害中的应用

虚拟现实技术在模拟地震灾害场景、地震应急救援虚拟仿真训练等有重要作用,在构建虚拟技术时:先是对房屋震害三维立体仿真破坏模型:总结了多层砖房、钢筋混凝土框架结构及砖(土)木结构农村自建房屋的典型震害特征:提出救援相关的建筑废墟的分类方法,依据废墟的用途与功能分别给出五类废墟的涵义;整理大量震害图片、提取震害特征并进行人工处理,从而建立典型震害特征图形库,提出应用外部建模软件3DSMax建立基于震害的三维仿真建模方法和技术流程,并分别建立了多层砖房、框架结构、砖(土)木结构5个破坏等级的三维震害仿真模型。

根据模拟出的虚拟灾害现场环境,深入剖析地震救援的业务流程,应用仿真和多媒体等技术研发地震应急救援仿真培训系统,为各级地震应急管理人员、地震灾害紧急救援队员提供一个相对逼真的地震应急救援处置的虚拟训练平台,可进行虚拟灾景下的应急与救援指挥决策、模式探讨、救援技能等的重复验证和培训。

8、其他:

除了上述几点应用领域外,虚拟现实技术还在军事中有较强的应用,例如:模拟战场训练和模拟零重力训练等,1991年海湾战争开始前,美军便把海湾地区各种自然环境和伊拉克军队的各种数据输入计算机内,进行各种作战方案模拟后才定下初步作战方案,后来实际作战的发展和模拟实验结果相当一致;在室内设计中虚拟现实可以把这种构思变成看得见的虚拟物体和环境,大大提高了设计和规划的质量与效率。运用虚拟现实技术,设计者可以完全按照自己的构思去构建装饰“虚拟”的房间,并可以任意变换自己在房间中的位置,去观察设计的效果;虚拟现实技术还能在应急推演中有较强的应用:虚拟现实的产生为应急演练提供了一种全新的开展模式,将事故现场模拟到虚拟场景中去,在这里人为的制造各种事故情况,组织参演人员做出正确响应。这样的推演大大降低了投入成本,提高了推演实训时间,从而保证了人们面对事故灾难时的应对技能,并且可以打破空间的限制方便的组织各地人员进行推演。在生活娱乐中的应用:英国出售的一种滑雪模拟器。使用者身穿滑雪服、脚踩滑雪板、手拄滑雪棍、头上载着头盔显示器,手脚上都装着传感器。虽然在斗室里,只要做着各种各样的滑雪动作,便可通过头盔式显示器,看到堆满皑皑白雪的高山、峡谷、悬崖陡壁,一一从身边掠过,其情景就和在滑雪场里进行真的滑雪所感觉的一样。

小结:

虚拟现实是由多种媒体构成的三位信息空间,虚拟现实技术的发展为仿真训练系统提供了广阔的,它的发展必将对各领域产生更深远的影响。

参考文献:

《地质公园虚拟旅游系统的设计与实现》 张军 秦奋 徐明全 《道路交通事故计算机辅助分析系统研究》 明月 田宏

《地震灾场模拟及救援虚拟仿真训练系统研究》 王东明 孙柏涛

《基于虚拟现实技术的复杂城市道路交通仿真平台研究》 夏萍 尹念东 《3维虚拟现实系统在城市规划中的应用》 陈晓勇 丁松庆

《基于虚拟现实仿真技术的全站仪模拟操作系统的研究》 骆旭佳 高飞 胡小华

第19篇:房地产项目虚拟现实制作小结

长沙华恒园信息科技有限责任公司

长沙华恒园信息科技有限责任公司

工程部

房地产项目 虚拟现实制作小结

(2010-10-28)

长沙华恒园信息科技有限公司

2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

长沙华恒园信息科技有限责任公司

长沙华恒园信息科技有限责任公司

长沙华恒园信息科技有限责任公司

3.2.2.渲染器:设置为默认渲染器(如果用Vray渲染器,烘焙过程将变得稍微复杂)

3.3.3D Max模型建立

地面建模

建筑建模

景观建筑

3.4.灯光与阴影制作

一般使用标准灯光进行照明。

3.5.材质制作

一般使用用标准材质或多维子对象材质。(如果用vray材质进行烘焙,烘焙出来的Vray灯光贴图需作为位图放入标准材质里,重新赋予给模型。)

3.6.3D Max简单动画制作

3.6.1.新建相机 3.6.2.制作相机路径

3.7.3D Max模型及其材质整理

对场景模型进行分析,确定模型整理与简化的方案。

模型附加注意事项:

1.不应把相隔太远的物体附加到一个单体里;

2.可以复用的单体不应附加,会增加页数;

3.附加后的单体模型,可能包含多种材质,尽量重新制作材质球,用多维材质,2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

重新赋予;

4.把所有单体的Gizmo整理到单体的中心;

5.整理好模型和材质后,应整理一下场景所有单体模型的名称,最好用英文命名。

3.8.3D Max烘焙与导出

3.8.1.模型烘焙与导出FBX步骤:

1.UVW展开

选择要烘焙的单体模型,添加“UVW展开”修改器,选中“面”级别,通道为“2”,点“编辑”-“贴图”—“展开贴图”-“确定”,完成UVW展开;

2.渲染到纹理

打开“渲染到纹理”面板,设置自动保存路径 设置使用当前通道,值为“2” 添加“LightingMap”目标贴图位置选择“自发光” 勾选“保存到源”,“保留烘焙材质”

点“渲染”。

3.导出FBX

导出时的单位设置为“Meters”, 轴向设置为“Y-up”, 勾选Embed Media。

2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

3.8.2.烘焙与导出时的注意事项:

1.烘焙时产生的贴图一般可以手动保存一下,以备用;

2.有严格位置关系的不同单体模型,应尽量一起导出,否则导入U3D中可能要调整位置关系;

3.FBX格式可包含动画内容,3DS格式不能;

4.相机的导出与普通模型的导出一致。

3.9.FBX文件导入U3D 2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

3.9.1.导入的模型可能比例有些不对,可在Scale处进行简单设置解决此问题

3.9.2.位置可通过手动拖动或输入数值来确定

3.10.U3D基本设置与制作

2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

3.10.1.制作地形Terrain 3.10.2.设置地形的大小 3.10.3.给地形赋予材质

2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

3.10.4.制作相机Main Camera 3.10.5.制作灯光

3.10.6.制作Directional light 3.10.7.制作Point light(太阳)

3.10.8.制作天空盒Skybox 3.10.9.制作First Person Control 调整行走速度、高度。

3.11.材质设置

2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

3.11.1.调节Main Color

3.11.2.调整Shader类型

Shader一般设置为LightMapped\\Diffuse类型,再加入LightingMap。

3.12.碰撞设置

Box Collider 3.13.界面制作与交互设置

2009年工作总结与2010年工作计划

长沙华恒园信息科技有限责任公司

3.13.1.界面设计 3.13.2.脚本编写

3.14.发布导出

3.14.1.导出Windows Standalone 3.14.2.Web Player

Player设置:Web Screen一般设置为800*600大小

2009年工作总结与2010年工作计划

第20篇:虚拟现实体验感受李欣冉

虚拟现实体验感受

城北中心东关小学 五年级一班 李欣冉

今天我参加了由北京市大葆台西汉墓博物馆工作人员的讲解和vr体验。

我怀着无比激动的心情参加了这个活动。我心想:今天有机会亲身体验vr真是太好了,不知道vr是什么样的呢?这时大葆台汉墓博物馆的工作人员来了。有一位叔叔给我们讲解了有关西汉的历史和文化,让我学到了不少知识呢!我想:历史真有趣呢!我以后一定多读一些历史书籍,可以增长知识。

接着,就是我们最期待的vr体验了。同学们一个一个的体验了vr,马上就到我了,我的心紧张的怦怦直跳。终于轮到我了,我轻轻接过vr眼镜,迫不及待的戴到头上。哇!我好像空间转移似得来到了另一个地方,虽然我知道这是vr眼镜的作用,但我还是觉得一切都是那么真实,就像身临其境一样,竟然可以让我们现在体验到西汉时期的文化,好神奇啊!

最后老师发给我们一人一个竹简,可以把自己喜欢的古诗写在上面,我们就像回到了古代,用起了古代的竹简呢!真是太有趣了!

今天我高兴极了!因为我收获了许多,既了解了西汉的文化,让我学到了许多知识,又体验了vr,让我体验到高科技越来越先进了呢!

虚拟现实岗位职责
《虚拟现实岗位职责.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档