人人范文网 范文大全

内燃机车电力传动控制

发布时间:2020-03-03 21:28:27 来源:范文大全 收藏本文 下载本文 手机版

内燃机车交流传动及其控制系统

1、概述

电力传动系统的各项功能是通过一定形式的电路驱动各种电气设备得以实现的,电传动内燃机车上的电路,按其作用可以分为主电路、调节电路、辅助电路和控制电路四大系统。

主电路

将产生机车牵引力和制动力的各种电气设备连成一个系统,实现机车的功率传输,是电传动机车最重要的组成部分之一,不但决定电传动机车的类型,而且在很大程度上决定该型机车的基本特性。因此主电路性能的优劣,在很大程度上决定了机车性能的好坏、投资的多少及运行费用的高低等主要技术经济指标。

调节电路

在交-直流传动中通常是内燃机车上保证柴油机发电机组恒功率运行的励磁调节系统,它包括牵引发电机的励磁回路及恒功率励磁调节回路等;在交-直-交流传动中则是指保证柴油机发电机组恒功率运行的牵引发电机励磁调节和逆变器变压变频调节系统。调节电路应尽可能扩大牵引电机的恒功率范围,使机车在宽广的速度范围内都能充分发挥柴油机的功率,获得良好的经济运行特性,满足内燃机车牵引性能的要求。

辅助电路

将机车上的各种辅助电气设备和辅助电源连成一个系统,成为保证机车正常运转不可缺少的电气装置。机车上的辅助电气设备包括:通风机、空气压缩机、油泵等的拖动电机、起动辅助发电机、蓄电池、照明设备等。辅助传动系统通常为直流传动,由辅助发电机在电压调整器(或微机)的控制下向辅助电路提供110V的直流电,再由各种直流电动机驱动辅助装置运转。由于是恒定的110V直流电压供电,各辅助直流电动机基本不能调速,只能按工况以一定的转速运转或停止,使辅助系统并非保持在最佳工况下运转,工作效率不高。另有一部分辅助装置则是由机械或液压驱动,工作效率同样不高。因此,为提高机车整个辅助系统的性能及效率,近年来开始发展辅助交流传动系统,辅助装置的拖动电机为交流电动机,能够根据工况的变化进行变频或变极调速,使辅助系统处于最佳工作状态及工作效率。

控制电路

将控制主电路和辅助电路各电气设备的控制电器、信号装置和控制电源连成一个电气系统,实现对机车的操纵和控制。控制电路包括各种控制开关、继电器和电空阀等。司机通过控制电路的作用,可以控制主电路和辅助电路的各种电器按照一定的顺序动作(接通或断开),从而使机车按照司机的操作意图运行。现代机车的控制电路已从复杂的继电器逻辑电路开始过渡到可编程逻辑控制器(PLC)或微机逻辑控制系统,使控制电路趋于简单可靠。

随着电子技术、计算机技术的发展,电子控制系统及计算机控制系统已经应用于机车,实现了机车的自动控制。这些现代控制技术的应用提高了机车的牵引性能和运行的安全可靠性,也是提高机车各项技术经济指标的有效措施之一。

2、电力传动控制

通过对机车电传动系统的控制实现机车起动、调速运行、动力制动的全过程。

内燃机车起动控制

由于列车起动时存在较大的摩擦阻力,并且需要较大的起动加速度以保证列车起动加速快、运行平稳,因此,机车应以较大的恒定牵引力起动,对牵引电动机及机车动轮来说称为恒转矩起动。机车的起动牵引力是由司机控制器主手柄位所决定的,每个手柄位的起动牵引力恒定。机车起动时,从低手柄位开始提升手柄,随着手柄位的提高,牵引力也随增大,使列车能够快速平稳地达到正常的运行速度。机车的起动牵引力与其牵引吨位及坡道有关,当牵引重载列车在上坡道上起动时,需要较大的起动牵引力方能起车,但要防止超过轮轨之间的最大黏着牵引力而出现轮对空转现象。

在内燃机车交-直流传动系统中,司机控制器各手柄位的起动恒转矩是通过控制各手柄位的最大起动电流来实现直流牵引电动机的输出转矩恒定。同步牵引发电机经整流装置向牵引电动机供电,控制各手柄位下牵引发电机的励磁电流即可控制输出电流恒定。根据同步发电机的外特性,也可直接控制各手柄位的最大励磁电流恒定来限制最大起动电流,从而近似达到恒转矩控制。按照机车起动加速快及平稳的原则,要求从最低手柄位开始起动,各手柄位的最大起动电流逐位增加,在较低手柄位电流增加幅度较大,而在较高手柄位电流增加较缓。

在内燃机车交-直-交流传动系统中,司机控制器各手柄位的起动恒转矩是通过控制中间直流电压和逆变器输出电压、频率的变化规律来实现的。当手柄位一定时,通过调节牵引发电机励磁电流使中间直流电压恒定(电压源逆变器所要求),通过脉宽调制控制使逆变器输出的电压与频率近似呈正比变化,并保持转差频率恒定,即可使异步牵引电动机的输出转矩恒定。为了较精确地控制转矩恒定,可加入恒电流控制,根据电流偏差信号对输出电压进行补偿调节。随着手柄位的提高,中间直流电压增加,逆变器输出电压正比于频率的变化率也增加,异步牵引电动机的输出转矩随之增大。

内燃机车恒功率调速控制

为了充分发挥柴油机的功率,并使柴油机按其经济特性运行,司机控制器每给定手柄位都对应柴油机的规定转速及其输出功率,当手柄位一定时,柴油机的转速及输出功率应恒定。机车在起动时,柴油机欠功率工作;机车起动完成后,柴油机应按恒功率工作。机车柴油机一般都装有全制式调速器进行恒转速控制,而其输出功率则取决于负载,因此,只要负载恒功率运行就能保证柴油机恒功率运行,能同时完成柴油机恒转速和恒功率调节任务的控制器通常称为联合调节器。柴油机的直接负载是牵引发电机、变流装置及辅助装置,通过控制牵引发电机或变流装置可实现柴油机恒功率。在恒功率工作状态,机车的速度与牵引力呈反比关系,机车牵引力要随列车运行阻力变化而变化,以达到力的平衡,机车速度也随之变化。当列车阻力小于机车牵引力时,剩余牵引力将对列车加速,使机车速度随之提高,牵引力也随之减少,直到与列车阻力平衡时为止;当列车阻力大于机车牵引力时,将引起机车减速,牵引力也随之增大,直到与列车阻力平衡时为止。

在内燃机车交-直流传动系统中,其变流装置一般为不可控的硅整流装置,只能通过调节牵引发电机的励磁电流使其输出外特性U= f(I)按恒功率的要求变化,向牵引电动机提供按此规律变化的电压和电流。当柴油机负载功率增加时,控制系统根据功率偏差信号使励磁电流减小,牵引发电机输出功率随之减小;当柴油机负载功率减小时,则励磁电流增大,牵引发电机输出功率随之增大,从而维持柴油机输出功率恒定。因此,该系统又被称为恒功率励磁控制系统。由于牵引发电机的功率较大,其励磁电流也较大,因此一般由专门的励磁发电机(简称励磁机)提供励磁电流,通过控制励磁机来实现牵引发电机恒功率。励磁机一般为交流发电机,其输出的交流电需整流为直流电。有的励磁调节装置采用可控整流装置,通过调节晶闸管的导通角进行整流和调节,也可先经二极管整流器整流,再采用斩波器来进行励磁调节。这种直接调节牵引发电机励磁电流的方式称为直接控制的励磁方式,其调节过程的时间常数较小,动态调节性能较好,但对调节元件的容量要求较大。为了减小调节元件的容量,有的励磁调节装置采用间接控制的励远方式,对励磁机的励磁电流进行调节,甚至还加入中间放大环节,但调节过程的时间常数相对较大,不利于提高系统动态调节性能。

在内燃机车交-直-交流传动系统中,当司机手柄位一定时,中间直流回路电压恒定,即牵引发电机经不可控整流装置输出的直流恒定,不可能通过道节牵引发电机励磁电流来达到恒功率运行,而是通过牵引逆变器对异步牵引电动机进行变频调速来实现恒功率运行。当柴油机负载功率增加时,控制系统根据功率偏差信号使牵引逆变器输出电压频率降低,异步牵引电动机的转速及功率随之降低;当柴油机负载功率减小时,则牵引逆变器输出电压频率提高,异步牵引电动机的转速及功率随之增大从而维持柴油机输出功率恒定。因此,该系统又被称为恒功率变频调速控制系统。

扩大恒功率调速范围的方法

作为机车恒功率调速系统,它有两个主要问题需要解决:①在机车运行时(即速度、牵引力变化时)充分利用柴油机功率的问题。②如何扩大这种恒功率运行速度范围的问题。我们知道,机车在一定功率(即一定的司机手柄位)下运行时,机车运行速度主要取决于外界阻力,它不能人为控制。因此当外界阻力变化,使机车速度超出恒功率范围时,柴油机功率将得不到充分利用,此时机车牵引功率下降,牵引效能减低。为此,我们必须设法扩大机车恒功率的运行速度范围,以满足运行要求。除机车起动的低速范围内所必需的恒转起动外,核心的问题就是如何扩大高速运行的恒功率范围。

在内燃机车交-直流传动系统中,扩大牵引发电机恒功率区段电压范围,可以扩大机车恒功率速度范围,但是采用这种方法会提高牵引力发电机容积功率,从而增加牵引电机制造成本和体积,因而牵引发电机恒功率电压调节范围受到限制。目前采用扩大机车恒功率速度范围的方法有两种:牵引电动机磁场削弱的方法和牵引电动机串-并联换接或牵引发电机电枢绕组并-串联换接的方法。

在机车上对牵引电动机一般采用磁场分路的有级磁场削弱方法来提高恒功率速度范围,即在牵引电动机励磁绕组的两端并联一级或数级分路电阻,当分别接通各级分路电阻时,部分电流从分路电阻流过,使励磁电流减少,从而达到磁场弱的目的,该方法虽然单,但在磁削瞬间会引起电流冲击,因此,级数越多,越有利于减小这种冲击,但电路则相对复杂,目前一般不超过三级。有的机车是先降低牵引发电机功率输出,再进行磁场削弱,以免电流冲击引起柴油机短时过载。防止电流冲击的最佳方式是无级磁削弱。另外值得注意的是,磁场削弱不利于电机换向,因此,为了保证电机换向的磁场稳定性,磁场削弱的深度受到限制。

在牵引发电机容积功率的范围内,通过牵引电动机串-并联换接或牵引发电机电枢绕组并-串联换接,可以增加牵引电动机的恒功率调压范围,从而达到增大机车恒功率调速范围的目的。在牵引电动机串-并联换接方式中,主电路中每条支路的电机串联台数和并联支路数可以通过换接来加以改变。当机车在较低速度下运行时,需发挥的牵引力较大,此时牵引电动机应处于低压大电流工作状态,因此电动机串联台数较多,并联支路数较少(如3串2并);当机车运行到较高速度时,牵引力相对较小,此时牵引电动机应处于高压小电流工作状态,通过牵引电动机串-并联换接,使电动机串联台数减少,并联支路数增多(如2串3并)。这样,在保证牵引发电机的输出电压和电流不超出容积功率所允许的范围内,对每台牵引电动机来说,增大了其电压和电流的恒功率调节范围。在牵引发电机电枢绕组并-串联换接方式中,牵引发电机有两组电枢绕组。当机车在较低速度下运行时,两组电枢绕组并联,其输出电压等于一组电枢绕组的电压,而输出电流等于两组电枢绕组输出电流之和,牵引发电机向牵引电动机提供低电压大电流;当机车运行至较高速度时,进行电枢绕组并—串联换接,使牵引发电机两组电枢绕组串联,其输出电压将增加一倍,输出电流相应减少一倍,牵引发电机向牵引电动机提高电压小电流。这样将使牵引发电机输出电压的调压比增加一倍。ND5型机车即采用这种方式。但对于换接的主电路,其电气线路较复杂,换接过程中存在牵引力的中断和冲击现象,而且在主电路中有串联工作的牵引电动机,当机车动轮发生空转后,空转电机端电压未受到限而随之升高,使空转现象不易消失,因此这种连接方式在中国内燃机上基本未采用。

在内燃机车交-直-交流传动系统中,由于异步牵引电动机的结构和性能的优越性,其功率容量比直流牵引电动机高得多,直流牵引电动机一般不超过1000kW,而异步牵引电动机功率可达1600 kW~1800kW,其输入压等级可以在1500V以上,电机转速也可达4 000r/min以上。应该说交-直-交流传动系统可比交-直流传动系统的恒功调速范围做得大,特别在高速区,不会出现像直流牵引电动机的诸如高电压限制、磁场削弱深度限制等问题,因此现代高速机车一般均采用交流传动。但是,扩大内燃机交-直-交流传动系统的恒功率调速范围并不是仅靠增加异步牵引电动机的电源频率就可达到的,而是要综合考虑柴油机、同步牵引发电机、牵引逆变器及异步牵引电动机的最佳匹配问题,如中间直流电压值的选择、恒功率运行调节方式的选择、各装置容量和结构尺寸的确定等,以期使各部分的功率能得到充分、合理的利用。但随着恒功率区的扩大,各装置的充分利用程度都会随之下降,所以应根据实际运用需要来合理地选择恒功率区的宽度。由于变流器的价格相对较为昂贵,目前大都考虑按小逆变器的方式进行系统优化。

内燃机车变功率迅速控制

恒功率调速是机车的基本操作,此时机车速度随着列车运行阻力而变化。然而在列车运行过程中,从列车起动加速、平稳运行、线路坡道的变化、线路的限速区段到列车减速、进站停车,均需要司机合理地操纵主手柄来改变车引功率(牵引力)调节速度,从而达到“超车加速快,途中速度高,利用惰力好,进站减速稳,停车位置准”的目的,使列车能安全、正点、优质高效地运行。

司机控制器主手柄位的改变即改变了柴油机的转速和输出功率。一般当需要增加机车速度时,要提升手柄位,便柴油机的转速和输出功率增加;当需要机车减速时,应降低手柄位,使柴油机的转速和输出功率减小。传动系统的输出功率应随着柴油机功率的改变而改变。在内燃机车交一直流传动系统中,随着柴油机功率的改变来调节牵引发电机的励磁电流增加,输出功率增加,从而使直流牵引电动机的输出转矩增加,机车牵引力增加,引起机车加速,以达到较高的速度平衡点。在内燃机车交-直-交流传动系统中,随着柴油机功率的改变来调节牵引逆变器的输出电压及频率,使其输出功率改变。例如柴油机功率增加,控制系统调节牵引发电机的励磁电流使中间直流电压增加,同时使牵引逆变器的输出电压及频率增加,从而使异步牵引电动机的输出转矩及转速增加,即机车牵引力和机车速度增加。

内燃机车电阻制动控制

电阻制动是电传动内燃机车的重要工况。在电阻制动工况时,列车的惯性力驱动牵引电动机旋转,根据电机可逆原理,此时的电动机进入发电机工况,产生制动转矩,从而产生与机车运行方向相反的制动力,制动列车。其发电所产生的电能消耗在制动电阻上,转换成热能,散失于大气中。运用情况表明:实施电阻制动可以提高列车的制动能力(特别在长大下坡道上尤为明显);可最小限度地使用空气制动,从而大大降低机车车辆轮箍的磨耗,减小轮箍和闸瓦或摩擦片的发热,因而也提高了空气制动的效果;同时,由于列车上配备了两套制动系统,因而更能保证列车安全运行。

在电阻制动工况下,机车电路要进行必要的转换,要按照机车电阻制动特性进行控制,既要充分发挥电阻制动的能力,尽可能扩大电阻制动调速范围,又要避免超过制动系统的容量,造成设备过载而引发故障,同时要避免因制动力过大,超过轮轨黏着力而引起车轮打滑。

3、微机控制

微机控制包括以CPU为核心的微型计算机、存储器以及将微机与机车设备相连接的数字量和模拟量接口装置等硬件和采样、数据处理、控制程序等软件所组成的车载微机系统。它与模拟电子控制的本质区别在于,许多复杂的控制功能都可以通过计算机的数字运算来实现,从而大大简化了电路结构,即所谓用编程软件代替硬件。微机控制能更方便地综合多种信号,实现各种复杂的逻辑控制及各种特殊规律的控制,微机能完成各种控制算法从而实现系统的最优控制。采用微机控制,不仅可使控制系统结构简化、调试容易、成本降低、抗干扰能力增强,而且能获得更多更复杂的控制功能,更好的调节品质及控制精度。此外,采用微机控制还能方便地实现机车运行参数的自动显示、存储及故障报警等功能。特别是微机系统的功能改变及功能扩展十分容易,通常仅需改变软件设计即可达到。由于微机控制的优越性能,它的功能范围已远远超出了人们最初的想像力。在机车上采用的微机系统往往已不仅限于恒功率控制,它还包括柴油机控制、辅助功率控制、站着(防空转和防打滑)控制、优化操纵以及故障诊断等功能。可以说,内燃机车装备微机系统是现代化机车的重要标志。

1977年,前联邦德国开始把微机系统应用到电传动内燃机车的控制上。随后,美国、英国、澳大利亚、加拿大、芬兰、丹麦、荷兰、匈牙利、前苏联、奥地利、西班牙等国家也陆续将微机系统用到内燃机车上来。中国从20世纪80年代开始了这方面的研究,并于1985年前后把微机应用到车载上,从比较简单的或功能单一的微机装置发展到较复杂的或多功能的微机系统。1989年制造出第一台装备较完备的微机多功能控制系统的东风6型内燃机车;此后又有微机系统装于东风5 型、东风4 型内燃机车;1992年开始生产的东风1 1型准高速客运内燃机车,1994年生产的东风10 D型重载货运内燃机车及1997年生产的东风8B型重载货运内燃机车均装备了功能较完备的微机控制系统。中国内燃机车采用微机技术已经有了一个良好的开端。

东风11型内燃机车的微机控制系统具有代表性,见下图。整个微机控制系统按功能模块设计,通过FE总线(包括电源线、数据线、地址线和控制线)与各功能模块之间相连接。各功能模块主要包括:以16位机80C186CPU为核心的主控制板,存储器/串行口输入输出板,(开关信号)数字量输入板,(继电器/接触器)数字量输出板,(传感信号)模拟量输入板,(转速脉冲)频率输入板,脉宽调制(PWM)励磁控制板。完成的主要功能有:①牵引特性控制,包括各手柄位下恒功率励磁控制、功率加载/减载的速率控制、主发电机电流上升/下降的速率控制;②电阻制动特性控制,包括各手柄位下恒流制动特性和恒励磁制动特性控制、牵引电动机换向条件的限流控制以及励磁电流的加载率控制;③空转/滑行保护控制,包括牵引工况的空转保护和电阻制动工况的滑行保护控制;④故障诊断与保护,包括柴油机系统与电气系统的监测参数和故障信息的显示与记录及相应的保护控制。

国际上典型的内燃机车微机系统有:德国BBC公司开发的MICAS车载微机系统;德国西门子公司开发的SIBAS车载微机系统;德国 KRAUSS-MAFFEI公司开发的KM车载微机系统;美国GM公司开发的EM 2000车载微机系统;美国GE公司开发的车载微机系统;法国阿尔斯通公司开发的AGATE车载微机系统。这些系统的中央处理单元(CPU)都由16位发展到32位,存储容量由千字节扩展到兆字节,微机处理的功能、速度、实时多任务的能力均大大增强。有的是单机系统,有的是分式多机系统。按功能模块化、标准化设十,设计成对各种传动系统都适用的模块式结构的控制系统,只要添加不同功能的组件及相应的软件(程序模块),就能满足各种不同的功能需要。值得一提的是,这些系统中有的不仅可用于内燃机车,还可用于电力机车;不仅可用于交一直流传机,还可用于交流传动,具有很强的通用性及兼容性。

东风11型内燃机车微机控制系统原理框图

现代机车控制已发展到了以整列车为目标的三级控制,即列车控制级、机车控制利传动控制级。列车控制级:对列车总线进行控制,处理来自机台或列车控制装置的信息并进行显示,实施列车优化操纵,产生与整个列车(包括多台机车或动车)有关的控制变量,最重要的输出量是牵引力或制动力给定值。机车控制级:根据列车控制级传来的控制指令和给定值,实现对本机车的优化控制功能,主要包括限制牵引力和制动上的变化速率以提高运行的平稳性与舒适性,向传动控制级提供所需的输入信号,进行防空转防滑行控制以提高黏着利用率,进行电空联合制动以达到将制动力接经济和安全的原则分配给各制动系统,对辅助装置进行优化控制以达到降低铺助功率消耗的效果,对主要设备进行状态监测、故障诊断与自我保护。传动控制级:根据机车控制级传来的控制指令和给定值,实现对动力装置和传动系统的优化控制功能,主要包括对油机进行控制并采用电子调速器和电控燃油喷射系统以提高柴油机的调速性能和经济性,对主发电机进行恒功率励磁控制以保证柴油机按经济特性运行,对牵引变流器(包括各种整流器、四象限变流器、逆变器)进行控制,以达到控制牵引电动机的转矩和转速的目的。

4、交流传动的恒功调速控制

内燃机车交流恒功率调速系统(AC-DC-AC constant power speed regulating system for diesel locomotive)满足交—直—交流电传动内燃机车牵引性能要求,实现恒功率调速的变压变频(VVVF)控制系统。交—直—交流传动机车通常由异步牵引电动机驱动。根据异步电动机的转速公式

可知,改变电机磁极对数p只能有级地改变电机的转速n,因此为满足机车平滑调速的要求就必须连续地调节电源频率f1 ,并控制转差频率f2。

在机车上,交流牵引机发电机的频率正比于柴油机的转速,而柴油机在功率恒定时其转速是不变的,所以在恒功率条件下发电机的频率也是不变的。因此,由柴油机驱动交流牵引发电机所发出的三相交流电经硅整流装置整流为直流电,再经过逆变器(可设一台或数台逆变器),将直流电转变为电压和频率可变(VVVF)的交流电,供给数台异步牵引电动机。通过这样的间接变频,使逆变器输出的三相交流电的频率与牵引发电机发出的三相交流电的频率没有任何关系。在机车起动和调速的整个工作范围内,逆变器输出的三相交流电压和频率的平滑调节应使异步牵动机的机械特性和电气特性满足机车恒转矩起动、恒功率运行的牵引性能要求。

由异步牵引电动机稳定工作的机械特性可知,转差率S(S=f2/f1)极小,电机电流可近似表示为 (1)

式(1)中R′2 为转子等效电阻,对于给定的电机R′2 一般为常数。电机转矩可近似表示为

(2)

或写成

(3)

式(2)和式(3)中C为常数。在机车恒转矩起动的低速区,要保证M为常数,由式(2)可知,应当控制U1/f1恒定(即磁通恒定)并保指挥持转差率f2为常数,即端电压 U1随着电源频率f1 线性增长。实际上在低频时,电机定子电阻不容忽略,此时电压U1相对有所提高。由式(1)可知,电机电流I1保持恒定,在机车恒定功率运行区,要求Mf1为常数,由式(3)可知,可有不同的控制方式。为了扩大机车恒功率的调速范围,可在开始阶段采用U21 /f1=常数、f2不变的恒功率控制方式,即端电压超压U1 仍随频率f1 增加而增加,保持磁通近似恒定,电流I1则随着U1的增加呈反比减小,从而使机车牵引力(电机转矩)随机车速度(供电频率)的增加成反比下降,机车保持恒功率运行;当电压U1升高到受逆变器输出电压的限制时,采用U1不变、f1/f2=常数的恒功率控制方式,即转差频率f2随电源频率f1的增加而线性增长,电流I1也保持恒定。在恒电压下,随着供电频率f1的增加使牵引电动机产生磁场削弱的效果,同样使机车牵引力随机车速度的增加呈反比下降而保持恒功率运行。当f2增大到受电机倾覆转矩所限制的最大转差频率时,f2保持不变,此时M f1随着f1的增加呈反比下降,机车入降功率运行。机车牵引运行的电气与机械特性曲线见图1。

图1 机车牵引运行的电气与机械特性

基于机车牵引运行电气与机械特性的要求,可采用如图2的转差频控制系统方案,由司机手柄位控制,通过f2 函数发生器、I1 函数发生器和功率函数发生器分别发出各手柄位的二转差频率给定值f20、电流给定值I1g和功率给定值Pg 。在机车恒转矩起动阶段,转差频率实行开环控制,△f2不起作用,f20=f2 =常数,牵引电动机转子频率fn与f2相加得到电源频率控制信号f1,即f1 =fn+f2;按照起动阶段电压U1变化的规律,f1/U1变换器发出U10信号;由于f1/U1=常教,只能近似保持磁通恒定,因此加入恒电流闭环调节,将电流检测到信号I1 与给定值I1g比较,其偏差值比功率偏差值为小,由它发出电压调节的补偿信号△U1;将△U1与U10相加得到电源电压控制信号U1;将f1信号和U1信号送入脉宽调制(PWM)控制器,控制逆变器输出频率f1和电压U1,使机车恒转矩运行。机车进入恒功率运行阶段后,开始仍保持f2恒定,按照恒功率阶段电压U1变化的规律,f1/U1变换器发出U10信号,同时加入恒功率闭环调节,将功率检测信号P与给定值Pg比较,其偏差值比电流偏差值为小,由它发出电压调节的补偿信号△U1 ,当U1增大到一定值时保持恒定,转差频率闭环控制起作用,一方面按照恒功率运行的要求f2函数发生器发出与f1成正比的f20信号,另一方面加入功率闭环调节,根据功率偏差值发出转差频率补偿信号△f2 ,f20与△f2相加得到f2,从而得到电源频率信号f1 ,即f1 =f20+△f2+fn。可见在恒功率阶段是先调节电压U1后调节转差频率f2,尽可能地扩大恒功率调速范围,直到f2增大到最小转矩裕量所允许的转差频率时为止,f2保持不变,机车进入降功率运行区段。

图2 交—直—交电传动内燃机车的转差频率控制系统方案

交流异步电动机是一个复杂、非线性、多变量的控制对象,而且在鼠笼结构中无法直接检测转子电流。因此,交流传动不像直流电动传动系统那样只是直接对磁通、电枢电流和电压进行控制,有一种标准的控制结构,而是先后开发出各种各样的控制方法。除了上述较早开发的转差频率控制方法外,后来开发的磁场定问矢量控制方法和直接转矩控制方法在交流传动址车和动车组上得到普遍应用。应当注意的是,无论控制结构如何复杂,或采用什么样的反馈环和反馈量,逆变器只有两个控制变量,即电压和频率,故一般通称为VVVF(变压变频)逆变器。

列车电力传动与控制第5次作业

液压传动与控制

【机电传动控制】机械手控制

机电传动控制复习提纲2

机电传动控制复习提纲1

《机电传动控制》课程教学大纲

电力企业内部控制

《液气压传动与控制》教案

内燃机车

内燃机车

内燃机车电力传动控制
《内燃机车电力传动控制.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档