人人范文网 员工个人工作总结

有机合成员工工作总结(精选多篇)

发布时间:2020-07-16 08:32:07 来源:员工个人工作总结 收藏本文 下载本文 手机版

推荐第1篇:有机合成心得

有机合成心得——工艺优化方法学

1.合成工艺的优化主要就是反应选择性研究

有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。

首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。

1 2.选择性研究的主要影响因素

提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。

(1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。

(2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组

2 分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。

3.定性反应产物

动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应采取不同的抑制方法。

(1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究其生成的机理,速度方程和对比选择性方程,并据此进行温度效应、浓度效应分析;(4)由对比选择性方程确定部分工艺条件,并据此设计获取活化能相对大小和反应级数相对高低的试验方按。(5)也应该找出最难除去的杂质的结构,进行(3),(4)的方法研究。

4.跟踪定量反应产物

在定分析的基础上,对同一实验不同时刻各组分的含量进行跟踪测试,根据跟踪测试结果认识影响因素,再根据影响因素调整实验方按。 (1)可在同一实验中考察原料、中间体、产物,各副产物在不同条件下的变化趋势,从一个实验中尽可能获取更多的信息,实验效率大

3 大提高。

(2)根据实验过程中的新现象调整和修改预定方按,使每一具体实验的目标多元化,即可使每一次实验的目的在实验中调整和增加,从而提高工作效率和研究开发进度。

(3)将不同时刻、不同组分的相对含量,整理成表格或曲线,从数据表或曲线中观察不同组分的数量,各组分在不同阶段依不同条件的变化趋势和变化率,从而找出宏观动力学影响因素,并根据这些因素去调整温度、浓度因素,以提高选择性。

这里的定量并非真正的含量,只是各组分的相对值。

5.分阶段研究反应过程和分离过程

大多数人习惯于每次实验部分都分离提纯产品并计算收率。然而,除非简单的实验外这是不科学的。

(1)研究开发的初始阶段,分离过程是不成熟的,很难估算分离过程损失,这样,所得产品不能代表反应收率。

(2)实验的最终结果是反应过程与分离过程的总结果,影响因素太多,考察某一影响因素太难。

(3)一个实验真正做到完成分离提纯的程度很难,往往后处理时间多于反应时间,若每个实验都做到提纯分离,则工作效率降低。 (4)为降低科研费用,往往进行微量制备,而微量制备的实验几乎不能完成全过程。比如精馏,没有一定数量就无法进行。

4 (5)反应过程中直接取反应液进行中控分析最接近于反应过程的在线测试,最能反映出过程的实际状态,对于某一因素的变化的影响也最敏感,应用起来方便。

(6)做好反应过程是分离过程研究的基础。副产物越少,则分离过程越简单。

总之,在研究开发的最初阶段,应先回避分离过程而仅研究反应过程。可以在反应过程中得到一系列的色谱分析谱图和定性分析结果,根据原料、中间体、产品、副产品出峰的相对大小来初步定量,根据不同反应温度条件下不同组分的消涨来判断活化能的相对大小;根据副产物结构机不同的加料方式引起的副产物的消涨来判断活性组分的反应级数的相对高低。从理论到实践实现了动力学所要求的温度效应、浓度效应,再实现最大转化率,最后研究分离过程。这是一种循序渐进的、条理清晰的、理性的和简单化的工艺优化程序。

6.程序升温法确定温度范围

程序升温法是另一种反应温度的优化方法。其是在实验的最初阶段采用的。一般采用微量制备,物料以满足分析测试即可。为使放热反应的温度可控制,反应物料不必成比例(一般使某一种原料微量)。 在跟踪测试的基础上,采取程序升温大方法,往往一次实验即可测得反应所适合的温度范围,并可得到主反应与某一特定副反应活化能的相对大小和确认反应温度最佳控制条件。程序升温过程如图所示。

5 在T1 温度下反应一段时间,取样a分析;若未发生反应,则升温至T2后反应一段时间后取样b分析;若发现反应已经发生,但不完全,则此时应鉴别发生的是否是主反应;若在温度T2下先发生的是主反应,则继续取样c分析;若反应仍不完全,升温至T3后反应一段时间取样d分析;若仍不完全则升温至T4,取样e分析,直至反应结束。

若样品d中无副产物,e中有副产物,则主反应的活化能小于副反应的活化能,反应温度为T4以下,再在T3上下选择温控范围。 若样品b中发生的是副反应,则应立即升温,并适时补加原料,边升温边取样f,g,h等,直至主反应发生。若主反应在较高温度时发生了,说明主反应的活化能大于副反应的活化能,反应应避开较低温度段。此时的程序升温过程应在缺少易发生副反应的那种主原料下进行,即预先加热反应底物至一定温度,再滴加未加入的原料,后滴加的原料用溶剂稀释效果更加。

可见,一次程序升温过程便可基本搞清主副反应活化能的相对大小和反应温度控制的大致范围,取得了事半功倍的效果。

在低温有利于主反应的过程中,随着反应的进行,反应物的浓度逐渐降低,反应速度逐渐减慢,为保持一定的反应速度和转化率以保证生产能力,就必须逐渐缓慢升温以加速化学反应的进行,直至转化率达到目标,这才实现最佳控制。

7.调节加料法

6 滴加的功能有两个,(1)对于放热反应,可减慢反应速度,使温度易于控制。(2) 控制反应的选择性,对每种原料都应采取是滴加还是一次性加入对反应选择性影响的研究。如果滴加有利于选择性,则滴加时间越慢越好。如不利于选择性的提高,则改为一次性的加入。 温度效应、浓度效应对反应选择性的影响是个普遍存在的一般规律,但在不同的具体实例中体现出特殊性,有时某一种效应更重要,而另一种效应不显著。因此必须具体问题具体分析,在普遍的理论原则指导下解决特殊的问题。

7.动力学方法的工艺优化次序

有了上面所述的方法,一般的工艺优化需要按以下的步骤进行。 (1)反应原料的选择

反应原料的选择除了考虑廉价易得的主要因素外,另一个必须考虑的因素是副产物的形成,所用的原料应该尽可能以不过多产生副反应为准,原料的活性应该适当,活性高了相应的副反应形成的速度也就加大了,原料的反应点位应该尽可能少,以防进行主反应的同时进行副反应。以阿立哌唑的中间体合成为例。不同的原料产生不同的副反应从而形成不同的杂质,原料的性质不同,产生杂质的数量也就不同。图1 为 以1,4-二溴丁烷为原料反应形成的杂质。在该实例中,a 是所需要的中间体,但因为1,4-二溴丁烷及另一原料的双重反应部位,产生了大量的杂质,给后处理带来了极大的麻烦。因而是不合适的。但是如以4-溴丁醇为原料(图2),则反应形成的杂质数量大大

7 减少,给提纯及后续反应带来极大的方便。可见原料的选择对抑制副反应也有者重要的作用。

(2)溶剂的选择:主要根据反应的性质和类型来考虑:非质子极性溶剂:乙腈、N,N-二甲基甲酰胺、丙酮、N,N-二甲基乙酰胺、N-甲基吡咯烷酮;质子极性溶剂:水、甲醇、乙醇、异丙醇、正丁醇等;极性非常小的溶剂:石油醚、正己烷、乙酸乙酯、卤代烃类、芳香烃类等。

(3)重复文献条件,对反应产物定性分析。

(4)变化反应温度确认主副反应活化能的相对大小并确定温度控制曲线。

(5)根据副产物的结构改变加料方式,以确定主副反应对某一组分的反应级数的相对大小并确定原料的加料方式。此时反应选择性已达最佳。

(6)选择转化率的高低。力求转化完全或回收再用。此时反应收率最佳。

(7)选择简单的分离方式并使分离过程产物损失最小。此时优化的工艺大到了。

(8)酸碱强度的影响:强酸还是弱酸,强碱还是弱碱,有机酸还是有机碱。在质子性溶剂中一般选择无机碱,因为此时无机碱一般溶于这类溶剂中使反应均相进行,例如氢氧化钠、氢氧化钾溶于醇中,但是弱无机碱碳酸钠等不容于该类溶剂,须加入相转移催化剂;在非质子极性溶剂中一般选择有机碱,此时反应为均相反应,若选择无机碱

8 一般不溶于该类溶剂,也需加入加入相转移催化剂。

(9)催化剂的影响:相转移催化剂,无机盐,路易斯酸,路易斯碱。

推荐第2篇:有机合成工作报告

合成工作总结 2011年11月份,我来到xxxx任研究助理一职,主要参与了一下项目(由于所作产品均为原公司所属专利,故简化叙述反应,见谅):

一、詹氏钌催化剂中间体的合成:

1、ts肼+苯甲醛?苯腙

苯腙+醇钠?重氮夜;

rc-102(rc为钌催化剂项目号)+重氮液?rc-103. 此反应为原产物与重氮液反应生成一个双键

2、烯配体的合成

r-oh?r-cl?r-pph3cl?r-= 这个反应是制备磷叶立德并与多聚甲醛反应生成一个双键

3、rc-102+ppcy3?rc-202 这个反应比较简单,是一个基团置换的反应,该反应所得产物稀释后会发生溶胀现象,处理比较麻烦

4、rc-203+炔醇?rc-303 此反应炔醇与钌催化剂中间体反应生成一个带两个双键的五元环

5、苯+异丙基酰氯??异丙基苯甲酰

酰化反应,制备炔醇的一部分

二、hcv丙肝新药中间体的合成

1、五元杂环+格氏试剂

这个反应的反应机理其实是格氏试剂与酰胺反应,与n相连的键断开,由于n是五元环上的杂原子,这个反应为一个开环反应。反应在低温下进行,这可能是格氏试剂不与所得产物的活性基团羰基、乙酯基不反应的原因

2、上述产物的还原

这个产物含酯基,选用三乙酰氧基硼氢化钠做还原剂,反应为原料的羰基先与ts肼反应生成踪再还原去掉羰基。

3、上述产物的水解

产物上的酯基水解为酸 alcl

3、甲苯 ??③④

4、r+多聚甲醛+苄胺?r/\\nhbn①?②??? 上面分别涉及到上苄胺、苄胺与苯甲酸甲酯缩合关环、脱甲基、苯上两相邻羟基与dcm反应关环

………

………

……

醇的碱溶液hbr\\hclk2co3/nmp/dcm篇2:有机合成心得

有机合成心得(1)-引言

做有机合成,感觉最深刻的是关键要有一个灵活的头脑和丰富的有机合成知识,灵活的头脑是天生的,丰富的有机合成知识是靠大量的阅读和高手交流得到的。二者缺一不可,只有有机合成知识而没有灵活的头脑把知识灵活的应用,充其量只是有机合成匠人,成不了高手,也就没有创造性。只有灵活的头脑而没有知识,只能做无米之炊。一个有机合成高手在头脑中掌握的有机化学反应最少应为300个以上,并能灵活的加以运用,熟悉其中的原理(机理),烂熟于胸,就像国学大师烂熟四书五经一样,看到了一个分子结构,稍加思索,其合成路线应该马上在脑中浮现出来。

有机合成心得(2)-基本功的训练 每个行业都有自己的基本功,有机合成的基本功就是对有机化学反应的理解掌握与灵活运用。那么对有机化学反应的理解掌握应从那方面入手?你在大学里学到的有机合成知识,只是入门的东西,远远达不到高手的水平,学了四年化学,基本上不理解化学。遇到问题还是束手无策,不知从何处下手。这不是你的问题,而是大学教育体制的问题,在大学阶段应该打下坚实的基本功,然后才能专,而我们的大学在这方面还做的远远不够。下面我推荐几本有机合成方面的书籍希望能够达到上述的目的。

有机化学反应的理解掌握方面的书籍: 1.march’s advanced organic chemistry. 2.carey, f.a.; sundberg, r.j.: advanced organic chemistry. 3.michael b.smith: organic synthesis. 5.黄宪:新编有机合成化学 6.李长轩:有机合成设计化学

前三本书是从机理方面来讨论有机合成的,

4、5两本书是从官能团转变的角度讨论有机合成的,第6本书是讨论有机合成路线设计的。以上几本书应该随时放在自己的身边,作为案头书。认真精读,达到记忆理解,把反应分类记忆理解,这时你可能感觉很枯燥乏味,不要紧,经过一段时间的合成研究再回过头来阅读,就会感觉耳目一新,有新的理解。掌握了这几本书,可以说您已经打下了一定的有机合成基本功,这时你应该最少掌握300个反应了,但并不意味者你已经成为了有机合成高手,接下来你需要做的是将学到的有机合成知识能够灵活运用,熟练的理解化学反应在什么情况下应用。

下面推荐的几本杂志,主要是关于如何运用有机化学反应的。 1.organic synthesis (80vol.) 2.organic proce research & development.这是美国化学会出版的一本有机合成杂志,主要讲述一些化工产品的工艺研究,书中的反应均用在大规模的制备上,对产业化的研究很有帮助,这些反应具有很强的实用性,对理解化学反应的应用很有帮助。

经过以上知识的训练,你已经具备成为有机合成高手的潜力了,接下来需要做的就是大量的实践研究了,相信经过自己的努力和多年的实践,多次的失败,吃的苦中苦,你就成为有机合成高手了。

有机合成心得(3)-合成路线的选择 合成路线的设计与选择是有机合成中很重要的一个方面,它反映了一个有机

合成人员的基本功和知识的丰富性与灵活的头脑。一般情况下,合成路线的选择与设计代表了一个人的合成水平和素质。合理的合成路线能够很快的得到目标化合物,而笨拙的合成路线虽然也能够最终得到目标化合物,但是付出的代价却是时间的浪费和合成成本的提高,因此合成路线的选择与设计是一个很关键的问题。

合成路线的选择与设计应该以得到目标化合物的目的为原则,即如果得到的目标化合物是以工业生产为目的,则选择的合成路线应该以最低的合成成本为依据,一般情况下,简短的合成路线应该反应总收率较高,因而合成成本最低,而长的合成路线总收率较低,合成成本较高,但是,在有些情况下,较长的合成路线由于每步反应都有较高的收率,且所用的试剂较便宜,因而合成成本反而较低,而较短的合成路线由于每步反应收率较低,所用试剂价格较高,合成成本反而较高。所以,如果以工业生产为目的,则合成路线的选择与设计应该以计算出的和实际结果得到的合成成本最低为原则。 如果得到的目标化合物是以发表论文为目的,则合成路线的选择与设计则有不同的原则。设计的路线应尽量具有创造性,具有新的思想,所用的试剂应该是新颖的,反应条件是创新的,这时考虑的主要问题不是合成成本的问题而合成中的创造性问题。

如果合成的是系列化合物,则设计合成路线时,应该共同的步骤越长越好,每个化合物只是在最后的合成步骤中不同,则这样的合成路线是较合理的和高效率的,可以在很短的时间内得到大量目标化合物。每个目标化合物的合成路线一般有多步反应,为了避免杂质放大的问题,最好的解决办法是将合成路线一分为二,转化为两个中间体,最后将两个中间体通过一步反应组装起来得到目标化合物。尽量避免连续反应只在最后一步得到产物。

有机合成心得(4)-有机反应的实质 有机合成的任务是运用已知的或可能的化学反应来形成c-c键或c-杂键,从而将两个或多个分子或离子连接起来。有机化学反应类型可分为三种:极性反应,协同反应,自由基反应,其中协同反应与自由基反应又称为非极性反应。非极性反应可以采用‘一锅法’进行,而极性反应则需分步进行。因为极性反应的条件比较苛刻(无水、惰性气体保护、强酸或强碱),而非极性反应的条件比较温和。极性反应占80%,非极性反应占20%。 极性反应的实质就是分子中负电性的原子与正电性的原子的结合。所谓负电性与正电性都是指广义而言的,原子的负电性可以是负电荷,也可以是孤电子对;原子的正电性可以是正电荷也可以是空轨道。负电性与正电性的密度越大,反应活性越高,但是高密度的负电性原子通常与高密度的正电性原子结合,低密度的负电性原子与低密度的正电性原子结合。如果分子中同时存在两种相反电荷的原子则产生环合反应,如果分子中存在两种相同电荷的原子,此时与另一分子中相反电荷的原子结合时就容易产生副反应,通常密度较高电荷的原子先进行反应。 因此,在记忆化学反应时,只需分清分子中那个原子是正电性的,那个原子是负电性的就可以了。不必去记忆什么人名反应来浪费记忆力,也不必对亲核、亲电反应的类型太在意。所以,学习化学反应时,主要的任务就是了解各种正电性的基团和负电性的基团。这些正电性的基团和负电性的基团称之为合成子。 有机合成心得(5)-后处理的问题

在有机合成中,后处理的问题往往被大多数人所忽略,认为只要找对了合成方法,合成任务就可以事半功倍了,这话不错,正确地合成方法固然重要,但是

有机合成的任务是拿到相当纯的产品,任何反应没有100%产率的,总要伴随或多或少的副反应,产生或多或少的杂质,反应完成后,面临的巨大问题就是从反应混合体系中分离出纯的产品。后处理的目的就是采用尽可能的办法来完成这一任务。

为什么对后处理的问题容易忽视呢?我们平时所看到的各种文献尤其是学术性的研究论文对这一问题往往重视不够或者很轻视,他们重视的往往是新的合成方法,合成试剂等。专利中对这一问题也是轻描淡写,因为这涉及到商业利润问题。有机教科书中对这一问体更是没有谈论到。只有参加过工业有机合成项目的人才能认识到这一问题的重要性,有时反应做的在好,后处理产生问题得不到纯的产品,企业损失往往巨大。这时才认识到有机合成不光是合成方法的问题,还涉及到许多方面的问题,那一方面的问题考虑不周,都有可能前功尽弃。后处理问题从哪里可以学到?除了向有经验的科研人员多多请教外,自己也应处处留心,虽说各种文献中涉及较少,但是还有不少论文是涉及到的,这就要求自己多思考,多整理,举一反三。另外,在科研工作中,应注意吸取经验,多多磨练。 完成后处理问题的基本知识还是有机化合物的物理和化学性质,后处理就是这些性质的具体应用。当然,首先要把反应做的很好,尽量减少副反应的发生,这样可以减轻后处理的压力。因此,后处理还是考验一个人的基本功问题,只有化学学好了才有可能出色的完成后处理任务。后处理根据反应的目的有不同的解决办法,如果在实验室中,只是为了发表论文,得到纯化合物的目的就是为了作各种光谱,那么问题就简单了,得到纯化合物的方法不外就是走柱子,tlc,制备色谱等方法,不用考虑太多的问题,而且得到的化合物还比较纯;如果是为了工业生产的目的,则问题就复杂了,尽量用简便、成本低的方法,实验室中的那一套就不行了,如果您还是采用实验室中的方法则企业就亏损了。

后处理过程的优劣检验标准是:(1)产品是否最大限度的回收了,并保证质量;(2)原料、中间体、溶剂及有价值的副产物是否最大限度的得到了回收利用;

(3)后处理步骤,无论是工艺还是设备,是否足够简化;(4)三废量是否达到最小。 后处理的几个常用而实用的方法: (1)有机酸碱性化合物的分离提纯

具有酸碱性基团的有机化合物,可以得失质子形成离子化合物,而离子化合物与原来的母体化合物具有不同的物理化学性质。碱性化合物用有机酸或无机酸处理得到胺盐,酸性化合物用有机碱或无机碱处理得到钠盐或有机盐。根据有机化合物酸碱性的强弱,有机、无计酸碱一般为甲酸、乙酸、盐酸、硫酸、磷酸。

碱为三乙胺、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠等。在一般情况下,离子化合物在水中具有相当大的溶解性,而在有机溶剂中溶解度很小,同时活性碳只能够吸附非离子型的杂质和色素。利用以上的这些性质可对酸碱性有机化合物进行提纯。以上性质对所有酸碱性化合物并不通用,一般情况下,分子中酸碱性基团分子量所占整个分子的分子量比例越大,则离子化合物的水溶性就越大,分子中含有的水溶性基团例如羟基越多,则水溶性越大,因此,以上性质适用于小分子的酸碱化合物。对于大分子的化合物,则水溶性就明显降低。 酸碱性基团包括氨基。酸性基团包括:酰氨基、羧基、酚羟基、磺酰氨基、硫酚基、1,3-二羰基化合物等等。值得注意的是,氨基化合物一般为碱性基团,但是在连有强吸电子基团时就变为酸性化合物,例如酰氨基和磺酰氨基化合物,这类化合物在氢氧化钠、氢氧化钾等碱作用下就容易失去质子而形成钠盐。

中合吸附法:

将酸碱性化合物转变为离子化合物,使其溶于水,用活性碳吸附杂质后过滤,则除去了不含酸碱性基团的杂质和机械杂质,再加酸碱中合回母体分子状态,这是回收和提纯酸碱性产品的方法。由于活性碳不吸附离子,故有活性碳吸附造成的产品损失忽劣不计。化学学习考研复试调剂,提供免费真题笔记课件教材等,为化学工作者提供学中和萃取法:是工业过程和实验室中常见的方法,它利用酸碱性有机化合物生成离子时溶于水而母体分子状态溶于有机溶剂的特点,通过加入酸碱使母体化合物生成离子溶于水实现相的转移而用非水溶性的有机溶剂萃取非酸碱性杂质,使其溶于有机溶剂从而实现杂质与产物分离的方法。 成盐法:

对于非水溶性的大分子有机离子化合物,可使有机酸碱性化合物在有机溶剂中成盐析出结晶来,而非成盐的杂质依然留在有机溶剂中,从而实现有机酸碱性化合物与非酸碱性杂质分离,酸碱性有机杂质的分离可通过将析出的结晶再重结晶,从而将酸碱性有机杂质分离。对于大分子的有机酸碱化合物的盐此时还可以采用水洗涤除去小分子的酸碱化合物已经成盐且具有水溶性的杂质。对于水溶性的有机离子化合物,可在水中成盐后,将水用共沸蒸馏或直接蒸馏除去,残余物用有机溶剂充分洗涤几次,从而将杂质与产品分离。

以上三种方法并不是孤立的,可根据化合物的性质和产品质量标准的要求,采用相结合的方法,尽量得到相当纯度的产品。

(2)几种特殊的有机萃取溶剂

正丁醇:大多数的小分子醇是水溶性的,例如甲醇、乙醇、异丙醇、正丙醇等。大多数的高分子量醇是非水溶性的,而是亲脂性的能够溶于有机溶剂。但是

中间的醇类溶剂例如正丁醇是一个很好的有机萃取溶剂。正丁醇本身不溶于水,同时又具有小分子醇和大分子醇的共同特点。它能够溶解一些能够用小分子醇溶解的极性化合物,而同时又不溶于水。利用这个性质可以采用正丁醇从水溶液中萃取极性的反应产物。 丁酮:性质介于小分子酮和大分子酮之间。不像丙酮能够溶于水,丁酮不溶于水,可用来从水中萃取产物。

乙酸丁酯:性质介于小分子和大分子酯之间,在水中的溶解度极小,不像乙酸乙酯在水中有一定的溶解度,可从水中萃取有机化合物,尤其是氨基酸的化合物,因此在抗生素工业中常用来萃取头孢、青霉素等大分子含氨基酸的化合物。 丁基叔丁基醚:性质介于小分子和大分子醚之间,两者的极性相对较小,类似于正己烷和石油醚,二者在水中的溶解度较小。可用于极性非常小的分子的结晶溶剂和萃取溶剂。也可用于极性较大的化合物的结晶和萃取溶剂。

(3)做完反应后,应该首先采用萃取的方法,首先除去一部分杂质,这是利用杂质与产物在不同溶剂中的溶解度不同的性质

(4)稀酸的水溶液洗去一部分碱性杂质。例如,反应物为碱性,而产物为中性,可用稀酸洗去碱性反应物。例如胺基化合物的酰化反应。

(5)稀碱的水溶液洗去一部分酸性杂质。反应物为酸性,而产物为中性,可用稀碱洗去酸性反应物。例如羧基化合物的酯化反应。化学学习考研复试调剂,提供免费真题笔记课件教材等,为化学工作者提供学习和科研、工作等的网络交流平台

(6)用水洗去一部分水溶性杂质。例如,低级醇的酯化反应,可用水洗去水溶性的反应物醇。

(7)如果产物要从水中结晶出来,且在水溶液中的溶解度又较大,可尝试加入氯化钠、氯化铵等无机盐,降低产物在水溶液中的溶解度-盐析的方法。

(8)有时可用两种不互溶的有机溶剂作为萃取剂,例如反应在氯仿中进行,可用石油醚或正己烷作为萃取剂来除去一部分极性小的杂质,反过来可用氯仿萃取来除去极性大的杂质。 (9)两种互溶的溶剂有时加入另外一种物质可变的互不相容,例如,在水作溶剂的情况下,反应完毕后,可往体系中加入无机盐氯化钠,氯化钾使水饱和,此时加入丙酮,乙醇,乙腈等溶剂可将产物从水中提取出来。

(10)结晶与重结晶的方法 基本原理是利用相似相容原理。即极性强的化合物用极性溶剂重结晶,极性弱的化合物用非极性溶剂重结晶。对于较难结晶的化合物,例如油状物、胶状物等有时采用混合溶剂的方法,但是混合溶剂的搭配很篇3:有机合成心得

搞了十余年药物研发,感觉最深刻的是关键要有一个灵活的头脑和丰富的有机合成知识,灵活的头脑是天生的,丰富的有机合成知识是靠大量的阅读和高手交流得到的。二者缺一不可,只有有机合成知识而没有灵活的头脑把知识灵活的应用,充其量只是有机合成匠人,成不了高手,也就没有创造性。只有灵活的头脑而没有知识,只能做无米之炊。一个有机合成高手在头脑中掌握的有机化学反应最少应为300个以上,并能灵活的加以运用,熟悉其中的原理(机理),烂熟于胸,就像国学大师烂熟四书五经一样,看到了一个分子结构,稍加思索,其合成路线应该马上在脑中浮现出来。

有机合成心得(2)-基本功的训练

每个行业都有自己的基本功,有机合成的基本功就是对有机化学反应的理解掌握与灵活运用。那么对有机化学反应的理解掌握应从那方面入手?你在大学里学到的有机合成知识,只是入门的东西,远远达不到高手的水平,学了四年化学,基本上不理解化学。遇到问题还是束手无策,不知从何处下手。这不是你的问题,而是大学教育体制的问题,在大学阶段应该打下坚实的基本功,然后才能专,而我们的大学在这方面还做的远远不够。下面我推荐几本有机合成方面的书籍希望能够达到上述的目的:

有机化学反应的理解掌握方面的书籍: 1.march’s advanced organic chemistry. 2.carey, f.a.; sundberg, r.j.: advanced organic chemistry. 3.michael b.smith: organic synthesis. 5.黄宪:新编有机合成化学 6.李长轩:有机合成设计 前三本书是从机理方面来讨论有机合成的,

4、5两本书是从官能团转变的角度讨论有机合成的,第6本书是讨论有机合成路线设计的。以上几本书应该随时放在自己的身边,作为案头书。认真精读,达到记忆理解,把反应分类记忆理解,这时你可能感觉很枯燥乏味,不要紧,经过一段时间的合成研究再回过头来阅读,就会感觉耳目一新,有新的理解。掌握了这几本书,可以说您已经打下了一定的有机合成基本功,这时你应该最少掌握300个反应了,但并不意味者你已经成为了有机合成高手,接下来你需要做的是将学到的有机合成知识能够灵活运用,熟练的理解化学反应在什么情况下应用。

下面推荐的几本杂志,主要是关于如何运用有机化学反应的。 1.organic synthesis (80vol.) 2.organic proce research & development. 这是美国化学会出版的一本有机合成杂志,主要讲述一些化工产品的工艺研究,书中的反应均用在大规模的制备上,对产业化的研究很有帮助,这些反应具有很强的实用性,对理解化学反应的应用很有帮助。

经过以上知识的训练,你已经具备成为有机合成高手的潜力了,接下来需要做的就是大量的实践研究了,相信经过自己的努力和多年的实践,多次的失败,吃的苦中苦,你就成为有机合成高手了。

有机合成心得(3)-合成路线的选择

合成路线的设计与选择是有机合成中很重要的一个方面,它反映了一个有机合成人员的基本功和知识的丰富性与灵活的头脑。一般情况下,合成路线的选择与设计代表了一个人的合成水平和素质。合理的合成路线能够很快的得到目标化合物,而笨拙的合成路线虽然也能够最终得到目标化合物,但是付出的代价却是时间的浪费和合成成本的提高,因此合成路线的

选择与设计是一个很关键的问题。

合成路线的选择与设计应该以得到目标化合物的目的为原则,即如果得到的目标化合物是以工业生产为目的,则选择的合成路线应该以最低的合成成本为依据,一般情况下,简短的合成路线应该反应总收率较高,因而合成成本最低,而长的合成路线总收率较低,合成成本较高,但是,在有些情况下,较长的合成路线由于每步反应都有较高的收率,且所用的试剂较便宜,因而合成成本反而较低,而较短的合成路线由于每步反应收率较低,所用试剂价格较高,合成成本反而较高。所以,如果以工业生产为目的,则合成路线的选择与设计应该以计算出的和实际结果得到的合成成本最低为原则。

如果得到的目标化合物是以发表论文为目的,则合成路线的选择与设计则有不同的原则。设计的路线应尽量具有创造性,具有新的思想,所用的试剂应该是新颖的,反应条件是创新的,这时考虑的主要问题不是合成成本的问题而合成中的创造性问题。

如果合成的是系列化合物,则设计合成路线时,应该共同的步骤越长越好,每个化合物只是在最后的合成步骤中不同,则这样的合成路线是较合理的和高效率的,可以在很短的时间内得到大量目标化合物。

每个目标化合物的合成路线一般有多步反应,为了避免杂质放大的问题,最好的解决办法是将合成路线一分为二,转化为两个中间体,最后将两个中间体通过一步反应组装起来得到目标化合物。尽量避免连续反应只在最后一步得到产物。 有机合成心得(4)-有机反应的实质

有机合成的任务是运用已知的或可能的化学反应来形成c-c键或c-杂键,从而将两个或多个分子或离子连接起来。

有机化学反应类型可分为三种:极性反应,协同反应,自由基反应,其中协同反应与自由基反应又称为非极性反应。非极性反应可以采用‘一锅法’进行,而极性反应则需分步进行。因为极性反应的条件比较苛刻(无水、惰性气体保护、强酸或强碱),而非极性反应的条件比较温和。极性反应占80%,非极性反应占20%。 极性反应的实质就是分子中负电性的原子与正电性的原子的结合。所谓负电性与正电性都是指广义而言的,原子的负电性可以是负电荷,也可以是孤电子对;原子的正电性可以是正电荷也可以是空轨道。负电性与正电性的密度越大,反应活性越高,但是高密度的负电性原子通常与高密度的正电性原子结合,低密度的负电性原子与低密度的正电性原子结合。如果分子中同时存在两种相反电荷的原子则产生环合反应,如果分子中存在两种相同电荷的原子,此时与另一分子中相反电荷的原子结合时就容易产生副反应,通常密度较高电荷的原子先进行反应。 因此,在记忆化学反应时,只需分清分子中那个原子是正电性的,那个原子是负电性的就可以了。不必去记忆什么人名反应来浪费记忆力,也不必对亲核、亲电反应的类型太在意。 所以,学习化学反应时,主要的任务就是了解各种正电性的基团和负电性的基团。这些正电性的基团和负电性的基团称之为合成子。下面举例简单说明:

有机合成心得(5)-后处理的问题

在有机合成中,后处理的问题往往被大多数人所忽略,认为只要找对了合成方法,合成任务就可以事半功倍了,这话不错,正确地合成方法固然重要,但是有机合成的任务是拿到相当纯的产品,任何反应没有100%产率的,总要伴随或多或少的副反应,产生或多或少的杂质,反应完成后,面临的巨大问题就是从反应混合体系中分离出纯的产品。后处理的目的就是采用尽可能的办法来完成这一任务。 为什么对后处理的问题容易忽视呢?我们平时所看到的各种文献尤其是学术性的研究论文 对这一问题往往重视不够或者很轻视,他们重视的往往是新的合成方法,合成试剂等。专利中对这一问题也是轻描淡写,因为这涉及到商业利润问题。有机教科书中对这一问体更是没有谈论到。只有参加过工业有机合成项目的人才能认识到这一问题的重要性,有时反应做的在好,后处理产生问题得不到纯的产品,企业损失往往巨大。这时才认识到有机合成不光是合成方法的问题,还涉及到许多方面的问题,那一方面的问题考虑不周,都有可能前功尽弃。 后处理问题从哪里可以学到?除了向有经验的科研人员多多请教外,自己也应处处留心,虽说各种文献中涉及较少,但是还有不少论文是涉及到的,这就要求自己多思考,多整理,举一反三。另外,在科研工作中,应注意吸取经验,多多磨练。 完成后处理问题的基本知识还是有机化合物的物理和化学性质,后处理就是这些性质的具体应用。当然,首先要把反应做的很好,尽量减少副反应的发生,这样可以减轻后处理的压力。因此,后处理还是考验一个人的基本功问题,只有化学学好了才有可能出色的完成后处理任务。

后处理根据反应的目的有不同的解决办法,如果在实验室中,只是为了发表论文,得到纯化合物的目的就是为了作各种光谱,那么问题就简单了,得到纯化合物的方法不外就是走柱子,tlc,制备色谱等方法,不用考虑太多的问题,而且得到的化合物还比较纯;如果是为了工业生产的目的,则问题就复杂了,尽量用简便、成本低的方法,实验室中的那一套就不行了,如果您还是采用实验室中的方法则企业就亏损了。下面只简单的介绍一些工业中的方法。

后处理过程的优劣检验标准是:(1)产品是否最大限度的回收了,并保证质量;(2)原料、中间体、溶剂及有价值的副产物是否最大限度的得到了回收利用;(3)后处理步骤,无论是工艺还是设备,是否足够简化;(4)三废量是否达到最小。 后处理的几个常用而实用的方法:

(1)有机酸碱性化合物的分离提纯 具有酸碱性基团的有机化合物,可以得失质子形成离子化合物,而离子化合物与原来的母体化合物具有不同的物理化学性质。碱性化合物用有机酸或无机酸处理得到胺盐,酸性化合物用有机碱或无机碱处理得到钠盐或有机盐。根据有机化合物酸碱性的强弱,有机、无计酸碱一般为甲酸、乙酸、盐酸、硫酸、磷酸。碱为三乙胺、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠等。在一般情况下,离子化合物在水中具有相当大的溶解性,而在有机溶剂中溶解度很小,同时活性碳只能够吸附非离子型的杂质和色素。利用以上的这些性质可对酸碱性有机化合物进行提纯。以上性质对所有酸碱性化合物并不通用,一般情况下,分子中酸碱性基团分子量所占整个分子的分子量比例越大,则离子化合物的水溶性就越大,分子中含有的水溶性基团例如羟基越多,则水溶性越大,因此,以上性质适用于小分子的酸碱化合物。对于大分子的化合物,则水溶性就明显降低。

酸碱性基团包括氨基。酸性基团包括:酰氨基、羧基、酚羟基、磺酰氨基、硫酚基、1,3-二羰基化合物等等。值得注意的是,氨基化合物一般为碱性基团,但是在连有强吸电子基团时就变为酸性化合物,例如酰氨基和磺酰氨基化合物,这类化合物在氢氧化钠、氢氧化钾等碱作用下就容易失去质子而形成钠盐。

中合吸附法:

将酸碱性化合物转变为离子化合物,使其溶于水,用活性碳吸附杂质后过滤,则除去了不含酸碱性基团的杂质和机械杂质,再加酸碱中合回母体分子状态,这是回收和提纯酸碱性产品的方法。由于活性碳不吸附离子,故有活性碳吸附造成的产品损失忽劣不计。 中和萃取法:

是工业过程和实验室中常见的方法,它利用酸碱性有机化合物生成离子时溶于水而母体分 子状态溶于有机溶剂的特点,通过加入酸碱使母体化合物生成离子溶于水实现相的转移而用非水溶性的有机溶剂萃取非酸碱性杂质,使其溶于有机溶剂从而实现杂质与产物分离的方法。

成盐法:

对于非水溶性的大分子有机离子化合物,可使有机酸碱性化合物在有机溶剂中成盐析出结晶来,而非成盐的杂质依然留在有机溶剂中,从而实现有机酸碱性化合物与非酸碱性杂质分离,酸碱性有机杂质的分离可通过将析出的结晶再重结晶,从而将酸碱性有机杂质分离。对于大分子的有机酸碱化合物的盐此时还可以采用水洗涤除去小分子的酸碱化合物已经成盐且具有水溶性的杂质。 对于水溶性的有机离子化合物,可在水中成盐后,将水用共沸蒸馏或直接蒸馏除去,残余物用有机溶剂充分洗涤几次,从而将杂质与产品分离。

以上三种方法并不是孤立的,可根据化合物的性质和产品质量标准的要求,采用相结合的方法,尽量得到相当纯度的产品。 (2)几种特殊的有机萃取溶剂

正丁醇:大多数的小分子醇是水溶性的,例如甲醇、乙醇、异丙醇、正丙醇等。大多数的高分子量醇是非水溶性的,而是亲脂性的能够溶于有机溶剂。但是中间的醇类溶剂例如正丁醇是一个很好的有机萃取溶剂。正丁醇本身不溶于水,同时又具有小分子醇和大分子醇的共同特点。它能够溶解一些能够用小分子醇溶解的极性化合物,而同时又不溶于水。利用这个性质可以采用正丁醇从水溶液中萃取极性的反应产物。

丁酮:性质介于小分子酮和大分子酮之间。不像丙酮能够溶于水,丁酮不溶于水,可用来从水中萃取产物。

乙酸丁酯:性质介于小分子和大分子酯之间,在水中的溶解度极小,不像乙酸乙酯在水中有一定的溶解度,可从水中萃取有机化合物,尤其是氨基酸的化合物,因此在抗生素工业中常用来萃取头孢、青霉素等大分子含氨基酸的化合物。

异丙醚与特丁基叔丁基醚:性质介于小分子和大分子醚之间,两者的极性相对较小,类似于正己烷和石油醚,二者在水中的溶解度较小。可用于极性非常小的分子的结晶溶剂和萃取溶剂。也可用于极性较大的化合物的结晶和萃取溶剂。

(3)做完反应后,应该首先采用萃取的方法,首先除去一部分杂质,这是利用杂质与产物在不同溶剂中的溶解度不同的性质。

(4)稀酸的水溶液洗去一部分碱性杂质。例如,反应物为碱性,而产物为中性,可用稀酸洗去碱性反应物。例如胺基化合物的酰化反应。 (5)稀碱的水溶液洗去一部分酸性杂质。反应物为酸性,而产物为中性,可用稀碱洗去酸性反应物。例如羧基化合物的酯化反应。

(6)用水洗去一部分水溶性杂质。例如,低级醇的酯化反应,可用水洗去水溶性的反应物醇。

(7)如果产物要从水中结晶出来,且在水溶液中的溶解度又较大,可尝试加入氯化钠、氯化铵等无机盐,降低产物在水溶液中的溶解度-盐析的方法。 (8)有时可用两种不互溶的有机溶剂作为萃取剂,例如反应在氯仿中进行,可用石油醚或正己烷作为萃取剂来除去一部分极性小的杂质,反过来可用氯仿萃取来除去极性大的杂质。

(9)两种互溶的溶剂有时加入另外一种物质可变的互不相容,例如,在水作溶剂的情况下,反应完毕后,可往体系中加入无机盐氯化钠,氯化钾使水饱和,此时加入丙酮,乙醇,乙腈等溶剂可将产物从水中提取出来。

(10)结晶与重结晶的方法

基本原理是利用相似相容原理。即极性强的化合物用极性溶剂重结晶,极性弱的化合物用

非极性溶剂重结晶。对于较难结晶的化合物,例如油状物、胶状物等有时采用混合溶剂的方法,但是混合溶剂的搭配很有学问,有时只能根据经验。一般采用极性溶剂与非极性溶剂搭配,搭配的原则一般根据产物与杂质的极性大小来选择极性溶剂与非极性溶剂的比例。若产物极性较大,杂质极性较小则溶剂中极性溶剂的比例大于非极性溶剂的比例;若产物极性较小,杂质极性较大,则溶剂中非极性溶剂的比例大于极性溶剂的比例。较常用的搭配有:醇-石油醚,丙酮-石油醚,醇-正己烷,丙酮-正己烷等。但是如果产物很不纯或者杂质与产物的性质及其相近,得到纯化合物的代价就是多次的重结晶,有时经多次也提不纯。这时一般较难除去的杂质肯定与产物的性质与极性及其相近。除去杂质只能从反应上去考虑了。

(11)水蒸气蒸馏、减压蒸馏与精馏的方法

这是提纯低熔点化合物的常用方法。一般情况下,减压蒸馏的回收率相应较低,这是因为随着产品的不断蒸出,产品的浓度逐渐降低,要保证产品的饱和蒸汽压等于外压,必须不断提高温度,以增加产品的饱和蒸汽压,显然,温度不可能无限提高,即产品的饱和蒸汽压不可能为零,也即产品不可能蒸净,必有一定量的产品留在蒸馏设备内被设备内的难挥发组分溶解,大量的斧残既是证明。

水蒸气蒸馏对可挥发的低熔点有机化合物来说,有接近定量的回收率。这是因为在水蒸气蒸馏时,斧内所有组分加上水的饱和蒸汽压之和等于外压,由于大量水的存在,其在100℃时饱和蒸汽压已经达到外压,故在100℃以下时,产品可随水蒸气全部蒸出,回收率接近完全。对于有焦油的物系来说,水蒸气蒸馏尤其适用。因为焦油对产品回收有两个负面影响:一是受平衡关系影响,焦油能够溶解一部分产品使其不能蒸出来;二是由于焦油的高沸点使蒸馏时斧温过高从而使产品继续分解。,水蒸气蒸馏能够接近定量的从焦油中回收产品,又在蒸馏过程中避免了产品过热聚合,收率较减压蒸馏提高3-4%左右。虽然水蒸气蒸馏能提高易挥发组分的回收率,但是,水蒸气蒸馏难于解决产物提纯问题,因为挥发性的杂质随同产品一同被蒸出来,此时配以精馏的方法,则不但保障了产品的回收率,也保证了产品质量。应该注意,水蒸气蒸馏只是共沸蒸馏的一个特例,当采用其它溶剂时也可。

共沸蒸馏不仅适用于产品分离过程,也适用于反应物系的脱水、溶剂的脱水、产品的脱水等。它比分子筛、无机盐脱水工艺具有设备简单、操作容易、不消耗其它原材料等优点。例如:在生产氨噻肟酸时,由于分子中存在几个极性的基团氨基、羧基等,它们能够和水、醇等分子形成氢键,使氨噻肟酸中存在大量的游离及氢键的水,如采用一般的真空干燥等干燥方法,不仅费时,也容易造成产物的分解,这时可采用共沸蒸馏的方法将水分子除去,具体的操作为将氨噻肟酸与甲醇在回流下搅拌几小时,可将水分子除去,而得到无水氨噻肟酸。又比如,当分子中存在游离的或氢键的甲醇时,可用另外一种溶剂,例如正己烷、石油醚等等,进行回流,可除去甲醇。可见共沸蒸馏在有机合成的分离过程中占有重要的地位。

(12)超分子的方法,利用分子的识别性来提纯产物。 (13)脱色的方法 一般采用活性炭、硅胶、氧化铝等。活性炭吸附非极性的化合物与小分子的化合物,硅胶与氧化铝吸附极性强的与大分子的化合物,例如焦油等。对于极性杂质与非极性杂质同时存在的物系,应将两者同时结合起来。比较难脱色的物系,一般用硅胶和氧化铝就能脱去。对于酸碱性化合物的脱色,有时比较难,当将酸性化合物用碱中和形成离子化合物而溶于水中进行脱色时,除了在弱碱性条件下脱色一次除去碱性杂质外,还应将物系逐渐中和至弱酸性,再脱色一次除去酸性杂质,这样就将色素能够完全脱去。同样当将碱性化合物用酸中和至弱碱性溶于水进行脱色时,除了在弱酸性条件下脱色一次除去酸性杂质外,还应将物系逐渐中和至弱碱性,再脱色一次除去碱性杂质。篇4:有机合成心得 有机合成心得——工艺优化方法学

有机合成心得——工艺优化方法学 1.合成工艺的优化主要就是反应选择性研究

有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。

首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。

反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。

(1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。

(2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 3.定性反应产物

动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应采取不同的抑制方法。

(1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究其生成的机理,速度方程和对比选择性方程,并据此进行温度效应、浓度效应分析;(4)由对比选择性方程确定部分工艺条件,并据此设计获取活化能相对大小和反应级数相对高低的试验方按。(5)也应该找出最难除去的杂质的结构,进行(3),(4)的方法研究。 4.跟踪定量反应产物

在定分析的基础上,对同一实验不同时刻各组分的含量进行跟踪测试,根据跟踪测试结果认识影响因素,再根据影响因素调整实验方按。

(1)可在同一实验中考察原料、中间体、产物,各副产物在不同条件下的变化趋势,从一个实验中尽可能获取更多的信息,实验效率大大提高。

(2)根据实验过程中的新现象调整和修改预定方按,使每一具体实验的目标多元化,即可使每一次实验的目的在实验中调整和增加,从而提高工作效率和研究开发进度。

(3)将不同时刻、不同组分的相对含量,整理成表格或曲线,从数据表或曲线中观察不同组分的数量,各组分在不同阶段依不同条件的变化趋势和变化率,从而找出宏观动力学影响因素,并根据这些因素去调整温度、浓度因素,以提高选择性。

这里的定量并非真正的含量,只是各组分的相对值。 5.分阶段研究反应过程和分离过程

大多数人习惯于每次实验部分都分离提纯产品并计算收率。然而,除非简单的实验外这是不科学的。

(1)研究开发的初始阶段,分离过程是不成熟的,很难估算分离过程损失,这样,所得产品不能代表反应收率。 (2)实验的最终结果是反应过程与分离过程的总结果,影响因素太多,考察某一影响因素 太难。

(3)一个实验真正做到完成分离提纯的程度很难,往往后处理时间多于反应时间,若每个实验都做到提纯分离,则工作效率降低。 (4)为降低科研费用,往往进行微量制备,而微量制备的实验几乎不能完成全过程。比如精馏,没有一定数量就无法进行。

(5)反应过程中直接取反应液进行中控分析最接近于反应过程的在线测试,最能反映出过程的实际状态,对于某一因素的变化的影响也最敏感,应用起来方便。

(6)做好反应过程是分离过程研究的基础。副产物越少,则分离过程越简单。

总之,在研究开发的最初阶段,应先回避分离过程而仅研究反应过程。可以在反应过程中得到一系列的色谱分析谱图和定性分析结果,根据原料、中间体、产品、副产品出峰的相对大小来初步定量,根据不同反应温度条件下不同组分的消涨来判断活化能的相对大小;根据副产物结构机不同的加料方式引起的副产物的消涨来判断活性组分的反应级数的相对高低。从理论到实践实现了动力学所要求的温度效应、浓度效应,再实现最大转化率,最后研究分离过程。这是一种循序渐进的、条理清晰的、理性的和简单化的工艺优化程序。 6.程序升温法确定温度范围

程序升温法是另一种反应温度的优化方法。其是在实验的最初阶段采用的。一般采用微量制备,物料以满足分析测试即可。为使放热反应的温度可控制,反应物料不必成比例(一般使某一种原料微量)。

在跟踪测试的基础上,采取程序升温大方法,往往一次实验即可测得反应所适合的温度范围,并可得到主反应与某一特定副反应活化能的相对大小和确认反应温度最佳控制条件。程序升温过程如图所示。

在t1 温度下反应一段时间,取样a分析;若未发生反应,则升温至t2后反应一段时间后取样b分析;若发现反应已经发生,但不完全,则此时应鉴别发生的是否是主反应;若在温度t2下先发生的是主反应,则继续取样c分析;若反应仍不完全,升温至t3后反应一段时间取样d分析;若仍不完全则升温至t4,取样e分析,直至反应结束。

若样品d中无副产物,e中有副产物,则主反应的活化能小于副反应的活化能,反应温度为t4以下,再在t3上下选择温控范围。

若样品b中发生的是副反应,则应立即升温,并适时补加原料,边升温边取样f,g,h等,直至主反应发生。若主反应在较高温度时发生了,说明主反应的活化能大于副反应的活化能,反应应避开较低温度段。此时的程序升温过程应在缺少易发生副反应的那种主原料下进行,即预先加热反应底物至一定温度,再滴加未加入的原料,后滴加的原料用溶剂稀释效果更加。 可见,一次程序升温过程便可基本搞清主副反应活化能的相对大小和反应温度控制的大致范围,取得了事半功倍的效果。

在低温有利于主反应的过程中,随着反应的进行,反应物的浓度逐渐降低,反应速度逐渐减慢,为保持一定的反应速度和转化率以保证生产能力,就必须逐渐缓慢升温以加速化学反应的进行,直至转化率达到目标,这才实现最佳控制。 7.调节加料法

滴加的功能有两个,(1)对于放热反应,可减慢反应速度,使温度易于控制。(2) 控制反应的选择性,对每种原料都应采取是滴加还是一次性加入对反应选择性影响的研究。如果滴加有利于选择性,则滴加时间越慢越好。如不利于选择性的提高,则改为一次性的加入。 温度效应、浓度效应对反应选择性的影响是个普遍存在的一般规律,但在不同的具体实例中体现出特殊性,有时某一种效应更重要,而另一种效应不显著。因此必须具体问题具体分析,在普遍的理论原则指导下解决特殊的问题。 7.动力学方法的工艺优化次序

有了上面所述的方法,一般的工艺优化需要按以下的步骤进行。

(1)反应原料的选择 反应原料的选择除了考虑廉价易得的主要因素外,另一个必须考虑的因素是副产物的形成,所用的原料应该尽可能以不过多产生副反应为准,原料的活性应该适当,活性高了相应的副反应形成的速度也就加大了,原料的反应点位应该尽可能少,以防进行主反应的同时进行副反应。以阿立哌唑的中间体合成为例。不同的原料产生不同的副反应从而形成不同的杂质,原料的性质不同,产生杂质的数量也就不同。图1 为 以1,4-二溴丁烷为原料反应形成的杂质。在该实例中,a 是所需要的中间体,但因为1,4-二溴丁烷及另一原料的双重反应部位,产生了大量的杂质,给后处理带来了极大的麻烦。因而是不合适的。但是如以4-溴丁醇为原料(图2),则反应形成的杂质数量大大减少,给提纯及后续反应带来极大的方便。可见原料的选择对抑制副反应也有者重要的作用。

(2)溶剂的选择:主要根据反应的性质和类型来考虑:非质子极性溶剂:乙腈、n,n-二甲基甲酰胺、丙酮、n,n-二甲基乙酰胺、n-甲基吡咯烷酮;质子极性溶剂:水、甲醇、乙醇、异丙醇、正丁醇等;极性非常小的溶剂:石油醚、正己烷、乙酸乙酯、卤代烃类、芳香烃类等。

(3)重复文献条件,对反应产物定性分析。

(4)变化反应温度确认主副反应活化能的相对大小并确定温度控制曲线。

(5)根据副产物的结构改变加料方式,以确定主副反应对某一组分的反应级数的相对大小并确定原料的加料方式。此时反应选择性已达最佳。 (6)选择转化率的高低。力求转化完全或回收再用。此时反应收率最佳。

(7)选择简单的分离方式并使分离过程产物损失最小。此时优化的工艺大到了。 (8)酸碱强度的影响:强酸还是弱酸,强碱还是弱碱,有机酸还是有机碱。在质子性溶剂

中一般选择无机碱,因为此时无机碱一般溶于这类溶剂中使反应均相进行,例如氢氧化钠、氢氧化钾溶于醇中,但是弱无机碱碳酸钠等不容于该类溶剂,须加入相转移催化剂;在非质子极性溶剂中一般选择有机碱,此时反应为均相反应,若选择无机碱一般不溶于该类溶剂,也需加入加入相转移催化剂。

(9)催化剂的影响:相转移催化剂,无机盐,路易斯酸,路易斯碱。篇5:有机合成心得

有机合成心得

有机合成心得(1)-引言

搞了十余年药物研发,感觉最深刻的是关键要有一个灵活的头脑和丰富的有机合成知识,灵活的头脑是天生的,丰富的有机合成知识是靠大量的阅读和高手交流得到的。二者缺一不可,只有有机合成知识而没有灵活的头脑把知识灵活的应用,充其量只是有机合成匠人,成不了高手,也就没有创造性。只有灵活的头脑而没有知识,只能做无米之炊。一个有机合成高手在头脑中掌握的有机化学反应最少应为300个以上,并能灵活的加以运用,熟悉其中的原理(机理),烂熟于胸,就像国学大师烂熟四书五经一样,看到了一个分子结构,稍加思索,其合成路线应该马上在脑中浮现出来。

本系列心得基本上是作者在工作中的经验之谈,也有部分内容取材于参考资料,本心得主要是想提供方法上的指导。

有机合成心得(2)-基本功的训练

每个行业都有自己的基本功,有机合成的基本功就是对有机化学反应的理解掌握与灵活运用。那么对有机化学反应的理解掌握应从那方面入手?你在大学里学到的有机合成知识,只是入门的东西,远远达不到高手的水平,学了四年化学,基本上不理解化学。遇到问题还是束手无策,不知从何处下手。这不是你的问题,而是大学教育体制的问题,在大学阶段应该打下坚实的基本功,然后才能专,而我们的大学在这方面还做的远远不够。下面我推荐几本有机合成方面的书籍希望能够达到上述的目的: 有机化学反应的理解掌握方面的书籍: 1.march’s advanced organic chemistry. 2.carey, f.a.; sundberg, r.j.: advanced organic chemistry. 3.michael b.smith: organic synthesis. 5.黄宪:新编有机合成化学 6.李长轩:有机合成设计

前三本书是从机理方面来讨论有机合成的,

4、5两本书是从官能团转变的角度讨论有机合成的,第6本书是讨论有机合成路线设计的。以上几本书应该随时放在自己的身边,作为案头书。认真精读,达到记忆理解,把反应分类记忆理解,这时你可能感觉很枯燥乏味,不要紧,经过一段时间的合成研究再回过头来阅读,就会感觉耳目一新,有新的理解。掌握了这几本书,可以说您已经打下了一定的有机合成基本功,这时你应该最少掌握300个反应了,但并不意味者你已经成为了有机合成高手,接下来你需要做的是将学到的有机合成知识能够灵活运用,熟练的理解化学反应在什么情况下应用。

下面推荐的几本杂志,主要是关于如何运用有机化学反应的。 1.organic synthesis (80vol.) 2.organic proce research & development. 这是美国化学会出版的一本有机合成杂志,主要讲述一些化工产品的工艺研究,书中的反应均用在大规模的制备上,对产业化的研究很有帮助,这些反应具有很强的实用性,对理解化学反

应的应用很有帮助。

经过以上知识的训练,你已经具备成为有机合成高手的潜力了,接下来需要做的就是大量的实践研究了,相信经过自己的努力和多年的实践,多次的失败,吃的苦中苦,你就成为有机合成高手了。

有机合成心得(3)-合成路线的选择 合成路线的设计与选择是有机合成中很重要的一个方面,它反映了一个有机合成人员的基本功和知识的丰富性与灵活的头脑。一般情况下,合成路线的选择与设计代表了一个人的合成水平和素质。合理的合成路线能够很快的得到目标化合物,而笨拙的合成路线虽然也能够最终得到目标化合物,但是付出的代价却是时间的浪费和合成成本的提高,因此合成路线的选择与设计是一个很关键的问题。

合成路线的选择与设计应该以得到目标化合物的目的为原则,即如果得到的目标化合物是以工业生产为目的,则选择的合成路线应该以最低的合成成本为依据,一般情况下,简短的合成路线应该反应总收率较高,因而合成成本最低,而长的合成路线总收率较低,合成成本较高,但是,在有些情况下,较长的合成路线由于每步反应都有较高的收率,且所用的试剂较便宜,因而合成成本反而较低,而较短的合成路线由于每步反应收率较低,所用试剂价格较高,合成成本反而较高。所以,如果以工业生产为目的,则合成路线的选择与设计应该以计算出的和实际结果得到的合成成本最低为原则。

如果得到的目标化合物是以发表论文为目的,则合成路线的选择与设计则有不同的原则。设计的路线应尽量具有创造性,具有新的思想,所用的试剂应该是新颖的,反应条件是创新的,这时考虑的主要问题不是合成成本的问题而合成中的创造性问题。

如果合成的是系列化合物,则设计合成路线时,应该共同的步骤越长越好,每个化合物只是在最后的合成步骤中不同,则这样的合成路线是较合理的和高效率的,可以在很短的时间内得到大量目标化合物。

每个目标化合物的合成路线一般有多步反应,为了避免杂质放大的问题,最好的解决办法是将合成路线一分为二,转化为两个中间体,最后将两个中间体通过一步反应组装起来得到目标化合物。尽量避免连续反应只在最后一步得到产物。

有机合成心得(4)-有机反应的实质 有机合成的任务是运用已知的或可能的化学反应来形成c-c键或c-杂键,从而将两个或多个分子或离子连接起来。

有机化学反应类型可分为三种:极性反应,协同反应,自由基反应,其中协同反应与自由基反应又称为非极性反应。非极性反应可以采用‘一锅法’进行,而极性反应则需分步进行。因为极性反应的条件比较苛刻(无水、惰性气体保护、强酸或强碱),而非极性反应的条件比较温和。极性反应占80%,非极性反应占20%。 极性反应的实质就是分子中负电性的原子与正电性的原子的结合。所谓负电性与正电性都是指广义而言的,原子的负电性可以是负电荷,也可以是孤电子对;原子的正电性可以是正电荷也可以是空轨道。负电性与正电性的密度越大,反应活性越高,但是高密度的负电性原子通常与高密度的正电性原子结合,低密度的负电性原子与低密度的正电性原子结合。如果分子中同时存在两种相反电荷的原子则产生环合反应,如果分子中存在两种相同电荷的原子,此时与另一分子中相反电荷的原子结合时就容易产生副反应,通常密度较高电荷的原子先进行反应。

因此,在记忆化学反应时,只需分清分子中那个原子是正电性的,那个原子是负电性的就可以了。不必去记忆什么人名反应来浪费记忆力,也不必对亲核、亲电反应的类型太在意。

所以,学习化学反应时,主要的任务就是了解各种正电性的基团和负电性的基团。这些正电性的基团和负电性的基团称之为合成子。下面举例简单说明:

有机合成心得(5)-后处理的问题

在有机合成中,后处理的问题往往被大多数人所忽略,认为只要找对了合成方法,合成任务就可以事半功倍了,这话不错,正确地合成方法固然重要,但是有机合成的任务是拿到相当纯的产品,任何反应没有100%产率的,总要伴随或多或少的副反应,产生或多或少的杂质,反应完成后,面临的巨大问题就是从反应混合体系中分离出纯的产品。后处理的目的就是采用尽可能的办法来完成这一任务。

为什么对后处理的问题容易忽视呢?我们平时所看到的各种文献尤其是学术性的研究论文对这一问题往往重视不够或者很轻视,他们重视的往往是新的合成方法,合成试剂等。专利中对这一问题也是轻描淡写,因为这涉及到商业利润问题。有机教科书中对这一问体更是没有谈论到。只有参加过工业有机合成项目的人才能认识到这一问题的重要性,有时反应做的在好,后处理产生问题得不到纯的产品,企业损失往往巨大。这时才认识到有机合成不光是合成方法的问题,还涉及到许多方面的问题,那一方面的问题考虑不周,都有可能前功尽弃。

后处理问题从哪里可以学到?除了向有经验的科研人员多多请教外,自己也应处处留心,虽说各种文献中涉及较少,但是还有不少论文是涉及到的,这就要求自己多思考,多整理,举一反三。另外,在科研工作中,应注意吸取经验,多多磨练。

完成后处理问题的基本知识还是有机化合物的物理和化学性质,后处理就是这些性质的具体应用。当然,首先要把反应做的很好,尽量减少副反应的发生,这样可以减轻后处理的压力。因此,后处理还是考验一个人的基本功问题,只有化学学好了才有可能出色的完成后处理任务。 后处理根据反应的目的有不同的解决办法,如果在实验室中,只是为了发表论文,得到纯化合物的目的就是为了作各种光谱,那么问题就简单了,得到纯化合物的方法不外就是走柱子,tlc,制备色谱等方法,不用考虑太多的问题,而且得到的化合物还比较纯;如果是为了工业生产的目的,则问题就复杂了,尽量用简便、成本低的方法,实验室中的那一套就不行了,如果您还是采用实验室中的方法则企业就亏损了。下面只简单的介绍一些工业中的方法。 后处理过程的优劣检验标准是:(1)产品是否最大限度的回收了,并保证质量;(2)原料、中间体、溶剂及有价值的副产物是否最大限度的得到了回收利用;(3)后处理步骤,无论是工艺还是设备,是否足够简化;(4)三废量是否达到最小。 后处理的几个常用而实用的方法: (1)有机酸碱性化合物的分离提纯

具有酸碱性基团的有机化合物,可以得失质子形成离子化合物,而离子化合物与原来的母体化合物具有不同的物理化学性质。碱性化合物用有机酸或无机酸处理得到胺盐,酸性化合物用有机碱或无机碱处理得到钠盐或有机盐。根据有机化合物酸碱性的强弱,有机、无计酸碱一般为甲酸、乙酸、盐酸、硫酸、磷酸。碱为三乙胺、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠等。在一般情况下,离子化合物在水中具有相当大的溶解性,而在有机溶剂中溶解度很小,同时活性碳只能够吸附非离子型的杂质和色素。利用以上的这些性质可对酸碱性有机化合物进行提纯。以上性质对所有酸碱性化合物并不通用,一般情况下,分子中酸碱性基团分子量所占整个分子的分子量比例越大,则离子化合物的水溶性就越大,分子中含有的水溶性基团例如羟基越多,则水溶性越大,因此,以上性质适用于小分子的酸碱化合物。对于大分子的化合物,则水溶性就明显降低。 酸碱性基团包括氨基。酸性基团包括:酰氨基、羧基、酚羟基、磺酰氨基、硫酚基、1,3-二

羰基化合物等等。值得注意的是,氨基化合物一般为碱性基团,但是在连有强吸电子基团时就变为酸性化合物,例如酰氨基和磺酰氨基化合物,这类化合物在氢氧化钠、氢氧化钾等碱作用下就容易失去质子而形成钠盐。

中合吸附法:

将酸碱性化合物转变为离子化合物,使其溶于水,用活性碳吸附杂质后过滤,则除去了不含酸碱性基团的杂质和机械杂质,再加酸碱中合回母体分子状态,这是回收和提纯酸碱性产品的方法。由于活性碳不吸附离子,故有活性碳吸附造成的产品损失忽劣不计。

中和萃取法:

是工业过程和实验室中常见的方法,它利用酸碱性有机化合物生成离子时溶于水而母体分子状态溶于有机溶剂的特点,通过加入酸碱使母体化合物生成离子溶于水实现相的转移而用非水溶性的有机溶剂萃取非酸碱性杂质,使其溶于有机溶剂从而实现杂质与产物分离的方法。 成盐法:

对于非水溶性的大分子有机离子化合物,可使有机酸碱性化合物在有机溶剂中成盐析出结晶来,而非成盐的杂质依然留在有机溶剂中,从而实现有机酸碱性化合物与非酸碱性杂质分离,酸碱性有机杂质的分离可通过将析出的结晶再重结晶,从而将酸碱性有机杂质分离。对于大分子的有机酸碱化合物的盐此时还可以采用水洗涤除去小分子的酸碱化合物已经成盐且具有水溶性的杂质。 对于水溶性的有机离子化合物,可在水中成盐后,将水用共沸蒸馏或直接蒸馏除去,残余物用有机溶剂充分洗涤几次,从而将杂质与产品分离。

以上三种方法并不是孤立的,可根据化合物的性质和产品质量标准的要求,采用相结合的方法,尽量得到相当纯度的产品。 (2)几种特殊的有机萃取溶剂

正丁醇:大多数的小分子醇是水溶性的,例如甲醇、乙醇、异丙醇、正丙醇等。大多数的高分子量醇是非水溶性的,而是亲脂性的能够溶于有机溶剂。但是中间的醇类溶剂例如正丁醇是一个很好的有机萃取溶剂。正丁醇本身不溶于水,同时又具有小分子醇和大分子醇的共同特点。它能够溶解一些能够用小分子醇溶解的极性化合物,而同时又不溶于水。利用这个性质可以采用正丁醇从水溶液中萃取极性的反应产物。

丁酮:性质介于小分子酮和大分子酮之间。不像丙酮能够溶于水,丁酮不溶于水,可用来从水中萃取产物。

乙酸丁酯:性质介于小分子和大分子酯之间,在水中的溶解度极小,不像乙酸乙酯在水中有一定的溶解度,可从水中萃取有机化合物,尤其是氨基酸的化合物,因此在抗生素工业中常用来萃取头孢、青霉素等大分子含氨基酸的化合物。

异丙醚与特丁基叔丁基醚:性质介于小分子和大分子醚之间,两者的极性相对较小,类似于正己烷和石油醚,二者在水中的溶解度较小。可用于极性非常小的分子的结晶溶剂和萃取溶剂。也可用于极性较大的化合物的结晶和萃取溶剂。

(3)做完反应后,应该首先采用萃取的方法,首先除去一部分杂质,这是利用杂质与产物在不同溶剂中的溶解度不同的性质。

(4)稀酸的水溶液洗去一部分碱性杂质。例如,反应物为碱性,而产物为中性,可用稀酸洗去碱性反应物。例如胺基化合物的酰化反应。 (5)稀碱的水溶液洗去一部分酸性杂质。反应物为酸性,而产物为中性,可用稀碱洗去酸性反应物。例如羧基化合物的酯化反应。

(6)用水洗去一部分水溶性杂质。例如,低级醇的酯化反应,可用水洗去水溶性的反应物醇。

(7)如果产物要从水中结晶出来,且在水溶液中的溶解度又较大,可尝试加入氯化钠、氯化铵

等无机盐,降低产物在水溶液中的溶解度-盐析的方法。

(8)有时可用两种不互溶的有机溶剂作为萃取剂,例如反应在氯仿中进行,可用石油醚或正己烷作为萃取剂来除去一部分极性小的杂质,反过来可用氯仿萃取来除去极性大的杂质。

(9)两种互溶的溶剂有时加入另外一种物质可变的互不相容,例如,在水作溶剂的情况下,反应完毕后,可往体系中加入无机盐氯化钠,氯化钾使水饱和,此时加入丙酮,乙醇,乙腈等溶剂可将产物从水中提取出来。

(10)结晶与重结晶的方法

基本原理是利用相似相容原理。即极性强的化合物用极性溶剂重结晶,极性弱的化合物用非极性溶剂重结晶。对于较难结晶的化合物,例如油状物、胶状物等有时采用混合溶剂的方法,但是混合溶剂的搭配很有学问,有时只能根据经验。一般采用极性溶剂与非极性溶剂搭配,搭配的原则一般根据产物与杂质的极性大小来选择极性溶剂与非极性溶剂的比例。若产物极性较大,杂质极性较小则溶剂中极性溶剂的比例大于非极性溶剂的比例;若产物极性较小,杂质极性较大,则溶剂中非极性溶剂的比例大于极性溶剂的比例。较常用的搭配有:醇-石油醚,丙酮-石油醚,醇-正己烷,丙酮-正己烷等。但是如果产物很不纯或者杂质与产物的性质及其相近,得到纯化合物的代价就是多次的重结晶,有时经多次也提不纯。这时一般较难除去的杂质肯定与产物的性质与极性及其相近。除去杂质只能从反应上去考虑了。

(11)水蒸气蒸馏、减压蒸馏与精馏的方法

这是提纯低熔点化合物的常用方法。一般情况下,减压蒸馏的回收率相应较低,这是因为随着产品的不断蒸出,产品的浓度逐渐降低,要保证产品的饱和蒸汽压等于外压,必须不断提高温度,以增加产品的饱和蒸汽压,显然,温度不可能无限提高,即产品的饱和蒸汽压不可能为零,也即产品不可能蒸净,必有一定量的产品留在蒸馏设备内被设备内的难挥发组分溶解,大量的斧残既是证明。

水蒸气蒸馏对可挥发的低熔点有机化合物来说,有接近定量的回收率。这是因为在水蒸气蒸馏时,斧内所有组分加上水的饱和蒸汽压之和等于外压,由于大量水的存在,其在100℃时饱和蒸汽压已经达到外压,故在100℃以下时,产品可随水蒸气全部蒸出,回收率接近完全。对于有焦油的物系来说,水蒸气蒸馏尤其适用。因为焦油对产品回收有两个负面影响:一是受平衡关系影响,焦油能够溶解一部分产品使其不能蒸出来;二是由于焦油的高沸点使蒸馏时斧温过高从而使产品继续分解。,水蒸气蒸馏能够接近定量的从焦油中回收产品,又在蒸馏过程中避免了产品过热聚合,收率较减压蒸馏提高3-4%左右。虽然水蒸气蒸馏能提高易挥发组分的回收率,但是,水蒸气蒸馏难于解决产物提纯问题,因为挥发性的杂质随同产品一同被蒸出来,此时配以精馏的方法,则不但保障了产品的回收率,也保证了产品质量。应该注意,水蒸气蒸馏只是共沸蒸馏的一个特例,当采用其它溶剂时也可。 共沸蒸馏不仅适用于产品分离过程,也适用于反应物系的脱水、溶剂的脱水、产品的脱水等。它比分子筛、无机盐脱水工艺具有设备简单、操作容易、不消耗其它原材料等优点。例如:在生产氨噻肟酸时,由于分子中存在几个极性的基团氨基、羧基等,它们能够和水、醇等分子形成氢键,使氨噻肟酸中存在大量的游离及氢键的水,如采用一般的真空干燥等干燥方法,不仅费时,也容易造成产物的分解,这时可采用共沸蒸馏的方法将水分子除去,具体的操作为将氨噻肟酸与甲醇在回流下搅拌几小时,可将水分子除去,而得到无水氨噻肟酸。又比如,当分子中存在游离的或氢键的甲醇时,可用另外一种溶剂,例如正己烷、石油醚等等,进行回流,可除去甲醇。可见共沸蒸馏在有机合成的分离过程中占有重要的地位。 (12)超分子的方法,利用分子的识别性来提纯产物。 (13)脱色的方法 一般采用活性炭、硅胶、氧化铝等。活性炭吸附非极性的化合物与小分子的化合物,硅胶与氧化铝吸附极性强的与大分子的化合物,例如焦油等。

推荐第3篇:有机合成心得

有机合成心得(1)-引言

搞了十余年药物研发,感觉最深刻的是关键要有一个灵活的头脑和丰富的有机合成知识,灵活的头脑是天生的,丰富的有机合成知识是靠大量的阅读和高手交流得到的。二者缺一不可,只有有机合成知识而没有灵活的头脑把知识灵活的应用,充其量只是有机合成匠人,成不了高手,也就没有创造性。只有灵活的头脑而没有知识,只能做无米之炊。一个有机合成高手在头脑中掌握的有机化学反应最少应为300个以上,并能灵活的加以运用,熟悉其中的原理(机理),烂熟于胸,就像国学大师烂熟四书五经一样,看到了一个分子结构,稍加思索,其合成路线应该马上在脑中浮现出来。

有机合成心得(2)-基本功的训练

每个行业都有自己的基本功,有机合成的基本功就是对有机化学反应的理解掌握与灵活运用。那么对有机化学反应的理解掌握应从那方面入手?你在大学里学到的有机合成知识,只是入门的东西,远远达不到高手的水平,学了四年化学,基本上不理解化学。遇到问题还是束手无策,不知从何处下手。这不是你的问题,而是大学教育体制的问题,在大学阶段应该打下坚实的基本功,然后才能专,而我们的大学在这方面还做的远远不够。下面我推荐几本有机合成方面的书籍希望能够达到上述的目的:

有机化学反应的理解掌握方面的书籍: 1.March’s advanced organic chemistry.

2.Carey, F.A.; Sundberg, R.J.: Advanced organic chemistry.化学 3.Michael B.Smith: Organic synthesis.

4.Richard C.Larock: Comprehensive organic transformation.5.黄宪:新编有机合成化学 6.李长轩:有机合成设计

前三本书是从机理方面来讨论有机合成的,

4、5两本书是从官能团转变的角度讨论有机合成的,第6本书是讨论有机合成路线设计的。以上几本书应该随时放在自己的身边,作为案头书。认真精读,达到记忆理解,把反应分类记忆理解,这时你可能感觉很枯燥乏味,不要紧,经过一段时间的合成研究再回过头来阅读,就会感觉耳目一新,有新的理解。掌握了这几本书,可以说您已经打下了一定的有机合成基本功,这时你应该最少掌握300个反应了,但并不意味者你已经成为了有机合成高手,接下来你需要做的是将学到的有机合成知识能够灵活运用,熟练的理解化学反应在什么情况下应用。

下面推荐的几本杂志,主要是关于如何运用有机化学反应的。 1.Organic synthesis (80vol.)

2.Organic Proce Research & Development.

这是美国化学会出版的一本有机合成杂志,主要讲述一些化工产品的工艺研究,书中的反应均用在大规模的制备上,对产业化的研究很有帮助,这些反应具有很强的实用性,对理解化学反应的应用很有帮助。

经过以上知识的训练,你已经具备成为有机合成高手的潜力了,接下来需要做的就是大量的实践研究了,相信经过自己的努力和多年的实践,多次的失败,吃的苦中苦,你就成为有机合成高手了。

有机合成心得(3)-合成路线的选择

合成路线的设计与选择是有机合成中很重要的一个方面,它反映了一个有机合成人员的基本功和知识的丰富性与灵活的头脑。一般情况下,合成路线的选择与设计代表了一个人的合成水平和素质。合理的合成路线能够很快的得到目标化合物,而笨拙的合成路线虽然也能够最终得到目标化合物,但是付出的代价却是时间的浪费和合成成本的提高,因此合成路线的选择与设计是一个很关键的问题。 合成路线的选择与设计应该以得到目标化合物的目的为原则,即如果得到的目标化合物是以工业生产为目的,则选择的合成路线应该以最低的合成成本为依据,一般情况下,简短的合成路线应该反应总收率较高,因而合成成本最低,而长的合成路线总收率较低,合成成本较高,但是,在有些情况下,较长的合成路线由于每步反应都有较高的收率,且所用的试剂较便宜,因而合成成本反而较低,而较短的合成路线由于每步反应收率较低,所用试剂价格较高,合成成本反而较高。所以,如果以工业生产为目的,则合成路线的选择与设计应该以计算出的和实际结果得到的合成成本最低为原则。 如果得到的目标化合物是以发表论文为目的,则合成路线的选择与设计则有不同的原则。设计的路线应尽量具有创造性,具有新的思想,所用的试剂应该是新颖的,反应条件是创新的,这时考虑的主要问题不是合成成本的问题而合成中的创造性问题。

如果合成的是系列化合物,则设计合成路线时,应该共同的步骤越长越好,每个化合物只是在最后的合成步骤中不同,则这样的合成路线是较合理的和高效率的,可以在很短的时间内得到大量目标化合物。

每个目标化合物的合成路线一般有多步反应,为了避免杂质放大的问题,最好的解决办法是将合成路线一分为二,转化为两个中间体,最后将两个中间体通过一步反应组装起来得到目标化合物。尽量避免连续反应只在最后一步得到产物。

有机合成心得(4)-有机反应的实质

有机合成的任务是运用已知的或可能的化学反应来形成C-C键或C-杂键,从而将两个或多个分子或离子连接起来。

有机化学反应类型可分为三种:极性反应,协同反应,自由基反应,其中协同反应与自由基反应又称为非极性反应。非极性反应可以采用‘一锅法’进行,而极性反应则需分步进行。因为极性反应的条件比较苛刻(无水、惰性气体保护、强酸或强碱),而非极性反应的条件比较温和。极性反应占80%,非极性反应占20%。极性反应的实质就是分子中负电性的原子与正电性的原子的结合。所谓负电性与正电性都是指广义而言的,原子的负电性可以是负电荷,也可以是孤电子对;原子的正电性可以是正电荷也可以是空轨道。负电性与正电性的密度越大,反应活性越高,但是高密度的负电性原子通常与高密度的正电性原子结合,低密度的负电性原子与低密度的正电性原子结合。如果分子中同时存在两种相反电荷的原子则产生环合反应,如果分子中存在两种相同电荷的原子,此时与另一分子中相反电荷的原子结合时就容易产生副反应,通常密度较高电荷的原子先进行反应。

因此,在记忆化学反应时,只需分清分子中那个原子是正电性的,那个原子是负电性的就可以了。不必去记忆什么人名反应来浪费记忆力,也不必对亲核、亲电反应的类型太在意。 所以,学习化学反应时,主要的任务就是了解各种正电性的基团和负电性的基团。这些正电性的基团和负电性的基团称之为合成子。 有机合成心得(5)-后处理的问题

后处理过程的优劣检验标准是:(1)产品是否最大限度的回收了,并保证质量;(2)原料、中间体、溶剂及有价值的副产物是否最大限度的得到了回收利用;(3)后处理步骤,无论是工艺还是设备,是否足够简化;(4)三废量是否达到最小。

后处理的几个常用而实用的方法: (1)有机酸碱性化合物的分离提纯

具有酸碱性基团的有机化合物,可以得失质子形成离子化合物,而离子化合物与原来的母体化合物具有不同的物理化学性质。碱性化合物用有机酸或无机酸处理得到胺盐,酸性化合物用有机碱或无机碱处理得到钠盐或有机盐。根据有机化合物酸碱性的强弱,有机、无计酸碱一般为甲酸、乙酸、盐酸、硫酸、磷酸。碱为三乙胺、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠等。在一般情况下,离子化合物在水中具有相当大的溶解性,而在有机溶剂中溶解度很小,同时活性碳只能够吸附非离子型的杂质和色素。利用以上的这些性质可对酸碱性有机化合物进行提纯。以上性质对所有酸碱性化合物并不通用,一般情况下,分子中酸碱性基团分子量所占整个分子的分子量比例越大,则离子化合物的水溶性就越大,分子中含有的水溶性基团例如羟基越多,则水溶性越大,因此,以上性质适用于小分子的酸碱化合物。对于大分子的化合物,则水溶性就明显降低。

酸碱性基团包括氨基。酸性基团包括:酰氨基、羧基、酚羟基、磺酰氨基、硫酚基、1,3-二羰基化合物等等。值得注意的是,氨基化合物一般为碱性基团,但是在连有强吸电子基团时就变为酸性化合物,例如酰氨基和磺酰氨基化合物,这类化合物在氢氧化钠、氢氧化钾等碱作用下就容易失去质子而形成钠盐。

中合吸附法:将酸碱性化合物转变为离子化合物,使其溶于水,用活性碳吸附杂质后过滤,则除去了不含酸碱性基团的杂质和机械杂质,再加酸碱中合回母体分子状态,这是回收和提纯酸碱性产品的方法。由于活性碳不吸附离子,故有活性碳吸附造成的产品损失忽劣不计。

中和萃取法:是工业过程和实验室中常见的方法,它利用酸碱性有机化合物生成离子时溶于水而母体分子状态溶于有机溶剂的特点,通过加入酸碱使母体化合物生成离子溶于水实现相的转移而用非水溶性的有机溶剂萃取非酸碱性杂质,使其溶于有机溶剂从而实现杂质与产物分离的方法。

成盐法:对于非水溶性的大分子有机离子化合物,可使有机酸碱性化合物在有机溶剂中成盐析出结晶来,而非成盐的杂质依然留在有机溶剂中,从而实现有机酸碱性化合物与非酸碱性杂质分离,酸碱性有机杂质的分离可通过将析出的结晶再重结晶,从而将酸碱性有机杂质分离。对于大分子的有机酸碱化合物的盐此时还可以采用水洗涤除去小分子的酸碱化合物已经成盐且具有水溶性的杂质。对于水溶性的有机离子化合物,可在水中成盐后,将水用共沸蒸馏或直接蒸馏除去,残余物用有机溶剂充分洗涤几次,从而将杂质与产品分离。

以上三种方法并不是孤立的,可根据化合物的性质和产品质量标准的要求,采用相结合的方法,尽量得到相当纯度的产品。

(2)几种特殊的有机萃取溶剂化

正丁醇:大多数的小分子醇是水溶性的,例如甲醇、乙醇、异丙醇、正丙醇等。大多数的高分子量醇是非水溶性的,而是亲脂性的能够溶于有机溶剂。但是中间的醇类溶剂例如正丁醇是一个很好的有机萃取溶剂。正丁醇本身不溶于水,同时又具有小分子醇和大分子醇的共同特点。它能够溶解一些能够用小分子醇溶解的极性化合物,而同时又不溶于水。利用这个性质可以采用正丁醇从水溶液中萃取极性的反应产物。

丁酮:性质介于小分子酮和大分子酮之间。不像丙酮能够溶于水,丁酮不溶于水,可用来从水中萃取产物。

乙酸丁酯:性质介于小分子和大分子酯之间,在水中的溶解度极小,不像乙酸乙酯在水中有一定的溶解度,可从水中萃取有机化合物,尤其是氨基酸的化合物,因此在抗生素工业中常用来萃取头孢、青霉素等大分子含氨基酸的化合物。

异丙醚与特丁基叔丁基醚:性质介于小分子和大分子醚之间,两者的极性相对较小,类似于正己烷和石油醚,二者在水中的溶解度较小。可用于极性非常小的分子的结晶溶剂和萃取溶剂。也可用于极性较大的化合物的结晶和萃取溶剂。

(3)做完反应后,应该首先采用萃取的方法,首先除去一部分杂质,这是利用杂质与产物在不同溶剂中的溶解度不同的性质。

(4)稀酸的水溶液洗去一部分碱性杂质。例如,反应物为碱性,而产物为中性,可用稀酸洗去碱性反应物。例如胺基化合物的酰化反应。

(5)稀碱的水溶液洗去一部分酸性杂质。反应物为酸性,而产物为中性,可用稀碱洗去酸性反应物。例如羧基化合物的酯化反应。

(6)用水洗去一部分水溶性杂质。例如,低级醇的酯化反应,可用水洗去水溶性的反应物醇。

(7)如果产物要从水中结晶出来,且在水溶液中的溶解度又较大,可尝试加入氯化钠、氯化铵等无机盐,降低产物在水溶液中的溶解度-盐析的方法。 (8)有时可用两种不互溶的有机溶剂作为萃取剂,例如反应在氯仿中进行,可用石油醚或正己烷作为萃取剂来除去一部分极性小的杂质,反过来可用氯仿萃取来除去极性大的杂质。

(9)两种互溶的溶剂有时加入另外一种物质可变的互不相容,例如,在水作溶剂的情况下,反应完毕后,可往体系中加入无机盐氯化钠,氯化钾使水饱和,此时加入丙酮,乙醇,乙腈等溶剂可将产物从水中提取出来。

(10)结晶与重结晶的方法

基本原理是利用相似相容原理。即极性强的化合物用极性溶剂重结晶,极性弱的化合物用非极性溶剂重结晶。对于较难结晶的化合物,例如油状物、胶状物等有时采用混合溶剂的方法,但是混合溶剂的搭配很有学问,有时只能根据经验。一般采用极性溶剂与非极性溶剂搭配,搭配的原则一般根据产物与杂质的极性大小来选择极性溶剂与非极性溶剂的比例。若产物极性较大,杂质极性较小则溶剂中极性溶剂的比例大于非极性溶剂的比例;若产物极性较小,杂质极性较大,则溶剂中非极性溶剂的比例大于极性溶剂的比例。较常用的搭配有:醇-石油醚,丙酮-石油醚,醇-正己烷,丙酮-正己烷等。但是如果产物很不纯或者杂质与产物的性质及其相近,得到纯化合物的代价就是多次的重结晶,有时经多次也提不纯。这时一般较难除去的杂质肯定与产物的性质与极性及其相近。除去杂质只能从反应上去考虑了。

(11)水蒸气蒸馏、减压蒸馏与精馏的方法

这是提纯低熔点化合物的常用方法。一般情况下,减压蒸馏的回收率相应较低,这是因为随着产品的不断蒸出,产品的浓度逐渐降低,要保证产品的饱和蒸汽压等于外压,必须不断提高温度,以增加产品的饱和蒸汽压,显然,温度不可能无限提高,即产品的饱和蒸汽压不可能为零,也即产品不可能蒸净,必有一定量的产品留在蒸馏设备内被设备内的难挥发组分溶解,大量的斧残既是证明。

水蒸气蒸馏对可挥发的低熔点有机化合物来说,有接近定量的回收率。这是因为在水蒸气蒸馏时,斧内所有组分加上水的饱和蒸汽压之和等于外压,由于大量水的存在,其在100℃时饱和蒸汽压已经达到外压,故在100℃以下时,产品可随水蒸气全部蒸出,回收率接近完全。对于有焦油的物系来说,水蒸气蒸馏尤其适用。因为焦油对产品回收有两个负面影响:一是受平衡关系影响,焦油能够溶解一部分产品使其不能蒸出来;二是由于焦油的高沸点使蒸馏时斧温过高从而使产品继续分解。,水蒸气蒸馏能够接近定量的从焦油中回收产品,又在蒸馏过程中避免了产品过热聚合,收率较减压蒸馏提高3-4%左右。虽然水蒸气蒸馏能提高易挥发组分的回收率,但是,水蒸气蒸馏难于解决产物提纯问题,因为挥发性的杂质随同产品一同被蒸出来,此时配以精馏的方法,则不但保障了产品的回收率,也保证了产品质量。应该注意,水蒸气蒸馏只是共沸蒸馏的一个特例,当采用其它溶剂时也可。

共沸蒸馏不仅适用于产品分离过程,也适用于反应物系的脱水、溶剂的脱水、产品的脱水等。它比分子筛、无机盐脱水工艺具有设备简单、操作容易、不消耗其它原材料等优点。例如:在生产氨噻肟酸时,由于分子中存在几个极性的基团氨基、羧基等,它们能够和水、醇等分子形成氢键,使氨噻肟酸中存在大量的游离及氢键的水,如采用一般的真空干燥等干燥方法,不仅费时,也容易造成产物的分解,这时可采用共沸蒸馏的方法将水分子除去,具体的操作为将氨噻肟酸与甲醇在回流下搅拌几小时,可将水分子除去,而得到无水氨噻肟酸。又比如,当分子中存在游离的或氢键的甲醇时,可用另外一种溶剂,例如正己烷、石油醚等等,进行回流,可除去甲醇。可见共沸蒸馏在有机合成的分离过程中占有重要的地位。

(12)超分子的方法,利用分子的识别性来提纯产物。 (13)脱色的方法

一般采用活性炭、硅胶、氧化铝等。活性炭吸附非极性的化合物与小分子的化合物,硅胶与氧化铝吸附极性强的与大分子的化合物,例如焦油等。对于极性杂质与非极性杂质同时存在的物系,应将两者同时结合起来。比较难脱色的物系,一般用硅胶和氧化铝就能脱去。对于酸碱性化合物的脱色,有时比较难,当将酸性化合物用碱中和形成离子化合物而溶于水中进行脱色时,除了在弱碱性条件下脱色一次除去碱性杂质外,还应将物系逐渐中和至弱酸性,再脱色一次除去酸性杂质,这样就将色素能够完全脱去。同样当将碱性化合物用酸中和至弱碱性溶于水进行脱色时,除了在弱酸性条件下脱色一次除去酸性杂质外,还应将物系逐渐中和至弱碱性,再脱色一次除去碱性杂质。

有机合成心得(6)-合成工艺创新

合成工艺创新是有机合成中一个很重要得方面,涉及到许多方面的问题,本文只是从合成的角度来探讨一下。最好的合成工艺创新,应该首先从创造性地合成路线入手,如果您研究的合成路线,在国内外没有报道,那么就是最先进的,如果成本很低,就会取得巨大的成功,相反,只是重复国内外的文献,那么,你的工艺也就跟别人没啥两样,别人可能比你做的更好。遗憾的是,目前国内的企业大多是重复国外的文献专利来组织开发生产的,因此工艺没有创造性,多家的企业生产工艺雷同,商场上互相压价,最后拼的个鱼死网破,多败具伤。这样的企业没有前途,只能一味的开发新的产品,起初市场很小时,利润较高,等到别人也开发成功时,利润迅速降低,最后陷入恶性竞争。这是中国化工企业目前的状态。

怎样进行合成路线创新?首先,进行详细的文献调研,掌握文献中各种合成路线,详细分析每条路线的优缺点,从而设想出自己的合成路线。第二,参考同系列产品的合成路线,有时,可以从同系列产品的合成路线得到借鉴。第三,搜索该产品的中间体,就可知道目前国内外的合成路线。这时就可以设计自己的新的合成路线了。第四,在目前的合成路线基础上,进行优化,改变价格高的原料为价格低的原料,例如,如反应中用氢化钠作为碱,则可尝试采用氢氧化钠,氢氧化钾等便宜的碱代替。第五,如果有一部反应的收率很低,那么该步反应就是你的公关对象,通过优化反应条件,获得较高收率,那你就取得了成功。当然这需要扎实的基本功和成功地经验。平常多看一些合成路线的资料对你是很有帮助的。

有机合成心得(7)-工艺优化方法学

1.合成工艺的优化主要就是反应选择性研究

有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。

首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。

反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。

2.选择性研究的主要影响因素

提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。

(1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。

(2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。

3.定性反应产物

动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应采取不同的抑制方法。

(1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究其生成的机理,速度方程和对比选择性方程,并据此进行温度效应、浓度效应分析;(4)由对比选择性方程确定部分工艺条件,并据此设计获取活化能相对大小和反应级数相对高低的试验方按。(5)也应该找出最难除去的杂质的结构,进行(3),(4)的方法研究。

4.跟踪定量反应产物 在定分析的基础上,对同一实验不同时刻各组分的含量进行跟踪测试,根据跟踪测试结果认识影响因素,再根据影响因素调整实验方案。

(1)可在同一实验中考察原料、中间体、产物,各副产物在不同条件下的变化趋势,从一个实验中尽可能获取更多的信息,实验效率大大提高。

(2)根据实验过程中的新现象调整和修改预定方按,使每一具体实验的目标多元化,即可使每一次实验的目的在实验中调整和增加,从而提高工作效率和研究开发进度。

(3)将不同时刻、不同组分的相对含量,整理成表格或曲线,从数据表或曲线中观察不同组分的数量,各组分在不同阶段依不同条件的变化趋势和变化率,从而找出宏观动力学影响因素,并根据这些因素去调整温度、浓度因素,以提高选择性。这里的定量并非真正的含量,只是各组分的相对值。

5.分阶段研究反应过程和分离过程

大多数人习惯于每次实验部分都分离提纯产品并计算收率。然而,除非简单的实验外这是不科学的。

(1)研究开发的初始阶段,分离过程是不成熟的,很难估算分离过程损失,这样,所得产品不能代表反应收率。

(2)实验的最终结果是反应过程与分离过程的总结果,影响因素太多,考察某一影响因素太难。

(3)一个实验真正做到完成分离提纯的程度很难,往往后处理时间多于反应时间,若每个实验都做到提纯分离,则工作效率降低。

(4)为降低科研费用,往往进行微量制备,而微量制备的实验几乎不能完成全过程。比如精馏,没有一定数量就无法进行。 (5)反应过程中直接取反应液进行中控分析最接近于反应过程的在线测试,最能反映出过程的实际状态,对于某一因素的变化的影响也最敏感,应用起来方便。

(6)做好反应过程是分离过程研究的基础。副产物越少,则分离过程越简单。

总之,在研究开发的最初阶段,应先回避分离过程而仅研究反应过程。可以在反应过程中得到一系列的色谱分析谱图和定性分析结果,根据原料、中间体、产品、副产品出峰的相对大小来初步定量,根据不同反应温度条件下不同组分的消涨来判断活化能的相对大小;根据副产物结构机不同的加料方式引起的副产物的消涨来判断活性组分的反应级数的相对高低。从理论到实践实现了动力学所要求的温度效应、浓度效应,再实现最大转化率,最后研究分离过程。这是一种循序渐进的、条理清晰的、理性的和简单化的工艺优化程序。

6.程序升温法确定温度范围

程序升温法是另一种反应温度的优化方法。其是在实验的最初阶段采用的。一般采用微量制备,物料以满足分析测试即可。为使放热反应的温度可控制,反应物料不必成比例(一般使某一种原料微量)。

在跟踪测试的基础上,采取程序升温大方法,往往一次实验即可测得反应所适合的温度范围,并可得到主反应与某一特定副反应活化能的相对大小和确认反应温度最佳控制条件。程序升温过程如图所示。

在T1温度下反应一段时间,取样a分析;若未发生反应,则升温至T2后反应一段时间后取样b分析;若发现反应已经发生,但不完全,则此时应鉴别发生的是否是主反应;若在温度T2下先发生的是主反应,则继续取样c分析;若反应仍不完全,升温至T3后反应一段时间取样d分析;若仍不完全则升温至T4,取样e分析,直至反应结束。

若样品d中无副产物,e中有副产物,则主反应的活化能小于副反应的活化能,反应温度为T4以下,再在T3上下选择温控范围。

若样品b中发生的是副反应,则应立即升温,并适时补加原料,边升温边取样f,g,h等,直至主反应发生。若主反应在较高温度时发生了,说明主反应的活化能大于副反应的活化能,反应应避开较低温度段。此时的程序升温过程应在缺少易发生副反应的那种主原料下进行,即预先加热反应底物至一定温度,再滴加未加入的原料,后滴加的原料用溶剂稀释效果更加。

可见,一次程序升温过程便可基本搞清主副反应活化能的相对大小和反应温度控制的大致范围,取得了事半功倍的效果。 在低温有利于主反应的过程中,随着反应的进行,反应物的浓度逐渐降低,反应速度逐渐减慢,为保持一定的反应速度和转化率以保证生产能力,就必须逐渐缓慢升温以加速化学反应的进行,直至转化率达到目标,这才实现最佳控制。

7.调节加料法

滴加的功能有两个,(1)对于放热反应,可减慢反应速度,使温度易于控制。(2) 控制反应的选择性,对每种原料都应采取是滴加还是一次性加入对反应选择性影响的研究。如果滴加有利于选择性,则滴加时间越慢越好。如不利于选择性的提高,则改为一次性的加入。

温度效应、浓度效应对反应选择性的影响是个普遍存在的一般规律,但在不同的具体实例中体现出特殊性,有时某一种效应更重要,而另一种效应不显著。因此必须具体问题具体分析,在普遍的理论原则指导下解决特殊的问题。

8.动力学方法的工艺优化次序

有了上面所述的方法,一般的工艺优化需要按以下的步骤进行。 1)反应原料的选择

反应原料的选择除了考虑廉价易得的主要因素外,另一个必须考虑的因素是副产物的形成,所用的原料应该尽可能以不过多产生副反应为准,原料的活性应该适当,活性高了相应的副反应形成的速度也就加大了,原料的反应点位应该尽可能少,以防进行主反应的同时进行副反应。以阿立哌唑的中间体合成为例。不同的原料产生不同的副反应从而形成不同的杂质,原料的性质不同,产生杂质的数量也就不同。图1 为以1,4-二溴丁烷为原料反应形成的杂质。在该实例中,a 是所需要的中间体,但因为1,4-二溴丁烷及另一原料的双重反应部位,产生了大量的杂质,给后处理带来了极大的麻烦。因而是不合适的。但是如以4-溴丁醇为原料(图2),则反应形成的杂质数量大大减少,给提纯及后续反应带来极大的方便。可见原料的选择对抑制副反应也有者重要的作用。

(2)溶剂的选择

主要根据反应的性质和类型来考虑:非质子极性溶剂:乙腈、N,N-二甲基甲酰胺、丙酮、N,N-二甲基乙酰胺、N-甲基吡咯烷酮;质子极性溶剂:水、甲醇、乙醇、异丙醇、正丁醇等;极性非常小的溶剂:石油醚、正己烷、乙酸乙酯、卤代烃类、芳香烃类等。

(3)重复文献条件,对反应产物定性分析。

(4)变化反应温度确认主副反应活化能的相对大小并确定温度控制曲线。 (5)根据副产物的结构改变加料方式,以确定主副反应对某一组分的反应级数的相对大小并确定原料的加料方式。此时反应选择性已达最佳。

(6)选择转化率的高低。力求转化完全或回收再用。此时反应收率最佳。 (7)选择简单的分离方式并使分离过程产物损失最小。此时优化的工艺大到了。

(8)酸碱强度的影响:强酸还是弱酸,强碱还是弱碱,有机酸还是有机碱。在质子性溶剂中一般选择无机碱,因为此时无机碱一般溶于这类溶剂中使反应均相进行,例如氢氧化钠、氢氧化钾溶于醇中,但是弱无机碱碳酸钠等不容于该类溶剂,须加入相转移催化剂;在非质子极性溶剂中一般选择有机碱,此时反应为均相反应,若选择无机碱一般不溶于该类溶剂,也需加入加入相转移催化剂。

(9)催化剂的影响:相转移催化剂,无机盐,路易斯酸,路易斯碱。

推荐第4篇:有机合成教案

有机合成教案

高雪梅

【教学目标】

1.掌握各类有机物的性质、反应类型及相互转化。 2.了解有机合成过程,把握有机合成遵循的基本原则。 3.初步学会设计合理的有机合成路线。 【教学重点】

1、复习各类有机物的性质、反应类型、相互转化关系,构建知识网

2、初步学会设计合理的有机合成路线 【教学难点】

逆向合成的思维方法 【教学方法】

创设情境

探究讨论

归纳小结

演绎推理 【教学过程】

【课程导入】合成材料的出现,使人类摆脱了只能依靠天然材料的历史,通过本节课的学习,同 学们可以了解有机合成的一般方法和有机合成路线的设计程序,进一步掌握烃的衍生物之 间的转化关系,深化“结构决定性质”的理论。 【新课】:第四节 有机合成

一、有机合成的过程

1、有机合成定义;有机合成是利用简单、易得的原料,通过有机反应,生成具有特定结构和功能的有机化合物。

2、有机合成的任务;包括目标化合物分子骨架构建和官能团的转化。

3、有机合成的思路:就是通过有机反应构建目标分子的骨架,并引入或转化所需的官能团。

4、有机合成的关键—碳骨架的构建。

二、碳链骨架的构建

1、增长:有机合成题中碳链的增长,一般会以信息形式给出,常见方式为有机物与HCN的反应以及不饱和化合物间的加成、聚合等。

2、变短:如烃的劣化裂解,某些烃(如笨同系物、烯烃)的氧化、羧酸盐脱羧反应等。

3、成环:通过形成酯基成环、肽键成环、醚键成环等。

三、官能团的引入

1、C=C的引入

①卤代烃的消去

②醇的消去

③炔烃与氢气 1:1 加成

2、—OH的引入

①烯烃与水的加成反应;②醛(酮)与氢气的加成反应;③卤代烃的水解反应;④酯的水解反应。

3、—X的引入

①烷烃或苯的同系物与卤素单质的取代反应;②不饱和烃与HX或X2的加成反应;③醇或酚的取代反应。

拓展1:引入-CHO,某些醇氧化,烯氧化,炔水化 引入-COOH,醛氧化,苯的同系物被强氧化剂氧化,羧酸盐酸化,酯酸性水解 引入-COO-,酯化反应

拓展2:有机化学反应类型有取代反应、加成反应、消去反应、氧化反应、还原反应以及 加聚反应

四、有机合成遵循的原则

1、起始原料要廉价、易得、低毒、低污染——通常采用4个C以下的单官能团化合物和单取代苯。

2、尽量选择步骤最少的合成路线——以保证较高的产率。

3、满足“绿色化学”的要求。

4、操作简单、条件温和、能耗低、易实现。

5、尊重客观事实,按一定顺序反应。.

五、有机合成的方法

1、正向合成分析法

此法采用正向思维方法,从已知原料入手,找出合成所需要的直接或间接的中间产物,逐步推向目标合成有机物。

探究学习一:以乙烯为基础原料,无机原料可以任选,合成下列物质: CH3CH2OH、CH3COOH、CH3COOCH2CH3 探究学习二:卡托普利的合成的产率计算

2、逆合成分析法

又称逆推法,其特点是从产物出发,由后向前推,先找出产物的前一步原料(中间体),并同样找出它的前一步原料,如此继续直至到达简单的初始原料为止。 探究学习三:由乙烯合成乙二酸二乙酯 【课堂练习】 【课堂小结】 【板书设计】 第四节 有机合成

一、有机合成的过程

二、碳链骨架的构建

三、官能团的引入

四、有机合成遵循的原则

五、有机合成的方法 逆向合成分析法

推荐第5篇:有机合成小结

有机合成小结

第一部分 碳架的构造 1.碳碳键的形成 碳碳单键:

1.2.3.4.5.金属有机化合物与卤代烷的偶联反应; 金属有机化合物与羰基,氰基的加成反应; 金属有机化合物与环氧化合物的开环反应; 各类缩合反应;

炔烃,芳环,酮,酯,β-二羰基化合物烷基化和酰基化反应(Friedel Crafts反应)

6.7.8.9.酮的双分子还原; 环加成反应; 烯烃的羰基化反应

卡宾插入或类卡宾插入(如Simmons-Smith反应)

碳碳双键:

10.Wittig反应;

11.羟醛缩合;醛的缩合;酮的缩合;

12.Clasin-Schmit

缩合(插烯反应)

反应; 13.Horner-Emmons14.Wurtz 反应

2.碳链的切断和缩短 1.2.芳环侧链氧化(与苯环链接的碳上含有H);

烯烃,炔烃,邻二醇的氧化切断生成醛、酮、酸(如臭氧氧化烯烃,高锰酸钾氧化烯烃或炔烃等)

3. 卤仿反应;

3.成环或开环 三元环 :

1.2.烯烃与卡宾的反应

1,3-二卤代物脱X的反应;

五元环:

1.2.1,6-二元醛酮的分子内缩合

己二酸脱羧成环

六元环:

1.2.3.Diels-Alder反应

苯环的还原

Michael加成+羟醛缩合(Robinson成环反应)

更多碳原子数的环:

1.2. 卡宾插入;

分子内的羟醛缩合;

4.碳架的重排

1.2.Wagner-Meerwein重排;

频那醇重排 3.4.5.6.7.8.9.异丙苯氧化重排

Baeyer-Villiger重排

Clasin重排

Fries重排

Cope重排

Favorsiki重排

Smiles重排

Richter重排

重排 10.Von 11.Tiffenau-Demyanov12.二苯二乙醇重排

5.杂环化合物的形成

1.2. 烯烃用过氧酸氧化成环

烯烃用次卤酸加成消去成环

第二部分 官能团的生成 烷烃、烯烃略 炔烃:

1.2. 邻二卤代烃脱卤化氢

邻氨基苯甲酸重氮化

卤代烃:

1.2.醇的卤代

不饱和烃、三元环和卤化氢的加成 3.4.5.6.7.8.9.不饱和烃,三元环与卤素的加成

烯烃与次卤酸的加成

环氧化合物与氢卤酸的加成

芳烃和烷烃的卤代

烯丙基化合物和苄式芳烃的卤代(NBS)

卤素交换反应(Finkelstein反应)

醛酮的阿尔法卤代

Lucas试剂反应 10.与

醇:

1.2.3.4.5.6.7.8.9.烯烃的催化水合

烯烃的硼氢化-氧化

烯烃的羟汞化还原

烯烃与次卤酸的加成

烯烃被碱性高锰酸钾、四氧化锇氧化

环氧化合物的开环反应

卤代烃的水解

有机金属试剂与醛酮的加成(如Grignard试剂)

醛酮的还原(如用Na与液氨还原)

反应(醛酮的歧化反应) 10.Cannizarro

酚的制备

1.芳磺酸盐碱溶法 2.3.4. 芳基卤代烃的水解

芳烃的空气氧化

芳胺的胺基重氮化

醚的制备

1.2.3.4.5.6.7.醇分子间脱水

卤代烃与醇钠和酚钠的反应

烯烃的羟汞化-去汞反应

Williamson合成法

醇与烯烃的加成

醇与炔烃的加成

烯烃的环氧化

醛酮的制备

1.2.3.4.醇的氧化

邻二醇的高碘酸氧化(得到两分子醛或酮)

烯烃的臭氧化

烯烃的羰基合成反应(烯烃与一氧化碳和氢气在高压和催化剂作用下生成醛或者酮的反应)

5.6.7.8.炔烃的水合

炔烃的硼氢化氧化反应

芳香族的酰基化反应

偕二卤代烃的水解 9.羟醛缩合

10.安息香缩合

11.频那醇重排

12.Gattermann-Koch13.Reimer-Tiemann14.Vilsmer-Hacck15.Gattermann16.Hoesch

反应

反应

反应

反应

反应

氧化 17.Oppenauer

第三部分 官能团的保护

1.2.3. 羰基可以先与醇缩合成缩醇参与反应体系后水解

羟基可以先形成醚,酯缩醛等有机物加以保护

酚羟基可以通过苯环上添加一些定位基防止被氧化

官能团活化

1.2. 可以在逆合成分析加入酸酯基增加羰基阿尔法位的氢的活性

使用TsCl酰化羟基增加-OR基团的离去性

推荐第6篇:有机合成总结

七、高分子合成

十、常见题型

有机推断突破口

有机推断寻找突破口

近几年高考中常见题型有:

(1)高分子化合物与单体的相互判断,常以选择题的形式出现。这类试题可以较好地测试有机反应、有机物结构等多方面的知识,也成了高考的保留题型之一,复习中一定要加以重视。

(2)有机综合推断题。卤代烷烃能发生消去反应生成烯烃、发生取代反应生成醇、醇跟烯烃也能相互转化,这种转化关系可表示为:

理解这一转化关系时要注意,理论上讲所有的卤代烷烃和醇都能发生取代反应,但卤代烃或醇的消去反应有一定结构要求,如一氯甲烷、ClCH2C(CH3)3等不能发生消去反应。新教材中增加了卤代烃这一节后,卤代烷烃、单烯烃、一元醇之间的\"三角\"转化反应也属于有机化学的主干知识,近几年高考试题中这一转化关系常常出现在有机框图推断题当中。

[知识体系和复习重点]

1.有机物相互网络图:

2.醇、醛、酸、酯转化关系:

醇经氧化可转化醛、醛被氧化生成酸、羧酸跟醇反应产物是酯,这个转化关系的本质可表示为(其中X、R代表某种基团):

这是有机化学中的主干知识,是高考有机框图推断题出现频度最大\"题眼信息\"之一。

(一)、解题策略

解有机推断题的一般方法是:

1、找已知条件最多的,信息量最大的。这些信息可以是化学反应、有机物性质(包括物理性质)、反应条件、实验现象、官能团的结构特征、变化前后的碳链或官能团间的差异、数据上的变化等等。

2、寻找特殊的或唯一的。包括具有特殊性质的物质(如常温下处于气态的含氧衍生物--甲醛)、特殊的分子式(这种分子式只能有一种结构)、特殊的反应、特殊的颜色等等。

3、根据数据进行推断。数据往往起突破口的作用,常用来确定某种官能团的数目。

4、根据加成所需的量,确定分子中不饱和键的类型及数目;由加成产物的结构,结合碳的四价确定不饱和键的位置。

5、如果不能直接推断某物质,可以假设几种可能,结合题给信息进行顺推或逆推,猜测可能,再验证可能,看是否完全符合题意,从而得出正确答案。

推断有机物,通常是先通过相对分子质量,确定可能的分子式。再通过试题中提供的信息,判断有机物可能存在的官能团和性质。最后综合各种信息,确定有机物的结构简式。其中,最关键的是找准突破口。 一.根据反应现象推知官能团

1.能使溴水褪色,可推知该物质分子中可能含有碳碳双键、三键或醛基。

2.能使酸性高锰酸钾溶液褪色,可推知该物质分子中可能含有碳碳双键、三键、醛基或为苯的同系物。

3.遇三氯化铁溶液显紫色,可推知该物质分子含有酚羟基。4.遇浓硝酸变黄,可推知该物质是含有苯环结构的蛋白质。 5.遇水变蓝,可推知该物质为淀粉。

6.加入新制氢氧化铜悬浊液,加热,有红色沉淀生成;或加入银氨溶液有银镜生成,可推知该分子结构有即醛基。则该物质可能为醛类、甲酸和甲酸某酯。 7.加入金属Na放出,可推知该物质分子结构中含有。 8.加入溶液产生气体,可推知该物质分子结构中含有。

9.加入溴水,出现白色沉淀,可推知该物质为苯酚或其衍生物。二.根据物质的性质推断官能团

能使溴水褪色的物质,含有C=C或或;能发生银镜反应的物质,含有;能与金属钠发生置换反应的物质,含有-OH、-COOH;能与碳酸钠作用的物质,含有羧基或酚羟基;能与碳酸氢钠反应的物质,含有羧基;能水解的物质,应为卤代烃和酯,其中能水解生成醇和羧酸的物质是酯。但如果只谈与氢氧化钠反应,则酚、羧酸、卤代烃、苯磺酸和酯都有可能。能在稀硫酸存在的条件下水解,则为酯、二糖或淀粉;但若是在较浓的硫酸存在的条件下水解,则为纤维素。 三.根据特征数字推断官能团

1.某有机物与醋酸反应,相对分子质量增加42,则分子中含有一个-OH;增加84,则含有两个-OH。缘由-OH转变为。

2.某有机物在催化剂作用下被氧气氧化,若相对分子质量增加16,则表明有机物分子内有一个-CHO(变为-COOH);若增加32,则表明有机物分子内有两个-CHO(变为-COOH)。 3.若有机物与反应,若有机物的相对分子质量增加71,则说明有机物分子内含有一个碳碳双键;若增加142,则说明有机物分子内含有二个碳碳双键或一个碳碳叁键。 四.根据反应产物推知官能团位置

1.若由醇氧化得醛或羧酸,可推知-OH一定连接在有2个氢原子的碳原子上,即存在;由醇氧化为酮,推知-OH一定连在有1个氢原子的碳原子上,即存在; 若醇不能在催化剂作用下被氧化,则-OH所连的碳原子上无氢原子。 2.由消去反应的产物,可确定-OH或-X的位置

3.由取代反应产物的种数,可确定碳链结构。如烷烃,已知其分子式和一氯代物的种数时,可推断其可能的结构。有时甚至可以在不知其分子式的情况下,判断其可能的结构简式。 4.由加氢后碳链的结构,可确定原物质分子C=C或的位置。 五.根据反应产物推知官能团的个数

1.与银氨溶液反应,若1mol有机物生成2mol银,则该有机物分子中含有一个醛基;若生成4mol银,则含有二个醛基或该物质为甲醛。

2.与金属钠反应,若1mol有机物生成0.5mol,则其分子中含有一个活泼氢原子,或为一个醇羟基,或酚羟基,也可能为一个羧基。

3.与碳酸钠反应,若1mol有机物生成0.5mol,则说明其分子中含有一个羧基。4.与碳酸氢钠反应,若1mol有机物生成1mol,则说明其分子中含有一个羧基。 六.根据反应条件推断反应类型

1.在NaOH水溶液中发生水解反应,则反应可能为卤代烃的水解反应或酯的水解反应。2.在氢氧化钠的醇溶液中,加热条件下发生反应,则一定是卤代烃发生了消去反应。 3.在浓硫酸存在并加热至170℃时发生反应,则该反应为乙醇的消去反应。

4.能与氢气在镍催化条件下起反应,则为烯、炔、苯及其同系物、醛的加成反应(或还原反应)。

5.能在稀硫酸作用下发生反应,则为酯、二糖、淀粉等的水解反应。6.能与溴水反应,可能为烯烃、炔烃的加成反应。 (二)、常见题型归纳

1、给出合成路线的推断题(即框图题)

此类题是最为常见的有机推断题。除题干给出新化学方程式、计算数据、实验现象和分子式或结构式外,大部分信息均集中在框图中。

解答这类题时,要紧紧抓住箭头上下给出的反应条件,结合题给信息,分析每个代号前后原子数、碳干和官能团变化情况,找准突破口。

例1 已知:烷基苯在酸性高锰酸钾的作用下,侧链被氧化成羧基,如:

化合物A~E的转化关系如图a所示,已知:A是芳香化合物,只能生成3种一溴化合物;B有酸性;C是常用增塑剂;D是有机合成的重要中间体和常用化学试剂(D也可由其他原料催化氧化得到);E是一种常用的指示剂酚酞,结构如图b。

写出A、B、C、D的结构简式。

解析:本题中信息量最大的应是A:①分子式为且为芳香化合物(只含C、H,故为芳香烃);②为烷基苯(题给信息迁移);③分子中等效H原子数为3(只能生成3种一溴化合物)。由此可推知A的结构简式为:;再依题给氧化过程即可得出B为:;根据题给C的分子式和箭头上的条件推断,C应是B与正丁醇发生酯化反应生成的二元酯,则C的结构简式为:;B到D的反应条件教材中未出现过,题中也无此信息,但我们可从D比B少1个分子以及D与苯酚反应生成的E的结构特点,反推出D的结构为:。

2、由计算数据推断分子式,由性质推断结构简式

例2 A是一种含碳、氢、氧三种元素的有机化合物。已知:A中碳的质量分数为44.1%,氢的质量分数为8.82%;A只含有一种官能团,且每个碳原子上最多只连一个官能团;A能与乙酸发生酯化反应,但不能在两个相邻碳原子上发生消去反应。请填空:

(1)A的分子式是____________,其结构简式是________________________。

(2)写出A与乙酸反应的化学方程式_________________________________。

(3)写出所有满足下列3个条件的A的同分异构体的结构简式:①属直链化合物;②与A具有相同的官能团;③每个碳原子上最多只连一个官能团。这些同分异构体的结构简式是________________________。

解析;(1)根据题给数据:A中碳的质量分数为44.1%,氢的质量分数为8.82%,可得氧元素的质量分数为47.08%,则有:

即A的最简式为,此分子中C原子数已达最大程度饱和,故也为A的分子式。

题中给出的有助于书写A的结构简式的信息有:①A只含有一种官能团且能与乙酸发生酯化反应(含);②不能在两个相邻碳原子上发生消去反应(相邻C原子间不能都有H原子);③每个碳原子上最多只连一个官能团(4个分别连在4个C原子上)。由此写出A的结构简式为:

(2)由A的结构简式,可知A为多元醇 ,与乙酸反应的化学方程式为:

(3)根据题给条件,写出A的同分异构体为:

3、从结构推断物质所具有的性质、所含官能团种类、有机物类别

这类有机题的推断常常出现在选择题中。解答的最佳方法是先整体观察所含元素及各原子结合方式,再切割成\"块\"并逐\"块\"分析其特征,根据各\"块\"找出官能团及其对应的性质。

例3 苏丹红是很多国家禁止用于食品生产的合成色素(结构简式如图)。下列关于苏丹红说法错误的是( )。

A.分子中含一个苯环和一个萘环

B.属于芳香烃

C.能被酸性高锰酸钾溶液氧化

D.能溶于苯

解析:首先整体观察给出的有机物的结构,可以得出该有机物含C、H、O、N元素,不属于烃类,故B错。然后将所给有机物结构式,分成\"块\",即:

结合题给选项,可以得出A、C正确;根据相似相溶原理,D项也正确。 答案:B (三) 有机合成

有机合成题是近年来高考化学的难点题型之一,有机合成题的实质是利用有机物的性质,进行必要的官能团反应。解答该类题时,首先要正确判断题目要求合成的有机物属于哪一类?含哪些官能团,再分析原料中有何官能团,然后结合所学过的知识或题给的信息,寻找官能团的引入、转换、消去等方法,完成指定合成。 常见官能团的引入:

a、引入C─C:C═C或C≡C与H2加成; b、引入C═C或C≡C:卤代烃或醇的消去; c、苯环上引入

d、引入─X:①在饱和碳原子上与X2(光照)取代;②不饱和碳原子上与X2或HX加成;③醇羟基与HX取代。

e、入─OH:①卤代烃水解;②醛或酮加氢还原;③C═C与H2O加成。 f、入─CHO或酮:①醇的催化氧化;②C≡C与H2O加成。 g、引入─COOH:①醛基氧化;②─CN水化;③羧酸酯水解。

h、引入─COOR:①醇酯由醇与羧酸酯化;②酚酯由酚与羧酸酐酯化。

i、引入高分子:①含C═C的单体加聚;②酚与醛缩聚、二元羧酸与二元醇(或羟基酸)酯化缩聚、二元羧酸与二元胺(或氨基酸)酰胺化缩聚。 ③有机信息迁移题

有机信息迁移题是指在题目中向考生临时交代一些没有学习过的信息内容,在于考查学生的思维、自学、观察等能力,着重考查学生的潜能。有机信息题所给的信息往往很新颖,要求考生自己思考开发、筛选。有机信息题往往以推断、合成题的形式出现。 典型例题:

[例1]04年江苏考)(10分)环己烯可以通过丁二烯与乙烯发生环化加成反应得到:

(也可表示为:+║→) 丁二烯 乙烯 环已烯

实验证明,下列反应中反应物分子的环外双键比环内双键更容易被氧化:

现仅以丁二烯为有机原料,无机试剂任选,按下列途径合成甲基环己烷:

请按要求填空:

(1)A的结构简式是 ;B的结构简式是 。 (2)写出下列反应的化学方程式和反应类型: 反应④ ,反应类型 反应⑤ ,

[例2].(05江苏高考题)6-羰基庚酸是合成某些高分子材料和药物的重要中间体。某实验室以溴代甲基环己烷为原料合成6-羰基庚酸,请用合成反应流程图表示出最合理的合成方案(注明反应条件)。

提示:①合成过程中无机试剂任选,②如有需要,可以利用本练习中出现过的信息,③合成反应流程图表示方法示例如下:

[例3] 通常情况下,多个羟基连在同一个碳原子上的分子结构是不稳定的,容易自动失水,生成碳氧双键的结构:

下面是9个化合物的转变关系:

(1)化合物①是__________,它跟氯气发生反应的条件A是__________。

(2)化合物⑤跟⑦可在酸的催化下去水生成化合物⑨, ⑨的结构简式是:_______;名称是______________________________________。

(3)化合物⑨是重要的定香剂,香料工业上常用化合物⑧和②直接合成它。写出此反应的化学方程式。

[解析]试题中的新信息和转化关系图给解题者设置了一个新的情景,但从其所涉及的知识内容来看,只不过是烃的衍生物中最基础的醇、醛、酸、酯的性质和质量守恒定律等知识内容。

题给转化关系图虽不完整,但还是容易得出①是甲苯,②、③、④是甲苯中甲基上氢原子被氯取代后的产物,进而可推知②是C6H5CH2Cl、④C6H5CCl

3、⑦是C6H5COOH。所以⑨是苯甲酸苯甲酯。苯甲酸的酸性比碳酸强,所以苯甲酸可以跟碳酸钠反应生成苯甲酸钠,反应②是:苯甲酸钠+苯甲醇→苯甲酸苯甲酯,根据质量守恒定律可得出该反应的另一种产物应该是氯化钠。答案为:

(1)甲苯,光照。(2)C6H5COOCH2C6H5,苯甲酸苯甲酯。 (3)

推荐第7篇:有机合成听课反思

《有机合成》听课反思

2015年5月18日,我有幸到华南师范大学附属中学听了该校重点班的《有机合成》一课,在听课过程中发现了许多课堂教学的智慧,有了很多收获,以下是我的总结与反思。

首先是课堂的总结,老师生动有趣并十分清晰地为学生讲授了《有机合成》这节课,首先老师对本节课的定位为有机合成的第二课时,是在对有机物进行完整学习,并对官能团的转化进行复习总结之后进行的一节课。

课程分为以下5部分:

1、引入:老师以三个小标题——“有机合成有用吗?”“有趣吗?”和“化学家眼中的有机合成”,从有机合成的实际意义和趣味性引入本课。不但体现化学的正面意义,更增加了课堂的趣味性,提高学生的学习兴趣。

2、初识有机合成:让同学们阅读课本,自行了解有机合成的任务,进行过渡,讲解有机合成的概念和任务的讲解,让学生初识有机合成。

3、以习题为突破口深入学习有机合成。以案例一让学生复习回顾官能团的转化,前三道题让学生体会一步到位合成的方法;最后一题是体验分步合成的过程,初步学习有机合成的方法——正向合成分析法;

案例二通过乙烯合成乙酸乙酯,进一步熟识有机合成的方法,即①观察目标产物的结构,②判断断键的位置,③确定路线;同时让学生掌握合成路线的过程(基本原理→中间体→目标产物)和书写方法:;

过渡:由科里故事引入“逆向合成分析法”,并将此方法应用到苯甲酸苯甲酯的合成中,讲解案例三的苯甲酸苯甲酯的多条合成路线,让学生掌握推导的反应依据,同时学会评价和判断路线的优缺点,选择合适的合成路线,体会有机合成的原则。

将案例四作为课堂习题,让学生体会高考常考题目信息合成题,将官能团转化的知识和有机合成的方法和原则运用到此练习题中,是一个综合素质体现的题目;

4、课堂总结:对本节课学习的有机合成的概念、依据和思维方法等进行总结。

5、习题巩固:通过习题让学生巩固本节课的有机合成的方法:顺逆结合、紧抓条件、判断断键位置。

由教学流程可以看出,本次课比较生动有趣,而且条理十分清晰,层次分明,层层递进;虽然课堂知识容量很大,而且作为新课,难度颇大,但是因为老师是将这节课放在官能团的转化复习课之后,所以学生有一定的知识基础,而且也很好的结合了重点班学生主体的特点,在授课时做到主次分明,将一些学生能自学的概念简单带过,重点放在学生的思维方式培养和综合能力提高上,也可以说是因材施教。

虽然这次课我在课前也结合了书上的知识进行备课,但是听完这节课后,我可谓受益匪浅,对我自己的课堂教学做成如下反思:

1.课堂导入,要善于引用正面的例子和一些生动有趣的例子,引起学生对化学的兴趣;

2.课堂上所安排的习题要善于与高考接轨,例如对于有机合成这节课来说,有机合成路线的书写和设计在高考中是很少考核的,考点一般问看懂有机合成的要求和一些信息,善于应用官能团的转化等,所以课堂上的习题应该增强这方面的训练;

3.要善于在课堂的习题练习中发现学生对知识的熟悉程度和发现学生的不足,纠正学生的定式思维,并要求学生对不熟悉的知识进行归纳总结;

4.在习题的选择与设置方面,要求层次分明,重难点突出,这就要求我们作为老师要善于积累素材,建立素材库;

5.因材施教:善于根据学生的特点设计课堂教学内容,对于普通班的学生主要要注重基础知识的教学,如方程式的书写和记忆、概念的理解和掌握、性质的记忆等,而重点班的学生更重要的是对学生们思维方法的培养;同时要根据学生的特点把握好课堂的容量,对于好一点的学生可以适当的增加课堂容量;

6.根据实际情况调节课堂的教学方式和课堂进度。如根据课时需要可以设计相应的学案等教具,也可以根据学生们课堂的表现在课堂上灵活的调整课程的容量多少,尽量做到不拖堂。

以上是我听了有机合成这门课后的学习和反思,也希望自己能汲取经验,不断进步。

推荐第8篇:有机合成复习教案

有机合成

教学目标

知识技能:通过复习有机合成,使学生掌握有机物的官能团间的相互转化以及各类有机物的性质、反应类型、反应条件、合成路线的选择或设计。会组合多个化合物的有机化学反应,合成指定结构简式的产物。

能力培养:培养学生自学能力、观察能力、综合分析能力、逻辑思维能力以及信息的迁移能力。

科学思想:通过精选例题,使学生认识化学与人们的生活是密切相关的,我们可以利用已学的知识,通过各种方法合成人们需要的物质,使知识为人类服务,达到对学生渗透热爱化学、热爱科学、热爱学习的教育。

科学品质:激发兴趣和科学情感;培养求实、创新、探索的精神与品质。 科学方法:通过组织学生讨论解题关键,对学生进行辩证思维方法的教育,学会抓主要矛盾进行科学的抽象和概括。

重点、难点

学会寻找有机合成题的突破口。学会利用有机物的结构、性质寻找合成路线的最佳方式。

教学过程设计

教师活动

【复习引入】上节课我们主要复习了有机反应的类型,与有机物合成有关的重要反应规律有哪几点呢?

【追问】每一规律的反应机理是什么? (对学生们的回答评价后,提出问题) 【投影】

①双键断裂一个的原因是什么?

②哪种类型的醇不能发生氧化反应而生成醛或酮?

③哪种类型的醉不能发生消去反应而生成烯烃? ④酯化反应的机理是什么?

⑤什么样的物质可以发生成环反应?对学生的回答进行评价或补充。 学生活动

思考、回忆后,回答:共5点。 ①双键的加成和加聚; ②醇和卤代烃的消去反应; ③醇的氧化反应;

④酯的生成和水解及肽键的生成和水解; ⑤有机物成环反应。 讨论后,回答。

积极思考,认真讨论,踊跃发言。

答:①双键的键能不是单键键能的两倍,而是比两倍略少。因此,只需要较少的能量就能使双键里的一个键断裂。

②跟—OH相连的碳原子与3个碳原子相连的醇一般不能被氧化成醛或酮; ③所在羟基碳原子若没有相邻的碳原子(如CH3OH)或相邻碳原子上没有氢原子[如(CH3)3CCH2OH]的醇(或卤代烃)不能发生消去反应而生成不饱和烃;

④酯化反应的机理是:羧酸脱羟基,醇脱氢。

⑤能发生有机成环的物质是:二元醇脱水、羟基酸酯化、氨基酸脱水、二元羧酸脱水。 【提问】衡量一个国家的石油化工业发展水平的标志是什么?为什么? 回答:常把乙烯的年产量作为衡量一个国家石油化工发展水平的标志。

原因是:乙烯是有机化工原料,在合成纤维工业、塑料工业、橡胶工业、医药等方面得到广泛应用。

【评价后引入】今天我们来复习有机物的合成。 【板书】有机合成

【讲述】下面让我们一起做 ①从碳链化合物变为芳环化合物;

②官能团从“—C≡C—”变为“—Br”。由顺推法可知:由乙炔聚合可得苯环,如果由苯直接溴代,只能得到溴苯,要想直接得到均三溴苯很难。我们只能采取间接溴代的方法,即只有将苯先变为苯酚或苯胺,再溴代方可;而三溴苯酚中的“—OH”难以除去。而根据资料2可知,

可通过转化为重氮盐,再进行放氮反应除去。

板演方程式:

中的“—NH2”

【评价】大家分析得很全面,也很正确。现将可行方案中所涉及到的有关反应方程式按顺序写出。请两名同学到黑板来写,其他同学写在笔记本上。

【评价】两名学生书写正确。

【提问】对比这两道小题,同学们想一想,设计合成有机物的路线时,主要应从哪里进行思考呢?

分析、对比、归纳出:

①解题的关键是找出原料与产品的结构差别是什么,然后在熟知物质性能的基础上寻找解决问题的途径即合成路线。

②在解题时应考虑引入新的官能团,能否直接引入,间接引入的方法是什么?这些问题的解决就需要我们熟练掌握有机物的特征反应。

总之,设计时主要考虑如何形成被合成分子的碳干以及它所含有的官能团。在解题时,首先将原料与产品的结构从以下两方面加以对照分析:

一、碳干有何变化,

二、官能团有何变更。

【追问】一般碳干的变化有几种情况?

讨论后得出:4种。(1)碳链增长;(2)碳链缩短;(3)增加支链;(4)碳链与碳环的互变。

【板书】

一、有机合成的解题思路

将原料与产物的结构进行对比,一比碳干的变化,二比官能团的差异。

【讲述】人吃五谷杂粮,哪有不生病的。而伤风感冒是常见病。大家知道,阿斯匹林是一种常用药,它是怎样合成的呢?请看下题。

【投影】

例2 下图是以苯酚为主要原料制取冬青油和阿斯匹林的过程;

(1)写出①、②、③步反应的化学方程式,是离子反应的写离子方程式_________;

(2)B溶于冬青油致使产品不纯,用NaHCO3溶液即可除去,简述原因_________;

(3)在(2)中不能用NaOH也不能用Na2CO3的原因是____。 心想:阿斯匹林熟悉用途,是以什么为原料?怎样合成的? 认真读题、审题。 小组讨论,得出: (1)

(2)冬青油中混有少量

可用小苏打溶液除去的原因是:

,产物水相而与冬青油分层,便可用分液法分离而除杂。

可溶于(3)在(2)中不能用NaOH、Na2CO3的原因是酚羟基可与其发生反应,而使冬青油变质。

【评价】同学们分析合理,答案正确。

【提问】1mol阿斯匹林最多可和几摩氢氧化钠发生反应呢? 究竟哪一个是正确答案呢? 答案:甲:2mol; 乙:3mol。 结果:乙是正确的。

【讲述】阿斯匹林是一个“古老”的解热镇痛药物,而缓释长效阿斯匹林又使阿斯匹林焕发了青春,请大家思考下题。

【投影】

例3近年,科学家通过乙二醇的桥梁作用把阿斯匹林连接在高聚物上,制成缓释长效阿斯匹林,用于关节炎和冠心病的辅助治疗,缓释长效阿斯匹林的结构简式如下:

试填写以下空白:

(1)高分子载体结构简式为_________。

(2)阿斯匹林连接在高分子载体上的有机反应类型是_______。

(3)缓释长效阿斯匹林在肠胃中变为阿斯匹林的化学方程式是_______。 事物是在不断地发展的„„

分析:本题的关键词语是“通过乙二醇的桥梁作用把阿斯匹林连接在高聚物上”。缓释长效阿斯匹林可分为三部分:①高分子载体;②阿斯匹林;③作为桥梁作用的乙二醇。

在肠胃中变为阿斯匹林的反应,则属于水解反应,从而找到正确的解题思路。

答:(1)

(2)酯化反应(或取代反应) (3)

【引导】根据大家的分析,解决上题的关键是要找出题给信息中的关键词句。那么,我们将怎样寻找解题的“突破口”呢?

【板书】

二、有机合成的突破口(题眼) 【投影】

例4 有一种广泛用于汽车、家电产品上的高分子涂料,是按下列流程生产的。图中的M(C3H4O)和A都可以发生银镜反应,N和M的分子中碳原子数相等,A的烃基上一氯取代位置有三种。

试写出:(1)物质的结构简式:A____;M_____。物质A的同类别的同分异构体为_______。

(2)N+B→D的化学方程式_______.(3)反应类型:X_____;Y_________。 【组织讨论】请分析解题思路并求解。 思考新问题。

读题、审题、析题、解题。 讨论:

①本题的题眼是什么? ②为什么这样确定? ③怎样推断A的结构?

代表发言:①解本题的“突破口”即“题眼”是M的结构简式。

②因为本题中对M的信息量最丰富,M可以发生银镜反应,一定有醛基,M的结构式除—CHO外,残留部分是C2H3—,而C2H3—只能是乙烯基,则M的结构简式为CH2=CH—CHO。

③M经氧化后可生成丙烯酸CH2=CH—COOH,由反应条件和D的分子式组成可以推断D是B和N的酯化反应的产物,所以B+C3H4O2→C7H12O2→H2O。根据质量守恒原理,B的分子式为C4H10O,是丁醇,A为丁醛。根据A的烃基上一氯取代物有3种,则A的结构简式为CH3CH2CH2CHO,它的同类物质的同分异构体为:

CH3CH(CH3)CHO。 答案:

(1)A:CH3CH2CH2CHO M:CH2=CH—CHO

(2)CH3CH2CH2OH+CH2=CHCOOHCH2=CHCOOCH2CH2CH3+H2O (3)X:加成反应 Y:加聚反应

【评价、总结】找解题的“突破口”的一般方法是: 【板书】①信息量最大的点; ②最特殊的点; ③特殊的分子式; ④假设法。

归纳:①找已知条件最多的地方,信息量最大的;②寻找最特殊的——特殊物质、特殊的反应、特殊颜色等等;③特殊的分子式,这种分子式只能有一种结构;④如果不能直接推断某物质,可以假设几种可能,认真小心去论证,看是否完全符合题意。

【反馈练习】 【投影】

例5 化合物C和E都是医用功能高分子材料,且组成中元素质量分数相同,

均可由化合物A(C4H8O3)制得,如下图所示。B和D互为同分异构体。

试写出:化学方程式 A→D_____,B→C____。

反应类型:A→B____,B→C____,A→E____,E的结 构简式____。

A的同分异构体(同类别有支链)的结构简式:____及____。 【组织讨论】请分析解题思路并求解。 思路1 以A为突破口,因其信息量大。 A具有酸性,有—COOH。

A→B(C4H8O3→C4H6O2), A物质发生脱水反应,又由于B可使溴水褪色,因而B中含有C=C,属消去反应,则A中应具有—OH。

A→D的反应是由A中—COOH与—OH发生酯化反应,生成环状酯D,由于D为五原子环状结构,

A的结构简式为HOCH2CH2CHCOOH,

A→E的反应为缩聚反应。 答案:A→D:

B→C:

A→B:消去反应,B→C:加聚反应, A→E:缩聚反应。 E的结构简式: A的同分异构体:

大家知道,药补不如食补。乳酸的营养价值较高,易被入吸收。乳酸的结构是怎样的?在工业上,是怎样形成的呢?

【投影】

例6 酸牛奶中含有乳酸,其结构为:

它可由乙烯来合成,方法如下:

(1)乳酸自身在不同条件下可形成不同的醇,其酯的式量由小到大的结构简式依次为:____、____、____。(2)写出下列转化的化学方程式:A的生成____。CH3CHO的生成____,C的生成____。(3)A→B的反应类型为____。

【设问】本题的难点是什么? 哪位同学知道呢? 【评价或补充】

请三名同学到黑板上板演答案。

认真审题,寻找本题的突破口,讨论解题思路。 答:C的形成。 学生甲上台讲。

(3)水解反应(或取代反应) 订正板演。

【导入】本题的特点是,提供了合成的路线和反应条件,考查大家的基础知识和观察能力和应变能力。而有些题虽然也提供相应合成路线,但侧重于合成方案的选择。

【投影】例7 请认真阅读下列3个反应:

利用这些反应,按以下步骤可以从某烃A合成一种染料中间体DSD酸。

请写出A、B、C、D的结构简式。【归纳】根据大家在讨论中出现各种误区,请大家总结一下,在选择合成途径时应注意哪些问题呢?

认真审题,积极思考,小组讨论。汇报结果。

误区:①误认为只有苯与硝酸反应生成硝基苯,而甲苯与硝酸只能生成三硝基甲苯。②不能由DSD酸的结构确定硝基与磺酸基为间位关系。③忽视苯胺具有还原性,NaClO具有氧化性,选择错误的合成途径。

正确答案:

分组讨论,共同得出以下结论:

①每一步的反应都要符合反应规律或信息提示,不能杜撰;②确定反应中官能团及它们互相位置的变化;③确定反应先后顺序时注意能否发生其它反应如酯在NaOH溶液中水解时,是否有苯酚生成,把C=C氧化时是否有—CHO存在,使用氧化剂时是否存在还原性基团如—NH2等;④反应条件的正确选择;⑤题中所给予的信息往往起到承上启下的关键作用,一定要认真分析,信息与反应物、生成物、中间产物的关系,从中得到启示。

【板书】

三、有机合成题应注意的事项: ① ②

③ ④ ⑤

【讲解】大家总结了有机合成中应注意的问题在有机合成中应遵循以下4个原则。 【板书】

四、有机合成遵循的原则

1.所选择的每个反应的副产物尽可能少,所要得到的主产物的产率尽可能高且易于分离,避免采用副产物多的反应。

2.发生反应的条件要适宜,反应的安全系数要高,反应步骤尽可能少而简单。

3.要按一定的反应顺序和规律引入官能团,不能臆造不存在的反应事实,必要时应采取一定的措施保护已引入的官能团。

4.所选用的合成原料要易得,经济。 【课堂小结】

1.有关有机合成的复习,我们共同学习了几个方面? 2.有机合成题的解题技巧是什么呢? 一人答,大家评判。 答:„„

答:①综合运用有机反应中官能团的衍变规律解题。 ②充分利用题给的信息解题。 ③掌握正确的思维方法。

有时则要综合运用顺推或逆推的方法导出最佳的合成路线。 【布置作业】完成课外练习。

精选题

一、选择题

1.化合物的中的—OH被卤原子取代所得的化合物称为酰卤,

下列化合物中可以看作酰卤的是 (

A.HCOF

B.CCl4 C.COCl

2 D.CH2ClCOOH 2.合成结构简式为的高聚物,

其单体应是

①苯乙烯 ②丁烯

③丁二烯

④丙炔

⑤苯丙烯 A.①、②

B.④、⑤ C.③、⑤

D.①、③

3.自藜芦醇广范存在于食物(例如桑椹、花

生,尤其是葡萄)中,它可能具有抗癌性。能够跟1mol该化合物起反应的Br2或H2的最大用量分别是

A.1mol,1mol B.3.5mol,7mol

C.3.5mol,6mol D.6mol,7mol 4.A、B、C、D都是含碳、氢、氧的单官能团化合物,A水解得B和C,B氧化可以得到C或D,D氧化也得到C。若M(X)表示X的摩尔质量,则下式中正确的是

A.M(A)=M(B)+M(C) B.ZM(D)=M(B)+M(C) C.M(B)<M(D)<M(C) D.M(D)<M(B)<M(C)

二、非选择题

5.提示:通常,溴代烃既可以水解生成醇,也可以消去溴化氢生成不饱和烃。如:

请观察下列化合物A~H的转换反应的关系图(图中副产品均未写出)并填写空白:

(1)写出图中化合物C、G、H的结构简式。 C____;G____;H____。

(2)属于取代反应的有(填写代号,错答要倒扣分)____。

6.有机物E和F可用作塑料增塑剂或涂料中的溶剂,它们的分子量相等,可用以下方法合成:

请写出:有机物的名称:A____,B____。化学方程式:A+D→E______,B+G→F____。X反应的类型及条件:类型____,条件____。

E和F的相互关系属____(多选扣分)。

①同系物 ②同分异构体

③同一种物质

④同一类物质

)俗称阿司匹林,1982年科学家将其连接

在高分子载体上,使之在人体内持续水解释放出乙酰水杨酸,称为长效阿司匹林,它的一种结构是: 7.乙酰水杨酸(

(1)将乙酰水杨酸溶于适量NaOH溶液中并煮沸,然后滴入盐酸至呈酸性,析出白色晶体

A,将A溶于FeCl3溶液,溶液呈紫色。 ①白色晶体A的结构简式为______。

②A的同分异构体中,属于酚类,同时还属于酯类的化合物有______。 ③A的同分异构体中,属于酚类,但不属于酯类或羧酸类的化合物必定含有___________基。

(2)长效阿司匹林水解后可生成三种有机物,乙酰水杨酸、醇类有机物和一种高聚物。该醇的结构简式为______,该高聚物的单体的结构简式为______。

答 案

一、选择题

1.A、C 2.D 3.D 4.D

二、非选择题

5.(1)C:C6H5—CH=CH2 G:C6H5—C≡CH

(2)①、③、⑥、⑧

6.A:对苯二甲醇 B:对苯二甲酸

X:取代,光,②、④

推荐第9篇:有机合成常用网址

有机合成:

Organic Syntheses(有机合成手册), John Wiley & Sons (免费) http://www.daodoc.com/ Electronic Encyclopedia of Reagents for Organic Synthesis (有机合成试剂百科全书e-EROS) http://www.daodoc.com/ Organometallics (免费,目录) http://pubs.acs.org/journals/orgnd7/index.html Ruian Journal of Bioorganic Chemistry (Bioorganicheskaya Khimiya) (免费,摘要) http://www.daodoc.com/ 日本丰桥大学 Jinno实验室的研究数据库(液相色谱、多环芳烃/药物/杀虫剂的紫外谱、物性) (免费) http://chrom.tutms.tut.ac.jp/JINNO/ENGLISH/RESEARCH/research...A New Framework for Porous Chemistry (金属有机骨架) (免费) http://www.daodoc.com/ Acta Crystallographica Section E (免费,摘要) http://journals.iucr.org/e/journalhomepage.html

Bibliographic Notebooks for Organometallic Chemistry http://www.daodoc.com/ Organometallics (免费,目录) http://pubs.acs.org/journals/orgnd7/index.html

SyntheticPages (合成化学数据库) (免费) http://www.daodoc.com/ 从ChemWeb.com检索药物交易信息库PharmaDeals (部分免费) http://www.daodoc.com/ 制药公司目录(Pharmaceutical Companies on Virtual Library: Pharmacy Page) http://www.daodoc.com/ 37℃医学网

http://www.daodoc.com/

Abcam Ltd.有关抗体、试剂的销售,抗体的搜索) http://www.daodoc.com/

Amgen Inc.(医药) http://www.daodoc.com/ Anti-Cancer Drug Design (免费,摘要) http://www3.oup.co.uk/antcan/ 生物有机化学:

ScienceDirect: 在线访问Elsevier的1100种期刊全文 (免费目录) (免费) http://www.daodoc.com/ 生命、环境科学综合性资源TheScientificWorld (sciBASE) http://www.daodoc.com/ 生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community http://biomednet.com/ BIOETHICSLINE (BIOETHICS onLINE) (免费) http://igm.nlm.nih.gov/ BIOME (生命科学资源导航) http://biome.ac.uk/browse/

Directory of P450-containing Systems(P450酶系目录) http://p450.abc.hu/ DIRLINE (卫生与生物医药信息源库) (免费) http://igm.nlm.nih.gov/ 百名最佳生物技术网站列表 (Top 100 Biotechnology WWW Sites) http://www.daodoc.com/top100.asp 从ChemWeb检索《化学工程与生物技术文摘》库CEABA (部分免费) http://ChemWeb.com/ 课程材料:MIT生物学超文本教材

http://esg-www.daodoc.com network.http://biology.about.com/ 生物有机化学:

ScienceDirect: 在线访问Elsevier的1100种期刊全文 (免费目录) (免费) http://www.daodoc.com/ 生命、环境科学综合性资源TheScientificWorld (sciBASE) http://www.daodoc.com/ 生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community http://biomednet.com/ BIOETHICSLINE (BIOETHICS onLINE) (免费) http://igm.nlm.nih.gov/ BIOME (生命科学资源导航) http://biome.ac.uk/browse/

Directory of P450-containing Systems(P450酶系目录) http://p450.abc.hu/ DIRLINE (卫生与生物医药信息源库) (免费) http://igm.nlm.nih.gov/ 百名最佳生物技术网站列表 (Top 100 Biotechnology WWW Sites) http://www.daodoc.com/top100.asp 从ChemWeb检索《化学工程与生物技术文摘》库CEABA (部分免费) http://ChemWeb.com/ 课程材料:MIT生物学超文本教材

http://esg-www.daodoc.com network.http://biology.about.com/

推荐第10篇:第二轮复习教案 有机合成

亿库教育网

http://www.daodoc.com

有机合成

教学目标

知识技能:通过复习有机合成,使学生掌握有机物的官能团间的相互转化以及各类有机物的性质、反应类型、反应条件、合成路线的选择或设计。会组合多个化合物的有机化学反应,合成指定结构简式的产物。

能力培养:培养学生自学能力、观察能力、综合分析能力、逻辑思维能力以及信息的迁移能力。

科学思想:通过精选例题,使学生认识化学与人们的生活是密切相关的,我们可以利用已学的知识,通过各种方法合成人们需要的物质,使知识为人类服务,达到对学生渗透热爱化学、热爱科学、热爱学习的教育。

科学品质:激发兴趣和科学情感;培养求实、创新、探索的精神与品质。 科学方法:通过组织学生讨论解题关键,对学生进行辩证思维方法的教育,学会抓主要矛盾进行科学的抽象和概括。

重点、难点

学会寻找有机合成题的突破口。学会利用有机物的结构、性质寻找合成路线的最佳方式。

教学过程设计

教师活动

【复习引入】上节课我们主要复习了有机反应的类型,与有机物合成有关的重要反应规律有哪几点呢?

【追问】每一规律的反应机理是什么? (对学生们的回答评价后,提出问题) 【投影】

①双键断裂一个的原因是什么?

②哪种类型的醇不能发生氧化反应而生成醛或酮?

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com ③哪种类型的醉不能发生消去反应而生成烯烃? ④酯化反应的机理是什么?

⑤什么样的物质可以发生成环反应?对学生的回答进行评价或补充。 学生活动

思考、回忆后,回答:共5点。 ①双键的加成和加聚; ②醇和卤代烃的消去反应; ③醇的氧化反应;

④酯的生成和水解及肽键的生成和水解; ⑤有机物成环反应。 讨论后,回答。

积极思考,认真讨论,踊跃发言。

答:①双键的键能不是单键键能的两倍,而是比两倍略少。因此,只需要较少的能量就能使双键里的一个键断裂。

②跟—OH相连的碳原子与3个碳原子相连的醇一般不能被氧化成醛或酮; ③所在羟基碳原子若没有相邻的碳原子(如CH3OH)或相邻碳原子上没有氢原子[如(CH3)3CCH2OH]的醇(或卤代烃)不能发生消去反应而生成不饱和烃;

④酯化反应的机理是:羧酸脱羟基,醇脱氢。

⑤能发生有机成环的物质是:二元醇脱水、羟基酸酯化、氨基酸脱水、二元羧酸脱水。 【提问】衡量一个国家的石油化工业发展水平的标志是什么?为什么? 回答:常把乙烯的年产量作为衡量一个国家石油化工发展水平的标志。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com 原因是:乙烯是有机化工原料,在合成纤维工业、塑料工业、橡胶工业、医药等方面得到广泛应用。

【评价后引入】今天我们来复习有机物的合成。 【板书】有机合成

【讲述】下面让我们一起做第一道题,请同学们思考有机合成中合成路线的合理设计的关键是什么?应从哪些方面入手?

【投影】

例1 用乙炔和适当的无机试剂为原料,合成资料1

资料2

倾听,明确下一步的方向。 展开讨论:

从原料到产品在结构上产生两种变化:

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com ①从碳链化合物变为芳环化合物;

②官能团从“—C≡C—”变为“—Br”。由顺推法可知:由乙炔聚合可得苯环,如果由苯直接溴代,只能得到溴苯,要想直接得到均三溴苯很难。我们只能采取间接溴代的方法,即只有将苯先变为苯酚或苯胺,再溴代方可;而三溴苯酚中的“—OH”难以除去。而根据资料2可知,

可通过转化为重氮盐,再进行放氮反应除去。

板演方程式:

中的“—NH2”

【评价】大家分析得很全面,也很正确。现将可行方案中所涉及到的有关反应方程式按顺序写出。请两名同学到黑板来写,其他同学写在笔记本上。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com 【评价】两名学生书写正确。

【提问】对比这两道小题,同学们想一想,设计合成有机物的路线时,主要应从哪里进行思考呢?

分析、对比、归纳出:

①解题的关键是找出原料与产品的结构差别是什么,然后在熟知物质性能的基础上寻找解决问题的途径即合成路线。

②在解题时应考虑引入新的官能团,能否直接引入,间接引入的方法是什么?这些问题的解决就需要我们熟练掌握有机物的特征反应。

总之,设计时主要考虑如何形成被合成分子的碳干以及它所含有的官能团。在解题时,首先将原料与产品的结构从以下两方面加以对照分析:

一、碳干有何变化,

二、官能团有何变更。

【追问】一般碳干的变化有几种情况?

讨论后得出:4种。(1)碳链增长;(2)碳链缩短;(3)增加支链;(4)碳链与碳环的互变。

【板书】

一、有机合成的解题思路

将原料与产物的结构进行对比,一比碳干的变化,二比官能团的差异。

【讲述】人吃五谷杂粮,哪有不生病的。而伤风感冒是常见病。大家知道,阿斯匹林是一种常用药,它是怎样合成的呢?请看下题。

【投影】

例2 下图是以苯酚为主要原料制取冬青油和阿斯匹林的过程;

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

(1)写出①、②、③步反应的化学方程式,是离子反应的写离子方程式_________;

(2)B溶于冬青油致使产品不纯,用NaHCO3溶液即可除去,简述原因_________;

(3)在(2)中不能用NaOH也不能用Na2CO3的原因是____。 心想:阿斯匹林熟悉用途,是以什么为原料?怎样合成的? 认真读题、审题。 小组讨论,得出: (1)

(2)冬青油中混有少量

亿库教育网

http://www.daodoc.com

可用小苏打溶液除去的原因是:

亿库教育网

http://www.daodoc.com

,产物

水相而与冬青油分层,便可用分液法分离而除杂。

可溶于(3)在(2)中不能用NaOH、Na2CO3的原因是酚羟基可与其发生反应,而使冬青油变质。

【评价】同学们分析合理,答案正确。

【提问】1mol阿斯匹林最多可和几摩氢氧化钠发生反应呢? 究竟哪一个是正确答案呢? 答案:甲:2mol; 乙:3mol。 结果:乙是正确的。

【讲述】阿斯匹林是一个“古老”的解热镇痛药物,而缓释长效阿斯匹林又使阿斯匹林焕发了青春,请大家思考下题。

【投影】

例3近年,科学家通过乙二醇的桥梁作用把阿斯匹林连接在高聚物上,制成缓释长效阿斯匹林,用于关节炎和冠心病的辅助治疗,缓释长效阿斯匹林的结构简式如下:

试填写以下空白:

(1)高分子载体结构简式为_________。

(2)阿斯匹林连接在高分子载体上的有机反应类型是_______。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com (3)缓释长效阿斯匹林在肠胃中变为阿斯匹林的化学方程式是_______。 事物是在不断地发展的„„

分析:本题的关键词语是“通过乙二醇的桥梁作用把阿斯匹林连接在高聚物上”。缓释长效阿斯匹林可分为三部分:①高分子载体;②阿斯匹林;③作为桥梁作用的乙二醇。

在肠胃中变为阿斯匹林的反应,则属于水解反应,从而找到正确的解题思路。

答:(1)

(2)酯化反应(或取代反应) (3)

【引导】根据大家的分析,解决上题的关键是要找出题给信息中的关键词句。那么,我们将怎样寻找解题的“突破口”呢?

【板书】

二、有机合成的突破口(题眼) 【投影】

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com 例4 有一种广泛用于汽车、家电产品上的高分子涂料,是按下列流程生产的。图中的M(C3H4O)和A都可以发生银镜反应,N和M的分子中碳原子数相等,A的烃基上一氯取代位置有三种。

试写出:(1)物质的结构简式:A____;M_____。物质A的同类别的同分异构体为_______。

(2)N+B→D的化学方程式_______.(3)反应类型:X_____;Y_________。 【组织讨论】请分析解题思路并求解。 思考新问题。

读题、审题、析题、解题。 讨论:

①本题的题眼是什么? ②为什么这样确定? ③怎样推断A的结构?

代表发言:①解本题的“突破口”即“题眼”是M的结构简式。

②因为本题中对M的信息量最丰富,M可以发生银镜反应,一定有醛基,M的结构式除—CHO外,残留部分是C2H3—,而C2H3—只能是乙烯基,则M的结构简式为CH2=CH—CHO。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com ③M经氧化后可生成丙烯酸CH2=CH—COOH,由反应条件和D的分子式组成可以推断D是B和N的酯化反应的产物,所以B+C3H4O2→C7H12O2→H2O。根据质量守恒原理,B的分子式为C4H10O,是丁醇,A为丁醛。根据A的烃基上一氯取代物有3种,则A的结构简式为CH3CH2CH2CHO,它的同类物质的同分异构体为:

CH3CH(CH3)CHO。 答案:

(1)A:CH3CH2CH2CHO M:CH2=CH—CHO

(2)CH3CH2CH2OH+CH2=CHCOOHCH2=CHCOOCH2CH2CH3+H2O (3)X:加成反应 Y:加聚反应

【评价、总结】找解题的“突破口”的一般方法是: 【板书】①信息量最大的点; ②最特殊的点; ③特殊的分子式; ④假设法。

归纳:①找已知条件最多的地方,信息量最大的;②寻找最特殊的——特殊物质、特殊的反应、特殊颜色等等;③特殊的分子式,这种分子式只能有一种结构;④如果不能直接推断某物质,可以假设几种可能,认真小心去论证,看是否完全符合题意。

【反馈练习】 【投影】

例5 化合物C和E都是医用功能高分子材料,且组成中元素质量分数相同,

均可由化合物A(C4H8O3)制得,如下图所示。B和D互为同分异构体。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

试写出:化学方程式 A→D_____,B→C____。

反应类型:A→B____,B→C____,A→E____,E的结 构简式____。

A的同分异构体(同类别有支链)的结构简式:____及____。 【组织讨论】请分析解题思路并求解。 思路1 以A为突破口,因其信息量大。 A具有酸性,有—COOH。

A→B(C4H8O3→C4H6O2), A物质发生脱水反应,又由于B可使溴水褪色,因而B中含有C=C,属消去反应,则A中应具有—OH。

A→D的反应是由A中—COOH与—OH发生酯化反应,生成环状酯D,由于D为五原子环状结构,

A的结构简式为HOCH2CH2CHCOOH,

A→E的反应为缩聚反应。 答案:A→D:

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

B→C:

A→B:消去反应,B→C:加聚反应, A→E:缩聚反应。 E的结构简式: A的同分异构体:

大家知道,药补不如食补。乳酸的营养价值较高,易被入吸收。乳酸的结构是怎样的?在工业上,是怎样形成的呢?

【投影】

例6 酸牛奶中含有乳酸,其结构为:

它可由乙烯来合成,方法如下:

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

(1)乳酸自身在不同条件下可形成不同的醇,其酯的式量由小到大的结构简式依次为:____、____、____。(2)写出下列转化的化学方程式:A的生成____。CH3CHO的生成____,C的生成____。(3)A→B的反应类型为____。

【设问】本题的难点是什么? 哪位同学知道呢? 【评价或补充】

请三名同学到黑板上板演答案。

认真审题,寻找本题的突破口,讨论解题思路。 答:C的形成。 学生甲上台讲。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

(3)水解反应(或取代反应) 订正板演。

【导入】本题的特点是,提供了合成的路线和反应条件,考查大家的基础知识和观察能力和应变能力。而有些题虽然也提供相应合成路线,但侧重于合成方案的选择。

【投影】例7 请认真阅读下列3个反应:

利用这些反应,按以下步骤可以从某烃A合成一种染料中间体DSD酸。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

请写出A、B、C、D的结构简式。【归纳】根据大家在讨论中出现各种误区,请大家总结一下,在选择合成途径时应注意哪些问题呢?

认真审题,积极思考,小组讨论。汇报结果。

误区:①误认为只有苯与硝酸反应生成硝基苯,而甲苯与硝酸只能生成三硝基甲苯。②不能由DSD酸的结构确定硝基与磺酸基为间位关系。③忽视苯胺具有还原性,NaClO具有氧化性,选择错误的合成途径。

正确答案:

分组讨论,共同得出以下结论:

①每一步的反应都要符合反应规律或信息提示,不能杜撰;②确定反应中官能团及它们互相位置的变化;③确定反应先后顺序时注意能否发生其它反应如酯在NaOH溶液中水解时,是否有苯酚生成,把C=C氧化时是否有—CHO存在,使用氧化剂时是否存在还原性基团如—NH2等;④反应条件的正确选择;⑤题中所给予的信息往往起到承上启下的关键作用,一定要认真分析,信息与反应物、生成物、中间产物的关系,从中得到启示。

【板书】

三、有机合成题应注意的事项: ① ②

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com ③ ④ ⑤

【讲解】大家总结了有机合成中应注意的问题在有机合成中应遵循以下4个原则。 【板书】

四、有机合成遵循的原则

1.所选择的每个反应的副产物尽可能少,所要得到的主产物的产率尽可能高且易于分离,避免采用副产物多的反应。

2.发生反应的条件要适宜,反应的安全系数要高,反应步骤尽可能少而简单。

3.要按一定的反应顺序和规律引入官能团,不能臆造不存在的反应事实,必要时应采取一定的措施保护已引入的官能团。

4.所选用的合成原料要易得,经济。 【课堂小结】

1.有关有机合成的复习,我们共同学习了几个方面? 2.有机合成题的解题技巧是什么呢? 一人答,大家评判。 答:„„

答:①综合运用有机反应中官能团的衍变规律解题。 ②充分利用题给的信息解题。 ③掌握正确的思维方法。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com 有时则要综合运用顺推或逆推的方法导出最佳的合成路线。 【布置作业】完成课外练习。

精选题

一、选择题 1.化合物的

中的—OH被卤原子取代所得的化合物称为酰卤,

下列化合物中可以看作酰卤的是 (

A.HCOF

B.CCl4 C.COCl

2 D.CH2ClCOOH 2.合成结构简式为的高聚物,

其单体应是

①苯乙烯 ②丁烯

③丁二烯

④丙炔

⑤苯丙烯 A.①、②

B.④、⑤ C.③、⑤

D.①、③

3.自藜芦醇广范存在于食物(例如桑椹、花

生,尤其是葡萄)中,它可能具有抗癌性。能够跟1mol该化合物起反应的Br2或H2的最大用量分别是

A.1mol,1mol B.3.5mol,7mol 亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com C.3.5mol,6mol D.6mol,7mol 4.A、B、C、D都是含碳、氢、氧的单官能团化合物,A水解得B和C,B氧化可以得到C或D,D氧化也得到C。若M(X)表示X的摩尔质量,则下式中正确的是

A.M(A)=M(B)+M(C) B.ZM(D)=M(B)+M(C) C.M(B)<M(D)<M(C) D.M(D)<M(B)<M(C)

二、非选择题

5.提示:通常,溴代烃既可以水解生成醇,也可以消去溴化氢生成不饱和烃。如:

请观察下列化合物A~H的转换反应的关系图(图中副产品均未写出)并填写空白:

(1)写出图中化合物C、G、H的结构简式。 C____;G____;H____。

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com (2)属于取代反应的有(填写代号,错答要倒扣分)____。

6.有机物E和F可用作塑料增塑剂或涂料中的溶剂,它们的分子量相等,可用以下方法合成:

请写出:有机物的名称:A____,B____。化学方程式:A+D→E______,B+G→F____。X反应的类型及条件:类型____,条件____。

E和F的相互关系属____(多选扣分)。

①同系物 ②同分异构体

③同一种物质

④同一类物质

在高分子载体上,使之在人体内持续水解释放出乙酰水杨酸,称为长效阿司匹林,它的一种结构是: 7.乙酰水杨酸()俗称阿司匹林,1982年科学家将其连接

(1)将乙酰水杨酸溶于适量NaOH溶液中并煮沸,然后滴入盐酸至呈酸性,析出白色晶体

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com A,将A溶于FeCl3溶液,溶液呈紫色。 ①白色晶体A的结构简式为______。

②A的同分异构体中,属于酚类,同时还属于酯类的化合物有______。 ③A的同分异构体中,属于酚类,但不属于酯类或羧酸类的化合物必定含有___________基。

(2)长效阿司匹林水解后可生成三种有机物,乙酰水杨酸、醇类有机物和一种高聚物。该醇的结构简式为______,该高聚物的单体的结构简式为______。

答 案

一、选择题

1.A、C 2.D 3.D 4.D

二、非选择题

5.(1)C:C6H5—CH=CH2 G:C6H5—C≡CH

(2)①、③、⑥、⑧

6.A:对苯二甲醇 B:对苯二甲酸

亿库教育网

http://www.daodoc.com

亿库教育网

http://www.daodoc.com

X:取代,光,②、④

亿库教育网

http://www.daodoc.com

第11篇:有机合成实习生述职报告

述职报告

每个行业都有自己的基本功,有机合成的基本功就是对有机化学反应的理解掌握与灵活运用。那么对有机化学反应的理解掌握应从那方面入手?你在大学里学到的有机合成知识,只是入门的东西,远远达不到高手的水平,学了四年化学,基本上不理解化学。遇到问题还是束手无策,不知从何处下手。在大学阶段应该打下坚实的基本功,然后才能专攻,而我们的大学在这方面还做的远远不够。只有通过不断的学习,不断的阅读相关书籍以及与更高深的研究员进行讨论,才能具备成为有机合成高手的潜力,接下来需要做的就是大量的实践研究,相信经过自己的努力和多年的实践,多次的失败,吃的苦中苦,成为有机合成高手。

合成路线的设计与选择是有机合成中很重要的一个方面,它反映了一个有机合成人员的基本功和知识的丰富性与灵活的头脑。一般情况下,合成路线的选择与设计代表了一个人的合成水平和素质。合理的合成路线能够很快的得到目标化合物,而笨拙的合成路线虽然也能够最终得到目标化合物,但是付出的代价却是时间的浪费和合成成本的提高,因此合成路线的选择与设计是一个很关键的问题。

在有机合成中,后处理的问题往往被大多数人所忽略,认为只要找对了合成方法,合成任务就可以事半功倍了,这话不错,正确地合成方法固然重要,但是有机合成的任务是拿到相当纯的产品,任何反应没有100%产率的,总要伴随或多或少的副反应,产生或多或少的杂质,反应完成后,面临的巨大问题就是从反应混合体系中分离出纯的产品。后处理的目的就是采用尽可能的办法来完成这一任务。后处理问题从哪里可以学到?除了向有经验的科研人员多多请教外,自己应处处留心,虽说各种文献中涉及较少,但是还有不少论文是涉及到的,这就要求自己多思考,多整理,举一反三。另外,在科研工作中,应注意吸取经验,多多磨练。

在工作的实习一年里,初步掌握了有机合成。在工作上也独立的完成了许多项目,极个数是失败的。从失败中吸取经验。从成功中吸取知识。在岗位上按时完成任务的同时还能超额完成。

下面是我做实验时,每当我实验觉得做不下去的时候,都会自我反省的几个要点:

第一,分析原因: 1)文献方面。可能作者有所保留,也不排除有的作者伪造数据;还有一种情况,是自己没有吃透文献,没有完全把握好,——比如,有机合成中实验进行十多次才能合成出来的情况很多,同时,反应条件在文献上通常都是含混不清的,不过作者们的实验路线一般都是正确的,否则他们也不能发出论文来,所以,需要多摸索。

2)线路选择方面。可能选择了一条难度很大或者根本就做不下去的线路。 3)药品纯度方面。 对于药品的纯度要一分为二地看待,大多数时候纯度不够的话会导致实验的失败,少数时候,可能会有意想不到的收获。如何看待药品纯度问题,要根据自己研究的课题的目的来确定。

4)实验操作方面。可能是自己没有按照设定的方案操作造成的。记好实验记录很重要! 5)条件比较苛刻,稍有闪失就可能出错导致做不下去。先搞清是实验操作的问题还是实验路线的问题,实验路线的问题的话,尽早改变实验路线,时间是很宝贵的,别钻牛角尖。

第二,寻找对策:

1)如果是文献问题,那么,可以根据以上几种可能性妥善处理,比如说或者自己再耐心吃透文献;或者与作者联系索取详细资料;或者补充一些文献,进行综合分析;或者根据别人类似的实验寻找正确的条件等。

2)如果是线路选择问题,可以果断修改或者大胆放弃原来的全部线路,重新设计新的线路。

3)如果是药品纯度问题,那么,一般意义上来说,或者是购买更好的、纯度更高的试剂,或者是严格进行试剂的预处理,自己动手得到符合要求的试剂。 4)如果是实验操作方面的问题,除了细心,别的就没得说了。只要细心,条件再苛刻的实验都能够做出来。还可以向前辈或者师兄师姐讨教。第三,抖擞精神,耐心坚持下去。这一点很重要,要有牺牲精神!

原则:

“理论指导实践”与“实践反过来促进理论的进化”两相结合,即:一方面需要理论切实可行,对文献进行系统综合分析,特别是实验条件,另一方面需要结合第一手的实验记录,对实验现象进行分析,看看问题症结到底出在哪里!概括而言:耐心分析,大胆假设,小心求证。

总的来说,公司给我这个机会,我一定会几倍珍惜,用我的努力与知识来回报公司。也会用行动与实践我的想法,我相信我一定能够把事情做好。

第12篇:有机合成工作总结(本人自编,仅供参考学习)

合成工作总结

2011年11月份,我来到xxxx任研究助理一职,主要参与了一下项目(由于所作产品均为原公司所属专利,故简化叙述反应,见谅):

一、詹氏钌催化剂中间体的合成:

1、Ts肼+苯甲醛苯腙 苯腙+醇钠重氮夜;

rc-102(rc为钌催化剂项目号)+重氮液rc-103.此反应为原产物与重氮液反应生成一个双键

2、烯配体的合成

R-OHR-ClR-PPh3ClR-= 这个反应是制备磷叶立德并与多聚甲醛反应生成一个双键

3、rc-102+PPCy3rc-202 这个反应比较简单,是一个基团置换的反应,该反应所得产物稀释后会发生溶胀现象,处理比较麻烦

4、rc-203+炔醇rc-303 此反应炔醇与钌催化剂中间体反应生成一个带两个双键的五元环

5、苯+异丙基酰氯异丙基苯甲酰

酰化反应,制备炔醇的一部分

二、HCV丙肝新药中间体的合成

1、五元杂环+格氏试剂

这个反应的反应机理其实是格氏试剂与酰胺反应,与N相连的键断开,由于N是五元环上的杂原子,这个反应为一个开环反应。反应在低温下进行,这可能是格氏试剂不与所得产物的活性基团羰基、乙酯基不反应的原因

2、上述产物的还原

这个产物含酯基,选用三乙酰氧基硼氢化钠做还原剂,反应为原料的羰基先与Ts肼反应生成踪再还原去掉羰基。

3、上述产物的水解 产物上的酯基水解为酸 ALCl

3、甲苯③④

4、R+多聚甲醛+苄胺R/\\NHBn①②

上面分别涉及到上苄胺、苄胺与苯甲酸甲酯缩合关环、脱甲基、苯上两相邻羟基与DCM反应关环 ……… ……… ……

醇的碱溶液HBr\\HClK2CO3/NMP/DCM

第13篇:九年级化学有机合成材料教案

课题3

有机合成材料

教学目标 知识与技能

1、会初步区别有机化合物和无机化合物。

2、了解有机化合物和有机高分子化合物的特点。

3、知道有机合成材料塑料、合成纤维、和合成橡胶的性能与用途。过程与方法

1、通过查资料、上网等方式了解治理“白色污染”的有效措施,培养学生收集和整理资料的能力。

2、通过探究热塑性塑料和热固性塑料的性质差异,培养学生的探究能力。

3、通过辩论“使用塑料的利与弊”,培养学生的语言表达能力和组织能力。情感态度与价值观

1、通过学习,了解化学使生活变得更加美好,培养学生关注社会、关注生活的情感。

2、认识有机合成材料的发展对人类社会的进步所起的重要作用 。 教学重点:

1.了解合成纤维、塑料、合成橡胶的性能和用途。2.了解使用合成材料对人和环境的影响。 教学难点:

1.认识新材料的开发与社会发展的密切关系。2.较好地组织学生进行“使用塑料的利与弊”的辩论。 教学方法:阅读讨论 课时安排:二课时 教学过程: (第一课时)

[活动与探究]:指导学生填写教材P99的“活动与探究”中的表格;并利用实物投影学生的答案,引导学生根据表格内容比较和讨论。

指导阅读:引导学生阅读教材P99- P100,并依次出示下列问题:

1.化合物分哪两大类?它们有什么区别? 2.C、CO、CO

2、CaCO3等是有机物吗?为什么? 3.为什么有机物的数目异常庞大?

过渡:有些有机物的相对分子质量较大,通常称它们为有机高分子,用有机高分子制成的材料称为有机高分子材料,它又分天然有机高分子材料和有机合成材料,合成材料的用途很广,下面一起来研究:

二、有机合成材料

指导阅读:引导学生阅读教材P100- P102,并依次出示下列问题:

1、举例说明什么是天然有机高分子材料?什么是合成材料?

2、有机高分子化合物是怎样形成的?链状和网状有什么区别

[活动与探究二]:演示实验12-1,边做边讲解注意点和引导学生观察现象。并依次出示下列问题,指导学生回答:

举例说明链状结构的高分子材料和网状结构的高分子材料性质相同吗?

指导讨论:1.指导讨论教材P101的“讨论”栏目。

2.举出常见塑料的名称和用途?

投影:实物投影一张服装标签,让学生讨论各标记的含义,

特别是纤维的种类,引导学生讨论和举例说明天然纤维和合成纤维各有什么性能?洗涤熨烫时的注意事项。 第二课时:

复习提问:上堂课学习了哪几种合成材料?它们各有什么用途?

引入课题:这节课学习另一种合成材料——合成橡胶。 指导阅读:引导学生阅读教材P103的文字和有关合成橡胶用途的插图,并介绍合成橡胶与天然橡胶比较,具有的优良性能。

指导阅读:引导学生阅读教材P103- P105的文字和有关塑料等的插图。

投影:学生课前调查的有关“白色污染”形成的原因,以及消除这类污染的建议,让学生评判是否合理? 展示:展示学生收集的标有“塑料包装制品回收标志”的塑料制品,请学生讨论回答各标记的含义。

投影:投影学生从网上下载的合成材料(如:新型塑料)发展的新成就。例如:淀粉塑料、导电塑料、塑料回收等图片。

组织辩论:将学生分成甲(正方)、乙(反方)二大组,正方的论点是“塑料的利”,反方的论点是“塑料的弊”。挑选二位支持人以及双方的组长,课前进行指导。

辩论过程中组织好纪律,有时作一些指导。

投影:多媒体投影“白色污染”的危害以及新型合成材料的图片。最后,呼吁大家珍惜资源、爱护环境、合理使用化学物 总结:略 作业:新学案 教后:

第14篇:有机合成实验记录书写格式

实验记录书写格式模板

试验名称

实验目的

化学反应方程式

原料:A+B反应条件:溶剂/催化剂等产物

投料量

物料名称Fww/vnr规格

(代码)(分子量)(投料量)(摩尔数)(摩尔比)(批号/来源)

A1616g1mol120140704-01

B3216g0.5mol0.5天津化工

C6464g1mol1重蒸(20140701-02)

理论产量g

操作步骤:

几点几分T=20oC,投料过程描述(依次将a,b投入到反应瓶中);

投料完毕操作描述(给体系降温/升温至升温过程注意观察,

记录)

几点几分T=oC,保持温度反应(TLC跟踪)

几点几分T=oC,反应完毕,,,(降温)

后处理:

后处理方法详细描述(冰解、调酸碱、萃取分液、浓缩、干燥条件、干燥时间等的条件)

数据结果

得到g,收率,纯度(HPLC,GC或TLC纯度)

第15篇:毕业论文,药学,有机合成论文1

本 科 生 毕 业 论 文

3-苄基-3-氮杂二环[3.1.0]己烷的实用论文题目:

合成方法研究

学 校: 院 部: 专 业: 学 号: 姓 名: 指导教师: 实习单位:

论文工作时间: 2013年 12月 至

2014年 6月

摘 要 .............................................................................................1 ABSTRACT...................................................................................2 1 前言 ...........................................................................................3

1.1 3-苄基-3-氮杂二环[3.1.0]己烷的应用与研究背景 ...............................................................3 1.2 3-苄基-3-氮杂二环[3.1.0]己烷合成路线 ...............................................................................4

2 实验 ...........................................................................................5

2.1 反应试剂与仪器.....................................................................................................................5 2.2 反应方程式 ............................................................................................................................6 2.3 实验步骤 ................................................................................................................................6 2.3.1 化合物Q-2-2的合成

.......................................................................................................6 2.3.2 化合物Q-2-3的合成 ........................................................................................................6 2.3.3 化合物Q-2-4的合成 ........................................................................................................6 2.3.4 化合物Q-2-5的合成 ........................................................................................................7 2.3.5 化合物Q-2-6的合成 ........................................................................................................7

3 结果与讨论 .................................................................................8

3.1 实验条件探索及化合物的表征 .............................................................................................8 3.1.1 化合物Q-2-2的合成 ........................................................................................................9

3.1.2 化合物Q-2-3的合成 ........................................................................................................9 3.1.3 化合物Q-2-4的合成 ........................................................................................................9 3.1.4 化合物Q-2-5的合成 ........................................................................................................9 3.1.5 化合物Q-2-6的合成 ......................................................................................................10 4 总结 .........................................................................................11 参考文献 ......................................................................................12 致 谢 13

3-苄基-3-氮杂二环[3.1.0]己烷的实用合成方法研究

学 生: 指导教师:

摘要

目的: 含有3-氮杂二环[3.1.0]己烷在药物研究中起着非常重要的作用(3-氮杂二环[3.1.0]己烷极其类似物是药物研发中的非常重要的中间体);本实验以合成3-苄基-3-氮杂二环[3.1.0]己烷为代表化合物,进行了此类化合物的(食用合成方法)研究。方法:以衣康酸二甲酯为原料,与苄胺反应生成N-苄基-5-氧代吡咯烷-3-甲酸甲酯,(该中间体经)还原,甲基磺酰氯取代,接着用六甲基二硅基胺基锂关环,然后用氢化铝锂还原最终得到所要产物3-苄基-3-氮杂二环[3.1.0]己烷。结果:产物是经过1H NMR、LC-MS检测后确认得到的产物。结论:实验表明本实验路线能够合成3-苄基-3-氮杂二环[3.1.0]己烷,收率较文献方法高。

关键词:还原;合成;无水无氧操作

Synthesis of 3- benzyl -3- aza bicyclo [3.1.0] hexane

Student: Tutor:

ABSTRACT:Objective: 3- aza bicyclo [3.1.0] hexane plays a very important role in pharmaceutical research; in this experiment with synthetic 3-benzyl -3- aza bicyclo [3.1.0] hexane as representative compounds, were studied .Methods: using Dimethyl itaconate as raw material, reduction and benzylamine reaction N- benzyl -5- oxo pyrrolidine -3- methyl formate, replace with Methanesulfonyl chloride, followed by Lithium Hexamethyldisilazide ring closing, then with Lithium aluminum hydride reduction finally get to product 3- benzyl -3-azabicyclo [3.1.0] hexane.Results: the product is through the 1HNMR, LC-MS test confirmed that the obtained product.Conclusion: experiments show that the method can synthesize 3-benzyl -3- aza bicyclo [3.1.0] hexane , yield higher than the literature methods.

KEY WORDS: reduction; synthesis; Schlenk

2 1.前言

1.1 3-氮杂二环[3.1.0]己烷的应用与研究背景

3-苄基-3-氮杂二环[3.1.0]己烷是有机合成中一个比较重要的中间体,它通过催化氢化[1]能得到3-氮杂二环[3.1.0]己烷。3-氮杂二环[3.1.0]己烷的衍生物是很好的DP Ⅳ抑制剂[2],而DP Ⅳ抑制剂是很好的癌症和代谢疾病的治疗药物。近年来,通过把3-氮杂二环[3.1.0]己烷和一些特定的结构相连从而寻求一些活性好的筛选药物,是药物化学界的热点之一。比如:抗抑郁药D0V2194[3]是由美国DOV Pharmaceutical公司开发的新型抗抑郁药,可同时抑制脑神经突触间隙中5-轻色胺(5-HT)、去甲肾上腺素(NE)和多巴胺(DA)3种单胺递质的再摄取,2007年进入抗抑郁症的Ⅱ期临床研究。还有抗抑郁药DOV216303[4]也已经进入Ⅰ期临床阶段。所以3-氮杂二环[3.1.0]己烷的生产前景不可估量。

目前, 3-苄基-3-氮杂二环[3.1.0]己烷的合成,主要是通过氯乙酸甲酯与丙烯酸甲酯通过缩合生成顺式的环丙二酸二甲酯,然后经水解,分子内缩合,还原等反应合成[5]。文献报道的关于化合物3-氮杂二环[3.1.0]己烷的合成方法存在以下缺陷[6]:

1、氯乙酸甲酯与丙烯酸甲酯缩合, 顺式的环丙二酸二甲酯的收率只有39%或更低,致使总收率偏低;

2、中间需要高温(180℃以上),致使操作不便,也不符合节能要求。

3、后处理麻烦,中间多步需要柱层析,不适应大规模生产。

4、间中所用试剂昂贵,成本较高。因此(发展一条避免以上缺点的3-氮杂二环[3.1.0]己烷的实用合成方法显得尤为重要)关于化合物3-氮杂二环[3.1.0]己烷的合成还没有一个很好的方法, 而且国内也未见报道。本文在文献工作基础上对化合物3-氮杂二环[3.1.0]己烷的合成方法进行了改进, 探索出了一条适合工业化生产的方法。

1.2 3-苄基-3-氮杂二环[3.1.0]己烷合成路线

参考了国内外许多的文献以及目前哌啶的合成研究进展的基础上设计出如下路线:

1 以衣康酸二甲酯为原料,与苄胺反应生成N-苄基-5-氧代吡咯烷-3-甲酸甲酯[7]; 化学式

2 还原[8];

3 化学方程式

3与甲基磺酰氯反应[9]并关环[10]; 化学方程式

4 还原[11]得产物。 化学方程式

本实验由以上5步反应来完成,由于条件和时间有限在这里以衣康酸二甲酯为代表来合成此类化合物,期望本实验路线产率高,污染小,耗能少,并且适合工业化生产。

2.实验

2.1 实验仪器与试剂:

表1 实验仪器 Tab.1 Experiment instrument

仪器名称 85-2型恒温磁力搅拌器 N-1100旋转蒸发仪 OSB-2100水 浴锅

生产厂家 上海司乐仪器有限公司

EYECA EYECA

4 CCA-20低温冷却泵 SHB-Ⅲ循环水式多用真空泵 ZF-20D暗箱式紫外分析仪

BSA2243电子天平

BRUKER DRX-500 氢核磁共振仪

LC-MS

河南予华仪器有限责任公司 郑州长城工贸有限公司 河南省予华仪器有限公司

Sartorius Bruker Agilent

表2 实验试剂 Tab.2 Experiment reagent 实验试剂 衣康酸二甲酯

苄胺 硼氢化钠 甲基磺酰氯 正丁基锂 氢化铝锂 三乙胺 四氢呋喃

无水硫酸钠 碳酸氢钠

六甲基二硅胺烷

生产厂家

天津基准化学试剂有限公司 上海达瑞精细化学品有限公司 上海达瑞精细化学品有限公司 上海达瑞精细化学品有限公司 湖北能特科技股份有限公司 苏州联统仪器仪表试剂有限公司

江苏强盛化工有限公司 国药集团化学试剂有限公司

中国上海试剂总厂 无锡市展望化工试剂有限公司 上海达瑞精细化学品有限公司

2.2 反应方程式

合成路线

2.3 实验步骤

2.3.1 化合物Q-2-2的合成

操作步骤

5

1HNMR(400MHz,CDCl3):δ2.66-2.81(m, 2 H), 3.18-3.23 (m,1 H), 3.45-3.49 (m, 2 H), 3.70 (s, 3 H), 4.40-4.52(m, 2 H), 7.22-7.35 (m, 5 H)。 2.3.2 Q-2-3的合成 操作步骤

收率68%。

1H NMR(400MHz,CDCl3): 2.40-2.27(m,1 H), 2.47-2.53 (m, 1 H), 3.08-3.12 (m, 1 H), 3.31-3.36 (m, 1 H), 3.43-3.57 (m, 3 H), 4.33-4.47 (m, 2 H), 7.19-7.33 (m, 5 H)。 2.3.3 Q-2-4的合成 操作步骤

2.3.4 Q-2-5的合成 操作步骤

1HNMR(400MHz,CDCl3): 0.58-0.61(m, 1 H), 1.06-1.12 (m, 1 H), 1.78-1.83 (m, 1 H), 1.94-2.00 (m, 1 H), 3.14-3.18 (m, 1 H), 3.37-3.42 (m, 1 H), 4.28-4.40 (m, 2 H), 7.18-7.35(m, 5 H).2.3.5 Q-2-6的合成 操作步骤

1HNMR(400MHz,CDCl3): 0.29-0.35 (m, 1 H), 0.77-0.80 (m, 1 H), 1.29-1.32 (m, 2 H), 2.32-3.35 (d, 2 H), 2.92-2.9 (d, 2 H), 3.59 (s, 2 H), 7.20-7.28 (m, 5 H)。

6

3.结果与讨论

3.1实验条件探索及化合物的表征 3.1.1 化合物Q-2-2的合成

化合物Q-2-2的合成比较简单,主要注意滴加苄胺的速度不宜过快,但此步反应的机理很复杂包括:Michael 加成反应和酯的胺解反应。

图1 化合物Q-2-2氢谱 Fig.1 1HNMR of the compound Q-2-2

3.1.2 化合物Q-2-3的合成

反应溶剂甲醇中含水量不宜过高,应为部分水分会与硼氢化钠反应,另外硼氢化钠一定要分批加入,反应过程中放出大量热且产生气泡,如果不分批加入可能会引起冲料甚至爆炸。

图2 化合物Q-2-3氢谱 Fig.21HNMR of the compound Q-2-3

3.1.3 化合物Q-2-5的合成

从化合物Q-2-3合成化合物Q-2-4反应温度要保持在0℃,温度过高,反应液颜色变深产生不知名的副产物,滴加甲基磺酰氯的速度不宜过快,另外甲基磺酰氯有刺激性气味,加入反应液中会产生少量气体,故最好在加样漏斗上套个气球。刚开始合成Q-2-4后处理时旋干的唯独过高,产物部分变质,因为Q-2-4不稳定不宜放置时间过长,且不能经过过色谱柱得到纯的产物,所以Q-2-4最好处理完之后直接进入下一步反应。从Q-2-4合成Q-2-5,要保持在无水无氧的环境中,且温度要保持在-15℃以下,其中LiHMDS最好现做现用。

图3 化合物Q-2-5氢谱 Fig.31HNMR of the compound Q-2-5

3.1.4 化合物Q-2-6的合成

氢化铝锂的还原反应要特别小心,氢化铝锂比较活泼,遇水会剧烈反应,故氢化铝锂还原要用干燥的四氢呋喃作溶剂,加完氢化铝锂后升温到回流的过程中药特别注意,一般加热到62℃的时候,反应液中会产生大量热,经常会出现冲料现象,建议在做氢化铝锂还原时,反应瓶要用大一号的或者是在上方加一个防爆球以防止冲料。另外氢化铝锂还原产物比较纯,一般得到的纯度都可达到99%。

图4 化合物Q-2-6氢谱 Fig.4 1HNMR of the compound Q-2-6

图5 化合物Q-2-6氢谱 Fig.5 LC-MS of the compound Q-2-6

9

4.总结

本实验由衣康酸二甲酯经五步反应,得到3-苄基-3-氮杂二环[2,1,0]己烷,总收率为20%。化合物Q-2-6是经过1H-NMR、LC-MS检测后确认得到的。化合物Q-2-6对以后类似的此类合成反应提供了重要的参考价值。

10 参考文献

[1] 刘巧珍,江富祥,王 果,陈河如.Pd/C催化氢化高效脱除含氮糖中的苄基型保护基[N].济南大学学报,2013,23(3):319-323

[2] Weintraub P M, Sabol J S, Kane J M.Halide ion effects in the rhodium-catalyzed allylic substitution reaction using copper(I) alkoxides and enolates.Tetrahedron.2003, 14(22):3613-3618.[3] 高 凯 , 李 建 其.抗抑郁药D0V21947的微波促进合成[A].中国医药工业杂志,2008,39(2):81-84.

[4] 刘 侠, 邵 佳, 丁小东, 杨劲松.抗抑郁药DOV216303的合成方法改进[A].化学研究与应用,2010.

[5] 刘明亮,郭惠元.(1α, 5 α, 6α)-6-叔丁氧羰基氨基-3-氮杂二环[3.1.0]己烷合成路线图解[B].中国医药工业杂志,2000,31(12):1175-1183.

[6] 孙艳萍.01021 Merck/DOV签订抗抑郁药开发协议[J].国外药讯,2005,(1):10.

致谢

走的最快的总是时间,来不及感叹,大学生活已接近尾声,四年多的努力与付出,随着本次论文的完成,将要划下完美的句号。回忆我在徐州医学院学习四年的中,很多的点点滴滴都令人难以忘怀。在大学四年里,不仅学习了专业知识,也更多的学习到了很多人生的知识。这些都成为我人生中最宝贵的财富。

在这里,首先要感谢在座的各位答辩组专家,在这炎热的酷夏,百忙中抽出时间指导我的论文答辩,谢谢你们给我上大学里的最后一堂课;感谢徐州医学院

11 药学院对我的培养,对我的支持与鼓励。感谢我的论文指导老师高丰雷老师,在高老师的帮助下,论文得以不断的完善,最终完成了整篇论文。在此,我要对他表示深深的感谢和崇高的敬意;感谢我的父母,他们含辛茹苦把我养大,此刻的我将向他们交出学生生涯的画卷;感谢从小学到大学的各位老师,你们传授我各方面的知识,教我做人的道理;感谢我从小到大的同窗好友,你们陪我度过无数的日月新辰,陪伴着我一起学习,一起成长;还有10药1各位兄弟姐妹以及我的舍友,我们一起走过人生最灿烂的季节,一起笑,一起见证各自的成长,一起走向人生的另一段生涯;还要感谢所有关心我的人……谢谢你们!

在此次毕业设计过程中我也学到了许多了有机合成的知识,实验技能有了很大的提高,对论文的写作有了进一步的了解。另外,我还要感谢我的校外指导老师徐卫良博士和我实习时带我的储玉平师父,最后,我要感谢苏州滋康医药有限公司以及帮助、关心我的学长、学姐、老师、同学,谢谢你们!

第16篇:有机合成单元过程的小结

有机合成单元过程的小结

通过大二上学期学习《有机合成单元过程》这门专业课,我深刻的学习到一些化工方面重要的知识,还有亲手操作实验的能力,使自己更深一层的了解所学习的内容,使对学习化工产生了浓厚的兴趣,

在理论学习过程中,老师采取以同学为中心,多让学生实践,亲自动手动脑,自己上网查资料,首先自己预习的学习,做好课件,同学给同学之间讲课,互相学习,互相帮助。然后老师根据每组同学所查的资料,做总结,给补充。我对此项教学方法提的意见就是:学校的基础条件太差,有的资料很难查到,即使去网吧上网也很难查到,只能查到点毛皮,为此希望老师想学校有关部门提出建议。使学生查阅的范围更广点!总的来说,此项教育方法真的不错,有待于继续发扬。 在实践学习过程中,老师采取一名学生一个实验台,让每个学生都能自己亲手做实验,自己亲手取所用的仪器,亲手搭建试验台,认真做实验,随时做好实验记录,保证实验的成功率,即使失败,也能从记录中得到实验的失败存在于什么地方,以后多注意。而且做完实验,都查看学生的实验结果和记录。我对此提出的建议就是:在实验过程中,希望老师多讲解,把实验的每一部步骤存在的危险因素告诉同学。毕竟做的是化工实验,有的同学很害怕,因为化工实验多多少少存在危险的因素在里面,而且实验过程中也用到火和电。随时都可能发生不良的后果。

以上是我对这门专业课的感悟及提出的建议,希望老师三四而后行。 同时,也感谢这一学期来,老师对我的关心和照顾,不管刮风下雨,老师都能来给我们上课。真诚的对老师您说声“谢谢您,老师您辛苦了!” 当老师您收到此邮件的时候也因该是过元旦了!

祝老师:元旦快乐!身体健康!万事如意!

此致

敬礼

精细092:游振伟

学号:382010年12月31日

第17篇:有机合成化学研究进展课程论文

有机合成化学研究进展

课 程专业: 姓名: 学号:

有机合成化学研究进展

摘要

有机化学是化学科学中的一个十分重要的二级学科。有机化学作为一门中心学科,它的发展不仅与化学学科的发展直接相关,而且也不断地影响和促进着其它自然科学学科的发展。同样,有机化学作为一门实用性学科,其发展一直影响着人类社会的发展。有机化学与人类社会发展息息相关,与国民经济建设密切相连。我国有机化学事业在近年来得到显著发展,从事有机化学和与有机化学相关研究工作的人员越来越多,研究工作水平不断提高。通过对我国有机化学学科近2年发表的研究论文进行了系统检索,本报告总结了有机反应、有机合成化学、天然产物化学、元素有机和生物合成等有机化学研究领域的主要进展。

关键词 有机反应;有机合成化学;天然产物化学;元素有机

1碳-氢键活化

在比较惰性的碳-氢键活化方面,中国科学院上海有机化学研究所(本文以下简称为上海有机所)刘国生课题组通过在氧气存在下,金属钯催化烯丙基位碳-氢键的活化,实现了烯烃的烯丙位氨化反应,提供了一种从简单的烯烃原料合成烯丙胺的方法[1]。

在芳香烃的碳-氢键活化方面,北京大学化学系施章杰课题组通过芳香烃上的导向基团,在金属钯和氧化剂共同催化下,使芳香烃的碳-氢键活化,实现了一般芳香烃的直接芳基化,从而形成新的碳-碳键[2-5]。

2 加成-环化反应及串级反应

上海有机所麻生明课题组继使用2种不同联烯的加成-环化反应生成α,β-不饱 和γ-内酯[6]之后,又通过金属钯催化联烯的加成-环化反应,生成了高张力的氮杂四员环[7]。

华东师范大学化学系张俊良课题组发展了一种钯催化三组份加成-环化-偶联的高效合成多取代呋喃的方法[8]。

兰州大学化学系梁永民课题组通过钯催化加成-环化-偶联的串级反应,一步构建了苯并螺环,为合成此类化合物提供了一种有效方法[9]。

上海有机所赵刚课题组研究了一系列邻炔基醛类化合物与有机锌试剂的加成环化串级反应。对于邻炔苯甲醛类底物,立体选择性得到了5-exo-dig型的成环方式,而对邻位的脂环炔烯醛类底物,则只生成并环的四取代类呋喃产物[10]。

上海大学郝建课题组巧妙地通过一锅法串级反应,在PPh3/CCl4/Net3/70℃反应条件下,对o-氨基苯乙醇类底物进行环合,合成得到了N-酰基二氢吲哚类产物[11]。

天津大学马军安课题组利用催化Nazarov环化和亲电氟化的串级反应,立体选择性地合成了多取代的吲哚酮类产物[12]。

3 烯丙基反应

北京大学焦宁课题组发现,和正常的Heck反应相反,在没有配体存在下的钯催化烯丙基酯的Heck反应中,离去基团没有发生消除而是被保留了下来[13]。

上海有机所侯雪龙课题组以芳香酮的烯丙基化反应为研究对象,实现了此类化合物的高立体选择性的α-烯丙基化[14]。

上海有机所卿凤翎课题组首次通过分子设计,利用Reformatskii-Claisen反应、烯烃复分解成环反应、钯催化烯丙基化反应等步骤合成了3’,3’-二氟-2’-羟甲基-4’,5’-不饱和环状核苷分子[15]。

4 不对称加成

华东师范大学化学系胡文浩课题组通过Rh/Zr协同催化重氮乙酸酯、醇和醛的三组份不对称加成,生成了高对映和非对映选择性的α,β-二醇羧酸酯[16]。

南开大学化学系周其林课题组发展了一种铜盐在手性螺环双噁唑啉存在下重氮乙酯与酚(或)水的不对称碳-氢键插入羟基反应,生成了高对映选择性α-羟基酸酯[17,18]。

5 手性反应

上海有机所林国强课题组从环辛二烯经过关键酶拆分和有关化学转化制备C2对称的手性环戊烯并环双烯的新型手性配体,在金属铑催化芳基硼酸对磺酰亚胺反应得到高对映选择性手性仲胺[19]。

6 有机催化剂催化的反应

赵刚课题组利用廉价易得的脯氨酸衍生的氨基醇有机小分子催化剂,以过氧叔丁醇为氧化剂,实现了没有金属参与的烯酮高对映选择性的环氧化,为合成手性环氧化合物提供一种实用的合成方法[20]。

上海有机所刘金涛课题组利用有机小分子催化,成功实现了含三氟甲基的α,β-不饱和酮与一般甲基酮之间的对映选择性醛醇反应,ee值高达95%[21]。

7 大环合成

上海有机所陈庆云院士课题组首次利用锌粉还原β-四(三氟甲基)-meso-四苯基铜(Ⅱ)卟啉,得到了具有相对稳定的20π电子非芳香体系的isophlorin,产物结构通过了单晶衍射的确认,从而首次以实验结果证实了半个世纪前有机合成大师Woodward在研究叶绿素合成时提出的具有20 π电子的N,N’-二氢卟啉(N,N’-dihydroporphyrin or isophlorin)的假想结构[22]。

8 天然产物全合成

上海交通大学邓子新院士和周秀芬教授领导的课题组是国内较早从事天然产物生物合成研究的团队之一,他们针对的对象主要以农用抗生素为主。在率先发表了井岗霉素(Validamycin A)生物合成基因簇的基础上,他们通过体内基因置换与体外生化相结合的方法阐明了糖基转移酶Val G和激酶Val C的功能;在报道南昌霉素(Nanchangmycin)生物合成基因簇的基础上,发现并系统研究了一个特殊的负责聚醚化合物生物合成中催化聚酮链解离的硫脂酶,并提出了可能的后饰-解离机制;通过对聚烯化合物杀假丝菌素(Candicidin)生物合成途径中聚酮合成酶功能域的调控,阐明了系列化合物的结构和可能的合成机制。另外,他们还克隆了肽核苷类抗生素灭粉霉素(Mildiomycin)的生物合成基因簇[23]。

上海有机所的刘文研究员课题组和唐功利研究员课题组合作,从事结构新颖的复杂聚酮、聚肽化合物的生物合成研究。他们克隆了抗肿瘤化合物番红霉素(Saframycin A)、阿进霉素(Azinomycin B)和替曲卡星(Tetrocarcin A)的生物合成基因簇,提出了可能的生物合成途径,为进一步系统研究包括非蛋白源氨基酸、螺乙酰乙酸内酯等独特结构单元的生物合成机理和抗肿瘤天然产物的组合生物合成奠定了基础。另外,中国科学院微生物研究所的谭华荣研究员课题组的尼可霉素(Nikkomycin X)、杨克迁研究员课题组的嘉德霉素(Jadomycin B)以及中国协和医科大学王以光研究员课题组的格尔德霉素(Geldanamycin),对生物合成基因簇中部分基因功能的研究均取得了进展。

9 结语

目前我国有机化学学科的科研人员在国际有影响的学术期刊发表学术论文的数量、质量不断增加、提高。与此同时,有机化学学科为国家国民经济建设服务的研究工作成果也不断涌现。为解决我国甾体药物工业生产中的重大环境污染问题(即应用了长达近60年的甾体皂甙元铬酐氧化降解生产技术、每年产生约8000t含金属铬环境污染物),上海有机所田伟生教授小组经过十多年的坚持不懈努力,研究提供的用双氧水代替铬酐氧化降解甾体皂甙元的洁净生产技术[24]已经完成了中试研究,目前正在上海市科委专项项目支持下着手进行试生产。此技术在化工原料使用上遵循了“原子经济性”原则,实行了化工生产的“零排放”,为我国化学工业洁净生产给出了又一样板。此技术推广后,不仅可以实现每年减少8000t含金属铬环境污染物,还可以从此生产过程的废弃物中回收500t以上的手性试剂。此技术推广后不仅可以促进我国甾体药物工业发展,也有助于我国黄姜、剑麻种植、加工行业的环境污染的治理。作者们相信:随者我国有机化学学科不断发展,我国有机化学工作者不仅能够在国际一流刊物上发表学术论文,扩大我国有机化学学科的影响,也能为我国国民经济建设做出实实在在的贡献。

参考文献

1 Angew.Chem.Int.Ed., 2008, 47: 4733.2 Angew.Chem.Int.Ed., 2008 47: 1473.3 Angew.Chem.Int.Ed., 2007, 46: 5554.4 J.Am.Chem.Soc., 2007, 129: 7666.5 J.Am.Chem.Soc., 2007, 129: 6066.6 J.Am.Chem.Soc., 2007, 129: 10948.7 Angew.Chem.Int.Ed.2008, 47: 4581.8 Angew.Chem.Int.Ed., 2008, 47: 4729.9 Angew.Chem.Int.Ed., 2007 46: 7068.10 J.Org.Chem., 2008, 73: 2947.11 J.Org.Chem., 2007, 72, 9364.12 Org.Lett., 2007, 9, 3053.13 Angew.Chem.Int.Ed., 2008, 47: 4729.14 J.Am.Chem.Soc., 2007, 129: 7718.15 Org.Lett., 2007, 9, 5437.16 Angew.Chem.Int.Ed., 2008, 47: 6647.17 J.Am.Chem.Soc., 2007, 129: 12616.18 Angew.Chem.Int.Ed., 2008, 47: 932.19 J.Am.Chem.Soc.2007 129: 5336.20 J.Org.Chem., 2007, 72: 288.21 Org.Lett.,2007,9, 1343.22 J.Am.Chem.Soc.,2007, 129:5814.23 Chembiochem.2008 9: 1286.24 田伟生等,中国专利CN1221563C 16-脱氢孕烯醇酮及其同类物的洁净生产技术。

第18篇:精细有机化学品的合成与工艺学

精细有机化学品的合成与工艺学

第一章

1.1 精细化工的范畴

生产精细化学品的工业,通称精细化学工业,简称精细化工。所谓精细化学品,一般指的是批量小、纯度或质量要求高,而且利润高的化学品。最早的精细化工行业,例如染料、医药、肥皂、油漆、农药等行业,在19世纪前就已出现。随着科学技术的不断发展,一些新兴的精细化工行业正在不断出现。例如,到1981年列入日本《精细化工年鉴》的精细化工行业共有34个即医药、兽药、农药、染料、涂料、有机颜料、油墨、催化剂、试剂、香料、粘合剂、表面活性剂、化妆品、感光材料、橡胶助剂、增塑剂、稳定剂、塑料添加剂、石油添加剂、饲料添加剂、食品添加剂、高分子凝聚剂、工业杀菌防霉剂、芳香防臭剂、纸浆及纸化学品、汽车化学品、脂肪酸及其衍生物、稀土金属化合物、电子材料、精密陶瓷、功能树脂、生命体化学品和化学促进生命物质等。由此可见,精细化工的范畴相当广泛。

1.2 精细化工的特点

精细化学品在量和质上的基本特点是小批量、多品种、特定功能和专用性质。精细化学品的全生产过程除了化学合成(包括前处理和后处理)以外,还涉及到剂型(制剂)和商品化(标准化)两部分。这就导致精细化工必然要具备以下特点:

(1)高技术密集度

因为精细化工涉及到各种化学的、物理的、生理的、技术的、经济的等多方面的要求和考虑。

(2)多品种

例如,根据《染料索引》(Colour Index)1976年第三版的统计,共包括不同化学结构的染料品种5232入其中已公布化学结构的1536个。主要国家经常生产的染料品在2000个以上。

(3)综合生产流程和多用途、多功能生产设备

由于精细化工品种多、批量小,并经常更换和更新品种,为了取得高经济效益,目前许多工厂已采用上述 2 措施。

(4)商品性强,市场竞争激烈。

(5)新品种开发成功率低、时间长、费用高。 (6)技术垄断性强、销售利润高、附加价值高。

1.3 精细化工在国民经济中的作用

精细化工是国民经济中不可缺少的一个组成部分。其作用主要有以下几方面:

(1)直接用作最终产品或它的主要成分

例如,医药、兽药、农药、染料、颜料、香料、味精、糖精等。

(2)增加或赋予各种材料以持性

例如塑料工业所用的增塑别、程定剂等各种助剂。彩色照相所用的成色剂、显影剂和增感剂等。

(3)增进和保障农、林、牧、渔业的丰产丰收

例如,选种、浸种、育秧、病虫害防治、土壤化学、改良水质、果品早熟、保鲜等都需要借助精细化学品的作用来完成。

(4)丰富人民生活

例如,保障和促进人类健康、提供优生优育条件、保护环境清洁卫生、以及为人民生活提供丰富多彩的衣食住行等享受性用品,都需要添加精细化学品来发挥其特定功能。

(5)促进技术进步

例如,电子液晶显示器所用的液晶染料、电传纸所用的热敏材料、功能树脂、人造器官、化学促进物质等对于科学技术的进一步发展都起了重要作用。

(6)高经济效益

这已影响到一些国家的技术经济政策,把精细化工视为生财和聚财之道,不断提高化学工业内部结构中精细化工所占的比重。

1.4 本课程所讨论内容

有机化工产品按其所起作用和相互关系,大体上可分为三大类:(1)基本有机原料;(2)有机中间体;(3)有机产品。

所谓基本有机原料,指的是从石油、天然气或煤等天然资源经过一次或次数

3 较少的化学加工而制得的结构比较简单的有机物。例如,脂肪族的乙烯、丙烯、乙炔、一氧化碳;芳香族的苯、甲苯、二甲苯、萘和蒽等十余种。

所谓中间体,指的是将基本原料经进一步化学加工而制得的结构比较复杂,但还不具有特定用途的有机物。例如,脂肪族的甲醇、乙醇、乙酸、乙醛、丙酮、丙烯腈、环氧乙烷、氯乙烷、氯乙酸、甲胺、二甲胺等、芳香族的异丙苯、苯酚、氯苯、硝基苯、苯胺、2-萘酚等。

所谓有机化工产品,指的是将有机中间体再经过化学加工而制得的有特定用途的有机物。例如,医药、农药、染料、合成纤维、塑料、合成橡胶以及其他各种精细化学品等。它们都是与广大消费者或使用部门直接见面的有机化工产品。

应该指出,上述分类并不是绝对的,例如乙醛和异丙苯既可以列为中间体,也可以列为有机原料;而三氯乙醛和水杨酸,它们主要用作中间体,但有时也用作有机产品(医药)。在有机化工产品小,产量最大的是三大合成材料即:合成纤维、塑料和合成橡胶;而品种最多的则是精细化学品。

精细化学品的行业很多,其中许多行业已经建立了专门的学科,并且各有许多专著。本课程主要讨论用于制备精细化学品,特别是它的中间体所涉及的主要单元反应及其理论基础和工艺学基础。

中间体的范围相当广泛,品种非常多,有些中间体可用于多种类型化工产品的制备。这些通用的中间体,化学结构一般都比较简单,例如,脂肪族的甲醇、乙醇、乙酸,芳香族的氯苯、苯酚、邻苯二甲酸酐等。它们虽然品种不多,但生产量都非常大,常常在综合性大型化工厂生产,并且有些已属于基本有机合成的范畴。大多数中间体专用于个别几个精细化学品的制备。专用的中间体,其化学结构比较复杂,产量比较小,它们常常和最终的精细化学品配套生产。

1.5 精细有机合成的单元反应

精细化学品及其中间体虽然品种繁多,但是从分子结构来看,它们大多数是在脂链、脂环、芳环或杂环上含有一个或几个取代基的衍生物。其中最主要的取代基有:

4 (1)-C

1、-Br、-I、-P等。

(2)-SO3H、-SO2C

1、-SO2NH

2、-SO2NHR等(R表示烷基或芳基)。(3)-NO

2、-NO。

(4)-NH

2、-NHAlk、-NH(Alk)Alk、-NHA r、-NHAc、-NH2OH等(Alk表示烷基、Ar表示芳基、Ac表示酰基);

(5)-N2+C

1、-N2+HSO4ˉ;(6)-OH、-OAlk、-OAr, -OAc等;

(7)-Alk。例如-CH

3、-C2H

5、-CH(CH3)2等;

(8)

OCNH2OCClCNOCHOCROCArOCOHOCOROCOAr等

为了在有机分子中引入或形成上述取代基,以及为了形成杂环和新的碳环,所采用的化学反应叫做单元反应或单元作业。最重要的单元反应有:

(1)卤化

(2)磺化和硫酸酯化 (3)硝化和亚硝化 (4)还原和加氢

(5)重氮化和重氮基的转化 (6)氨解和胺化 (7)烃化 (8)酰化 (9)氧化 (10)水解 (11)缩合 (12)环合 (13)聚合

5 由此可见,精细化学品及其中间体虽然品种非常多,但是其合成过程所涉及的单元反应只有十几种。考虑到同一单元反应具有许多共同的特点,因此按单元反应来分章讨论,有利于掌握精细有机合成所涉及的单元反应的一般规律。应该指出,关于单元反应的分类和名称在各种书刊中并不完全相同。本课程将按照上述分类法进行讨论。

上述单元反应可以归纳为三种类型。第一类是有机分子中碳原于上的氢被各种取代基所取代的反应,例如卤化、磺化、硝化和亚硝化、C-酰化、C-烃化等。第二类是碳原子上的取代基转变为另一种取代基的反应,例如硝基的还原为氨基等。第三类是在有机分子中形成杂环或新的碳环的反应即环合反应。

上述三类反应之间有密切的联系。第一类反应常常为后两类反应准备条件,进行第二类反应时所形成的取代基的位置常常就是上一步进行第一类反应所引入的取代基的位置。而第三类反应也需要由碳原子上的取代基来提供C、N、O、S等原子来形成杂环或新的碳环。

同一个精细化学品或中间体,有时可以用几个不同的合成路线或者用几个不同的单元反应来制备。例如苯酚的合成路线很多,其中在工业生产上曾经采用过的合成路线至少有以下五个,它们各有优缺点。

当制备在分子中含有多个取代基的中间体或精细化学品时,合成路线的合理选择就更为重要。

磺化氯化C-烷化SO3HCl水解(碱熔)气相接触催化水解OH解分重排性酸高压液相碱性水解CH3CHCH3CH3氧化氧化OCOH1.6 精细有机合成的原料资源

精细有机合成的原料资源主要是煤、石油、天然气和农副产品。分别扼要叙 6

氧化COOHCH3-脱羧CH3述如下:

1.6.1 煤的加工

煤的主要成分是碳。煤的成分非常复杂,除了碳、碳氢化合物以外,还有含氧以及少量含硫、含氯化合物。另外还含有一些无机矿物质。煤的加工主要有四种方式,即(1)炼焦,(2)气化,(3)生产电石,(4)破坏加氢。其中与精细有机合成有密切关系的是炼焦副产品的回收,因为它可以提供多种芳香族原料。

1.6.2 石油加工

石油是一种棕黑色的粘稠液体。它含有几万种碳氢化合物,另外还含有一些含氮和含硫的化合物。石油的主要成分是烷烃、环烷烃和少量芳烃。石油加工的第一步是将原料经过常压、减压精馏,分割成若干馏份。适当沸程的馏分在脱硫之前再进一步加工可以得到各种基本化工原料和石油产品。其中以制取化工原料为目的的加工方法主要有以下几种。

(1)催化重整

重整的最初目的是将重整原料油(沸程95℃以下)和直馏汽油(沸程95~130℃)里的一部分环烷烃和烷烃转变为芳烃,以提高汽油的辛烷值。后来出于化学工业对芳烃的需要量日益增长,使重整成为制取苯、甲苯和二甲苯等芳烃的重要方法之一。

汽油重整主要采用含铂催化剂的铂重整法。反应一般在490~530℃和0.25~0.30MPa和氢气存在下进行。铂重整时发生多种反应,其中生成芳烃的反应叫做芳构化,主要有:六员环烷烃脱氢生成芳烃、五员环烷烃异构化-脱氢生成芳烃以及烷烃的脱氢环合生成环烷烃再脱氢生成芳烃等。重整油约含30~50%芳烃,经分离可得到苯、甲苯和二甲苯等。

(2)热裂解

当将直馏汽油、轻柴油、减压柴油等原料油加热到750~800℃进行热裂解时,除了发生高碳烷烃裂解为低碳烯烃和二烯烃的主要反应以外,还发生各种芳构化反应。裂解的主要目的是制取乙烯、丙烯和丁二烯等烯烃。另外,裂解汽油中约含有40~80%芳烃,其中主要是苯、甲苯和二甲苯。

(3)催化裂化

催化裂化的主要目的是将直馏轻柴油、重柴油或润滑油等

7 高沸程原料油中的高碳烷烃加氢裂化成低碳烷烃,同时发生异构化、环烷化和芳构化等反应而得到高辛烷值汽油。催化裂化一般用硅酸铝作为催化剂,在450~560℃和0.01~ 0.25MPa下进行。所得到的轻柴油馏份(沸程180~340℃)中含有相当多的重质芳烃,其中主要是多烷基苯和烷基萘。

(4)临氢脱烷基化

重整的石脑油馏份(沸程66.5~156℃)中苯,甲苯和二甲苯的比例约为1∶5.4∶3.8。由于甲苯的需要量比苯和二甲苯少,又发展了甲苯在氢气存在下脱烷基制取苯的方法(Cr2O3/A12O3催化剂,540℃)。

从催化裂化轻柴油中分离出来的多烷基苯和烷基萘也可以通过临氢脱烷基法制取苯类产品和石油萘。但这种方法投资高,只有炼油量大的国家才可能采用。

1.6.3 天然气的利用

天然气是埋藏在地下的可燃性气体,它的主要成分是甲烷。天然气可直接用来制炭黑、乙炔、氢氰酸(氨氧化法)、各种氯代甲烷、二硫化碳、甲醇、甲醛等产品。另外,天然气也可先制成合成气(CO+H2的混合气体),一氧化碳经各种羰基合成反应可制得甲醇、高碳醇、正丁醛、甲酸、乙酸、丙酸、丙烯酸、丙烯酸酯和人造石油等化工产品。

1.6.4 农林牧渔副产品的利用

含糖或淀粉的农副产品经水解可以得到各种单糖,例如葡萄糖、果糖、甘露蜜糖、木糖、半乳糖等。如果用适当的微生物酶进行发酵,可分别得到乙醇、丙酮/丁醇、丁酸、乳酸、葡萄糖酸和醋酸等。

从含纤维素的农副产品经水解可以得到己糖C6H12O6(主要是葡萄糖)和戊糖C5H10O5(主要是木糖)。己糖经发酵可得到乙醇,戊糖经水解可得到糠醛。

从含油的动植物可以得到各种动物油和植物油。它们也是有用的化工原料。油脂经水解可以得到甘油和各种脂肪酸。

另外,从某些动植物还可以提取药物、香料、食品添加剂以及制备它们的中间体。

8 第二章

精细有机合成的理论基础

精细有机合成反应按照进行方式不同,从形式上可以分为取代反应、加成反应、消除反应,以及其他重排反应等。每一种反应又可以分为若干种类。

取代反应根据反应试剂性质和反应物分子中碳-氢键断裂方式不同,分为亲电取代、亲核取代和游离基取代反应。加成反应根据加成的基本途径不同,可以分为亲电加成、亲核加成、游离基加成和环加成。消除反应可以根据被消除原子或原子团位置不同,分为β-消除和α-消除等。重排反应也可以分为许多类。

2.1 反应试剂的分类

2.1.1 极性试剂

极性试剂是指那些能够供给或接受一对电子以形成共价键的试剂。极性试剂又分为亲电试剂和亲核试剂。

2.1.1.1 亲电试剂

亲电试剂是从基质上取走一对电子形成共价键的试剂。这种试剂电子云密度较低,应中进攻其他分子的高电子云密度中心,具有亲电性能,包括以下几类:

阳离子:NO2+、NO+、R+、R-C+=O、A rN2+、R4N+等;

含有可极化和已经极化共价键的分子:Cl

2、Br

2、HF、HCl、SO

3、RCOCl、CO2等;

含有可接受共用电子对的分子(未饱和价电子层原子的分子): AlCl

3、FeCl

3、BF3等;

羰基的双键。

氧化剂:Fe3+、O

3、H2O2等。酸类。

卤代烷中的烷基:R-X。

由该类试剂进攻引起的离子反应叫亲电反应。例如:亲电取代、亲电加成。

2.1.1.2 亲核试剂

9 把一对电子提供给基质以形成共价键的试剂称亲电试剂。这种试剂具有较高的电子云密度,与其它分子作用时,将进攻该分子的低电子云密度中心,具有亲核性能,包括以下几类:

阴离子;0H-、RO-、ArO-、NaSO-、NaS-、CN-等。

极性分子中偶极的负端:NH

3、RNH

2、RR`NH、ArNH和NH2OH等;烯烃双键和芳环;CH2=CH2,C6H6等 还原剂:Fe2+、金属等。 碱类。

有机金属化合物中的烷基:RMgX、RC=CM等

由该类试剂进攻引起的离子反应叫亲核反应。例如,亲核取代、亲核置换、亲核加成等。

2.1.2 游离基试剂

含有未成对单电子的游离基或是在一定条件下可产生游离基的化合物称游离基试剂。例如,氯分子(C12)可产生氯游离基(C1²)。

2.2 亲电取代反应

精细有机合成中的亲电取代反应也可称为阳离子型取代反应。芳香环是一个环状共轭体系,由于环上π-电子云密度较高,容易发生亲电取代反应。

2.2.1 芳香族π-络合物与σ-络合物

芳烃具有和一系列亲电试剂形成络合物的特性。同亲电能力较弱的试剂形成络合物,它与芳环平面两侧的环状π-电子云发生松散结合,亲电质点同芳环的碳原子之间没有形成真正的化学键。

而亲电能力较强的试剂同芳烃则在反应瞬间能从芳环上夺取一对电子,与环上某一特定的碳原子形成σ-键,形成σ-络合物(或称芳阳离子)。σ-络合物和π-络合物之间存在着平衡,σ-络合物较为稳定,在某种情况下,能将其分离得到。例如,苯三氟甲烷、硝基氟和三氟化硼在零下100℃时生成一个黄色的结晶态络合物,即σ-络合物。它在零下50℃以下是稳定的,高于零下50℃则分解成 10 间硝基三氟甲苯、氟化氢和三氟化硼。

2.2.2 芳香族亲电取代反应历程

CF3+ NO2F +BF3-100℃CF3BF4-50℃CF3+ HF + BF3O2NHNO2已经有多方面的研究结果足以证明,大多数亲电取代反应是按照经过σ-络合物中间体的两步历程进行的。而亲电质点E+的进攻和质子的脱落同时发生的一步历程,则一直没有发现过。至于在亲点质点进攻芳环以前,质子就已经脱落下来的单分子历程,只在极个别的情况下才遇列。

两步历程的通式表示如下:

H+ E+E++EEHH+HE++EEH+E在芳阳离子中,芳环本身的高度稳定性已不存在,通常是一个非常活泼的中间产物,它存在两种可能性,或者快速地脱掉E+转变为起始反应物Ar-H,即 k2k-1,发生了亲电取代反应。两步历程主要是通过(1)动力学同位素效应;(2)σ-络合物中间体的分离及其相对稳定性证明。

2.2.2.1 动力学同位素效应

对于任何反应,所谓“动力学同位素效应”是指如果将反应物分子中的某一原子用它的同位素代替时,该反应速度所发生的变化,例如,氢的三种同位素氢H、氘D和氚T的质量数不同,三种氢构成的碳氢键断裂速度是有差别的,即质量大的断裂较慢。据据实验数据,C-H键的断裂速度约比C-D键快7倍;约比C-T键快20倍。若(1)按照两步历程而且速度控制步骤是H+的脱落(即k2

11 (2)按照一步历程或者(3)按照单分子历程,那么它的同位素效应kH/kD都将接近于7,或者kH/kT都将接近于20。若按照两步历程而且速度控制步骤是σ-络合物的生成,将没有同位素效应。

2.2.2.2 σ-络合物的分离和其相对稳定性

反应σ-络合物生成是控制步骤时,它一经生成就快速地脱质子而转变为产物。一般不能把它们分离出来,也不易观察到它们的存在。仅在某些特殊情况下,才能分离出中间产物σ-络合物。例如,苯三氟甲烷、硝基氟和三氮化硼在零下100℃时生成的黄色结晶态络合物,它是该硝化的中间产物σ-络合物,然后再分解形成产物间硝基三氟甲苯。

芳香亲电取代反应最初步骤是亲电试剂进攻芳香环,首先形成π-络合物,然后转变为σ-络合物。芳烃溶于无水液态氟化氢时存在着π-络合物和σ-络合物的平衡。

2.2.3 芳香族亲电取代定位规律

2.2.3.1 影响定位的主要因素

芳环上已有一个或几个取代基,若再引入新取代基时,其进入的位置和反应进行的速度,主要取决于以下因素。

(1)已有取代基的性质,包括极性效应和空间效应。如果已有几个取代基则决定于它们的性质和相对位置。

(2)亲电试剂的性质,也包括极性效应和空间效应。 (3)反应条件主要是温度、催化剂和溶剂的影响。

在上述因素中,最重要的是已有取代基的极性效应。在芳香系取代反应中,苯系的亲电取代研究得最多,也最重要。

2.2.3.2 两类定位基

在亲电取代中,苯环上已有取代基对新取代基的定位作用有两种类型,即邻、对位定位和间位定位。通常把邻、对位定位基叫做第一类定位基,把间位定位基叫做第二类定位基。

12 属于第一类定位基的主要有:

—O-、—N(CH3)

2、—NH

2、—OH、—OCH

3、—NHCOCH

3、—OCOCH

3、—F、—C

1、—Br、—I、—CH

3、—CH2Cl

2、—CH2COOH、—CH2F等。

属于第二类定位基的主要有:

—N(CH3)

2、—CF

3、—NO

2、—CN、—SO3H、—COOH、—CHO、—COOCH

3、—COCH

3、—CONH

2、—N+H

3、—CCl3等;

这里所谓邻、对位定位或间位定位,都是对反应的主要产物而言。 2.2.5.3 苯环的定位规律

1.已有取代基的极性效应在不可逆亲电取代中,可以根据苯环上已有取代基的极性效应,对生成个异构体的σ-络合物的稳定性来解释定位作用。苯一取代物发生亲电取代可以生成邻、对和间位的三种σ-络合物。每一种络合物都可以看作是三种共振结构杂化的结果。在邻位和对位的络合物中,都有一个共振结构,其正电荷集中在同已有取代基Z相连的碳原于上。因此在杂化结构中,同Z相连的碳原子上具有部分正电荷。在间位的络合物中,三个共振结构在同Z相连的碳原子上都没有正电荷集中。因此在它的杂化结构中,同Z相连的碳原子上没有部分正电荷。这种差别是解释已有取代基定位作用的基础。

Z间位共振结构杂化结构ZHEHE共振结构Z或表示为Zδ+Zδ+HEHE杂化结构δ+HEZ对位ZZ或表示为Zδ+Zδ+δ+EHEHEHEH杂化结构EHZ邻位共振结构HEZHEZZH或表示为EHEδ+Zδ+HEδ+当Z具有诱导致应时,其影响随距离的增加而减弱,由此可见对于同Z相连的碳原子影响最大。如果具有正的诱导效应+I(即给电子效应),对于邻位或对位

13 的络合物更容易使正电荷分散到Z上,从而使络合物更稳定。对于间位的络合物,Z对于苯环正电荷的分散作用要比邻位和对位的小。因此具有+I效应的取代基使三种络合物都稳定,邻位和对位更稳定,所以这类取代基使苯环活化,并且是邻、对定位。如果Z具有负的诱导效应-I(即吸电子效应),则与上述相反,使苯环上电子云密度降低,使三种络合物都不稳定,邻位和对位更不稳定,所以这类取代基使苯环钝化,并且是间位定位。

当Z和苯环之间有共轭效应时,某些情况下同诱导效应的方向一致,而另一些情况,则同诱导效应的方向相反。一般来说,共轭效应起主导作用。当Z中同苯环相连的原子具有未共有电子对时,可以把未共有电子对分散到苯环上,使络合物稳定,尤其是对于邻位和对位络合物,还可以多画出一个正电荷集中在Z上的共振结构。

这个额外的共振结构比其他共振结构更稳定,即在杂化结构中邻位和对位络合物更稳定。因此这类取代基使苯环活化,而且是邻、对位定位。

Z对位ZZZEHEHEHEH

Z邻位HEZHEZHEZHE

根据以上讨论,各种取代基可归纳为以下三类:

(1)取代基只有正的诱导效应,例如烷基,它们都使苯环活化,而且是邻、对位定位。其中甲基还具有超共轭效应,其活化作用大于其他烷基。

(2)取代基中同苯环相连的原子具有未共有电子对,例如:—O–、—NR

2、—NHR、—NH

2、—OH、—OR、—NHCOR、—OCOR、—F、—C

1、—Br、—I等,其未共有电子对和苯环形成正的共轭效应(+I),它们都是邻、对位定位基。除了正共轭效应外,这些取代基也都具有诱导效应,其中—O–为正诱导(+I),其他的都具有负的诱导效应。对于氨基和羟基,其正的共轭效应(+I)大于负的 14 诱导效应(-I),所以它们都使苯环活化。对于卤素,其正的共轭效应小于负的诱导效应,所以使苯环稍稍钝化。

(3)取代基具有负的诱导效应,而且同苯环相连的原子没有未共有电子对,例如:—N+R

3、—NO

2、—CF

3、—CN、—SO3H、—CHO、—COR、—COOR、—CONH

2、—CCl

3、和—NH3等,其中某些除诱导效应外,还有负的共轭效应,它们都使苯环钝化,而且是间位定位。

2.已有取代基的空间效应

苯环上已有取代基的空间效应这里指的是空间障碍作用。但烷基苯一硝化时随着烷基体积增大,邻位异构产物的比例减小。

3.亲电试剂的极性效应

亲电质点E+的活泼性对定位作用也有重要影响。当E+极活泼时,kT/kB值小,即E+进攻甲苯或进攻苯的选择性很差,同理进攻甲苯环上不同位置的选择性也很差,结果生成相当数量的间位异构产物。例如甲苯的C-烷化就接近这种情况,说明—CH

3、—CH2CH3等烷基阳离子部是非常活泼的亲电质点。

反之,当E+极不活泼时,它进攻甲苯和苯的选择性很好,kT/kB主要决定于甲苯和苯的相对活性,即主要决定于甲基的活化作用,因此kT/kB很大。同理,E+进攻甲苯各不同位置的选择性也很好,几乎不生成间位异构产物。例如甲苯的卤化和C-酰化就接近这种情况,说明分子态氯(Cl2)和—COCH3是很弱的亲电质点。

4.新取代基的空间效应

新取代基的空间障碍也会影响邻位异构产物的生成比例。 5.反应条件的影响

(1)温度的影响

温度升高可以使不可逆的磺化和C-烷化转变为可逆反应。温度的变化对不可逆亲电取代的异构产物比例也有影响。例如硝基苯的再硝化反应,升高硝化温度,主产物间二硝基苯的生成比例将下降。

(2)催化剂的影响

催化剂可以改变亲电试剂的极性效应或空间效应。例 15 如甲苯用混酸硝化时,加入一定量磷酸,可以提高对位异构体的收率,即对位产物组成由36%提高到40%。这可能是磷酸与-NO2构成的络合物作为进攻质点,体积增大,使邻位异构产物减少,对位体增加。催化剂也可以改变反应历程,如蒽醌的磺化有Hg盐时,磺基进入α位,无Hg盐进入β位。

(3)介质的影响

主要是介质酸度的影响,例如,乙酰苯胺的硝化,用乙酸酐比用硫酸作介质能得到更多的邻位异构产物。

6.已有两个取代基的定位规律

当苯环上已有两个取代基,引入第三个取代基时,新取代基进入环上位置主要决定于已有取代基的类型、定位能力的强弱和它们的相对位置。一般有两个取代基定位作用一致和不一致两种情况。

CH3硝化CH3NO2COOH硝化COOHO2NCOOHCOOHCH3CH3CH3NO2CH3

当两个取代基用于同一类型(都用于第一类或第二类定位基),并处于间位,其定位作用是一致的,例如:

可见新取代基很少进入两个处于间位的取代基之间。显然这是空间效应的结果,随着已有取代基或进攻质点体积的增大而更加明显。

当两个取代基属于不同类型,并处于邻位或对位时,其定位作用也是一致的。例如:

CH3磺化NO2NO2CH3SO3HCNCl硝化O2NCNCl

如果两个已存取代基对新取代基的定位作用不一致,新取代基进入的位置将决定于已有取代基的相对定位能力。通常第一类取代基的定位能力比第二类强得

16 多。

NH2磺化COOHNO2COOHNH2

当两个取代基属于不同类型并处于间位,其定位作用就是不一致的,这时新取代基主要进入第一类取代基的邻位或对位。例如:

当两个取代基属于同一类型并处于邻位或对位,则新取代基进入的位置决定于定位能力较强的取代基。例如:

CH3硝化NHCOCH3NO2NHCOCH3 CH32.3亲核取代反应

精细有机合成中的亲核取代也可称为阴离子型取代反应,进攻试剂的性质和反应物分子中C-H键的断裂方式,可按如下反应通式表示:

RHZRZH

反应既包括芳香族亲核取代也包括脂肪族的亲核取代,但应用较多的为脂肪族的亲核取代反应,芳香族的则主要应用于亲核置换反应。

2.3.1 脂肪族亲核取代反应历程

在饱和碳原子上的亲核取代反应,最典型的反应是卤代烷与多种亲核试剂发生的亲核取代常以SN表示,其反应历程有SNl和SN2两种形式。现分别叙述如下:

2.3.1.1 双分子历程(SN2) SN2表示双分子亲核取代。这个历程中旧的化学键断裂和新的化学键形成是同时的,有中间产物生成,反应同步进行。以伯卤代烷反应为例:

HXCHHOHH慢HCHδOHδXHHCOHXH

亲核试剂的进攻从背面与离去基成180°的位置接近作用物,先与碳原子形

17 成较弱的键,同时离去基与碳原子的连接减弱,两者与碳原子成一条直线,而碳原子其他三个键则处于同一平面内。表明过渡态形成。这一过程进行较慢,是反应的控制步骤。当反应由过渡态转化成产物时。碳原子上另外三个键由平面向另一边翻转,所得产物的构型与原作用物的相反。因为在控制反应速度一步是两种作用物分子参加,所以叫双分子亲核取代。在反应中发生了分子的构型逆转,过去把它称为“瓦尔登转化”。在反应中,凡发生构型逆转的作为SN2型反应的重要标志。

2.3.1.2 单分子历程(SN1)

SN1表示单分子亲核取代。在这个反应历程中分两步进行取代反应。第一步是离去基与中心碳原子之间的键发生异裂,生成一个不稳定的碳正离子,是一个慢步骤,第二步是这个高能量的碳正离子中间体,迅速与亲核试剂结合构成新键。

RXRNu慢R快XRNu

整个反应速度决定于第一步的慢过程。由于该步骤中只有一个作用物分子参加,所以叫做单分子亲核取代。这里,烷基正离子稳定性越大,作用物(R-X)按单分子历程进行反应的倾向越大。该反应历程所以是单分子的,一是由于烷基在α-碳原子上积累,无论从电子效应还是空间效应,都给亲核试剂的进攻造成一定困难,使按SN2历程的反应速度降低;二是由于α-碳原子上电子云密度增大,卤原子就较容易成为负离子而离去,生成的烷基正离子由于超共轭效应存在,有较大的稳定性,这些因素都促使叔卤烷的水解反应按SN1历程进行。

2.3.2 反应的影响因素

影响亲核取代反应历程和速度的因素,主要是作用物的结构、亲核试剂、离去基团和溶剂的性质等,并且它们之间是相互联系的。

2.3.2.1 作用物结构的影响

作用物结构对SN1和SN2反应进度的影响有电子效应和空间效应两种因素。例如卤化烷的水解反应,如果按SN2历程进行,则:

伯卤烷>仲卤烷>叔卤烷

其相对反应速率从伯烷基作用物到叔烷基作用物大约减小103倍。而按单分子历程进化,则:

叔卤烷>仲卤烷>伯卤烷

其相对反应速度大约相差106倍。甲基和伯烷基作用物是按SN1历程进行反应,叔烷基作用物按SN1历程进行反应;仲烷基作用物则介于SN1和SN2的边界状态。可以用下图表示。

卤代烷烷基对水解速度的影响

在作用物分子中,被进攻的碳原子上有其他给电性基团。如α-氯醚、3-氯丙烯等。由于取代基的p-p共轭或p-π共轭效应,使生成的碳正离子稳定,它们的反应速度比没有取代基的大上千倍、甚至上万倍,其反应按SN1历程进行。

在被进攻的碳原子上有吸电性取代基,如α-卤代羰基化合物、α-卤代氰基化合物等。由于取代基的吸电子作用,使被进攻的碳原子的部分正电荷增加,有利于SN2反应。同时,在形成过渡态时,取代基的π-电子云也可与正在形成键和正在断裂键的电子云交盖,使过渡状态能量降低,使SN2的反应速度增加。

总之在作用物分子中,被进攻的碳原子上有给电性取代基,有利于SNl反应,分子中有吸电性取代基,则有利于SN2反应。

2.3.2.2 被取代离去基团的影响

不论在SN1或SN2的反应中,被取代的基团X均是带着原来共有的一对电子

19 离去,所以X接受电子能力越强越易离去,也越有利于亲核取代反应的进行。一般说来,其被取代的难易次序为:

RSO3—> I—> Br—> Cl—> RCOO—> HO—> H2N—

2.3.2.3 亲核试剂的影响

在SN1反应中,亲核试剂的性质对反应速度没有影响,因为亲核试剂不参与整个反应过程的速度控制步骤。在SN2的反应中,亲核试剂参与了过渡态的形成,所以亲核能力的变化对取代反应速度有明显影响。绝大多数试剂的亲核能力与其碱性的强弱是一致的。例如:下列亲核试剂活泼次序为:

C2H5Oˉ> OHˉ> PhOˉ> CH3CH2ˉ>H2O 在同族元素的试剂中,亲核性是按电负性的下降而提高。例如: Iˉ>Brˉ>Clˉ>Fˉ和

PhSˉ>PhOˉ

由于原于序数越大,越容易极化,所以给电子倾向也越大。

2.3.2.4 溶剂的影响

溶剂的极性对亲核取代反应机理和反应速度都有很大影响。绝大部分SNl的反应,反应的第一步是一个中性化合物离解为两个带有电荷的离子,因此极性溶剂有利反应进行。并且溶剂极性越大,越使反应速度加快。SN2的反应,由于溶剂与亲核试剂可以形成氢键使亲核试剂活泼性减弱,在反应中试剂与反应物形成过渡态,首先得消耗一部分能量破坏生成的氢键。所以反应在不形成氢键的溶剂中进行有利,反应速度快。总之SNl反应在质子性溶剂中进行有利;而SN2反应在非质子性溶剂中进行有利。

脂肪族亲核取代反应在精细有机合成中较为常用,广泛用于碳杂新键和碳-碳新键的形成。例如用于醇、醚和酯类的合成,即卤代烃发生溶剂解,形成碳-氧新键,例如用水为溶剂生成醇,用醇为溶剂生成醚,用羧酸为溶剂则生成酯。又如用于硫醇、硫醚的合成形成碳-硫新键。用于卤代烃的氨解形成碳-氮新键,这是合成烷胺类重要方法。亲核取代反应中以形成碳-碳新键最为重要,反应是以碳负离子作为亲核试剂,对碳负离子来说,使分子中引入烃基,又称烃基化反

20 应,用以合成腈类和炔烃;如果碳负离子为烯醇负离子,进行烃基化反应是合成酮、羧酸、羧酸酯和腈等化合物的重要合成方法。

2.3.3 芳香族环上氢的亲核取代反应

在该类反应中,亲核试剂优先进攻芳环上电子云密度最低的位置,所以在反应的难易定位规律方面都与芳香族亲电取代反应相反。

以硝基苯的羟基化为例,这类亲核取代反应历程简单表示如下:

NO2OH无水KOH加热中间络合物阴离子NO2HOHNO2OHHNO2OHH

2 上述历程得到一些实验结果的支持。例如,加入适量的温和氧化剂(包括空气),常有利于反应的进行。氧化剂的作用在于帮助氢阴离子脱落,并使它转变为稳定的氢分子或水分子。上述历程可以解释反应的难易和取代基的定位作用。吸电性的硝基使邻位和对位的电子云密度下降得比间位更多,亲核试剂较易进攻这个位置,发生已有取代基的亲核置换。

2.4 消除反应

消除反应是指有机物分子中同时除去两个原子(或基团),形成一个新分子,通常是不饱和程度增加的反应。由于被除去的两个原子(或基团)的位置不同,消除反应主要分两种,即β-消除和α-消除。

β-消除是生成烯(或炔)烃化合物的反应,即在相邻的两个碳原子上除去两个基团。

XYXY消除CβCαβCC

β-消除不仅形成碳-碳双键,也可形成碳-氧双键、碳-硫双键和碳-氮双键等。 α-消除是生成卡宾(Carbene)的反应即在同一个碳原子上除去两个基团,也称1,1-消除。

21 XCYXY消除βC

2.4.1 β-消除反应

通过研究消除反应的历程,可分双分子历程(E2)和单分子历程(E1)。 2.4.1.1 双分子消除反应历程(E2历程)

双分子消除反应通常在强碱性试剂存在下发生。当亲核性的碱性试剂B接近β氢时,在B和H间形成微弱键的同时,原有C-H键、C-X键减弱而形成过渡态。而后发生C-B键和C-X键同时断裂构成烯键。

XCCBHBXCCH过渡态CCBHX

可见E2历程和SN2历程很相似。区别是在于E2历程中碱性试剂进攻β-氢原子;而在SN2历程中反应发生在α-碳原子上。所以在不饱和碳原子上的亲核取代常伴有消除反应发生。

按E2历程进行反应,离去基团的空间排布在理论上有两种,即顺式消除和反式消除。

XCCH反式HXCC顺式

对于烷基化合物,σ-键可以自由旋转,很难确定按哪种方式进行。 但烯烃衍生物和脂环化合物中,双键和环上的单键自由旋转受到阻碍,就以一种消除方式为主。如1,2-二氯乙烯与碱作用生成氯乙炔的反应。

离去基处于反式位置的异构体比离去基处于顺式位置的易于消除,所以顺式二氯乙烯的反应速度比反式二氯乙烯快20倍。

ClCHCClHOH快HCCHOH慢ClCHCHCl

22 脂环化合物在进行消除反应时,被消除的两个原子(或基团)处于反式位置易于消除;并且被消除的原子和它们相连的碳原子在同一平面上,反应最易进行。

2.4.1.2 单分子消除反应历程(E1历程)

单分子消除反应历程分两步进行,第一步是离去基解离而形成碳正离子。这步速度较慢是反应的控制步骤。第二步消除β-质子形成烯烃。

当形成碳正离子比较稳定时,反应优先按E1历程进行。

慢快CHCXXCHCBCCBH

E1和SN1反应常同时发生,两者比值常根据溶剂的极性和温度不同而异。高极性溶剂有利于质子从碳正离子中离去。有利于E1历程的反应。

2.4.2 α-消除反应

α-消除反应是在相同的碳原子上消除两个原子(或基因),形成高度活泼的缺电性质点(卡宾)的反应。卡宾具有特殊的价键状态和化学结构,可以发生多种化学反应。卡宾能与多种单键发生插入反应。

CHCH2CCH2HHCCH2

卡宾能与碳-碳双键进行亲电加成反应。

CCH2CCCCH2CCCH2

卡宾与芳香族化合物也能发生加成反应,生成环扩大产物,用以合成环烯。

CH3CH2N2hv

2.4.3 消除反应影响因素

在同样反应条件下,消除反应和亲核取代反应是同时发生的。下列因素将有 23 利于消除反应进行。

2.4.3.1 反应物分子结构的影响 1.反应物分子的空间效应

被消除原子所连的碳原子上有支链时,如果按双分子反应,在SN2历程反应中亲核试剂进攻β-碳原子,而在E2历程反应中进攻β-氢原子,支链的空间效应对SN2不利,而相对对E2有利;如果按单分子反应,无论是SN1或E1的历程,在反应速度决定步骤中形成同样的碳正离子,只是第二步不同,若连有较多的烷基按E1消除β-氢后,形成双键可减少分子张力,使分子稳定;按SN1取代碳正离子与亲核试剂结合,键角被压缩(由120°减至109.5°),反而张力增加。可见无论按双分子或按单分子反应都对消除反应有利。

2.反应物分子的电于效应

分子中在β-碳原子上有吸电性基团(X、CN、NO2)增加了β-氢原子的活性,使E2消除反应加速。

3.离去基团的性质

离去基因吸电子能力增加,使β-氢原子的电子云密度下降,有利于双分子E2消除反应,离去基团对在El历程反应无明显影响。

2.4.3.2 反应条件的影响

1.碱的影响

试剂的碱性对于双分子反应E2或SN2是有影响的。碱性即是对质子的亲和力,因此试剂碱性增大按E2进行反应更容易。例如,伯仲卤代烷的水解,为了提高醇的收率避免消除反应,大用苛性碱而用乙酸钠作试剂。因为CH3COOˉ的碱性比OHˉ的弱得多,反应按SN2历程进行。

总之,在消除和取代之间,强碱有利于消除不利于取代。而高浓度的强碱在非离子化溶剂中,有利于双分子历程,而且对E2比对SN2更有利。碱的浓度低或没有碱存在时,在离子化溶剂中,有利于单分子历程,而且对SN1比对E1更为有利。

24 2.溶剂(介质)的影响

溶剂的极性对反应影响与亲核取代很相似。按单分子反应是先生成碳正离子,而后按E1或SN1历程进行,增加溶剂极性只促进解离中间物的速率,而对E1和SNl产物的比量影响较小。

按双分子反应,在极性小的溶剂中对于形成E2的过渡态条件有利,有利于烯烃生成。

3.温度的影响

反应无论是单分子还是双分子历程,提高反应温度都有利于消除反应的进行。这可能是消除反应的活化过程需要拉长β-碳氢键的原因。

2.5 游离基反应

游离基反应又称自由基反应,是精细有机合成中一类较重要的反应。它一经引发,通常都能很快进行下去,是快速链锁反应:但反应也能受到某些物质的抑制,这些物质能非常快地与游离基结合,使反应终止。为了使游离基反应能够顺利发生必须先产生一定数量的游离基。常用的方法有三种:热离解法、光离解法和电子转移法。

2.5.1 热离解法

化合物受热到一定温度发生热离解,产生游离基。不同化合物的热离解所需温度不同。例如,氯分子的热离解在100℃以上可具有一定的速度;烃、醇、醚、醛和酮受热到800~1000℃时离解;金属有机化合物所需温度低些,四甲基铅蒸汽通过灼热至600℃的石英管,可离解成甲基游离基。

Cl2100℃以上2ClPb4CH3 (CH3)4Pb600℃以上含有弱键的化合物裂解所需温度低些,例如含有O-O键的过氧化二苯甲酰及偶氮双异丁腈都是常用的引发剂。

25 OCO2CNH3CCNNCH3CNCCH350~100℃OCO2CO2CNCH350~100℃2H3CCCH3N2

2.5.2 光离解法

分子受到光的照射而被活化,活化分子具有较高的能量,它们可以满足化学键均裂所需要的能量。例如,卤素分子用光照射生成它们的原子,光离解可在任何温度下送行,并且能通过调节光的照射强度控制生成游离基的速度。

Cl2Br2hvhv2Cl2Br

2.5.3 电子转移法

重金属离子具有得失电子的性能常被用于催化某些过氧化物的分解。例如,亚铁离子将一个电子转移给过氧化氢使它生成一个羟基游离基及一个更稳定的羟基负离子。三价的钴离子可以从过氧化叔丁醇中获取一个电子,使过氧化叔丁醇转变成一个过氧游离基及一个质子。

Fe2Co3+HOHOOHOC(CH3)3Fe3OHOH

游离基反应属于连锁反应,其反应历程包括三个阶段,即链的引发、链的传

Co2+H+(H3C)3COO递和链的终止。游离基反应在精细有机合成中有广泛的应用。

2.6 加成反应

加成反应分三种类型,即亲电加成、亲核加成和游离基加成。 2.6.1 亲电加成

亲电加成一般发生在碳-碳双键上,因为烯烃、炔烃分子中的π-电子只有较大的活动性,表现出亲核性,所以它们容易与多种亲电试剂发生亲电加成反应。

26 常用的亲电试剂有:强酸(例如硫酸、氢卤酸)、Lewis酸(例如FeCl

3、A1C

13、HgC12)、卤素、次卤酸、卤代烷、卡宾、醇、羧酸和酰胺等。其反应历程分两步进行:首先生成碳正离子中间产物,它是速率控制步骤。

慢CCXYCXCY

然后是:

快YCXC CXCY烯烃的结构不同,对反应速度的影响也完全与上述亲电分步加成历程一致。当碳-碳双键上连有给电性取代基时,由于增加了碳-碳双键上的电子云密度可使碳正离子稳定,因而加快了反应速度。当连有吸电性取代基时,由于降低了碳-碳双键上的电子云密度,降低了碳正离子的稳定性,因而减慢了反应速度。

2.6.2 亲核加成

亲核加成中最重要的是碳氧双键(碳基)的亲核加成。在碳氧双键中氧原子的电负性比碳原子高得多,因此氧原于带有部分负电荷,而碳原子则带有部分正电荷。

CδOδ

碳氧双键在进行加成反应时,带负电荷的氧总是要比带正电荷的碳原子稳定得多,因此在碱性催化剂存在下,总是带正电荷的碳原子与亲核试剂发生反应,即碳氧双键易于发生亲核加成反应。

2.7 重排反应

重排反应是指在试剂作用下或其因素影响下,有机物分子中发生某些基因的转移,形成另一种化合物的反应。重排反应种类很多,只讨论芳香族化合物侧链 27 向环上迁移,以及迁移发生在邻近两个原子间的1,2-迁移。

XZXHZZABAZB

2.7.1 分子间重排

分子间重排反应过程中能够获得分裂出来的迁移基(Z)。例如,在盐酸催化下N-氯乙酰苯胺的重排反应:

H3COCNClHHH3COCNClHClHNCOCH3Cl2NHCOCH3ClNHCOCH3HClCl

首先通过置换生成氯分子,而后氯分子与乙酰苯胺发生亲电取代。 2.7.2 分子内亲电重排 2.7.2.1 联苯胺重排

这是在酸的作用下氢化偶氮苯转化成联苯胺的反应。

HNNHHH2NNH2

2.7.2.2 N-取代苯胺的重排

N-取代苯胺在酸性条件下迁移基从氮原子迁移到环的邻位或对位上。例如亚硝基的迁移,它是亲电性的重排反应。仲芳胺的N-亚硝基衍生物用盐酸处理时发生重排,主要生成对位异构产物。

RNNOHClRNHNO

28 2.7.2.3 羟基的迁移

迁移基团作为亲核性质点带着它原先与支链相结合的电子对,从支链迁移至芳环上,这种重排称为芳香族亲核重排。例如,用稀硫酸作用于苯基羟胺,即发生OH-的迁移,生成了氨基酚。

HNOHH2SO4NH2NH2OHOH

第三章

精细有机合成的工艺学基础

3.1

精细有机合成的工艺学主要包括以下内容:对具体产品选择和确定在技术上和经济上最合理的合成路线和工艺路线;对单元反应确定最佳工艺条件、合成技术和完成反应的方法,以得到高质量、高收率的产品。

所谓合成路线,指的是选用什么原料,经由哪几步单元反应来制备目的产品。例如,在1.6中提到,苯酚的生产可以有好几条合成路线,它们各有忧缺点。关于合成路线将结合具体产品在各单元反应中讨论。

所谓工艺路线,指的是对原料的预处理(提纯、粉碎、干燥、熔化、溶解、蒸发、汽化、加热、冷却等)和反应物的后处理(蒸馏、精馏、吸收、吸附、萃取、结晶、冷凝、过滤、干燥等)应采用哪些化工过程(单元操作)、什么设备和什么生产流程等。

所谓反应条件指的是:反应物的分子比、主要反应物的转化率(反应深度)、反应物的浓度、反应过程的温度、时间和压力以及反应剂,辅助反应剂、催化剂和溶剂的使用和选择等。

所谓合成技术主要指的是:非均相接触催化、相转移催化、均相络合催化、光有机合成和电解有机合成以及酶催化等。

所谓完成反应的方法主要指的是:间歇操作和连续操作的选择,反应器的选择和设计等。为了完成化工生产,我们必须对所涉及的物料的性质有充分了解。 29 各种物料的重要性质主要有:

(1)物料在一定条件下的化学稳定性、热稳定性、光稳定性以及贮存稳定性(包括与空气和水分长期接触的稳定性)等。

(2)熔点(凝固点)、沸点、在不同温度下的蒸汽压;物料在水中的溶解度、水在液态物料中的溶解度;物料与水是否形成恒沸物,以及恒沸温度和恒沸物组成等。

(3)比重、折光率、比热、导热系数、蒸发热、挥发性和粘度等。 (4)闪点、爆炸极限和必要的安全措施。

(5)毒性、对人体的危害,在空气中的允许浓度、必要的防护措施以及中毒的急救措施。

(6)物料的商品规格、各种杂质和添加剂的允许含量、价格、供应来源、包装和储运要求等。

以上性质可以查阅各种有关子册。 3.2.1 反应物的摩尔比

反应物的摩尔比指的是加入反应器中的几种反应物之间的摩尔数之比。这个摩尔比可以和化学反应式的摩尔数之比相同,即相当于化学计量比。但是对于大多数有机反应来说,投料的各种反应物的摩尔比并不等于化学计量比。

3.2.2 限制反应物和过量反应物

化学反应物不按化学计量比投料时,其中以最小化学计量数存在的反应物叫做“限制反应物”。而某种反应物的量超过限制反应物完全反应的理论量,则该反应物称为“过量反应物”。

3.2.3 过量百分数

过量反应物超过限制反应物所需理论量部分占所需理论量的百分数叫做“过量百分数”。若以Ne表示过量反应物的摩尔数,Ni表示它与限制反应物完全反应所消耗的摩尔数,则过量百分数为:

30 3.2.4 转化率(以x表示)

某一种反应物A反应掉的占其向反应器中输入量的百分数叫作反应物A的转化率。

3.2.5 选择性(以s表示)

选择性指的是某一反应物转变成目的产物理论消耗的摩尔数占该反应物在反应中实际消耗掉的总摩尔数的百分数。设反应物A生成目的产物P,Np表示生成目的产物的摩尔数,a,p分别为反应物A和目的产物P的化学计量系效,则选择性为:

3.2.6 理论收率(以y表示)

收率指的是生成的目的产物的摩尔数占输入的反应物理摩尔数的百分数。这个收率又叫做理论收率。

转化率、选择性和理论收率三者之间的关系是:y=s²x。

3.3 化学反应器

3.3.1 概述

化学反应器是反应原料在其中进行化学反应,生成目的产物的设备。化学反应器在结构上和材料上必须满足以下要求:

(1) 对反应物料(特别是非均相的气液反应物、液液反应物、气固反应物、液固反应物、气液固三相反应物)提供良好的传质条件,便于控制反应物系的浓度分步,以利于目的反应的顺利进行。

(2) 对反应物料(特别是强烈放热或强烈吸热的反应物系)提供良好的传热条件,便于热效应的移除或供给,以利于反应物系的温度控制。

31 (3)在反应的温度、压力和介质条件下,具有良好的机械强度和耐腐蚀性能。

(4) 能适应反应器的操作方式(间歇操作或连续操作)。 3.3.2 间歇操作和连续操作

在反应器中实现一个化学反应可以有两种操作方式,即间歇操作和连续操作。间歇操作是将各种反应原料按一定的顺序加到反应器中,并在一定的温度、压力下经过一定时间完成特定的反应,然后将反应好的物料从反应器中放出。因为反应原料是分批加到反应器中的,所以又叫做“分批操作”。在间歇操作时,反应物的组成随时间而改变。另外,反应物的温度和压力也可以随时间而改变。连续操作是将各种反应原料按一定的比例和恒定的速度连续不断地加入到反应器中,并且从反应器中以恒定的速度连续不断地排出反应产物。在正常操作下,反应器中某一特定部位的反应物料的组成、温度和压力原则上是恒定的。

连续操作比间歇操作有许多优点。第一,连续操作比较容易实现高度自动控制,产品质量稳定;而间歇操作的程序自动控制则相当困难而且费用昂贵,因此间歇操作比连续操作需要较多的劳动,而且反应的效果常常受人的因素影响。第二,连续操作很容易实现缩短反应时间。而间歇操作则需要有加料,调整操作的温度和压力,放料,以及准备下一批投料等辅助操作时间。因此,对于生产规模大、反应时间短的化学过程都尽可能采用连续操作。特别是气相反应和气固相接触催化反应则必须采用连续操作。第三,连续操作容易实现节能。例如从反应器中移出的热量以及热的反应产物在冷却时通过热交换器传出的热量可以用来预热冷的反应原料,或者把热量传递给水以产生水蒸汽。而要把间歇操作组合到节能系统中一般是难于实现的。

但是,间歇操作也有它独特的优点。第一,连续操作的技术开发比间歇操作困难得多。节能和节省劳动力一般是与生产规模成正比例的,对于小规模生产来说,开发一个连续操作常常是不值得的。第二,间歇操作的开工和停工一般比连续操作容易,间歇操作的设备在产量的大小上有较多的伸缩余地,更换产品也有 32 灵活性,而连续操作的设备通常只能生产单一产品。第三,在某些情况下,由于反应原料或产物的物理性质(例如粘稠度和分散状态),或是由于反应条件的控制(例如温度、压力和操作步骤)等因素,难于采用连续操作。例如用固相法生产2,3-酸就必须采用间歇操作。因此,对于多品种、产量小的精细化工产品来说,间歇操作有相当广泛的应用。

3.3.3 间歇操作反应器

液液相或液固相间歇操作的反应器基本上和实验宝的设备相似,所不同的是规模大,制造材料相传热方式不同。这种间歇操作反应器可以是敞口的反应槽(相当于烧杯),也可以是带回流冷凝器的反应锅(相当于四口烧瓶),或者是耐压的高压釜。对于某些物料非常粘稠的液固相反应,则常常采用卧式转筒球磨机式反应器(固相罐)。最常用的传热方式是在锅外安装夹套或在锅内安装蛇形盘管。冷却一般用冷水或冷冻盐水。加热一般用水蒸汽,需要较高温度时(130~260℃)则用耐高温导热油。对于转筒球磨机式反应器(例如苯胺固相焙烘磺化制对氨基苯磺酸,料温约200℃)或其他高温反应过程(例如2-萘磺酸钠的碱熔制2-萘酚,料温28~320℃),还可以采用直接火加热(燃烧煤气、燃料油或煤)或者直接用电热。在个别情况下,也可以直接向反应器中加入碎冰进行冷却(例如重氮化和偶合反应),或者直接通入水蒸汽进行加热(例如某些萘系磺酸的水解反应)。

3.3.4 液相连续反应器

在连续操作的反应器中,有两种极限的流动模型,即“理想混合型”和“理想置换型”。

3.3.4.1 理想混合型反应器

它通常是装有搅拌器和传热装置的反应锅,如图所示。

33 反应原料连续不断地加入到锅中,在搅拌下在锅内停留一定时间,同时反应产物也连续不断地从锅中流出。这种反应器的特点是:强烈的搅拌产生了反向混合作用(简称返混),即新加入的物料与已存在锅内的物料能瞬间完全混合,所以锅内各处物料的组成和温度都相同,并且等于出口处物料的组成和温度。但是,物料中各个粒子在反应器内的停留时间则并不相同。

锅式连续反应器的主要优点是强烈的搅拌有利于非均相反应物的传质,可加快反应速度。另外,也有利于强烈放热反应的传热,可加大反应锅的生产能力。例如,苯、甲苯和氯苯的一硝化都采用锅式连续反应器。

锅式连续操作也有很多缺点。第一,锅内物料的组成等于出口物料的组成,即其中反应原料的浓度相当低,这就显著影响反应速度。第二,流出的反应产物中也势必残留有一定数量未反应的原料从而影响收率。第三,锅内已经生成的反应产物的浓度相当高,它容易进一步发生连串副反应。例如,苯用混酸的一硝化过程,如果采用单锅连续操作,不仅设备生产能力低,反应产物中含有较多未反应的苯和硝酸,最不利的是产品硝基苯中含有高达2~4%的副产物二硝基苯。因此,单锅连续操作在工业上很少采用。

为了克服这个缺点,一般都采用多锅串联联法,如图所示。

反应原料连续的加到第一个反应锅中,反应物料依次地连续流经第二个(和第三个)反应锅。而反应产物则从最后一个反应锅流出。多锅串联连续操作的特点是:几个反应锅之间并元返混作用,从而大大降低了返混作用的不利影响。因此它具有以下优点:第一个反应锅中反应原料的浓度比较高,反应速度相当快,可大大提高设备的生产能力;每个反应用可以控制不同的反应温度;另外,在最 34 后一个反应锅中,反应原料的浓度已经变得很低,并大大减少反应产物中剩余未反应物的含量,有利于降低原料的消耗定额,并大大减少连串反应副产物的生产量。为了避免原料以短路的方式从各反应锅中流出,可以在锅内安装导流筒,或是将传热蛇管做成导流简的形式,如图所示。

另外也可以把反应器做成U形循环管的形式,如图所示。

3.3.5 气液相反应器

气液相反应主要是利用空气中氧的氧化反应,利用氯气的氯化反应以及用氢气的加氢反应等。大规模生产,一船都采用鼓泡塔式反应器。这类反应器既可以间歇操作,也可以连续操作。在连续操作时,反应气体总是从塔的底部输入,尾气从塔的顶部排出。而液态物料即可以从塔的底部输入,从塔的上部流出(并流法),也可以从塔的上部输入,从塔的底部流出(逆流法),如图所示。

气液相塔式反应器

35 因为在塔中有一定的返向混合作用,为了减少它的不利影响,并使气液相之间有良好的传质作用,可在塔内装有填料、筛板、泡罩板、各种挡网或挡板等内部构件。为了控制反应温度,可采用内部热交换器或外循环式热交换器。为了避免塔身太高而增加通入气体的压头,也可以来用多塔串联的方式,从每个塔的底部通入反应气体。

当气液相反应速度相当快,热效应相当大时,也可以采用列管式并流反应器(例如高碳烷烃的氯化)或降膜逆流管式反应器(例如十二烷基苯磺化)。

双膜反应器

3.3.6 气固相接触催化反应器

气固相接触催化反应是将反应原料的气态混合物在一定的温度、压力下通过固体催化剂而完成的。这类反应方式在工业上有广泛的应用,它一般都采用连续操作的方式。这类反应器设计的主要问题是传热和催化剂的装卸。这类反应器主要有三种类型,即绝热固定床反应器、列管团定床反应器和流化床反应器。

3.3.6.1 绝热固定床反应器

单层绝热固定床反应器的结构非常简单,如下图所示,它是一个没有传热装置,只装有固体催化剂的容器。反应原料从容器的一端输入,反应产物则从容器的另一端输出。这类反应器的主要优点是设备结构简单,空间利用率高、造价低、36 催化剂装卸容易。但是,在这类反应器中,反应物料和催化剂的温度是变化的。对于放热反应,从进口到出口温度逐渐升高。对于吸热反应,从进口到出口温度逐渐降低。而且反应过程的热效应越大,进出口的温差越大。由于这个特点使得单层绝热固定床反应器只适用于过程热效应不大、反应产物比较稳定、对反应温度变化不太敏感、反应气体温合物中含有大量惰性气体(例如水蒸汽或氮气),一次通过反应器转化率不太高的过程。例如,氯苯的气相水解制苯酚,甲醇的氧化脱氢制甲醛等,另外,单层绝热固定床反应器中的催化剂层不宜太厚,以免进口和出口的温差太大,因此,只适用于反应停留时间短的过程。

单层绝热反应器

当反应的热效应较大时,为了改善反应的温度条件并提高转化率,常常采用多段绝热反应器,如图所示。

CO水蒸汽变换反应装置示意图

为了调整反应温度,可根据过程的特点,选择合适的载体或冷却剂;对于放热反应,可进行原料气的预热(例如,一氧化碳的水蒸汽转变制氢);对于吸热反应还可以采用外部管式加热炉。

37 3.3.6.2 列管式固定床反应器

列管式固定床反应器的结构类型很多,最简单的结构类似于单程列管式换热器,如图所示。

列管式固定床反应器

催化剂放在列管内,载热体在管外进行冷却或加热。对于放热反应,可以用熔盐或其它载热体将热效应移出。热的载热体经废热锅炉降温后再返回列管反应器,废热锅炉吸收热量后可产生0.6~2.0MPa的水蒸汽。熔盐是等分子比硝酸钾和亚硝酸钠的混合物,熔点141℃,可在147~540℃操作。它的优点是比热和导热系数大,传热效果好。对于吸热反应,根据所要求的温度,可以用液态或蒸汽态的载热体进行加热。另外也可以用电热或用外部管式炉加热(多段固定床反应器)。

3.3.6.3 流化床反应器

它的基本结构如图所示,主要构件是壳体、气体分布板、热交换器、催化剂回收装置。有时为了减少反向混合并改善流态化质量,还在催化剂床层内附加挡板或挡网等内部构件

流态化的基本原理是:当气体经过分布板以适当速度均匀地通过粉状催化剂床层时,催化剂的颗粒被吹动,漂浮在气体中做不规则的激烈运动,整个床层类似沸腾的液体一样,能够自由运动,所以又叫做沸腾床。

流化床的主要优点是:采用细颗粒催化剂有利于反应气体在催化剂微孔中的内扩散,催化剂表面的利用率高。加强床层的传热,床层温度均匀,可控制在1~3℃的温度差范围内。便于催化剂的再生和更换。制造费用比列管式固定床低得多。流化床反应器广泛用于空气氧化、催化裂化等反应过程。

38 流化床的主要缺点是,由于返混作用,对于某些反应转化率和选择性不如固定床;催化剂容易磨损流失;不能使用表面型颗粒状催化剂。

流化床反应器

1-加催化剂口,2-预分布器,3-分布板,4-卸催化剂口,

5-内部构件,6-热交换器,7-壳体,8-旋风分离器

3.4 精细有机合成中的溶剂效应

3.4.1 概述

3.4.1.1 溶剂对有机反应的影响

溶剂的作用不只是使反应物溶解,更重要的是溶剂可以和反应物发生各种相互作用。如果选择合适的溶剂就可以使主反应显著地加速,并且能有效地抑制副反应。另外,溶剂还和影响反应历程、反应方向相立体化学。因此,了解溶剂的性质、分类以及溶剂和溶质之间的相互作用,并合理地选择溶剂,对于目的反应的顺利完成有重要意义。

3.4.1.2 溶液和溶解作用

溶质溶解于溶剂而形成的均态混合物体系叫做溶液。溶解作用的最古老的经验规则是“相似相溶”。总的来说,一个溶质易溶于化学结构相似的溶剂,而不易溶于化学结构完全不同的溶剂。极性溶质易溶于极性溶剂,非极性溶质易溶于非极性溶剂。但是,也有一些例外,即化学结构相似的组分呈现不溶性,但化学结构不相似的组分却能互相溶解。一般认为与溶解作用有关的因素主要有:

39 (1)相同分子之间的引力与不同分子之间的引力的相互关系。 (2)由分子的极性所引起的缔合程度。 (3)溶剂化作用。 (4)溶剂和溶质的分子量。 (5)溶剂活性基团的种类和数目 3.4.1.3 溶剂和溶质之间的相互作用力

大量溶剂分子和少量溶质分子之间的相互作用力可以分为三大类: (1)库仑力

即静电吸引力,它包括离子-离子力和离子-偶极力。 (2)范德华(Van der Waals)力

亦称内聚力,它包括偶极—偶极力(定向力)、偶极-诱导偶极力(诱导力)和瞬时偶极—诱导偶极力(色散力)。

(3)专一性力

它包括氢键缔合作用、电子对给体/电子对受体相互作用(电荷转移力)。溶剂化作用、离子化作用、离解作用和憎溶剂相互作用等。

第一类和第二类分子间力是普通存在的非专一性力。第三类分子间力是只有在一定结构之间才能发生的、有一定方向的专一性力。

3.4.2 溶剂的分类

溶剂的分类有许多方案,各有一定的用途。 3.4.2.1 溶剂按化学结构分类

溶剂按化学结构可以分为无机溶剂和有机溶剂两大类。常用的无机溶剂数量很少。把溶剂按化学结构分类,可以给出某些定性的预示。这就是前面提到的“相似相溶”原则。另外,根据各类溶剂化学反应性的知识,也可以帮助我们合理地选择溶剂,避免在溶质和溶剂之间发生不希望的副反应。

3.4.2.2 溶剂按偶极距μ和介电常数ε分类

偶极矩μ和介电常数ε是表示溶剂极性的两个重要参数,因此这种分类法具有重要实际意义。

1. 偶极矩μ

分子中具有永久偶极矩的溶剂叫做“极性”剂。反之,分子中没有永久偶极 40 矩的溶剂则叫做“无极性”或“非极性”溶剂,例如己烷、环己烷、苯、四氯化碳和二硫化碳等。由于没有永久偶极短的溶剂是极少的,因此把偶极矩小于2.5D的非质子弱极性溶剂(例如氯苯和二氯乙烷)也列为非极性溶剂。

偶极矩主要影响在溶质(分子或离子)周围的溶剂分子的定向作用。 2. 介电常数ε

如果溶剂分子本身没有永久偶极矩,则外电场会使溶剂分子内部分离出电荷而产生诱导偶极。具有永久偶极或诱导偶极的溶剂分子被充电的电容器板强制地形成一个有序排列,从而引起所谓的“极化作用”。极化作用越大,电场强度的下降也越大,即E值越小,介电常数ε越大。因此,介电常数表示溶剂分子本身分离出电荷的能力,或溶剂使它的偶极定向的能力。

3.溶剂极性的本质—溶剂化作用

关于溶剂的“极性”这个术语,直至现在尚未被确切地下定义。关于溶剂的所谓极性,重要的是它的总的溶剂化能力。溶剂化作用指的是每一个被溶解的分子(或离子)被一层或几层溶剂分子或松或紧地包围的现象。溶剂化作用是一种十分复杂的现象,它包括溶剂与溶质之间所有专一性和非专一性相互作用的总和。这样多的溶剂、溶质相互作用,很难用一个简单的物理量来表示。习惯上,常常用偶极矩或介电常数表示。但是这两个物理量都只能反映溶剂的一部分性质或起某种作用。尽管如此,把溶剂按照它们的极性(偶极矩或介电常数)分成几种不同的类型,并分别讨论各类溶剂对溶质分子(或离子)的作用,对于为各种具体反应选择合适的溶剂还是有重要实际意义的。

3.4.3 有机反应中溶剂的使用和选择

3.4.3.1 有机反应对溶剂的要求

在有机反应中溶剂的使用和选样,除了考虑溶剂对主反应的速度、反应历程、反应方向、和立体化学的影响以外,还必须考虑以下因素:

(1) 溶剂对反应物和反应产物不发生化学反应,不影响催化剂的活性。溶剂本身在反应条件下及后处理条例下是稳定性。

41 (2) 溶剂对反应物有较好的溶解性,或者使反应物在溶剂中能良好分散.(3) 溶剂容易从反应物中回收,损失少,不影响产品的质量。 (4) 对溶剂尽可能不需要太高的技术安全措施。 (5) 溶剂的毒性小,含溶剂的废水容易处理。 (6) 溶剂的价格便宜、供应方便。 3.4.3.2 各类反应的适用溶剂 1.硝化

混酸硝化:二氯甲烷、二氯乙烷; 稀硝酸硝化:氯苯、邻二氯苯; 均相硝化:浓硫酸、醋酸、过量浓硝酸; 2.磺化

溶剂磺化:乙酸、三氯甲烷、四氯化碳

三氧化硫或氯磺酸磺化:1,2-二氯乙烷、1,1,1-三氯乙烷、邻二氯苯、三氯苯、硝基苯;

焙烘磺化:邻二氯苯、三氯苯 恒沸去水磺化:邻二氯苯、煤油 3.卤化

非水介质:浓硫酸、氯磺酸、三氯化磷、三氯氧磷、四氯化钛、四氯化碳、二氯乙烷、氯苯、邻二氯苯、醋酸

水介质:氯苯、邻二氯苯、硝基苯等 4.催化加氢

低碳醇、乙酸乙酯、乙酸、丙酮、水、二氧六环、烃类 5.氧化

浓硫酸、乙酸、水、二氧六环、石油醚、硝基苯、吡啶 6.Friedel-Crafts反应

溶剂法:二氯乙烷、四氯乙烷、1,1,1-三氯乙烷、二硫化碳、石油醚、环丁 42 砜、过量的液态反应组分

熔融法:ALCl3-NaCl、AlCl3-NaCl-H2NCONH2

3.5 气固相接触催化

3.5.1 概述

气固相接触催化反应是将气态反应物在一定的温度、压力下连续地通过固体催化剂的表面而完成的。这种反应方式可应用于许多单元反应。

固体催化剂通常是由主要催化活性物质、助催化剂和载体所组成。有时为了便于制成所需要的形状或改善催化剂的机械强度或孔隙结构,在制备催化剂时还加入成型剂或造孔物质。

固体催化剂按照粒度可以分为颗粒状和粉末状两种类型。颗粒状催化剂用于固定床反应器,粉末状催化剂用于流化床反应器。

固体催化剂按照表面积又可以分为高比表面型和低比表面型两类。催化剂的表面包括外表面和孔隙中的内表面两部分。每克催化剂的总表面积叫做比表面,它的单位是m2/g。

固体催化剂的密度(s/mL)用视比重来表示。它是把一定重量的催化剂放在量筒中,直接观测其体积而算得的。

关于固体催化剂的作用,虽然已经提出不少催化理论,但是还没有一个理论能全面地、完善地解释所有各种接触催化反应的机理。最常用的理论是活性中心理论、活化组合物学说和多位(活化络合物)学说等。这些学说的要点是催化剂的表面只有一小部分特定的部位能起催化作用,这些部位叫做活性中心。反应物分子的特定基团在活性中心发生化学吸附,形成活化络合物。然后活化络合物再与另一个或另一种未被吸附的反应物分子相作用,生成目的产物。或者是两种反应物分子分别被两个相邻的不同的活性中心所吸附分别生成活化络合物,然后两个活化络合物相互作用而生成目的产物。由于活性中心的特殊性,所以一种优良的催化剂可以只对某一类甚至某一个具体反应具有良好的催化作用,即对目的反应具有良好的选择性。

43 3.5.2 催化剂的选择性、活性和寿命

3.5.2.1 催化剂的选择性

它指的是特定催化剂专门对某一化学反应起加速作用的性能。其选择性也是用某一反应物通过催化剂后转变为目的产物时理论消耗的摩尔数占该反应物在反应中实际消耗掉的总摩尔数百分数来表示,催化剂的选择性与催化剂的组成、制法和反应条件等因素有关。

3.5.2.2 催化剂的活性

在工业上,催化剂的活性通常用单位体积(或单位重量)催化剂在特定反应条件下,在单位时间内所得到的目的产物的重量来表示。对于某些催化反应,工业催化剂的活性还使用在特定的气体时空速度下,反应物的转化率或目的产物的收率来表示。

3.5.2.3 催化剂的寿命

它指的是催化剂在工业反应器中使用的总时间。催化剂在使用过程中,由于温度、压力、气氛、毒物的影响,以及焦油或积碳的生成等因索,都会或多或少地使催化剂发生某些物理的或化学的变化,例如熔结、粉化以及结晶结构或比表面的变化等,这些都会影响催化剂中的活性中心,从而影响催化剂的活性和选择性。当催化剂的活性和选择性下降到一定程度,并且不能设法恢复其活性时,就需要更换催化剂。工业催化剂的寿命与反应类型、催化剂的组成和制法等因素有关。有些催化剂的寿命可长达数年,有的催化剂寿命只有几小时。

催化剂使用一定时间后,因活性下降,需要活化再生,这个使用时间叫作催化剂的活化周期。

3.5.3 催化剂的组成

3.5.3.1 催化活性物质

它指的是对目的反应具有良好催化活性的成分。对于具体反应,其催化活性物质是通过大量实验筛选出来的。它通常是单一成分或二到三种成分。例如,对于强氧化反应的催化剂,其活性组分通常都是五氧化二钒。

44 3.5.3.2 助催化剂

它是本身没有催化活性或催化活性很小但是能提高催化活性物质的活性、选择性或稳定性的成分。在催化剂中通常都含有适量的助催化剂。助催化剂主要是在高温下稳定的各种金属氧化物、非金属氧化物、金属盐和金属元素。

3.5.3.3 载体

载体是催化活性组分和助催化剂的支持物、粘结物或分散体。由于使用载体、在催化剂中催化活性组分和助催化剂的含量可以很低。载体的机械作用是增加催化活性组分的比表面,抑制微晶增长,从而延长催化剂的寿命,使催化剂具有足够的空袭度、机械强度(硬度、耐磨性、耐压强度等)、热稳定性、比热和导热率等。另外,有些载体还常常与催化活性组分发生某种化学作用,改变了催化活性组分的化学组成和结构,从而改善了催化剂的活性和选择性。因此,在制备催化剂时载体的选择也是很重要的。

3.5.4 催化剂的毒物、中毒和再生

催化剂因微量外来物质的影响,使其活性和选择性下降的现象叫做催化剂的中毒。微量外来物质叫作催化剂的毒物。

3.5.4.1 催化剂的毒物

在工业生产中,催化剂的毒物通常来自反应原料。有时毒物也可能是在催化剂制备过程中混入的,或者是来自其它污染源。由于中毒作用通常发生在催化活性组分表面的活性中心上,所以微量毒物就能引起催化剂活性显著下降。

3.5.4.2 催化剂的中毒

中毒是由于毒物与催化活性组分发生了某种作用,因而破坏或遮盖了活性中心所造成的。毒物在活性中心吸附较弱或化合较弱,可以用简单的方法使催化剂恢复活性的中毒现象叫作“可逆中毒”或“暂时中毒”。毒物与活性中心结合很强,不能用一般方法将毒物除去的中毒现象叫作“不可逆中毒”或“永久中毒”。催化剂暂时中毒,可设法再生。催化剂永久中毒后,就需要更换新鲜催化剂。

3.5.4.3 催化剂中毒的预防和再生

45 为了避免催化剂的中毒,一种新型催化剂在投入生产使用前,都应指出哪些是毒物,以及这些毒物在反应原料中的最高允许含量。当原料中有害物质的含量超过规定时,必须对原料进行精制,或换用其他原料。催化剂暂时中毒可设法再生。再生的方法通常是用空气、水蒸汽或氯气在一定温度下通过催化剂以除去积碳、焦油物或硫化氢等毒物。当催化剂活性下降很慢,使用较长时间才需要进行再生时,再生过程可以就在反应器中进行。

3.5.5 催化剂的制备

一种优良的催化剂一般应具备以下性能。

(1) 活性高、选择性好、对热和毒物稳定、使用寿命长、容易再生。 (2) 机械强度和导热性好。

(3) 具有合适的宏观结构。例如,比表面、孔隙度、孔径分布、颗粒度和微晶结构等。这种宏观结构既要提供足够的催化表面,又要能使反应物和产物在反应过程中顺利扩散。

(4)制备简便、价格便宜。

控制备催化剂时,常常使用一系列化学的、物理的和机械的专门处理。应该指出,一种催化剂尽管组分和含量完全相同,但是只要在处理细节上稍有差异,就可能因催化剂的微观结构不同,而导致其催化性能有很大的差异,甚致不符合使用要求。因此,催化剂的制备细节都是严格保密的。

3.6 相转移催化

3.6.1 概述

发生双分子反应的最起码条件是两个反应物分子之间必须发生碰撞。如果两个分子不能披此靠扰,那么不管其中一种分子的能量有多大,它也不能和另一种分子发生反应。例如,溴辛烷与氰化钠在一起共热两星期,也不发生反应。这是因为氰化钠完全不溶于溴辛烷的缘故。对于无机盐与有机物的反应,传统的解决办法是使用既具有亲油性,又具有亲水性的溶剂。例如,甲醇、乙醇、丙酮、二氧六环等。但是这也有一定的困难,即无机盐在这些溶剂中的溶解度很小,而有

46 机物又常常难溶于水。后来发现非质子极性溶剂对无机盐有一定的溶解度,它能使二元盐中的阳离子专一性溶剂化,从而使阴离子成为高活性的裸阴离子,对于亲核取代反应是良好的溶剂。但是使用这类溶剂也有缺点。主要是价格贵、难于精制和干燥、不易长期保存在无水状态、有时少量水会对反应产生干扰、反应后难回收、有毒和操作不便。

为此,在60年代末又发展了一种“相转移催化”有机合成新方法。它的优点是:第一,可以不用上述特殊溶剂,并且常常不要求无水操作。第二,由于相转移催化剂(PTC)的存在,使需要参加反应的阴离子具有较高的反应活性,从而降低反应温度、缩短反应时间、简化工艺过程、提高产品的收率和质量、并减少三废。第三,具有通用性,可广泛应用于许多单元反应。相转移催化化的缺点是相转移催化剂价格较贵,只有在使用相转移催化法能显著提高收率、改善产品质量、取得较好经济效益时,才具有工业应用价值。尽管如此,它在工业上已取得许多有价值的成果。

3.6.2 相转移催化剂

相转移催化剂至少要能满足以下两个基本要求:一个是能将所需要的离子从水相或固相转移到有机相;另一个是要有利于该离子的迅速反应。

当然,一种具有工业使用价值的相转移催化剂还必须具备以下条件: (1) 用量少,效率高,自身不会发生不可逆的反应而消耗掉,或者在过程中失去转移特定离子的能力。

(2) 制备不太困难,价格合理。 (3) 毒性小,可用于多种反应。 3.6.3 相转移催化的应用

根据相转移催化原理可以看出,凡是能与相转移催化剂形成可溶于有机相的离子对的多种类型化合物,均可采用相转移催化法进行反应。现在它己用于许多单元反应,实例很多。

3.6.5.1 二卤卡宾的产生和应用

47 二氯卡宾(∶CCl2)又名二氯碳烯或二氯亚甲基,它的碳原子周围只有六个电子,是一个非常活泼的缺电子试剂,容易发生各种加成反应。但二氯卡宾极易水解,在水中的生存期不到1秒。产生二氯卡宾的传统方法要求绝对无水和其他很不方便的条件。而在相转移催化剂的存在下,则可以由氯伤与氢氧化钠浓溶液相作用而产生稳定的二氯卡宾,其反应历程大致如下。

水相界面有机相Q XQ CCl3Q ClNaOH2Q OHNa ClH2OQ OHHCCl3氯仿CCl2二氯卡宾

由氯仿生成二氯卡宾的反应历程

即在水相中季铵盐Q+Xˉ与NaOH作用,生成季铵碱离子对Q+OHˉ,它被萃取到有机相,与氯仿作用而生成二氯卡宾。在有机相中二氯卡宾水解很慢。因为有机相中二氯卡宾与三氯甲基季铵盐处于一个平衡体系中,如果二氯卡宾不发生进一步反应,它在有机相中仍能保持原有活性达数日之久。当有机相中存在有烯烃、芳环、碳环、醇、酚、醛、胺、酰胺等试剂时,就可以发生加成反应而生成多种类型的化合物。

3.6.5.2 O-烃化(醚类的合成)

对硝基苯乙醚是由对硝基氯苯与氢氧化钠的乙醇溶液相作用而制得的。其反应式如下:

CH3CH2OHNaOHCH3CH2ONaH2OO2NClCH3CH2ONaO2NOCH2CH3NaCl

按老工艺不加相转移催化剂,O-芳基化反应(烷氧基化反应)要在压热釜中加热几十小时,对-硝基氯苯的转化率只有75%,要用减压蒸馏法回收未反应的对硝基氯苯,能耗大,另外,还有水解副反应,生成对-硝基酚钠,废液多。

48 按消耗的对-硝基氯苯计,对-硝基苯乙醚的收率只有85~88%。

加入相转移催化剂,在常温、常压下只需几个小时,对-硝基氯苯的转化率即达到99%以上,对-硝基苯乙醚的收率可达92~94%,纯度达99%以上。显然,这是因为相转移催化剂季铵盐Q+X-将原来难溶于对-硝基氯苯的乙醇钠转变为易溶于对-硝基氯苯和对-硝基苯乙醚的Q+C2H5O-离子对的缘故。

3.6.5.3 O-酰基化反应(酯类的合成)

例如从二乙氧基硫代磷酰氯与对-硝基苯酚钠在甲苯-氢氧化钠水介质中制备乙基对硫磷(有机磷杀虫剂)时:

SC2H5OPClOC2H5NaONO2O-酰化SC2H5OPO乙基对硫磷NO2NaClOC2H5

如果不加入相转移催化剂,反应速度很慢,而且有水解副反应。但是,只要加入很少量的三甲胺或季铵盐,在25~40℃反应1小时,对硫磷的收率可达95~99.5%。显然,在这里季铵盐Q+X-的作用是将不溶于甲苯的对硝基酚钠离子对转变成易溶于甲苯的Q+-OC6H4NO2离子对的缘故。

3.6.5.4 氰离子的亲核取代

例如,从对氯氯苄与氰化钠作用制备对氯苄氰(农药中间体)时由于采用相转移催化剂,可以不用非质子极性有机溶剂,并且可缩短反应时间,收率可达94~96%。

ClCH2ClNaCNClCH2CNNaCl3.6.6 液、固、液三相相转移催化

考虑到相转移催化剂价格贵,难回收,又发展了固体相转移催化剂。它是将季铵盐、季鏻盐、冠醚或开链聚醚连接到聚合物上而得到的不溶于水和一般有机溶剂的固态相转移催化剂。相转移催化反应在水相、固体催化剂和有机相这三相之间进行。所以这类催化剂又叫做“三相催化剂”。它的优点是:操作简便、反应后容易分离,催化剂可定量回收。另外,这种方法所需费用和能源都很低,并 49 适用于自动化连续生产。60年代这种催化剂已成功地用于合成氰醇、氰乙基化和安息香缩合等反应。已引起工业界的极大兴趣。另外,这种催化剂还可用于氨基酸立体异构体的分离,手征性冠醚聚合物催化剂适用于不对称合成。

3.7 均相络合催化

均相络合催化指的是用可溶性过渡金属络合物作为催化剂,在液相对有机反应进行均相催化的方法。这种方法在工业上有重要应用。1977年,美国利用均相络合催化大约生产了900万吨有机化学品,并相继建立了约24个重要工业过程。

3.7.1

过渡金属化学

3.7.1.1 过渡金属的特点

最常用的过渡金属主要有铜组的钛Ti、钒V、铬Cr、锰Mn、铁Fe、钴Co、镍Ni、铜Cu;银组的钼Mo、钌Ru、铹Rh、钯Pd、银Ag;金组的钨W、铱Ir、铂Pt等。典型的过渡金属原子都具有在几何形状上和能量特征上适于成键的1个s轨道、3个p轨道和5个d轨道。在特殊情况下,这9个轨道可以和9个配位体成键。例如,铼的络合物ReH7[P(C2H6)2(C6H5)]2,它具有7个Re-H共价键和两个Re-P配位键。在这里,铼原子一共和9个配位体成链。

3.7.1.2 18电子规则

如果过渡金属原子的9个可能成键的轨道都是充满的,即外层轨道上的总电子数是18,则表明这个络合物是饱和的,稳定的,它不能再与另外的配位体络合。这时配位体的取代反应要允许从18电子络合物上解离下来一个给电子配位体,生成一个16电子的“配位不饱和”型络合物,这种络合物可以再和其他配位体结合,又生成饱和的18电子络合物。这就是18电子规则。当然,在均相络合催化反应中,并不总是需要经过18电子络合物。

3.7.1.3 配位体

各种配位体与过渡金属原子的成键方式和给电子能力,一般确定如下: 单电子配位体:它提供一个电子与过渡金属原子形成共价键。例如,氢基、

50

第19篇:有机合成中羟基保护方法总结

保护醇类 ROH 的方法一般是制成醚类 (ROR′) 或酯类(ROCOR′),前者对氧化剂或还原剂都有相当的稳定性。

1.形成甲醚类 ROCH3 可以用碱脱去醇ROH质子,再与合成子 +CH3作用,如使用试剂NaH / Me2SO4。也可先作成银盐 RO-Ag+ 并与碘甲烷反应,如使用 Ag2O / MeI;但对三级醇不宜使用这一方法。醇类也可与重氮甲烷CH2N2,在Lewis酸(如BF3·Et2O)催化下形成甲醚.脱去甲基保护基,回复到醇类,通常使用Lewis酸,如BBr3及Me3SiI,也就是引用硬软酸碱原理(hard-soft acids and bases principle),使氧原子与硼或硅原子结合(较硬的共轭酸),而以溴离子或碘离子(较软的共轭碱)将甲基(较软的共轭酸)除去。

2.形成叔丁基醚类 ROC(CH3)3 醇与异丁烯在Lewis 酸催化下制备。叔丁基为一巨大的取代基(bulky group),脱去时需用酸处理

3.形成苄醚 ROCH2Ph:制备时,使醇在强碱下与苄溴 (benzyl bromide)反应,通常以加氢反应或锂金属还原,使苄基脱除,并回复到醇类。

4.形成三苯基甲醚 (ROCPh3) 制备时,以三苯基氯甲烷在吡啶中与醇类作用,而以 4-二甲胺基吡啶(4-dimethyl aminopyridine, DMAP)为催化剂。

5.形成甲氧基甲醚 ROCH2OCH3 制备时,使用甲氧基氯甲烷与醇类作用,并以三级胺吸收生成的HCl。甲氧基甲醚在碱性条件下和一般质子酸中有相当的稳定性,但此保护基团可用强酸或Lewis酸在激烈条件下脱去。

6.形成四氢吡喃 ROTHP 制备时,使用二氢吡喃与醇类在酸催化下进行加成作用。欲回收恢复到醇类时,则在酸性水溶液中进行水解,即可脱去保护基团。有机合成中常引用这种保护基团,其缺点是增加一个不对称碳(缩酮上的碳原子),使得NMR谱的解析较复杂。

7.形成叔丁基二甲硅醚 ROSiMe2(t-Bu)制备时,用叔丁基二甲基氯硅烷与醇类在三级胺中作用,此保护基比三甲基硅基稳定,常运用在有机合成反应中,一般是F-离子脱去。

8.形成乙酸酯类 ROCOCH3 脱去乙酸酯保护基可使用皂化反应水解。乙酯可与大多数的还原剂作用,在强碱中也不稳定,因此很少用作有效的保护基团。但此反应的产率极高,操作也很简单,常用来帮助决定醇类的结构。

9.形成苯甲酸酯类 ROCOPh 制备时,用苯甲酰氯与醇类的吡啶中作用。苯甲酸酯较乙酯稳定,脱去苯甲酸酯需要较激烈的皂代条件。

第20篇:有机合成推断教学设计思路.10.25

《有机合成推断专题复习》整体设计思路

上课教师

北镇高中王辉

由于我校高三一轮复习从高二下学期开始,再根据现高考题中选做题部分选修三试题难度在加深,选五难度在下降的特点,我校又受五校联考进度的制约,所以在高三上学期我们调整了一轮复习的策略,将有机化学的内容加在这个月复习,而高考试题中学生普遍存在的问题是有机合成推断题较难下手,推理不完整,尤其是近几年其他省市高考题多为信息题,学生对信息的加工处理存在一定盲目性,所以今天我选做的专题是有机合成推断,把重点放在了推断题的突破口寻找和信息的加工处理上。尽管学生存在的不足还有同分异构体书写,这样的问题只能靠练习,使学生养成良好的书写习惯去解决。

由于我教的是实验班,要根据我班学生的特点,设计这节课总体的思路是:共十个环节

环节一:检查课前预习情况:课前我就给学生下发了课前学案,学生在课前查找高考题我给他们配备的高考试题,通过分析总结高考题考查形式有哪些?使他们在上课前对高考有一个初步的了解

环节二:猜猜看环节

根据查找总结的经验,让学生通过2012年辽宁卷高考题题干猜猜看?出出题考考别人?与高考真正的问题相对比看看谁更能把握高考方向,谁又能高考于高考?(这时让学生更加明确高考考什么?)

环节三:学习考纲要求把握高考方向。

环节

四、基础必备环节

知道考什么就应知道该学会什么?)

学生知道考什么了那自己究竟具备哪些知识储备又与高考题有何关联呢? 基础必备有官能团和常见有机物转化关系,通过自制图表(实物展示)来进行知识串联。

环节五:走进高考(2011年海南卷正是部分的转化关系图的应用)通过解题发现知识遗漏之处进而进入环节六回归教材环节。

环节六回归教材环节,不只是2011年,实际上2009年高考宁夏卷中也考了,学生答不好不能说是老师忽视教材的责任,即使是平时练习时我们做过这些知识的训练,讲过又有几个学生能记得呢?前不久又做了一次,学生这次做还错,作为老师的我们当然只能去重复强化他们。

环节七探究有机合成推断题解题突破口:(关键总结题眼,事先课前发一些题,让学生先总结)再从高考命题趋势来看题眼中信息加工处理比较难----难点 (进入环节八难点突破。

环节八难点突破:进行专项突破----通过一些信息加工处理练习来总结方法

环节九是课堂总结:我学会了什么?掌握什么思想?有哪些不足?了解今后教学目标更好的完成今后的教学

环节十:升华

晒晒自己的设计,通过已经学习信息进行日常生活中常见某种药物的合成(课前留任务),高考题的重要题型是根据所给信息进行针对某些有机物设计合成路线。

以上是我这节课的设计,不当之处欢迎各位专家同仁批评指正!

有机合成员工工作总结
《有机合成员工工作总结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档