人人范文网 证明

证明函数可导(精选多篇)

发布时间:2020-04-18 23:17:56 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:构造可导函数证明函数不等式

构造可导函数证明不等式

◎李思阳本溪市机电工程学校 117022

【内容简要】构造辅助函数,把不等式证明转化为利用导数研究函数的单调性或最值,从而证得不等式。而如何构造一个可导函数,是用导数证明不等式的关键。本文从热门的高考题及模拟题中选出四种类型题供师生们参考。

【关键词】构造辅助函数;导数;不等式。

一.直接作差

1(2011·辽宁文科)设函数f(x)xax2blnx,曲线yf(x)过P(1,0),且在P点处的切线斜率为2.

(1) 求a,b的值;

(2) 证明:f(x)2x2。

(1)解:f(x)=1+2ax1a0b.由已知条件得f(1)0,f(1)=2,即 x12ab2

解得a1。

b3

(2)证明:因为f(x)的定义域为(0,+∞),由(1)知f(x)xx23lnx。

设g(x)f(x)(2x2)=2xx3lnx,

则g(x)=12x23(x1)(2x3)=。 xx

当0<x<1时,g(x)>0,当x>1时,g(x)<0。

所以g(x)在(0,1)内单调递增,在(1,+∞)内单调递减。而g(1)=0,故当x>0时,g(x)≤0,即f(x)2x2。

总结:直接作差g(x)f(x)(2x2),用导数得gmax(x)g(1)=0,从而得证。直接作差是证这类题最常用的方法。

二.分离函数

2.(2011·课标全国卷文科)已知函数f(x)

处的切线方程为x2y30。

(1)求a,b的值;

(2)证明:当x>0,且x1时,f(x)>

(1) 解:略a1,b1。 alnxb,曲线yf(x)在点(1,f(1))x1xlnx。 x1

lnx1lnx1x21,所以f(x)(2lnx)。 (2)证明:由(1)知f(x)=x1xx11x2x

x21考虑函数h(x)=2lnx(x>0),则 x

22x2(x21)(x1)2

=。 h(x)=22xxx

所以当x1时,h(x)<0,而h(1)0

当x∈(0,1)时,h(x)>0,可得,故 1h(x)>0; 21x

1h(x)>0。 当x∈(1,+∞)时,h(x)<0,可得1x2

lnx从而当x>0,且x1时,f(x)>。 x1

总结:作差后的函数如可分为两个函数的积,直接求导很繁,可取其中一个函数求导,再讨论证明。

三.巧妙变形

3.(2010·辽宁文科)已知函数f(x)(a1)lnxax21。

(1)讨论函数f(x)的单调性;

(2)设a2,证明:对任意x1,x2∈(0,+∞),f(x1)f(x2)4x1x2。 解:(1)略。

(2) 不妨设x1≥x2,由于a2,故f(x)在(0,+∞)减少。所以

f(x1)f(x2)4x1x2等价于f(x2)f(x1)≥x1-x2,即f(x2)x2≥f(x1)x1。

a12ax24xa12ax4=令g(x)f(x)x,则g(x)=。于是 xx

4x24x1(2x1)2

g(x)≤≤0。 xx

从而g(x)在(0,+∞)单调减少,故g(x1)≤g(x2)。即f(x1)x1≤f(x2)x2, 故,对任意x1,x2∈(0,+∞),f(x1)f(x2)4x1x2。

总结:通过等价变形,构造函数g(x),利用g(x)的单调性得证。

四.作函数积

12。 exex

1212证明: 对任意的x(0,﹢∞),lnx1>xx(lnx1)>x(x) exexee

x2设函数f(x)=xlnxx,g(x)=x+。 ee

111f(x)=lnx2,f(x)=0,得x2,易知fmin(x)=f(2)=—2。 eee4.(2011·本溪一中模拟)对任意的x(0,﹢∞),求证:lnx1>

1exxex

,=0,得1,易知==。 g(1)g(x)=g(x)g(x)xmaxee2x

11,∴fmin(x)>gmax(x),∴f(x)g(x)。 ee2

x212∴xlnxxx+。因此lnx1>x。 exeee∵

总结:直接做不好做,不等式两边同乘以一个函数,先进行证明,得到结果后再同除以这个函数,从而证得。

推荐第2篇:可测函数小结

可测函数

(一)可测函数的定义

1、在可测函数定义的学习过程中,对于可测函数的表示:a∈R, 有{x | >a}可测,则f(x) 可测 ;用简单间函数列来表示:有简单函数列{φn},f(x) 满足limφn = f (x) , 则f(x)可测;由鲁津定理得用连续函数逼近可测函数;n通过本章可测函数的学习,要把这三种关系透彻理解、掌握。

2、简单函数的引入对于学习讨论可测函数、L积分都有重要的意义。简单函数是常量函数、分段函数的进一步扩展。通过简单函数,对可测函数及L积分的讨论从简到繁、从特殊到一般过渡;要证明某个命题对于可测函数(或其一部分)成立,可先证明该命题对简单函数成立,再由极限过程过渡到一般可测函数。

3、可测函数列的等价条件。

(二) 可测函数列的收敛性

由L测度建立的L积分理论中,零测度集不影响函数的可积性和积分值。实变函数中的L积分与数学分析中的R积分,有一个很重要的不同点,就是命题的成立引入了“几乎处处”的概念。

对于可测函数列的三种强度不等的收敛定义:几乎一致收敛、几乎处处收敛、依测度收敛,要理解其意义与作用及相互关系。

可测函数列{fn (x) }处处收敛与依测度收敛虽然有很大区别,但仍有密切联系,主要表现在于:

(1) 处收敛的函数列可能不是依测度收敛,依测度收敛的函数列仍右能不是处处收敛 。 (2) 若{fn (x) }依测度收敛f(x),则必有子列{fn i (x) }几乎处处收敛

于f (x)。

(3) 几乎一致收敛函数列{fn(x)}一定依测度收敛于同一函数 ;反之,若{fn (x) }依测度收敛于f(x),则存在子列几乎一致收敛函数f(x) 。

(三)函数可测与连续的关系——鲁津定理

区间上的连续函数、单调函数、简单函数都是可测函数,所以可测函数类比连续函数类更广。鲁津定理给出了连续函数与可测函数的关系,表明用连续函数可以“逼近”可测函数,从而用我们比较熟悉的连续函数去把握比较抽象的可测函数,在某些情况下可以适当地把可测函数转换为连续函数。

函数可测与连续关系的主要结论有: (1)闭集上的连续函数可测; (2)任一可测集上的连续函数可测;

(3)f于E几乎处处有限可测,则存在闭集FE,m(E-F)

鲁津定理给出了可测函数的一种构造,定理所述的结论是使函数为可测的一个充分条件。鲁津定理的结论可作为可测函数的定义,由此可建立可测函数的另一种观点。

推荐第3篇:函数的可导性与连续性的关系教案

函数的可导性与连续性的关系教案

教学目的

1.使学生理解函数连续是函数可导的必要条件,但不是充分条件.

2.使学生了解左导数和右导数的概念.

教学重点和难点

掌握函数的可导性与连续性的关系.

教学过程

一、复习提问

1.导数的定义是什么?

2.函数在点x0处连续的定义是什么?

在学生回答定义基础上,教师进一步强调函数f(x)在点x=x0处连续必须具备以

∴f(x)在点x0处连续.

综合(1)(2)原命题得证.

在复习以上三个问题基础上,直接提出本节课题.先由学生回答函数的可导性与连续性的关系.

二、新课

1.如果函数f(x)在点x0处可导,那么f(x)在点x0处连续.

∴f(x)在点x0处连续.

提问:一个函数f(x)在某一点处连续,那么f(x)在点x0处一定可导吗?为什么?若不可导,举例说明.

如果函数f(x)在点x0处连续,那么f(x)在该点不一定可导.

例如:函数y=|x|在点x=0处连续,但在点x=0处不可导.从图2-3看出,曲线y=f(x)在点O(0,0)处没有切线.

证明:(1)∵ Δy=f(0+Δx)-f(0)=|0+Δx|-|0|=|Δx|,

∴函数y=|x|在点x0处是连续的.

2.左导数与右导数的概念.

(2)左、右导数存在且相等是导数存在的充要条件(利用左右极限存在且相等是极限存在的充要条件,可以加以证明,本节不证明).

(3)函数在一个闭区间上可导的定义.

如果函数y=f(x)在开区间(a,b)内可导,在左端点x=a处存在右导数,在右端点x=b处存在左导数,我们就说函数f(x)在闭区间[a,b]上可导.

三、小结

1.函数f(x)在x0处有定义是f(x)在x0处连续的必要而不充分条件.

2.函数f(x)在x0处连续是f(x)在x0处有极限的充分而不必要条件.

3.函数f(x)在x0处连续是f(x)在x0处可导的必要而不充分的条件.

四、布置作业

作业解答的提示:

=f(1).

∴ f(x)在点x=1处连续.

∴ f(x)在x=1处不可导.

推荐第4篇:函数极限证明

函数极限证明

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/MN2时,0Ni时,0

那么当x>N,有

(a/M)^n

推荐第5篇:可毕业证明

可毕业证明

姓名:xxx性别:x 身份证号:xxxxxxxxxxxxx。该生于xxxx年x月经录取进入我院学习,学制三年,为xxxx届xxxx大学xxxxx专业专科毕业生。该生符合毕业条件,将于x月末取得毕业证书。

情况属实,特此证明!

xxxx大学xxxx学院

xxxxx大学学生工作处

2013年6月 17日

推荐第6篇:函数法证明不等式

函数法证明不等式

已知函数f(x)=x-sinx,数列{an}满足0

证明0

证明an+1

3它提示是构造一个函数然后做差求导,确定单调性。可是还是一点思路都没有,各位能不能给出具体一点的解答过程啊?

(1)f(x)=x-sinx,f\'(x)=1-cosx

00,f(x)是增函数,f(0)

因为0

且an+1=an-sinan

(2)求证不等式即(1/6)an^3-an+1=(1/6)an^3-an+sinan>0①

构造函数g(x)=(1/6)x^3-x+sinx(0

g\'\'(x)=x-sinx,由(1)知g\'\'(x)>0,所以g\'(x)单增,g\'(x)>g\'(0)=0

所以g(x)单增且g(x)>g(0)=0,故不等式①成立

因此an+1

证毕!

构造分式函数,利用分式函数的单调性证明不等式

【例1】证明不等式:≥(人教版教材p23T4)

证明:构造函数f(x)=(x≥0)

则f(x)==1-在上单调递增

∵f(|a|+|b|)=f(|a+b|)=且|a|+|b|≥|a+b|

∴f(|a|+|b|)≥f(|a+b|)即所证不等式正确。

点评:本题还可以继续推广。如:求证:≥。利用分式函数的单调性可以证明的教材中的习题还有很多,如:

p14第14题:已知c>a>b>0,求证:

p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:

p12例题2:已知a,b,m,都是正数,且a

二、利用分式函数的奇偶性证明不等式

【例2】证明不等式:(x≠0)

证明:构造函数f(x)=

∵f(-x)=

=f(x)

∴f(x)是偶函数,其图像关于y轴对称。

当x>0时,

当x0,故f(x)=f(-x)

三、构造一次函数,利用一次函数的单调性证明不等式

【例3】已知|a|

∵|a|

∴-10

∴f(c)的(-1,1)上是增函数

∵f(1)=1-ab+a+b-2=a+b–ab-1=a(1-b)-(1-b)=(1-b)(a-1)

∴f(1)

∴a+b+c。

推荐第7篇:构造函数证明不等式

构造函数证明不等式

构造函数证明:>e的(4n-4)/6n+3)次方

不等式两边取自然对数(严格递增)有:

ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)

不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)

=ln2-ln1+lnn-ln(n+1)=ln

构造函数f(x)=ln-(4x-4)/(6x+3)

对f(x)求导,有:f\'(x)=+^

2当x>2时,有f\'(x)>0有f(x)在x>2时严格递增从而有

f(n)>=f(2)=ln(4/3)-4/15=0.02>0

即有ln>(4n-4)/(6n+3)

原不等式等证

【解】:

∏{n^2/(n^2-1)}>e^((4n-4)/(6n+3))

∵n^2/(n^2-1)=n^2/(n+1)(n-1)

∴∏{n^2/(n^2-1)}=2n/(n+1)

原式可化简为:2n/(n+1)>e^((4n-4)/6n+3))

构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2

∵e^((4n-4)/(6n+3))

∴F’(n)>0

而F=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0

所以F(n)>0

即:2n/(n+1)>e^((4n-4)/6n+3))

故得证。

一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式

例1若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c4ac.

证明构造函数f(x),设f(x)=ax2+3bx+c(a≠0),

由f(2)=4a+6b+c>0,

f(-1)=a-3b+c

根据勘根定理可知:f(x)在区间(-1,2)内必有零点.

又f(x)为二次函数,由勘根定理结合可知:

f(x)必有两个不同的零点.

令ax2+3bx+c=0可知△=(3b)2-4ac>0,

所以可得:9b2>4ac.命题得证.

评析本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决.

二、结合构造函数的单调性证明不等式

例2(2005年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c是实数,求证:

|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.证明构造函数f(x),设f(x)=x1+x(x≥0).

由于f′(x)=1(1+x)2,所以结合导数知识可知f(x)在[0,+∞)上是增函数.

∵0≤|a+b+c|≤|a|+|b|+|c|,

∴f(|a+b+c|)≤f(|a|+|b|+|c|),

即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.命题得证.

三、结合构造函数在某个区间的最值证明不等式

例3(第36届IMO试题)

设a,b,c为正实数,且满足abc=1,求证:

1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.证明构造函数,设f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),显然a=b=c=1时,f(a,b,c)=32≥32成立.

又abc=1,a,b,c为正实数,则a,b,c中必有一个不大于1,不妨设0f(a,b,c)-f(a,1,c)=(1-b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,

∴f(a,b,c)≥f(a,1,c),

因此要证f(a,b,c)≥32,只要证f(a,1,c)≥32,此时ac=1,

∴a,1,c成等比数列,令a=q-1,c=q(q>0).

f(a,1,c)=q31+q+qq2+1+1q2(1+q)

=q5+1q2(1+q)+qq2+1

=(q4+1)-(q3+q)+q2q2+qq2+1

=(q2+q-2)-(q+q-1)+1q+q-1+1

=t2-t+1t-1.(其中t=q+q-1,且t≥2).

由导数知识(方法同例

2、例3)可知函数

f(a,1,c)=t2-t+1t-1(t≥2)是增函数,

当且仅当t=2q=1a=c=1时,

(f(a,1,c))min=22-2+12-1=32成立,

∴f(a,1,c)≥32.

故f(a,b,c)≥f(a,1,c)≥32.命题得证。

推荐第8篇:构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号

何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)

2∵b、c∈R,∴⊿≤0

即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20, ∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。 3

abc222解析:2 消去c得:此方程恒成立, a(b2)ab2b10,22abc

2∴⊿=(b2)24(b22b1)3b24b0,即:0b

4同理可求得a,c0, 34。

3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2 由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1, 求证:a14b14c14d1﹤6。

解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)2

=8x22(4a14b14c14d1)x4.(abcd1)

由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求

解析:构造函数f(x)(

=(1axa)2(149的最小值。 abc2xb)2(3cx)2 1492)x12x1,(abc1) abc

111由f(x)0(当且仅当a,b,c时取等号), 632

149得⊿≤0,即⊿=144-4()≤0 abc

111149∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈R,且a

求证: ama>bmb

[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不

等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+,其中x∈R,0

bxbabaf(x)==1- bxbx证明:令 f(x)=

∵b-a>0

ba+ 在R上为减函数 bx

ba+从而f(x)= 在R上为增函数 bx∴y=

∵m>0∴f(m)>f(0) ∴ama>bmb

6、求证:ab

1ab≤ab

1ab(a、b∈R)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的

单调性证明,问题将迎刃而解。

[证明]令 f(x)=x,可证得f(x)在[0,∞)上是增函数(证略) 1x

而0

得f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab

1ab≤ab

1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较

法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—1x1≤≤ 221x

2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是

构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。 1x222

x2证明:设 y=, 则yx-x+y=0 21x

∵x为任意实数

22∴上式中Δ≥0,即(-1)-4y≥0

1

411得:—≤y≤ 22

1x1∴—≤≤ 21x22∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数

的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最

大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。 22证明:∵lgxlgy >0(x>1,y>1)

∴原不等式可变形为:Lga≥lgxlgy

lgxlgy2

22lgxlgy)2lgxlgy令 f(x)= == 222222lgxlgylgxlgylgxlgylgxlgy

22而 lgx>0,lgy>0,∴lgx+lgy ≥ 2lgxlgy >0

∴2lgxlgy≤1 22lgxlgy

∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,

只需Lga≥2即 a≥102即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx

2xx 证明:设f(x)=-(x≠0) x122 例

9、证明不等式:

xxx2xx∵f(-x)=- = x+ x122212

xxx[1-(1-2)]+12x2

xx=-x+= f(x) x122=

∴f(x)的图象关于y轴对称

x∵当x>0时,1-2

当x

故当 x≠0时,恒有f(x)

即:xx

[小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。

推荐第9篇:函数的证明方法

一般地,对于函数f(x) ⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。

⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。

⑶如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 ⑷如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 定义域互为相反数,定义域必须关于原点对称 特殊的,f(x)=0既是奇函数,又是偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言。

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。

④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。

⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如f(x)=x³【-∞,-2】或【0,+∞】(定义域不关于原点对称)

⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0 注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数

推荐第10篇:构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20, ∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。

3abc222解析:2 消去c得:此方程恒成立, a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,

34。 3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2

由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1, 求证:4a14b14c14d1﹤6。 解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)

2=8x22(4a14b14c14d1)x4.(abcd1) 由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)( =(1axa)2(149的最小值。 abc2bxb)2(3cxc)2

1492)x12x1,(abc1) abc111由f(x)0(当且仅当a,b,c时取等号),

632149得⊿≤0,即⊿=144-4()≤0

abc111149

∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+

,其中x∈R,0

bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数

bx∴y= ∵m>0 ∴f(m)>f(0)

∴ama>bmb例

6、求证:ab1ab≤

ab1ab (a、b∈R)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。

[证明]令 f(x)=

x,可证得f(x)在[0,∞)上是增函数(证略) 1x 而 0

得 f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab1ab≤

ab1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—

x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。

1x222x2证明:设 y= , 则yx-x+y=0 21x ∵x为任意实数

22 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤

22x11 ∴—≤≤

21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y

对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。

22证明:∵lgxlgy >0 (x>1,y>1) ∴原不等式可变形为:Lga≥

lgxlgylgxlgy22

2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy

22 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy >0 ∴2lgxlgy≤1 22lgxlgy ∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,

只需Lga≥2即 a≥10

2即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx

9、证明不等式:

xxx2xx ∵f(-x)=- = x+ x122212xxx

[1-(1-2)]+ 12x2xx =-x+= f(x) x122 = ∴f(x)的图象关于y轴对称

x ∵当x>0时,1-2

第11篇:二元函数连续可微偏导之间的关系解读[优秀]

一、引言

对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。

二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系 1.可微与连续的关系

若函数f(x,y在点(x0,y0处可微,则在该点连续,但反之不成立(同一元函数。 证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y-f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0,

所以lim (△x,△y→(0,0

f(x0+△x,y0+△y=f(x0,y0,故f(x,y在 点(x0,y0处连续。反之不成立。 例1.f(x,y= x2y x2+y2 ,x2+y2≠0 0,x2+y2= $

在点(0,0处连续, 但在该点不可微。 2.偏导数存在与可微的关系

由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,则f(x,y在点(x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。

3.偏导数连续与可微的关系

由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,则f(x,y在点(x0,y0处可微;但反之不成立, 例2.f(x,y=(x2+y2sin1 x2+y2 ,x2+y2≠0 0,x2+y2= % ’ ’ ’ & ’ ’

’ (0 在点(0,0处

可微,但偏导数在点(0,0不连续。 4.连续与偏导数存在之间的关系

二元函数连续与偏导数存在之间没有必然的联系。 例3f(x,y=x2+y2 (圆锥在点(0,0连续但在该点不存在偏导数。更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。

例4.f(x,y xy x2+y2 ,x2+y2≠0 0,x2+y2= $ 在点(0,0不连续,但 f y(0,0=lim △y→∞ 0-0

△y =0,f y(0,0=lim △y→∞ 0-0 △y =0。这是因为偏导数只是刻画了函数沿x轴或y轴方向的变化特征,所以这个例子只能说明f(x,y在原点分别对x和对y连续,但由此并不能保证f(x,y作为二元函数在原点连续。

5.连续与偏导数连续之间的关系。

由例4可知二元函数在某点连续时,偏导数不一定存在,当然更谈不上偏导数连续了;反之若偏导数连续一定可微,从而可推出函数在该点一定连续。

三、可微性判别步骤

1.如果f在点(x0,y0处不连续或偏导数不存在,则f在点(x0,y0处不可微。2.如果f在点(x0,y0处连续,存在f x(x0,y0、fy(x0,y0,则f在点(x0,y0处可微的充分必要条件是满足下列等价的任一式: (1△z=f(x0+△x,y0+△y-f(x0,y0 =f x(x0,y0△x+f y(x0,y0△y+o((△x2+(△y2 (2△z=f(x0+△x,y0+△y-f(x0,y0 =f x(x0,y0△x+f y(x0,y0△y+ε((△x2+(△y2 其中ε→0(当△x→0△y→0时

(3△z=f(x0+△x,y0+△y-f(x0,y0 =f x(x0,y0△x+f y(x0,y0△y+ε1△x+ε2△y 其中ε1→0,ε2→0(当△x→0,△y→0时

四、结束语

从以上讨论可以看出,二元函数连续、可微、偏导数之间的关系比一元函数连续、导数存在、可微之间的关系要复杂得多,究其原因主要在于二元函数极限比一元函数极限对自变量的要求更高、更为复杂。如对lim x→x f(x只要求

二元函数连续可微偏导之间的关系 □李聚玲河北保定华北电力大学数理系

[摘要]本文给出了二元函数在某点处连续、偏导数存在、可微、偏导数连续之间的关系, 并进一步给出了可微的判别步骤。 [关键词]二元函数连续可微偏导数 下转2页 名教讲坛 3 一种学习对另一种学习的影响不总是积极的,有时侯两种知识之间会产生干扰,学生不能很好的辨别二者的本质区别,使得原有知识的学习阻碍了对新知识的正确

理解,形成负迁移。教师在教学是可以适时抓住学生的错例,通过对比,制造认知冲突,再加以巧妙点拨,让学生在明了二者区别的同时把握住函数的本质属性。

案例:反函数是函数知识领域的一个难点,许多同学在理解反函数概念时容易产生困惑。老师可以这样举例:请大家分别作出f(x=2x+3和它的反函数的图象。那么大

多数学生会把它等价于作y=2x+3和x=y-3 2 的图象,而且

他们会认为这两个式子并没有本质的区别,因为他们把函数的反解与方程中的解未知数等同起来了,认为横坐标上的值就代表x的值,而纵坐标的值就代表y值,于是作出的图象是相同的。那么教师就要抓住函数与方程的本质区别,让学生知道我们这里考虑的对象是函数,它反映的是自变量与函数值的对应关系,在作反函数x=f-1(y的图象时应该按照自变量的值作横坐标、函数的值作纵坐标, 而与字母无关,因此在x=y-3 2 中的自变量是y而不是x, 那么它所反映的函数关系也就不一样了,这样画出的图象与原函数y=f(x的图象是关于直线y=x对称的。学生这时恍然大悟,困惑解开了,对函数概念也理解的更加透彻了。

学生出现问题的关键就在于把函数的反解与方程中的解未知数等同起来了,这是由于学习方程之后产生思维定势,直接迁移到函数的学习中来。教师善于把握住学生的认识心理和理解问题的薄弱环节,通过让学生自己发现问题的矛盾揭示出方

程与函数的本质区别,增强了知识的稳定性和清晰性,实现了新知识的重组与优化,有效的抑制了负迁移的发生。

三、巧妙设计变式训练,促进灵活迁移

所谓“变式”,是指在教学中变化引用的材料内容和形式,从不同角度、用不同方法进行教学,使思维的“触须”伸向不同方位和不向领域。因此,通过变式训练可以实现知识的有效迁移。教师要充分运用“变式”教学,通过“一题多变”、“一图多问”、“多题重组”等形式从多个方面构造问

题,使学生养成多角度、多方位处理问题的习惯。教师提出的问题越多,学生思维越发散,理解越深刻,并通过对所提问题的解答而达到灵活迁移的目的。例如,函数与方程、不等式的结合向来是中考或高考的热点,教师可以通过设计变式训练把三者结合的恰到好处: 原问题:要使关于x的方程kx2+(2k+1x+(k-1=0有实根,求k的取值范围? 变式一:已知二次函数y=kx2+(2k+1x+(k-1的图象与x 轴有两个交点分别为(- 1 3 ,0、(-2,0,求实数k的值? 变式二:已知二次不等式kx2+(2k+1x+(k-1>0对任意实数x都成立,求实数k的取值范围? 变式三:已知关于x的方程kx2+(2k+1x+(k-1=0的两实根介于-2和4之间,求实数k的取值范围? 由原问题引出的三个问题围绕同一个二次多项式,从函数、方程、不等式之间的内在联系出发,构造出不同的变式。问题一表面上是一个函数问题,实际上通过函

数值为0转化成了方程的问题;问题二表面上是一个不等式问题,实际上利用了二次函数的图象找到了数量关系;问题三则把函数、方程、不等式都包含了进来,达到了三者相互依赖的完美结合。教师通过设计这样的变式训练,由三个问题表面的相似度延伸出不同的知识内涵,学生通过一一对比,对三者的有机融合和迁移渗透有了深刻的认识。

知识与技能的迁移并不是简单地将已有的知识、经验“移位”或机械地模仿,而是需要在面临新的问题情境时能发现新旧知识之间的必然联系和本质区别。变式训练不仅可以帮助学生缩小函数与其它知识之间的距离,而且其灵活的变化形式很好的揭示了问题的本质,正所谓“以不变应万变”。学生在感受教师示范迁移应用的具体实例中,逐渐形成自己运用迁移的调控技能,从而促进了灵活迁移。[参考文献] [1]朱水根等:《中学数学教学导论》,教育科学出版社, 2001年6月; [2]曾国光:《中学生函数概念认知发展研究》,《数学教育学报》,2002年5月(11 [3]王尚志:《高中数学课程中的函数》,《中学数学教学参考》,2007(10 在x从x 0的左、右两侧趋向于x 时,f(x趋于同一值。而对 lim (x,yx→(x 0,y f(x,y要求点(x,y以任何方式趋向于时(x ,y

, f(x,y都趋向于同一极限,任何方式包含了x与y的不同关系以及趋向时的不同途径,从而导致二元函数产生了二重极限与累次极限的区别,正是由于二元函数极限的这种复杂性导致了二元函数诸多关系得复杂性。[参考文献] [1]华东师范大学数学系。数学分析[M]。高等教育出版社, 2001 [2]B.吉米多维奇。数学分析习题集[M]。人民教育出版社, 1958 上接3页 名教讲坛2

第12篇:居住证明(可改)

证明

兹有我辖区居民XXX,性别X,X族,XXXX年XX月X日出生,身份证号码为XXXXXXXXXXXXXXXXXX,居住在昌吉市XXXXXXXX。

特此证明。

昌吉市北京南路街道XXXXXXXX年X月X日

第13篇:确定二次函数表达式导学案

确定二次函数表达式导学案

学习目标

1、从实际问题入手,经历确定二次函数表达式的过程。

2、会用待定系数法求二次函数解析式,能灵活的根据条件恰当地选择解析式,体会二次函数解析式之间的转化。

3、从学习过程中体会学习数学知识的价值,培养数学应用意识。

学习过程

教学过程:

生活中的很多问题需要运用数学知识解决,比如说这道题,昨天晚上大家已经进行自主探究。

(一)前置自学

某建筑物的屋顶设计成横截面为抛物线型(曲线AcB)的薄壳屋顶.它的拱宽AB为4m,拱高CD为2m.施工前要先制造模板,怎样画出模板的轮廓线呢?至少设计两种方案。

(温馨提示:建立适当的直角坐标系,求出这段抛物线所对应的二次函数表达式)

自主解决:

按下列问题组内交流你的预习成果 小组合作 质疑解惑 (1) 你们组共有几种方案,你还能想到哪些? (2) 比较哪种方案更简单,说明理由。

集体交流 展示成果

通过刚才这些同学的展示,那咱同学回想这些图形,你是如何确定出二次函数表达式?(学生思考)

师提示:比如说这个y=ax2 它有什么特点?

生齐答,师板书:它的顶点在原点, 那y=ax2+c 呢?顶点(0,c);y=a(x-h)2 这三种形式实际上我们都可以归结为y=a(x-h)2+k 这个顶点式的完整形式。举个例子,如果我说它经过的是原点(0,0),顶点是(0,0),实际上也就是当h=0时,k=0把它代入这个顶点式,即可求出二次函数的表达式,

师提问:那么从图像上面获取信息,获取的是哪些信息呀?(思考) 提示:你如何求出这个表达式?我们要从中找到顶点坐标,然后代入解析式,求出结果。

小组在一起把你们组的情况再汇总一下。缺少什么补充。 实际上还有很多方案,课后你可以继续探讨。

梳理点拨 诊断评价: 投影显示:

请看黑板,这道题如何求出函数表达式?

(二)例题精析

已知二次函数的图像经过(0,2)(1,0)和(-2,3),求这个函数表达式。 首先自主解决

在本上先只列式不解答

集体交流

师:由什么条件决定设成y=ax2+bx+c 生:因为他告诉你三个点坐标

师:这道题与前面一组问题有什么本质区别? 它没有明确的提出当中的顶点,三个点先选定哪个? 生:(0,2)求出c,再将另外两点,组成方程组 师:几个未知数,是二元一次方程,解出方程组,求出a,b值。最后别忘了,你这道题要求的问题是?

梳理点拨 诊断评价:

那么通过前面这一组题得练习,你能 归纳总结:

确定二次函数表达式的步骤: 养成习惯先自主解决

组内交换一下看法,拿出最后的方案 师:你们最终归纳的求二次函数表达式的步骤 生:

师:如果给定顶点坐标,代入哪个式子都适用?

y=a(x-h)2+k,防止今后混淆,你就记准这一个顶点式,如果要设一般式,我们通常要知道几点坐标(齐答:三点)

刚才我们探究预习题时,如果没有坐标系,要记着先建立平面直角坐标系。 步骤的第一步建立适当的坐标系(要从中找到求表达式必须的点坐标)

(三)内化知识 拓展应用 用刚才所学的知识 A、判断下列问题适合设哪种二次函数表达式? (口答)

①已知二次函数的图像经过A(-1,6)

B(1,4)和C(0,2), 求表达式。 师提问:五组三号

②已知抛物线顶点为(-1,-3),

与y轴交点纵坐标为-5,求表达式。 师提问:六组三号 解题的关键词是什么

③已知抛物线与x轴交于点A(-1,0),

B(1,0),且过M(0,1),求表达式。

师提问:八组三号

不用紧张,仔细读它给定你的点坐标,求表达式 非常好,要相信自己的能力

④当 x>3时,y随x的增大而增大,当 x<3时,y随x的增大而减小,y的最大值是2,且图像经过点(5,0),求函数表达式。

集体说

通过刚才的学习,咱同学动笔完成,分层检测,请每组4号同学做第一题,你只要完成了第一题,这节课你就是成功的,1-3号同学,做

2、3两题。直接做在导学案上。4组三号做第二题,九组二号做第三题,王玉双做第一题。

B、分层练习巩固提升

1、已知抛物线的顶点坐标是(0,3),与x轴交点是(-3, 0),求函数表达式。

2、已知二次函数图像经过(0,-1)和(3,5)两点,对称轴是直线x=1,求函数表达式。

3、已知A(3,-2)和B(2,5)两点,试写出两个二次函数表达式,都经过A、B两点。

组内交换批改一下,展示一下你研究的成果 机会给各组的三号,第二题 实物投影:生操作

师提问:题目的具体步骤,利用了哪个关键词设成顶点式?

虽然只知道对称轴,但是把H确定以后,需要求的待定系数只有两个。 有没有同学设成了一般式,简单的叙述步骤 第三题:说出你的真实想法就行

对于数学课,首先要有敢错的勇气,说错了并不可怕。

生答:我选择顶点式是y=ax2+c,我选他的原因是因为我只知道两个点的坐标,前面做的题都是知道三个点的坐标,

师纠正:暂停,如果你选的y=ax2+c为你所要求的表达式,它的顶点坐标是什么(0,c)在第三题中的两点,有这种形式的点吗?设顶点式如果对它的形式有疑问的情况下,设成y=a(x-h)2+k。两点不能设成一般式,那么要设成顶点式,必须知道其中之一是顶点。所以几种情况(两种)

今天练习做的有些艰难,下面放松一下,同学们猜过谜语吗?那猜过数学谜语吗?这节课让我们来尝试一下。你首先要自己知道答案,编出一道高质量的数学题。最后这节课的自测题当中,我就要选取某几组当中的优秀作品,考考全班同学,开始。

C、创作篇 同学们都猜过谜语吧,“数学谜语”呢?那么今天由我们自己来创作。自编一道求二次函数表达式的问题(谜底自己要知道哟)。考考同学们。

(四)总结归纳 感悟提升

回顾这节课你都学习了那些知识?

(五)课堂检测

(五)盘点收获 反馈矫正

择优选择的小组自编题

1、第( 5 )组

已知二次函数图象经过(2,-1)和(-4,-1),(6,-2)三点,求函数表达式。

2、第( )组

※ 自我评价 你完成本节导学案的情况为( A.很好 B.较好 C.一般 D.较差

(六)课后作业

.)课本P66页 随堂练习

2习题

2、3

第14篇:构造函数证明数列不等式

构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*).例1.求证:23436

ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n

例3.求证:

例4.求证:(1

练习:

1求证:(112)(123)[1n(n1)]e

2.证明:

3.已知a11,an1(1

4.已知函数f(x)是在(0,)上处处可导的函数,若x2n311111ln(n1)1 23n12n111111)(1)(1)e和(1)(1)(12n)98132!3!n!e.ln2ln3ln4lnnn(n1)(nN*,n1) 345n14112)a.ae证明.nnn2n2nf\'(x)f(x)在x0上恒成立.

(I)求证:函数g(x)

(II)当x1f(x)在(0,)上是增函数; x0,x20时,证明:f(x1)f(x2)f(x1x2);(III)已知不等式ln(1x)x在x1且x0时恒成立。

5.已知函数f(x)xlnx.若a0,b0,证明:f(a)(ab)ln2f(ab)f(b).

第15篇:函数极限的定义证明

习题13

1.根据函数极限的定义证明:

(1)lim(3x1)8;x3

(2)lim(5x2)12;x2

x244;(3)limx2x2

14x3

(4)lim2.

x2x12

1证明 (1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3|.3

1证明 因为 0, , 当0|x3|时, 有|(3x1)8| , 所以lim(3x1)8.x33

1(2)分析 |(5x2)12||5x10|5|x2|, 要使|(5x2)12| , 只须|x2|.5

1证明 因为 0, , 当0|x2|时, 有|(5x2)12| , 所以lim(5x2)12.x25

(3)分析

|x(2)|.x24x24x4x24(4)|x2||x(2)|, 要使(4), 只须x2x2x2

x24x24(4), 所以lim4.证明 因为 0, , 当0|x(2)|时, 有x2x2x2

(4)分析 14x31114x312, 只须|x()|.2|12x2|2|x()|, 要使2x12x1222

14x31114x3

2, 所以lim证明 因为 0, , 当0|x()|时, 有2.12x12x122x2.根据函数极限的定义证明:

(1)lim1x3

2x3

sinxx1;2(2)limxx0.

证明 (1)分析

|x|1

1x32x311x3x322x312|x|3, 要使1x32x311, 只须, 即322|x|2.

证明 因为 0, X(2)分析

sinxx0

12

, 当|x|X时, 有1x

1x32x311x31, 所以lim.

x2x322

1x

, 即x

sinxx

|sinx|x

, 要使

sinx

证明 因为0, X

2

, 当xX时, 有

xsinxx

0, 只须

.

0, 所以lim

x

0.

3.当x2时,yx24.问等于多少, 使当|x2|

解 由于x2, |x2|0, 不妨设|x2|1, 即1x3.要使|x24||x2||x2|5|x2|0.001, 只要

|x2|

0.001

0.0002, 取0.0002, 则当0|x2|时, 就有|x24|0.001.5

x21x

34.当x时, y

x21x23

1, 问X等于多少, 使当|x|>X时, |y1|

解 要使1

4x23

0.01, 只|x|

3397, X.0.01

5.证明函数f(x)|x| 当x0时极限为零.

x|x|

6.求f(x), (x)当x0时的左﹑右极限, 并说明它们在x0时的极限是否存在.

xx

证明 因为

x

limf(x)limlim11,

x0x0xx0x

limf(x)limlim11,

x0x0xx0limf(x)limf(x),

x0

x0

所以极限limf(x)存在.

x0

因为

lim(x)lim

x0

x0

|x|x

lim1,x0xx|x|xlim1,xx0x

lim(x)lim

x0

x0

lim(x)lim(x),

x0

x0

所以极限lim(x)不存在.

x0

7.证明: 若x及x时, 函数f(x)的极限都存在且都等于A, 则limf(x)A.

x

证明 因为limf(x)A, limf(x)A, 所以>0,

x

x

X10, 使当xX1时, 有|f(x)A| ;X20, 使当xX2时, 有|f(x)A| .

取Xmax{X1, X2}, 则当|x|X时, 有|f(x)A| , 即limf(x)A.

x

8.根据极限的定义证明: 函数f(x)当xx0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.

证明 先证明必要性.设f(x)A(xx0), 则>0, 0, 使当0

|f(x)A|

因此当x0

|f(x)A|

这说明f(x)当xx0时左右极限都存在并且都等于A .再证明充分性.设f(x00)f(x00)A, 则>0,1>0, 使当x010, 使当x0

取min{1, 2}, 则当0

| f(x)A|

即f(x)A(xx0).

9.试给出x时函数极限的局部有界性的定理, 并加以证明.

解 x时函数极限的局部有界性的定理 如果f(x)当x时的极限存在 则存在X0及M0 使当|x|X时 |f(x)|M

证明 设f(x)A(x) 则对于 1 X0 当|x|X时 有|f(x)A| 1 所以|f(x)||f(x)AA||f(x)A||A|1|A|

这就是说存在X0及M0 使当|x|X时 |f(x)|M 其中M1|A|

第16篇:构造函数法证明不等式

构造函数法证明不等式

河北省 赵春祥

不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等式就是其常见题型.即有些不等式可以和函数建立直接联系,通过构造函数式,利用函数的有关特性,完成不等式的证明.

一、构造一元一次函数证明不等式

例1设0<x<1,0<y<1,0<z<1,求证:x(1-y)+y(1-z)+z(1-x)<1.

证明:构造一次函数f(x)= x(1-y)+y(1-z)+z(1-x),整理,得

f(x)= (1-y-z)x+(y+z-yz) 其中0<x<1,

∵0<x<1,0<y<1,0<z<1,∴-1<1-y-z<1.

⑴当0<1-y-z<1时,f(x)在(0,1)上是增函数,于是

f(x)<f(1)=1-yz<1;

⑵当-1<1-y-z<0时,f(x)在(0,1)上是减函数,于是

f(x)<f(0)= y+z-yz = 1-(1-y)(1-z)<1;

⑶当1-y-z = 0,即y+z = 1时,f(x)= y+z-yz = 1-yz<1.

综上,原不等式成立.

例2已知 | a |<1 ,| b |<1,| c |<1,求证:abc+2>a+b+c.

证明:构造一次函数f(x)= (bc-1)x+2-b-c,这里, | b |<1,| c |<1,| x |<1,则bc <1. ∵f(1)= 1-bc+2-b-c = (1-bc)+(1-b)+(1-c)>0,

f(1)= bc-1+2-b-c =(1-b)(1-c)>0,

∵-1<x<1,∴一次函数f(x)= (bc-1)x+2-b-c的图象在x轴上方,这就是说,当| a |<1 ,| b |<1,| c |<1时,有(bc-1)a+2-b-c>0,

即abc+2>a+b+c.

二、构造一元二次函数证明不等式

例3若 a、b、c∈R+ ,求证:a2+b2+c2≥ab+bc+ca .

证明构造函数f(x)= x2-( b+c )x+b2+c2-bc .

因为 △= ( b+c )2-4( b2+c2-bc ) =-3( b-c )2≤0 ,

又因为二次项的系数为正数,所以x2-( b+c )x+b2+c2-bc≥0对任意实数恒成立. 以a 替换 x 得:a2-( b+c )a+b2+c2-bc≥0, 即 a2+b2+c2≥ab+bc+ ca.

例4已知a、b、c、d、e是满足a+b+c+d+e= 8,a2+b2+c2+d2+e2= 16的实数,求证:0≤e≤

16

5.

证明:构造一元二次函数

f(x)= 4x

+2(a+b+c+d)+a2+b2+c2+d2= (x+a)2+(x+b)2+(x+c)2+(x+d)2≥0,

又∵二次项系数为正数,

∴△= 4(a+b+c+d)2-16(a2+b2+c2+d2) = 4(8-e)2-16(16-e2)≤0, 解之得0≤e≤

165

故不等式成立.

三、构造单调函数证明不等式 例5已知 a>0,b>0,求证 :证明: 构造函数f(x)=

x1x

a1a

b1b

x

ab1ab

,易证f(x)=

1x

= 1-

1x

当x>0 时单调递增.

∵ a+b+ab>a+b>0 ,∴ f(a+b+ab)>f( a+b) . 故

a1a

b1b

=

ab2ab(1a)(1b)

abab1abab)

14

=f(a+b+ab)>f( a+b) =

13n2

13n1

ab1ab

例6对任意自然数n 求证: (1+1)(1+

14

)·…·(1+

13n2

)>3n1.

证明:构造函数f(n)= (1+1)(1+

13n1

)·…·(1+3

f(n1)f(n)

(1)33n1

=

3n4

=(3n2)

(3n1)(3n4)

>1,

∵f(n)>0,∴f(n1)>f(n),即f(n)是自然数集N上的单调递增函数,

∴(1+1)(1+

14

)·…·(1+

13n2

)>33n1.

第17篇:函数单调性定义证明

用函数单调性定义证明

1、用函数单调性定义证明:

(1) 为常数)在 上是增函数.(2) 在 上是减函数.

分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论.

证明: (1)设

则 是 上的任意两个实数,且

=

由 得 ,由

得 , .

于是, ,

即即 ..

(2) 设在 是 上是增函数.上的任意两个实数,且 ,

由 得,由

于是 即.又 , ..

在 上是减函数.

小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号.

根据单调性确定参数

1、函数

上是减函数,求

的取值集合.分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究.

解:当

具备增减性.

,解得

.故所求

的取值集合为

.时,函数此时为

,是常数函数,在

上不时,

为一次函数,若在

上是减函数,则有

小结:此题虽比较简单,但渗透了对分类讨论的认识与使用.

第18篇:函数的单调性证明

函数的单调性证明

一.解答题(共40小题)

1.证明:函数f(x)=在(﹣∞,0)上是减函数.

2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.

3.证明f(x)=

在定义域为[0,+∞)内是增函数.

4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

第1页(共23页)

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.

6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.

7.证明:函数y=

在(﹣1,+∞)上是单调增函数.

8.求证:f(x)=

在(﹣∞,0)上递增,在(0,+∞)上递增.

9.用函数单调性的定义证明函数y=

在区间(0,+∞)上为减函数.

第2页(共23页)

10.已知函数f(x)=x+.

(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若

>0对任意x∈[4,5]恒成立,求实数a的取值范围.

11.证明:函数f(x)=

在x∈(1,+∞)单调递减.

12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.

13.判断并证明f(x)=

在(﹣1,+∞)上的单调性.

14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

第3页(共23页)

15.求函数f(x)=

的单调增区间.

16.求证:函数f(x)=﹣

﹣1在区间(﹣∞,0)上是单调增函数.

17.求函数

的定义域.

18.求函数

的定义域.

19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+

(2)f(x)+2f()=3x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x).

第4页(共23页)

21.求下列函数的解析式

(1)已知f(x+1)=x2求f(x)

(2)已知f(

)=x,求f(x)

(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)

(4)已知3f(x)﹣f()=x2,求f(x)

22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).

第5页(共23页)

23.已知3f(x)+2f()=x(x≠0),求f(x).

24.已知函数f(x+)=x2+()2(x>0),求函数f(x).

25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).

26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.

27.已知4f(x)﹣5f()=2x,求f(x).

28.已知函数f(

+2)=x2+1,求f(x)的解析式.

第6页(共23页)

29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.

30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)

31.求下列函数的解析式:

(1)已知f(2x+1)=x2+1,求f(x);

(2)已知f()=

,求f(x).

32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.

33.已知f(2x)=x2﹣x﹣1,求f(x).

34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.

第7页(共23页)

35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.

36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.

37.若3f(x)+2f(﹣x)=2x,求f(x)

38.f(

+1)=x2+2

,求f(x)的解析式.

39.若函数f(

)=+1,求函数f(x)的解析式.

40.已知f(x﹣1)=x2﹣4x. (1)求f(x)的解析式; (2)解方程f(x+1)=0.

第8页(共23页)

第9页(共23页)

函数的单调性证明

参考答案与试题解析

一.解答题(共40小题)

1.证明:函数f(x)=在(﹣∞,0)上是减函数. 【解答】证明:设x1<x2<0,则:

∵x1<x2<0;

∴x2﹣x1>0,x1x2>0; ∴f(x1)>f(x2);

∴f(x)在(﹣∞,0)上是减函数.

2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增. 【解答】证明:设0<x1<x2<, 则f(x1)﹣f(x2)=(4x1+

)﹣(4x2+

)=4(x1﹣x2)+

=(x1﹣x2)(),

又由0<x1<x2<,

则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,

则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减, 设≤x3<x4,

同理可得:f(x3)﹣f(x4)=(x3﹣x4)(又由≤x3<x4,

第10页(共23页)

),

则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,

则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.

3.证明f(x)=在定义域为[0,+∞)内是增函数.

【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:

=∵x1,x2∈[0,+∞),且x1<x2; ∴∴f(x1)<f(x2);

∴f(x)在定义域[0,+∞)上是增函数.

4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数. 【解答】证明:任取x1,x2∈(0,2),且x1<x2, 则f(x1)﹣f(x2)=

﹣(

=

因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4, 所以f(x1)﹣f(x2)>0,即f(x1)>f(x2), 所以f(x)=x+在(0,2)上为减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 【解答】解:设x1<x2<0, ∴f(x1)﹣f(x2) =2x1﹣﹣2x2+

=(x1﹣x2)(2+∵x1<x2<0, ),

第11页(共23页)

∴x1﹣x2<0,2+

>0,

∴f(x1)﹣f(x2)<0, 即:f(x1)<f(x2),

∴函数f(x)=2x﹣在(﹣∞,0)上是增函数.

6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 【解答】解:任取0≤x1<x2, 则f(x1)﹣f(x2)==(x1+x2)(x1﹣x2)

因为0≤x1<x2,所以x1+x2>0,x1﹣x2<0, 故原式f(x1)﹣f(x2)<0,

即f(x1)<f(x2),所以原函数在[0,+∞)是单调递增函数.

7.证明:函数y=

在(﹣1,+∞)上是单调增函数.

=1﹣

在在区间(﹣1,+∞),

【解答】解:∵函数f(x)=可以设﹣1<x1<x2, 可得f(x1)﹣f(x2)=1﹣∵﹣1<x1<x2<0,

﹣1+=

∴x1+1>0,1+x2>0,x1﹣x2<0, ∴<0

∴f(x1)<f(x2),

∴f(x)在区间(﹣∞,0)上为增函数;

8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.

第12页(共23页)

【解答】证明:设x1<x2,则f(x1)﹣f(x2)=﹣∵x1<x2,∴x1﹣x2<0,

﹣(﹣)=﹣=,

∴若x1<x2<0,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.

若0<x1<x2,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增. 即f(x)=

9.用函数单调性的定义证明函数y=【解答】解:∵函数y=可以设0<x1<x2, 可得f(x1)﹣f(x2)=∴f(x1)>f(x2),

∴f(x)在区间(﹣∞,0)上为减函数;

10.已知函数f(x)=x+.

(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.

=

>0,

在区间(0,+∞)上为减函数. 在(﹣∞,0)上递增,在(0,+∞)上递增.

在区间(0,+∞),

【解答】(Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2, 则f(x1)﹣f(x2)=(x1+

)﹣(x2+

)=

∵2≤x1<x2,所以x1﹣x2<0,x1x2>4, ∴f(x1)﹣f(x2)<0,即f(x1)<f(x2), ∴f(x)=x+在[2,+∞)上为增函数; (Ⅱ)解:∵>0对任意x∈[4,5]恒成立,

第13页(共23页)

∴x﹣a>0对任意x∈[4,5]恒成立, ∴a<x对任意x∈[4,5]恒成立, ∴a<4.

11.证明:函数f(x)=

在x∈(1,+∞)单调递减.

【解答】证明:设x1>x2>1,则:

∵x1>x2>1;

∴x2﹣x1<0,x1﹣1>0,x2﹣1>0; ∴即f(x1)<f(x2);

∴f(x)在x∈(1,+∞)单调递减.

12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数. 【解答】证明:①在(0,1)内任取x1,x2,令x1<x2, 则f(x1)﹣f(x2)=(=(x1﹣x2)+=(x1﹣x2)(1﹣

)﹣()

),

∵x1,x2∈(0,1),x1<x2, ∴x1﹣x2<0,1﹣

<0,

∴f(x1)﹣f(x2)>0,

∴f(x)=x+在(0,1)上是减函数. ②在[1,+∞)内任取x1,x2,令x1<x2, 则f(x1)﹣f(x2)=(

)﹣(

第14页(共23页)

=(x1﹣x2)+=(x1﹣x2)(1﹣

),

∵x1,x2∈[1,+∞),x1<x2, ∴x1﹣x2<0,1﹣

>0,

∴f(x1)﹣f(x2)<0,

∴f(x)=x+在[1,+∞]上是增函数.

13.判断并证明f(x)=【解答】解:f(x)=证明如下:

在(﹣1,+∞)上任取x1,x2,令x1<x2, f(x1)﹣f(x2)=

=

在(﹣1,+∞)上的单调性. 在(﹣1,+∞)上的单调递减.

∵x1,x2∈(﹣1+∞),x1<x2, ∴x2﹣x1>0,x1+1>0,x2+1>0, ∴f(x1)﹣f(x2)>0, ∴f(x)=

14.判断并证明函数f(x)=x+在区间(0,2)上的单调性. 【解答】解:任意取x1,x2∈(0,2)且0<x1<x2<2 f(x1)﹣f(x2)=x1+∵0<x1<x2<2

∴x1﹣x2<0,0<x1x2<4, 即x1x2﹣4<0,

∴f(x1)﹣f(x2)>0, 即f(x1)>f(x2).

第15页(共23页)

在(﹣1,+∞)上的单调递减.

﹣x2﹣=(x1﹣x2)+

=(x1﹣x2)

所以f(x)在(0,2)上是单调减函数.

15.求函数f(x)=

的单调增区间.

=1﹣的单调递增区间为【解答】解:根据反比例函数的性质可知,f(x)=(﹣∞,0),(0,+∞)

故答案为:(﹣∞,0),(0,+∞)

16.求证:函数f(x)=﹣

﹣1在区间(﹣∞,0)上是单调增函数.

【解答】证明:设x1<x2<0,则:

∵x1<x2<0;

∴x1﹣x2<0,x1x2>0; ∴;

∴f(x1)<f(x2);

∴f(x)在区间(﹣∞,0)上是单调增函数.

17.求函数

的定义域.

【解答】解:根据题意,得,

解可得,

故函数的定义域为2≤x<3和3<x<5.

18.求函数

的定义域.

第16页(共23页)

【解答】解:由故函数定义域为{x|x<}

19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+

(2)f(x)+2f()=3x. 【解答】解:(1)f(x+)=x2+

=(x+)2﹣2,

即f(x)=x2﹣2,(x>2或x<﹣2) (2)∵f(x)+2f()=3x, ∴f()+2f(x)=, 消去f()得f(x)=﹣x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x). 【解答】解:∵3f(x)+2f(﹣x)=2x+2…①, 用﹣x代替x,得:

3f(﹣x)+2f(x)=﹣2x+2…②; ①×3﹣②×2得:

5f(x)=(6x+6)﹣(﹣4x+4)=10x+2, ∴f(x)=2x+.

21.求下列函数的解析式 (1)已知f(x+1)=x2求f(x) (2)已知f()=x,求f(x)

(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x) (4)已知3f(x)﹣f()=x2,求f(x)

【解答】解:(1)∵已知f(x+1)=x2 ,令x+1=t,可得x=t﹣1,∴f(t)=(t﹣

第17页(共23页)

1)2,∴f(x)=(x﹣1)2. (2)∵已知f()=x,令

=t,求得 x=

,∴f(t)=

,∴f(x)=

(3)已知函数f(x)为一次函数,设f(x)=kx+b,k≠0,

∵f[f(x)]=kf(x)+b=k(kx+b)+b=9x+1,∴k=3,b=,或k=﹣3,b=﹣,求 ∴f(x)=3x+,或f(x)=﹣3x﹣.

(4)∵已知3f(x)﹣f()=x2①,∴用代替x,可得3f()﹣f(x)=由①②求得f(x)=x2+

22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x). 【解答】解:∵2f(x)+f()=2x① 令x=,则2f()+f(x)=②, ①×2﹣②得: 3f(x)=4x﹣, ∴f(x)=x﹣

23.已知3f(x)+2f()=x(x≠0),求f(x). 【解答】解:∵3f(x)+2f()=x,① 等号两边同时以代x, 得:3f()+2f(x)=,② 由①×3﹣2×②,解得 5f(x)=3x﹣,

∴函数f(x)的解析式:f(x)=x﹣

24.已知函数f(x+)=x2+()2(x>0),求函数f(x).

第18页(共23页)

②,

(x≠0).

【解答】解:∵x>0时,x+≥2且函数f(x+)=x2+()2=设t=x+,(t≥2); ∴f(t)=t2﹣2;

即函数f(x)=x2﹣2(其中x≥2).

=2, ﹣2;

25.已知2f(﹣x)+f(x)=3x﹣1,求f(x). 【解答】解:∵2f(﹣x)+f(x)=3x﹣1, ∴2f(x)+f(﹣x)=﹣3x﹣1, 联立消去f(﹣x), 可得f(x)=﹣3x﹣.

26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式. 【解答】解:∵2f(x)+f(﹣x)=3x+1…①, 用﹣x代替x,得:

2f(﹣x)+f(x)=﹣3x+1…②; ①×2﹣②得:

3f(x)=(6x+2)﹣(﹣3x+1)=9x+1, ∴f(x)=3x+.

27.已知4f(x)﹣5f()=2x,求f(x). 【解答】解:∵4f(x)﹣5f()=2x…①, ∴4f()﹣5f(x)=…②, ①×4+②×5,得:﹣9f(x)=8x+∴f(x)=﹣x﹣

第19页(共23页)

28.已知函数f(【解答】解:令t=则由f(+2)=x2+1,求f(x)的解析式. +2,(t≥2),

,x=(t﹣2)2.

+2)=x2+1,得f(t)=(t﹣2)4+1.

∴f(x)=(x﹣2)4+1(x≥2).

29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式. 【解答】解:f(x)满足3f(x)+2f(﹣x)=4x,…①, 可得3f(﹣x)+2f(x)=﹣4x…②, ①×3﹣②×2可得:5f(x)=20x. ∴f(x)=4x.

f(x)的解析式:f(x)=4x.

30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x) 【解答】解:∵f(x)=ax+b且af(x)+b=9x+8, ∴a(ax+b)+b=9x+8, 即a2x+ab+b=9x+8, 即,

解得a=3或a=﹣3,

若a=3,则4b=8,解得b=2,此时f(x)=3x+2, 若a=﹣3,则﹣2b=8,解得b=﹣4,此时f(x)=3x﹣4.

31.求下列函数的解析式:

(1)已知f(2x+1)=x2+1,求f(x); (2)已知f()=

,求f(x).

【解答】解:(1)令2x+1=t,则x=(t﹣1), ∴f(t)=(t﹣1)2+1,

第20页(共23页)

∴f(x)=(x﹣1)2+1; (2)令m=(m≠0),则x=,

∴f(m)==,

∴f(x)= (x≠0).

32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式. 【解答】解:(1)令2x+1=t,则x=则f(t)=4()2﹣6•

+5=t2﹣5t+9,

故f(x)=x2﹣5x+9.

33.已知f(2x)=x2﹣x﹣1,求f(x). 【解答】解:令t=2x,则x=t, ∴f(t)=t2﹣t﹣1, ∴f(x)=x2﹣x﹣1.

34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式. 【解答】解:设f(x)=ax+b, ∴f(f(x)=a(ax+b)+b,

∴f(f(f(x))))=a[a(ax+b)+b]+b=2x﹣3,

∴,解得:,

∴f(x)= x﹣.

第21页(共23页)

35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式. 【解答】解:f(x+2)=x2﹣3x+5, 设x+2=t,则x=t﹣2,

∴f(t)=(t﹣2)2﹣3(t﹣2)+5=t2﹣7t+15, ∴f(x)=x2﹣7x+15.

36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式. 【解答】解:令x﹣2=t,则x=t+2,代入原函数得 f(t)=2(t+2)2﹣3(t+2)+4=2t2+5t+6 则函数f(x)的解析式为f(x)=2x2+5x+6

37.若3f(x)+2f(﹣x)=2x,求f(x) 【解答】解:∵3f(x)+2f(﹣x)=2x…①, 用﹣x代替x,得:

3f(﹣x)+2f(x)=﹣2x…②; ①×3﹣②×2得:

5f(x)=6x﹣(﹣4x)=10x, ∴f(x)=2x.

38.f(+1)=x2+2

,求f(x)的解析式.

【解答】解:设∴x=(t﹣1)2; ∵f(+1)=x2+2+1=t,则t≥1,

∴f(t)=(t﹣1)4+2(t﹣1),

∴f(x)=(x﹣1)4+2(x﹣1),x∈[1,+∞).

39.若函数f(【解答】解:令)=

+1,求函数f(x)的解析式.

=t(t≠1),则=t﹣1,

第22页(共23页)

∴f(t)=2+(t﹣1)2=t2﹣2t+3, ∴f(x)=x2﹣2x+3(x≠1).

40.已知f(x﹣1)=x2﹣4x. (1)求f(x)的解析式; (2)解方程f(x+1)=0.

【解答】解:(1)变形可得f(x﹣1)=(x﹣1)2﹣2(x﹣1)﹣∴f(x)的解析式为f(x)=x2﹣2x﹣3;

(2)方程f(x+1)=0可化为(x+1)2﹣2(x+1)﹣3=0, 化简可得x2﹣4=0,解得x=2或x=﹣2

第23页(共23页)

3,

第19篇:数列利用函数证明数列不等式

数列

1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。

2已知数列{an}的前n项和Sn

(1)确定常数k,求an;

(2)求数列{

3在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式; (Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列m2m10a1的前n项和为Tn,当n为何值时,Tn最大?并求出Tn的最an12nkn,kN*,且Sn的最大值为8.292an的前n项和Tn。 n2bm的前m项和Sm.

第20篇:函数极限的性质证明

函数极限的性质证明

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|

以此类推,改变数列下标可得|Xn-A|

|Xn-1-A|

……

|X2-A|

向上迭代,可以得到|Xn+1-A|

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1

设x(k)

x(k+1)=√

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

4

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0

证明函数可导
《证明函数可导.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档