人人范文网 教案模板

数学奥数教案模板(精选多篇)

发布时间:2020-04-18 13:47:05 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:小学数学奥数教案

小学奥数基础教程(四年级)

小学奥数

第1讲 归一问题与归总问题 第2讲 年龄问题

第3讲 鸡兔同笼问题与假设法 第1讲 归一问题与归总问题

在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)

分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?

1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?

95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。

例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?

分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?

630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?

小学奥数基础教程(四年级)

18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?

分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?

2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?

25600÷320÷8=10(时)。

综合列式为

25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。现在有沙土420吨,要求5趟运完。问:需要增加同样的卡车多少辆? 分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨?

336÷4÷7=12(吨)。

(2)5趟运走420吨沙土需卡车多少辆?

420÷12÷5=7(辆)。

(3)需要增加多少辆卡车?

7-4=3(辆)。

综合列式为

420÷(336÷4÷7)÷5-4=3(辆)。

小学奥数基础教程(四年级)

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?

分析:(1)工程总量相当于1个人工作多少小时?

15×8=120(时)。

(2)12个人完成这项工程需要多少小时?

120÷12=10(时)。 解:15×8÷12=10(时)。

答:12人需10时完成。

例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要4时到达,则每小时需要多行多少千米?

分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?

60×5=300(千米)。

(2)4时到达,每小时需要行多少千米?

300÷4=75(千米)。

(3)每小时多行多少千米?

75-60=15(千米)。

解:(60×5)÷4——60=15(千米)。

答:每小时需要多行15千米。

例7 修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?

小学奥数基础教程(四年级)

分析:(1)修这条公路共需要多少个劳动日(总量)?

60×80=4800(劳动日)。

(2)60人工作20天后,还剩下多少劳动日?

4800-60×20=3600(劳动日)。

(3)剩下的工程增加30人后还需多少天完成?

3600÷(60+30)=40(天)。

解:(60×80-60×20)÷(60+30)=40(天)。

答:再用40天可以完成。

练习11

1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷?

2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?

3.一种幻灯机,5秒钟可以放映80张片子。问:48秒钟可以放映多少张片子?

4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?

5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。由于急需播种,要求5天完成,并且增加1人。问:每天要工作几小时?

6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。问:鸡蛋价格下调后是每千克多少元?

小学奥数基础教程(四年级)

7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。问:这些煤共可以供暖多少天?

第2讲 年龄问题

年龄问题是一类以“年龄为内容”的数学应用题。

年龄问题的主要特点是:二人年龄的差保持不变,它不随岁月的流逝而改变;二人的年龄随着岁月的变化,将增或减同一个自然数;二人年龄的倍数关系随着年龄的增长而发生变化,年龄增大,倍数变小。

根据题目的条件,我们常将年龄问题化为“差倍问题”、“和差问题”、“和倍问题”进行求解。

例1 儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁? 分析与解:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是

30+5=35(岁)。

例2 今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍? 分析与解:今年爸爸与儿子的年龄差为“48——20”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法。当爸爸的年龄是儿子年龄的5倍时,儿子的年龄是

(48——20)÷(5——1)=7(岁)。

由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍。

小学奥数基础教程(四年级)例3 兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍。问:兄、弟二人今年各多少岁?

分析与解:根据题意,作示意图如下:

由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁)。由此得到

弟今年6+4=10(岁),

兄今年10+5=15(岁)。

例4 今年兄弟二人年龄之和为55岁,哥哥某一年的岁数与弟弟今年的岁数相同,那一年哥哥的岁数恰好是弟弟岁数的2倍,请问哥哥今年多少岁? 分析与解:在哥哥的岁数是弟弟的岁数2倍的那一年,若把弟弟岁数看成一份,那么哥哥的岁数比弟弟多一份,哥哥与弟弟的年龄差是1份。又因为那一年哥哥岁数与今年弟弟岁数相等,所以今年弟弟岁数为2份,今年哥哥岁数为2+1=3(份)(见下页图)。

由“和倍问题”解得,哥哥今年的岁数为

55÷(3+2)×3=33(岁)。

例5 哥哥5年前的年龄与妹妹4年后的年龄相等,哥哥2年后的年龄与妹妹8年后的年龄和为97岁,请问二人今年各多少岁?

小学奥数基础教程(四年级)分析与解:由“哥哥5年前的年龄与妹妹4年后的年龄相等”可知兄妹二人的年龄差为“4+5”岁。由“哥哥2年后的年龄与妹妹8年后的年龄和为97岁”,可知兄妹二人今年的年龄和为“97——2——8”岁。由“和差问题”解得,

兄[(97——2——8)+(4+5)]÷2=48(岁),

妹[(97——2——8)-(4+5)]÷2=39(岁)。

例6 1994年父亲的年龄是哥哥和弟弟年龄之和的4倍。2000年,父亲的年龄是哥哥和弟弟年龄之和的2倍。问:父亲出生在哪一年?

分析与解:如果用1段线表示兄弟二人1994年的年龄和,则父亲1994年的年龄要用4段线来表示(见下页图)。

父亲在2000年的年龄应是4段线再加6岁,而兄弟二人在2000年的年龄之和是1段线再加2×6=12(岁),它是父亲年龄的一半,也就是2段线再加3岁。由

1段+12岁=2段+3岁,

推知1段是9岁。所以父亲1994年的年龄是9×4=36(岁),他出生于

1994——36=1958(年)。

例7今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍。问:父子今年各多少岁?

解法一:假设父亲的年龄一直是儿子年龄的4倍,那么每过一年儿子增加一岁,父亲就要增加4岁。这样,20年后儿子增加20岁,父亲就要增加80岁,比儿子多增加了80-20=60(岁)。

小学奥数基础教程(四年级)

事实上,20年后父亲的年龄为儿子的年龄的2倍,根据刚才的假设,多增加的60岁,正好相当于20年后儿子年龄的(4——2=)2倍,因此,今年儿子的年龄为

(20×4-20)÷(4-2)-20=10(岁),

父亲今年的年龄为10×4=40(岁)。

解法二:如果用1段线表示儿子今年的年龄,那么父亲今年的年龄要用4段线来表示(见下图)。

20年后,父亲的年龄应是4段线再加上20岁,而儿子的年龄应是1段线再加上20岁,是父亲年龄的一半,也就是2段线再加上10岁。由

1段+20=2段+10,

求得1段是10岁,即儿子今年10岁,从而父亲今年40岁。 例8 今年爷爷78岁,长孙27岁,次孙23岁,三孙16岁。问:几年后爷爷的年龄等于三个孙子年龄之和?

分析:今年三个孙子的年龄和为27+23+16=66(岁),爷爷比三个孙子的年龄和多78——66=12(岁)。每过一年,爷爷增加一岁,而三个孙子的年龄和却要增加1+1+1=3(岁),比爷爷多增加3-1=2(岁)。因而只需求出12里面有几个2即可。

解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。

答:6年后爷爷的年龄等于三个孙子年龄的和。

练习12

1.父亲比儿子大30岁,明年父亲的年龄是儿子年龄的3倍,那么今年儿子几岁?

小学奥数基础教程(四年级)

2.王梅比舅舅小19岁,舅舅的年龄比王梅年龄的3倍多1岁。问:他们二人各几岁?

3.小明今年9岁,父亲39岁,再过多少年父亲的年龄正好是小明年龄的2倍?

4.父亲年龄是女儿的4倍,三年前父女年龄之和是49岁。问:父女两人现在各多少岁?

5.一家三口人,三人年龄之和是74岁,妈妈比爸爸小2岁,妈妈的年龄是儿子年龄的4倍。问:三人各是多少岁?

6.今年老师46岁,学生16岁,几年后老师年龄的2倍与学生年龄的5倍相等?

7.已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父的年龄恰好等于孙子年龄的5倍。问:祖孙三人各多少岁?

8.小乐问刘老师今年有多少岁,刘老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。”你能算出刘老师有多少岁吗?

第3讲 鸡兔同笼问题与假设法

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

小学奥数基础教程(四年级)

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),

有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),

有兔16——10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

小学奥数基础教程(四年级)

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有

100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以

买普通文化用品 24÷8=3(套),

买彩色文化用品 16-3=13(套)。

例4 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。

现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。

解:有兔(2×100——20)÷(2+4)=30(只),

小学奥数基础教程(四年级)

有鸡100——30=70(只)。

答:有鸡70只,兔30只。

例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

分析:本题与例4非常类似,仿照例4的解法即可。 解:小瓶有(4×50-20)÷(4+2)=30(个),

大瓶有50-30=20(个)。

答:有大瓶20个,小瓶30个。

例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。 解:4×36÷(45-36)×45=720(吨)。

答:这批钢材有720吨。

例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。

小学奥数基础教程(四年级)搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了

12×(2+3)=60(下)。

可求出小乐每分钟跳

(780——60)÷(2+3+3)=90(下),

小乐一共跳了90×3=270(下),因此小喜比小乐共多跳

780——270×2=240(下)。 练习13

1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?

4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?

5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?

小学奥数基础教程(四年级)

6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?

7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?

8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?

9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只? 10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?

高冠军,所以由(1)知乙不是数学博士。将上面的结论依次填入上表,便得到下表:

所以,甲是小画家和歌唱家,乙是短跑健将和跳高冠军,丙是数学博士和大作家。

例4张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:(1)张明不在北京工作,席辉不在上海工作;

(2)在北京工作的不是教师;

(3)在上海工作的是工人;

(4)席辉不是农民。

问:这三人各住哪里?各是什么职业?

小学奥数基础教程(四年级)分析与解:与前面的例题相比,这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系。三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表。

我们先将题目条件中所给出的关系用下面的表来表示,由条件(1)得到表1,由条件(4)得到表2,由条件(2)(3)得到表3。

因为各表中,每行每列只能有一个“√”,所以表(3)可填全为表(4)。

因为席辉不在上海工作,在上海工作的是工人,所以席辉不是工人,他又不是农民,所以席辉是教师。再由表4知,教师住在天津,即席辉住在天津。至此,表1可填全为表5。

对照表5和表4,得到:张明住在上海是工人,席辉住在天津是教师,李刚住在北京是农民。

推荐第2篇:小学数学奥数教案

绿藤星教育(15320475397)----小学奥数基础教程

小学奥数基础教程

第1讲 速算与巧算

(一) 第2讲 速算与巧算

(二) 第3讲 高斯求和

第4讲 4,8,9整除的数的特征 第5讲 弃九法

第6讲 数的整除性

(二) 第7讲 找规律

(一) 第8讲 找规律

(二) 第9讲 数字谜

(一) 第10讲 数字谜

(二) 第11讲 归一问题与归总问题 第12讲 年龄问题

第13讲 鸡兔同笼问题与假设法 第14讲 盈亏问题与比较法

(一) 第15讲 盈亏问题与比较法

(二) 第16讲 数阵图

(一) 第17讲 数阵图

(二) 第18讲 数阵图

(三) 第19将 乘法原理 第20讲 加法原理

(一) 第21讲 加法原理

(二) 第22讲 还原问题

(一) 第23讲 还原问题

(二) 第24讲 页码问题 第25讲 智取火柴 第26讲 逻辑问题

(一) 第27讲 逻辑问题

(二) 第28讲 最不利原则 第29讲 抽屉原理

(一) 第30讲 抽屉原理

(二) 绿藤星教育(15320475397)----小学奥数基础教程第1讲 速算与巧算

(一)

计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:

86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:

6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到

总和=80×10+(6-2-3+3+11-6+12-11+4-5)

=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:

通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。由例1得到:

总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整

十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):

462,480,443,420,473,429,468,439,475,461。求平均每块麦田的产量。 解:选基准数为450,则

累计差=12+30-7-30+23-21+18-11+25+11

=50,

平均每块产量=450+50÷10=455(千克)。

答:平均每块麦田的产量为455千克。

求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。 例3 求292和822的值。 解:292=29×29

=(29+1)×(29-1)+12

=30×28+1

=840+1

=841。 绿藤星教育(15320475397)----小学奥数基础教程

822=82×82

=(82-2)×(82+2)+2

2 =80×84+4

=6720+4

=6724。

由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。最后,还要加上“移多补少”的数的平方。

由凑整补零法计算352,得

35×35=40×30+52=1225。这与三年级学的个位数是5的数的平方的速算方法结果相同。

这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。 例4 求9932和20042的值。 解:9932=993×993

=(993+7)×(993-7)+72

=1000×986+49

=986000+49

=986049。

20042=2004×2004

=(2004-4)×(2004+4)+42

=2000×2008+16

=4016000+16

=4016016。

下面,我们介绍一类特殊情况的乘法的速算方法。

请看下面的算式:

66×46,73×88,19×44。

这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。 例5 88×64=?

分析与解:由乘法分配律和结合律,得到

88×64

=(80+8)×(60+4)

=(80+8)×60+(80+8)×4

=80×60+8×60+80×4+8×4

=80×60+80×6+80×4+8×4

=80×(60+6+4)+8×4

=80×(60+10)+8×4

=8×(6+1)×100+8×4。

于是,我们得到下面的速算式:

由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。 例6 77×91=?

解:由例3的解法得到 绿藤星教育(15320475397)----小学奥数基础教程

由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。

用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。 练习1

1.求下面10个数的总和:

165,152,168,171,148,156,169,161,157,149。

2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):

26,25,25,23,27,28,26,24,29,27,27,25。求这批麦苗的平均高度。

3.某车间有9个工人加工零件,他们加工零件的个数分别为:

68,91,84,75,78,81,83,72,79。

他们共加工了多少个零件?

4.计算:

13+16+10+11+17+12+15+12+16+13+12。

5.计算下列各题:

(1)372; (2)532; (3)912;

(4)682: (5)1082; (6)3972。

6.计算下列各题:

(1)77×28;(2)66×55; (3)33×19;(4)82×44; (5)37×33;(6)46×99。

练习1 答案

1.1596。2.26厘米。

3.711个。4.147。

5.(1)1369;(2)2809; (3)8281;

(4)4624; (5)11664; (6)157609。

6.(1)2156;(2)3630; (3)627;

(4)3608; (5)1221; (6)4554。 第2讲 速算与巧算

(二)

上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。

两个数之和等于10,则称这两个数互补。在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。

例1 (1)76×74=? (2)31×39=?

分析与解:本例两题都是“头相同、尾互补”类型。

(1)由乘法分配律和结合律,得到 76×74 =(70+6)×(70+4)

=(70+6)×70+(70+6)×4=70×70+6×70+70×4+6×4 =70×(70+6+4)+6×4 =70×(70+10)+6×4 绿藤星教育(15320475397)----小学奥数基础教程=7×(7+1)×100+6×4。 于是,我们得到下面的速算式:

(2)与(1)类似可得到下面的速算式:

由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。“同补”速算法简单地说就是: 积的末两位是“尾×尾”,前面是“头×(头+1)”。

我们在三年级时学到的15×15,25×25,„,95×95的速算,实际上就是“同补”速算法。

例2 (1)78×38=? (2)43×63=?

分析与解:本例两题都是“头互补、尾相同”类型。 (1)由乘法分配律和结合律,得到

78×38 =(70+8)×(30+8)

=(70+8)×30+(70+8)×8 =70×30+8×30+70×8+8×8 =70×30+8×(30+70)+8×8 =7×3×100+8×100+8×8 =(7×3+8)×100+8×8。 于是,我们得到下面的速算式:

(2)与(1)类似可得到下面的速算式:

由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。“补同”速算法简单地说就是: 积的末两位数是“尾×尾”,前面是“头×头+尾”。

例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。当被乘数和乘数多于两位时,情况会发生什么变化呢?

我们先将互补的概念推广一下。当两个数的和是10,100,1000,„时,这两个数互为补数,简称互补。如43与57互补,99与1互补,555与445互补。

在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。例如, 因为被乘数与乘数的绿藤星教育(15320475397)----小学奥数基础教程前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型。又如,

等都是“同补”型。

当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。例如, 等都是“补同”型。

在计算多位数的“同补”型乘法时,例1的方法仍然适用。 例3 (1)702×708=? (2)1708×1792=? 解:(1)

(2)

计算多位数的“同补”型乘法时,将“头×(头+1)”作为乘积的前几位,将两个互补数之积作为乘积的后几位。

注意:互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”。

在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了。 例4 2865×7265=?

解:

练习2

计算下列各题:

1.68×62;2.93×97;

3.27×87;4.79×39;

5.42×62;6.603×607;

7.693×607;8.4085×6085。 第3讲 高斯求和

德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:

1+2+3+4+„+99+100=?

老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:

1+100=2+99=3+98=„=49+52=50+51。 绿藤星教育(15320475397)----小学奥数基础教程

1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为

(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:

(1)1,2,3,4,5,„,100;

(2)1,3,5,7,9,„,99;(3)8,15,22,29,36,„,71。

其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+„+1999=?

分析与解:这串加数1,2,3,„,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得

原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+„+31=?

分析与解:这串加数11,12,13,„,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+„+99=?

分析与解:3,7,11,„,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。

例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。

利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表: 绿藤星教育(15320475397)----小学奥数基础教程由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。

解:(1)最大三角形面积为

(1+3+5+„+15)×12 =[(1+15)×8÷2]×12 =768(厘米2)。

2)火柴棍的数目为

3+6+9+„+24 =(3+24)×8÷2=108(根)。

答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里„„第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?

分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球„„第十次多了2×10只球。因此拿了十次后,多了

2×1+2×2+„+2×10 =2×(1+2+„+10) =2×55=110(只)。

加上原有的3只球,盒子里共有球110+3=113(只)。

综合列式为:

(3-1)×(1+2+„+10)+3 =2×[(1+10)×10÷2]+3=113(只)。

练习3

1.计算下列各题:

(1)2+4+6+„+200;

(2)17+19+21+„+39; (3)5+8+11+14+„+50; (4)3+10+17+24+„+101。

2.求首项是5,末项是93,公差是4的等差数列的和。

3.求首项是13,公差是5的等差数列的前30项的和。

4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?

5.求100以内除以3余2的所有数的和。

6.在所有的两位数中,十位数比个位数大的数共有多少个?

第四讲

我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。

数的整除具有如下性质: 绿藤星教育(15320475397)----小学奥数基础教程性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。 性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:

(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。 绿藤星教育(15320475397)----小学奥数基础教程

因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。这就证明了(4)。

类似地可以证明(5)。

(6)的正确性,我们用一个具体的数来说明一般性的证明方法。

837=800+30+7 =8×100+3×10+7 =8×(99+1)+3×(9+1)+7 =8×99+8+3×9+3+7 =(8×99+3×9)+(8+3+7)。

因为99和9都能被9整除,所以根据整除的性质1和性质2知,(8x99+3x9)能被9整除。再根据整除的性质2,由(8+3+7)能被9整除,就能判断837能被9整除。

利用(4)(5)(6)还可以求出一个数除以4,8,9的余数: (4‘)一个数除以4的余数,与它的末两位除以4的余数相同。 (5')一个数除以8的余数,与它的末三位除以8的余数相同。 (6')一个数除以9的余数,与它的各位数字之和除以9的余数相同。 例1 在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除? 234,789,7756,8865,3728.8064。 解:能被4整除的数有7756,3728,8064;

能被8整除的数有3728,8064; 能被9整除的数有234,8865,8064。 绿藤星教育(15320475397)----小学奥数基础教程例2 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

解:如果56□2能被9整除,那么

5+6+□+2=13+□

应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

到现在为止,我们已经学过能被2,3,5,4,8,9整除的数的特征。根据整除的性质3,我们可以把判断整除的范围进一步扩大。例如,判断一个数能否被6整除,因为6=2×3,2与3互质,所以如果这个数既能被2整除又能被3整除,那么根据整除的性质3,可判定这个数能被6整除。同理,判断一个数能否被12整除,只需判断这个数能否同时被3和4整除;判断一个数能否被72整除,只需判断这个数能否同时被8和9整除;如此等等。

例3 从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

解:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。 例4 五位数分析与解:已知以能被72整除,问:A与B各代表什么数字?

能被72整除。因为72=8×9,8和9是互质数,所既能被8整除,又能被9整除。根据能被8整除的数的特征,要求绿藤星教育(15320475397)----小学奥数基础教程能被8整除,由此可确定B=6。再根据能被9整除的数的特征,的各位数字之和为

A+3+2+9+B=A+3-f-2+9+6=A+20,

因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27能被9整除,所以A=7。

解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。 例5 六位数是6的倍数,这样的六位数有多少个?

分析与解:因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。由六位数能被2整除,推知A可取0,2,4,6,8这五个值。再由六位数能被3整除,推知 3+A+B+A+B+A=3+3A+2B

能被3整除,故2B能被3整除。B可取0,3,6,9这4个值。由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。 例6 要使六位数表什么数字?

分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。六位数此C可取1,3,5,7,9。

要使所得的商最小,就要使

这个六位数尽可能小。因此首先是A

能被4整除,就要

能被4整除,因

能被36整除,而且所得的商最小,问A,B,C各代尽量小,其次是B尽量小,最后是C尽量小。先试取A=0。六位数绿藤星教育(15320475397)----小学奥数基础教程各位数字之和为12+B+C。它应能被9整除,因此B+C=6或B+C=15。因为B,C应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使尽可能小,应取B=1,C=5。

当A=0,B=1,C=5时,六位数能被36整除,而且所得商最小,为150156÷36=4171。 练习4

1.6539724能被4,8,9,24,36,72中的哪几个数整除?

2.个位数是5,且能被9整除的三位数共有多少个?

3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。在这样的四位数中,最大的和最小的各是多少?

4.五位数能被12整除,求这个五位数。

5.有一个能被24整除的四位数□23□,这个四位数最大是几?最小是几?

6.从0,2,3,6,7这五个数码中选出四个,可以组成多少个可以被8整除的没有重复数字的四位数?

7.在123的左右各添一个数码,使得到的五位数能被72整除。

8.学校买了72只小足球,发票上的总价有两个数字已经辨认不清,只看到是□67.9□元,你知道每只小足球多少钱吗? 第5讲 弃九法

从第4讲知道,如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除;如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几。利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数是几。 绿藤星教育(15320475397)----小学奥数基础教程

例如,3645732这个数,各个数位上的数字之和为

3+6+4+5+7+3+2=30,

30被9除余3,所以3645732这个数不能被9整除,且被9除后余数为3。

但是,当一个数的数位较多时,这种计算麻烦且易错。有没有更简便的方法呢?

因为我们只是判断这个式子被9除的余数,所以凡是若干个数的和是9时,就把这些数划掉,如3+6=9,4+5=9,7+2=9,把这些数划掉后,最多只剩下一个3(如下图),所以这个数除以9的余数是3。

这种将和为9或9的倍数的数字划掉,用剩下的数字和求除以9的余数的方法,叫做弃九法。

一个数被9除的余数叫做这个数的九余数。利用弃九法可以计算一个数的九余数,还可以检验四则运算的正确性。 例1 求多位数7645821369815436715除以9的余数。 分析与解:利用弃九法,将和为9的数依次划掉。

只剩下7,6,1,5四个数,这时口算一下即可。口算知,7,6,5的和是9的倍数,又可划掉,只剩下1。所以这个多位数除以9余1。 例2 将自然数1,2,3,„依次无间隔地写下去组成一个数1234567891011213„如果一直写到自然数100,那么所得的数除以9的余数是多少? 绿藤星教育(15320475397)----小学奥数基础教程分析与解:因为这个数太大,全部写出来很麻烦,在使用弃九法时不能逐个划掉和为9或9的倍数的数,所以要配合适当的分析。我们已经熟知

1+2+3+„+9=45,

而45是9的倍数,所以每一组1,2,3,„,9都可以划掉。在1~99这九十九个数中,个位数有十组1,2,3,„,9,都可划掉;十位数也有十组1,2,3,„,9,也都划掉。这样在这个大数中,除了0以外,只剩下最后的100中的数字1。所以这个数除以9余1。

在上面的解法中,并没有计算出这个数各个数位上的数字和,而是利用弃九法分析求解。本题还有其它简捷的解法。因为一个数与它的各个数位上的数字之和除以9的余数相同,所以题中这个数各个数位上的数字之和,与1+2+„+100除以9的余数相同。

利用高斯求和法,知此和是5050。因为5050的数字和为5+0+5+0=10,利用弃九法,弃去一个9余1,故5050除以9余1。因此题中的数除以9余1。

例3 检验下面的加法算式是否正确:

2638457+3521983+6745785=12907225。

分析与解:若干个加数的九余数相加,所得和的九余数应当等于这些加数的和的九余数。如果不等,那么这个加法算式肯定不正确。上式中,三个加数的九余数依次为8,4,6,8+4+6的九余数为0;和的九余数为1。因为0≠1,所以这个算式不正确。 例4 检验下面的减法算式是否正确:

7832145-2167953=5664192。

分析与解:被减数的九余数减去减数的九余数(若不够减,可在被减数的九余数上加9,然后再减)应当等于差的九余数。如果不等,那么这个减绿藤星教育(15320475397)----小学奥数基础教程法计算肯定不正确。上式中被减数的九余数是3,减数的九余数是6,由(9+3)-6=6知,原题等号左边的九余数是6。等号右边的九余数也是6。因为6=6,所以这个减法运算可能正确。

值得注意的是,这里我们用的是“可能正确”。利用弃九法检验加法、减法、乘法(见例5)运算的结果是否正确时,如果等号两边的九余数不相等,那么这个算式肯定不正确;如果等号两边的九余数相等,那么还不能确定算式是否正确,因为九余数只有0,1,2,„,8九种情况,不同的数可能有相同的九余数。所以用弃九法检验运算的正确性,只是一种粗略的检验。

例5 检验下面的乘法算式是否正确:

46876×9537=447156412。

分析与解:两个因数的九余数相乘,所得的数的九余数应当等于两个因数的乘积的九余数。如果不等,那么这个乘法计算肯定不正确。上式中,被乘数的九余数是4,乘数的九余数是6,4×6=24,24的九余数是6。乘积的九余数是7。6≠7,所以这个算式不正确。

说明:因为除法是乘法的逆运算,被除数=除数×商+余数,所以当余数为零时,利用弃九法验算除法可化为用弃九法去验算乘法。例如,检验383801÷253=1517的正确性,只需检验1517×253=383801的正确性。 练习5

1.求下列各数除以9的余数:

(1)7468251; (2)36298745;

(3)2657348; (4)6678254193。

2.求下列各式除以9的余数:

(1)67235+82564; (2)97256-47823; 绿藤星教育(15320475397)----小学奥数基础教程

(3)2783×6451; (4)3477+265×841。

3.用弃九法检验下列各题计算的正确性:

(1)228×222=50616;

(2)334×336=112224;

(3)23372428÷6236=3748;

(4)12345÷6789=83810105。

4.有一个2000位的数A能被9整除,数A的各个数位上的数字之和是B,数B的各个数位上的数字之和是C,数C的各个数位上的数字之和是D。求D。

第6讲 数的整除性

(二)

这一讲主要讲能被11整除的数的特征。

一个数从右边数起,第1,3,5,„位称为奇数位,第2,4,6,„位称为偶数位。也就是说,个位、百位、万位„„是奇数位,十位、千位、十万位„„是偶数位。例如9位数768325419中,奇数位与偶数位如下图所示:

能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。 例1 判断七位数1839673能否被11整除。

分析与解:奇数位上的数字之和为1+3+6+3=13,偶数位上的数字之和为8+9+7=24,因为24-13=11能被11整除,所以1839673能被11整除。

根据能被11整除的数的特征,也能求出一个数除以11的余数。 绿藤星教育(15320475397)----小学奥数基础教程

一个数除以11的余数,与它的奇数位上的数字之和减去偶数位上的数字之和所得的差除以11的余数相同。如果奇数位上的数字之和小于偶数位上的数字之和,那么应在奇数位上的数字之和上再增加11的整数倍,使其大于偶数位上的数字之和。 例2 求下列各数除以11的余数:

(1)41873; (2)296738185。

分析与解:(1)[(4+8+3)-(1+7)]÷11

=7÷11=0„„7,

所以41873除以11的余数是7。

(2)奇数位之和为2+6+3+1+5=17,偶数位之和为9+7+8+8=32。因为17<32,所以应给17增加11的整数倍,使其大于32。

(17+11×2)-32=7,

所以296738185除以11的余数是7。

需要说明的是,当奇数位数字之和远远小于偶数位数字之和时,为了计算方便,也可以用偶数位数字之和减去奇数位数字之和,再除以11,所得余数与11的差即为所求。如上题(2)中,(32-17)÷11=1„„4,所求余数是11-4=7。 例3 求除以11的余数。

分析与解:奇数位是101个1,偶数位是100个9。

(9×100-1×101)÷11

=799÷11=72„„7,

11-7=4,所求余数是4。 绿藤星教育(15320475397)----小学奥数基础教程

例3还有其它简捷解法,例如每个“19”奇偶数位上的数字相差9-1=8, 奇数位上的数字和与偶数位上的数字和相差8×99=8×9×11,能被11整除。所以例3相当于求最后三位数191除以11的余数。 例4 用3,3,7,7四个数码能排出哪些能被11整除的四位数? 解:只要奇数位和偶数位上各有一个3和一个7即可。有3377,3773,7337,7733。

例5 用1~9九个数码组成能被11整除的没有重复数字的最大九位数。 分析与解:最大的没有重复数字的九位数是987654321,由

(9+7+5+3+1)-(8+6+4+2)=5

知,987654321不能被11整除。为了保证这个数尽可能大,我们尽量调整低位数字,只要使奇数位的数字和增加3(偶数位的数字和自然就减少3),奇数位的数字之和与偶数位的数字之和的差就变为5+3×2=11,这个数就能被11整除。调整“4321”,只要4调到奇数位,1调到偶数位,奇数位就比原来增大3,就可达到目的。此时,4,3在奇数位,2,1在偶数位,后四位最大是2413。所求数为987652413。 例6 六位数能被99整除,求A和B。

分析与解:由99=9×11,且9与11互质,所以六位数既能被9整除又能被11整除。因为六位数能被9整除,所以

A+2+8+7+5+B

=22+A+B

应能被9整除,由此推知A+B=5或14。又因为六位数能被11整除,所以

(A+8+5)-(2+7+B) 绿藤星教育(15320475397)----小学奥数基础教程

=A-B+4

应能被11整除,即

A-B+4=0或A-B+4=11。

化简得B-A=4或A-B=7。

因为A+B与A-B同奇同偶,所以有

在(1)中,A≤5与A≥7不能同时满足,所以无解。

在(2)中,上、下两式相加,得

(B+A)+(B-A)=14+4,

2B=18,

B=9。

将B=9代入A+B=14,得A=5。

所以,A=5,B=9。

练习6

1.为使五位数6□295能被11整除,□内应当填几?

2.用1,2,3,4四个数码能排出哪些能被11整除的没有重复数字的四位数?

3.求能被11整除的最大的没有重复数字的五位数。

4.求下列各数除以11的余数:

(1)2485; (2)63582; (3)987654321。

5.求

6.六位数除以11的余数。

5A634B能被33整除,求A+B。 绿藤星教育(15320475397)----小学奥数基础教程

7.七位数3A8629B是88的倍数,求A和B。

第7讲 找规律

(一)

我们在三年级已经见过“找规律”这个题目,学习了如何发现图形、数表和数列的变化规律。这一讲重点学习具有“周期性”变化规律的问题。什么是周期性变化规律呢?比如,一年有春夏秋冬四季,百花盛开的春季过后就是夏天,赤日炎炎的夏季过后就是秋天,果实累累的秋季过后就是冬天,白雪皑皑的冬季过后又到了春天。年复一年,总是按照春、夏、秋、冬四季变化,这就是周期性变化规律。再比如,数列0,1,2,0,1,2,0,1,2,0,„是按照0,1,2三个数重复出现的,这也是周期性变化问题。

下面,我们通过一些例题作进一步讲解。

例1 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、„„这样排下去。问:

(1)第100盏灯是什么颜色?

(2)前150盏彩灯中有多少盏蓝灯?

分析与解:这是一个周期变化问题。彩灯按照5红、4蓝、3黄,每12盏灯一个周期循环出现。

(1)100÷12=8„„4,所以第100盏灯是第9个周期的第4盏灯,是红灯。

(2)150÷12=12„„6,前150盏灯共有12个周期零6盏灯,12个周期中有蓝灯4×12=48(盏),最后的6盏灯中有1盏蓝灯,所以共有蓝灯48+1=49(盏)。 绿藤星教育(15320475397)----小学奥数基础教程例2 有一串数,任何相邻的四个数之和都等于25。已知第1个数是3,第6个数是6,第11个数是7。问:这串数中第24个数是几?前77个数的和是多少?

分析与解:因为第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同。进一步可推知,第1,5,9,13,„个数都相同。

同理,第2,6,10,14,„个数都相同,第3,7,11,15,„个数都相同,第4,8,12,16„个数都相同。

也就是说,这串数是按照每四个数为一个周期循环出现的。所以,第2个数等于第6个数,是6;第3个数等于第11个数,是7。前三个数依次是3,6,7,第四个数是

25-(3+6+7)=9。

这串数按照3,6,7,9的顺序循环出现。第24个数与第4个数相同,是9。由77÷4=9„„1知,前77个数是19个周期零1个数,其和为25×19+3=478。

例3 下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数。问:这串数中第88个数是几?

628088640448„

分析与解:这串数看起来没有什么规律,但是如果其中有两个相邻数字与前面的某两个相邻数字相同,那么根据这串数的构成规律,这两个相邻数字后面的数字必然与前面那两个相邻数字后面的数字相同,也就是说将出现周期性变化。我们试着将这串数再多写出几位:

绿藤星教育(15320475397)----小学奥数基础教程

当写出第21,22位(竖线右面的两位)时就会发现,它们与第1,2位数相同,所以这串数按每20个数一个周期循环出现。由88÷20=4„„8知,第88个数与第8个数相同,所以第88个数是4。

从例3看出,周期性规律有时并不明显,要找到它还真得动点脑筋。 例4 在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字。那么在这串数中,能否出现相邻的四个数是“2000”?

135761939237134„

分析与解:无休止地将这串数写下去,显然不是聪明的做法。按照例3的方法找到一周期,因为这个周期很长,所以也不是好方法。那么怎么办呢?仔细观察会发现,这串数的前四个数都是奇数,按照“每个数都是它前面四个数之和的个位数字”,如果不看具体数,只看数的奇偶性,那么将这串数依次写出来,得到

奇奇奇奇偶奇奇奇奇偶奇„„

可以看出,这串数是按照四个奇数一个偶数的规律循环出现的,永远不会出现四个偶数连在一起的情况,即不会出现“2000”。

例5 A,B,C,D四个盒子中依次放有8,6,3,1个球。第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子„„当100位小朋友放完后,A,B,C,D四个盒子中各放有几个球? 分析与解:按照题意,前六位小朋友放过后,A,B,C,D四个盒子中的球数如下表: 绿藤星教育(15320475397)----小学奥数基础教程

可以看出,第6人放过后与第2人放过后四个盒子中球的情况相同,所以从第2人放过后,每经过4人,四个盒子中球的情况重复出现一次。

(100-1)÷4=24„„3,

所以第100次后的情况与第4次(3+1=4)后的情况相同,A,B,C,D盒中依次有4,6,3,5个球。

练习7

1.有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的。问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?

2.将1,2,3,4,„除以3的余数依次排列起来,得到一个数列。求这个数列前100个数的和。

3.有一串数,前两个数是9和7,从第三个数起,每个数是它前面两个数乘积的个位数。这串数中第100个数是几?前100个数之和是多少?

4.有一列数,第一个数是6,以后每一个数都是它前面一个数与7的和的个位数。这列数中第88个数是几?

5.小明按1~3报数,小红按1~4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?

6.A,B,C,D四个盒子中依次放有9,6,3,0个小球。第1个小朋友找到放球最多的盒子,从中拿出3个球放到其它盒子中各1个球;第2绿藤星教育(15320475397)----小学奥数基础教程个小朋友也找到放球最多的盒子,也从中拿出3个球放到其它盒子中各1个球„„当100个小朋友放完后,A,B,C,D四个盒子中各放有几个球?

第8讲 找规律

(二)

整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a的乘积叫做a的三次方,记作a3,即a3=a×a×a。一般地,n个a相乘,叫做a的n次方,记作an,即

本讲主要讲an的个位数的变化规律,以及an除以某数所得余数的变化规律。

因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以an的个位数只与a的个位数有关,而a的个位数只有0,1,2,„,9共十种情况,故我们只需讨论这十种情况。

为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,„的个位数字各是什么。

从表看出,an的个位数字的变化规律可分为三类:

(1)当a的个位数是0,1,5,6时,an的个位数仍然是0,1,5,6。

(2)当a的个位数是4,9时,随着n的增大,an的个位数按每两个数为一周期循环出现。其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。

(3)当a的个位数是2,3,7,8时,随着n的增大,an的个位数按每四个数为一周期循环出现。其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的绿藤星教育(15320475397)----小学奥数基础教程个位数是7时,按7,9,3,1的顺序循环出现;当a的个位数是8时,按8,4,2,6的顺序循环出现。

例1 求67999的个位数字。

分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。

999÷4=249„„3,

所以67999的个位数字与73的个位数字相同,即67999的个位数字是3。 例2 求291+3291的个位数字。

分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22„„3,所以,291的个位数字与23的个位数字相同,等于8。

类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现, 291÷4=72„„3,

所以3291与33的个位数相同,等于7。

最后得到291+3291的个位数字与8+7的个位数字相同,等于5。 例3 求28128-2929的个位数字。

解:由128÷4=32知,28128的个位数与84的个位数相同,等于6。由29÷2=14„„1知,2929的个位数与91的个位数相同,等于9。因为6<9,在减法中需向十位借位,所以所求个位数字为16-9=7。 绿藤星教育(15320475397)----小学奥数基础教程例4 求下列各除法运算所得的余数:

(1)7855÷5;

(2)555÷3。

分析与解:(1)由55÷4=13„„3知,7855的个位数与83的个位数相同,等于2,所以7855可分解为10×a+2。因为10×a能被5整除,所以7855除以5的余数是2。

(2)因为a÷3的余数不仅仅与a的个位数有关,所以不能用求555的个位数的方法求解。为了寻找5n÷3的余数的规律,先将5的各次方除以3的余数列表如下:

注意:表中除以3的余数并不需要计算出5n,然后再除以3去求,而是用上次的余数乘以5后,再除以3去求。比如,52除以3的余数是1,53除以3的余数与1×5=5除以3的余数相同。这是因为52=3×8+1,其中3×8能被3整除,而

53=(3×8+1)×5=(3×8)×5+1×5,

(3×8)×5能被3整除,所以53除以3的余数与1×5除以3的余数相同。

由上表看出,5n除以3的余数,随着n的增大,按2,1的顺序循环出现。由55÷2=27„„1知,555÷3的余数与51÷3的余数相同,等于2。 例5 某种细菌每小时分裂一次,每次1个细茵分裂成3个细菌。20时后,将这些细菌每7个分为一组,还剩下几个细菌?

分析与解:1时后有1×3=31(个)细菌,2时后有31×3=32(个)细菌„„20时后,有320个细菌,所以本题相当于“求320÷7的余数”。 绿藤星教育(15320475397)----小学奥数基础教程

由例4(2)的方法,将3的各次方除以7的余数列表如下:

由上表看出,3n÷7的余数以六个数为周期循环出现。由20÷6=3„„2知,320÷7的余数与32÷7的余数相同,等于2。所以最后还剩2个细菌。

最后再说明一点,an÷b所得余数,随着n的增大,必然会出现周期性变化规律,因为所得余数必然小于b,所以在b个数以内必会重复出现。

练习8

1.求下列各数的个位数字:

(1)3838; (2)2930;

(3)6431; (4)17215。 2.求下列各式运算结果的个位数字: (1)9222+5731; (2)615+487+349; (3)469-6211; (4)37×48+59×610。 3.求下列各除法算式所得的余数: (1)5100÷4; (2)8111÷6; (3)488÷7 第9讲 数字谜

(一)

我们在三年级已经学习过一些简单的数字谜问题。这两讲除了复习巩固学过的知识外,还要学习一些新的内容。

例1 在下面算式等号左边合适的地方添上括号,使等式成立:

5+7×8+12÷4-2=20。

分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多。因此必须设法使这个积缩小一定的倍数,化大为小。

从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。 绿藤星教育(15320475397)----小学奥数基础教程解:5+(7×8+12)÷4-2=20。

例2 把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):

分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。如果从乘法算式入手,那么只有下面两种可能:

2×3=6或2×4=8,

所以应当从乘法算式入手。

因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。于是可知,原题加减法算式中的六个数的和应该是偶数。

若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意;

若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:

4+5=9,8-7=1(或8-1=7);

1+7=8,9-5=4(或9-4=5)。

所以答案为 与

绿藤星教育(15320475397)----小学奥数基础教程例3 下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:

□□□÷□□=□-□=□-7。

分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解:

128÷64=5-3=9-7,

或 164÷82=5-3=9-7。

例4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立:

□+□=6, □×□=8,

□-□=6, □□÷□=8。

分析与解:因为每个□中要填不同的数字,对于加式只有两种填法:1+5或2+4;对于乘式也只有两种填法:1×8或2×4。加式与乘式的数字不能相同,搭配后只有两种可能: (1)加式为1+5,乘式为2×4; (2)加式为2+4,乘式为1×8。

对于(1),还剩3,6,7,8,9五个数字未填,减式只能是9-3,此时除式无法满足;

对于(2),还剩3,5,6,7,9五个数字未填,减式只能是9-3,此时除式可填56÷7。答案如下:

2+4=6, 1×8=8,

9-3=6, 56÷7=8。 绿藤星教育(15320475397)----小学奥数基础教程

例2~例4都是对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍。这种方法叫做枚举法,也叫穷举法或列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法。

例5 从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:

[○÷○×(○+○)]-[○×○+○-○]。

分析与解:为使算式的结果尽可能大,应当使前一个中括号内的结果尽量大,后一个中括号内的结果尽量小。为叙述方便,将原式改写为:

[A÷B×(C+D)]-[E×F+G-H]。

通过分析,A,C,D,H应尽可能大,且A应最大,C,D次之,H再次之;B,E,F,G应尽可能小,且B应最小,E,F次之,G再次之。于是得到A=9,C=8,D=7,H=6,B=1,E=2,F=3,G=4,其中C与D,E与F的值可互换。将它们代入算式,得到

[9÷1×(8+7)]-[2×3+4-6]=131。

练习9

1.在下面的算式里填上括号,使等式成立:

(1)4×6+24÷6-5=15;

(2)4×6+24÷6-5=35;

(3)4×6+24÷6-5=48;

(4)4×6+24÷6-5=0。

2.加上适当的运算符号和括号,使下式成立:

1 2 3 4 5 =100。 绿藤星教育(15320475397)----小学奥数基础教程

3.把0~9这十个数字填到下面的□里,组成三个等式(每个数字只能填一次):

□+□=□,

□-□=□,

□×□=□□。

4.在下面的□里填上+,-,×,÷,()等符号,使各个等式成立:

4□4□4□4=1,

4□4□4□4=3,

4□4□4□4=5,

4□4□4□4=9。

5.将2~7这六个数字分别填入下式的□中,使得等式成立:

□+□-□=□×□÷□。

6.将1~9分别填入下式的九个□内,使算式取得最大值:

□□□×□□□×□□□。

7.将1~8分别填入下式的八个□内,使算式取得最小值: □□×□□×□□×□□。

第10讲 数字谜

(二)

例1 把下面算式中缺少的数字补上:

分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100。四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100。由此我们找出解决本题的突破口在百位数上。 绿藤星教育(15320475397)----小学奥数基础教程

(1)填百位与千位。由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1。

(2)填个位。由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9。

(3)填十位。由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9。

所求算式如右式。

由例1看出,考虑减法算式时,借位是一个重要条件。

例2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:

分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”。

从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7。

如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6。此时,百位上的和为“学”+“学”+1=2+2+1=5≠4。因此“学”≠2。 绿藤星教育(15320475397)----小学奥数基础教程

如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2。百位上两个7相加要向千位进位1,由此可得“我”代表数字3。

满足条件的解如右式。

(2)由千位看出,“努”=4。由千、百、

十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式。同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1。

满足条件的算式如右下式。

例2中的两题形式类似,但题目特点并不相同,解法也不同,请同学们注意比较。

例3 下面竖式中每个汉字代表一个数字,不同的汉字代表不同的数字,求被乘数。

分析与解:由于个位上的“赛”ד赛”所得的积不再是“赛”,而是另一个数,所以“赛”的取值只能是2,3,4,7,8,9。

下面采用逐一试验的方法求解。

(1)若“赛”=2,则“数”=4,积=444444。被乘数为444444÷2=222222,而被乘数各个数位上的数字各不相同,所以“赛”≠2。 绿藤星教育(15320475397)----小学奥数基础教程

(2)若“赛”=3,则“数”=9,仿(1)讨论,也不行。

(3)若“赛”=4,则“数”=6,积=666666。666666÷4得不到整数商,不合题意。

(4)若“赛”=7,则“数”=9,积=999999。被乘数为999999÷7=142857,符合题意。

(5)若“赛”=8或9,仿上讨论可知,不合题意。

所以,被乘数是142857。

例4 在□内填入适当的数字,使左下式的乘法竖式成立。

分析与解:为清楚起见,我们用A,B,C,D,„表示□内应填入的数字(见右上式)。

由被乘数大于500知,E=1。由于乘数的百位数与被乘数的乘积的末位数是5,故B,C中必有一个是5。若C=5,则有

6□□×5=(600+□□)×5=3000+□□×5,

不可能等于□5□5,与题意不符,所以B=5。再由B=5推知G=0或5。若G=5,则F=A=9,此时被乘数为695,无论C为何值,它与695的积不可能等于□5□5,与题意不符,所以G=0,F=A=4。此时已求出被乘数是645,经试验只有645×7满足□5□5,所以C=7;最后由B=5,G=0知D为偶数,经试验知D=2。

右式为所求竖式。 绿藤星教育(15320475397)----小学奥数基础教程

此类乘法竖式题应根据已给出的数字、乘法及加法的进位情况,先填比较容易的未知数,再依次填其余未知数。有时某未知数有几种可能取值,需逐一试验决定取舍。

例5 在□内填入适当数字,使左下方的除法竖式成立。

分析与解:把左上式改写成右上式。根据除法竖式的特点知,B=0,D=G=1,E=F=H=9,因此除数应是99的两位数的约数,可能取值有11,33和99,再由商的个位数是5以及5与除数的积是两位数得到除数是11,进而知A=C-9。至此,除数与商都已求出,其余未知数都可填出(见右式)。

此类除法竖式应根据除法竖式的特点,如商的空位补0、余数必须小于除数,以及空格间的相互关系等求解,只要求出除数和商,问题就迎刃而解了。

例6 把左下方除法算式中的*号换成数字,使之成为一个完整的式子(各*所表示的数字不一定相同)。 绿藤星教育(15320475397)----小学奥数基础教程

分析与解:由上面的除法算式容易看出,商的十位数字“*”是0,即商为。

因为除数与8的积是两位数,除数与商的千位数字的积是三位数,知商的千位数是9,即商为9807。

因为“除数×9”是三位数,所以除数≥12;又因为“除数×8”是两位数,所以除数≤12。推知除数只能是12。被除数为9807×12=117684。

除法算式如上页右式。 练习10

1.在下面各竖式的□内填入合适的数字,使竖式成立:

2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。问:“小”代表什么数字?

3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字。求出下列各式: 绿藤星教育(15320475397)----小学奥数基础教程

4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。这些算式中各字母分别代表什么数字?

第11讲 归一问题与归总问题

在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)

分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?

1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?

95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。 绿藤星教育(15320475397)----小学奥数基础教程例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?

分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?

630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?

18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?

分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?

2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?

25600÷320÷8=10(时)。

综合列式为

25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。现在有沙土420吨,要求5趟运完。问:需要增加同样的卡车多少辆? 分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨?

336÷4÷7=12(吨)。

(2)5趟运走420吨沙土需卡车多少辆? 绿藤星教育(15320475397)----小学奥数基础教程

420÷12÷5=7(辆)。

(3)需要增加多少辆卡车?

7-4=3(辆)。

综合列式为

420÷(336÷4÷7)÷5-4=3(辆)。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?

分析:(1)工程总量相当于1个人工作多少小时?

15×8=120(时)。

(2)12个人完成这项工程需要多少小时?

120÷12=10(时)。 解:15×8÷12=10(时)。

答:12人需10时完成。

例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要4时到达,则每小时需要多行多少千米?

分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?

60×5=300(千米)。

(2)4时到达,每小时需要行多少千米?

300÷4=75(千米)。

(3)每小时多行多少千米? 绿藤星教育(15320475397)----小学奥数基础教程

75-60=15(千米)。

解:(60×5)÷4——60=15(千米)。

答:每小时需要多行15千米。

例7 修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?

分析:(1)修这条公路共需要多少个劳动日(总量)?

60×80=4800(劳动日)。

(2)60人工作20天后,还剩下多少劳动日?

4800-60×20=3600(劳动日)。

(3)剩下的工程增加30人后还需多少天完成?

3600÷(60+30)=40(天)。

解:(60×80-60×20)÷(60+30)=40(天)。

答:再用40天可以完成。

练习11

1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷?

2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?

3.一种幻灯机,5秒钟可以放映80张片子。问:48秒钟可以放映多少张片子?

4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷? 绿藤星教育(15320475397)----小学奥数基础教程

5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。由于急需播种,要求5天完成,并且增加1人。问:每天要工作几小时?

6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。问:鸡蛋价格下调后是每千克多少元?

7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。问:这些煤共可以供暖多少天?

第12讲 年龄问题

年龄问题是一类以“年龄为内容”的数学应用题。

年龄问题的主要特点是:二人年龄的差保持不变,它不随岁月的流逝而改变;二人的年龄随着岁月的变化,将增或减同一个自然数;二人年龄的倍数关系随着年龄的增长而发生变化,年龄增大,倍数变小。

根据题目的条件,我们常将年龄问题化为“差倍问题”、“和差问题”、“和倍问题”进行求解。

例1 儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁? 分析与解:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是

30+5=35(岁)。

例2 今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍? 分析与解:今年爸爸与儿子的年龄差为“48——20”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年绿藤星教育(15320475397)----小学奥数基础教程龄差还是这个数,这样就可以用“差倍问题”的解法。当爸爸的年龄是儿子年龄的5倍时,儿子的年龄是

(48——20)÷(5——1)=7(岁)。

由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍。 例3 兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍。问:兄、弟二人今年各多少岁?

分析与解:根据题意,作示意图如下:

由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁)。由此得到

弟今年6+4=10(岁),

兄今年10+5=15(岁)。

例4 今年兄弟二人年龄之和为55岁,哥哥某一年的岁数与弟弟今年的岁数相同,那一年哥哥的岁数恰好是弟弟岁数的2倍,请问哥哥今年多少岁? 分析与解:在哥哥的岁数是弟弟的岁数2倍的那一年,若把弟弟岁数看成一份,那么哥哥的岁数比弟弟多一份,哥哥与弟弟的年龄差是1份。又因为那一年哥哥岁数与今年弟弟岁数相等,所以今年弟弟岁数为2份,今年哥哥岁数为2+1=3(份)(见下页图)。

由“和倍问题”解得,哥哥今年的岁数为

55÷(3+2)×3=33(岁)。 绿藤星教育(15320475397)----小学奥数基础教程

例5 哥哥5年前的年龄与妹妹4年后的年龄相等,哥哥2年后的年龄与妹妹8年后的年龄和为97岁,请问二人今年各多少岁?

分析与解:由“哥哥5年前的年龄与妹妹4年后的年龄相等”可知兄妹二人的年龄差为“4+5”岁。由“哥哥2年后的年龄与妹妹8年后的年龄和为97岁”,可知兄妹二人今年的年龄和为“97——2——8”岁。由“和差问题”解得,

兄[(97——2——8)+(4+5)]÷2=48(岁),

妹[(97——2——8)-(4+5)]÷2=39(岁)。

例6 1994年父亲的年龄是哥哥和弟弟年龄之和的4倍。2000年,父亲的年龄是哥哥和弟弟年龄之和的2倍。问:父亲出生在哪一年?

分析与解:如果用1段线表示兄弟二人1994年的年龄和,则父亲1994年的年龄要用4段线来表示(见下页图)。

父亲在2000年的年龄应是4段线再加6岁,而兄弟二人在2000年的年龄之和是1段线再加2×6=12(岁),它是父亲年龄的一半,也就是2段线再加3岁。由

1段+12岁=2段+3岁,

推知1段是9岁。所以父亲1994年的年龄是9×4=36(岁),他出生于 绿藤星教育(15320475397)----小学奥数基础教程

1994——36=1958(年)。

例7今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍。问:父子今年各多少岁?

解法一:假设父亲的年龄一直是儿子年龄的4倍,那么每过一年儿子增加一岁,父亲就要增加4岁。这样,20年后儿子增加20岁,父亲就要增加80岁,比儿子多增加了80-20=60(岁)。

事实上,20年后父亲的年龄为儿子的年龄的2倍,根据刚才的假设,多增加的60岁,正好相当于20年后儿子年龄的(4——2=)2倍,因此,今年儿子的年龄为

(20×4-20)÷(4-2)-20=10(岁),

父亲今年的年龄为10×4=40(岁)。

解法二:如果用1段线表示儿子今年的年龄,那么父亲今年的年龄要用4段线来表示(见下图)。

20年后,父亲的年龄应是4段线再加上20岁,而儿子的年龄应是1段线再加上20岁,是父亲年龄的一半,也就是2段线再加上10岁。由

1段+20=2段+10,

求得1段是10岁,即儿子今年10岁,从而父亲今年40岁。 例8 今年爷爷78岁,长孙27岁,次孙23岁,三孙16岁。问:几年后爷爷的年龄等于三个孙子年龄之和?

分析:今年三个孙子的年龄和为27+23+16=66(岁),爷爷比三个孙子的年龄和多78——66=12(岁)。每过一年,爷爷增加一岁,而三个绿藤星教育(15320475397)----小学奥数基础教程孙子的年龄和却要增加1+1+1=3(岁),比爷爷多增加3-1=2(岁)。因而只需求出12里面有几个2即可。

解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。

答:6年后爷爷的年龄等于三个孙子年龄的和。

练习12

1.父亲比儿子大30岁,明年父亲的年龄是儿子年龄的3倍,那么今年儿子几岁?

2.王梅比舅舅小19岁,舅舅的年龄比王梅年龄的3倍多1岁。问:他们二人各几岁?

3.小明今年9岁,父亲39岁,再过多少年父亲的年龄正好是小明年龄的2倍?

4.父亲年龄是女儿的4倍,三年前父女年龄之和是49岁。问:父女两人现在各多少岁?

5.一家三口人,三人年龄之和是74岁,妈妈比爸爸小2岁,妈妈的年龄是儿子年龄的4倍。问:三人各是多少岁?

6.今年老师46岁,学生16岁,几年后老师年龄的2倍与学生年龄的5倍相等?

7.已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父的年龄恰好等于孙子年龄的5倍。问:祖孙三人各多少岁?

8.小乐问刘老师今年有多少岁,刘老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。”你能算出刘老师有多少岁吗?

第13讲 鸡兔同笼问题与假设法 绿藤星教育(15320475397)----小学奥数基础教程

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),

有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),

有兔16——10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 绿藤星教育(15320475397)----小学奥数基础教程分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有

100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以

买普通文化用品 24÷8=3(套),

买彩色文化用品 16-3=13(套)。

例4 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。 绿藤星教育(15320475397)----小学奥数基础教程

现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。

解:有兔(2×100——20)÷(2+4)=30(只),

有鸡100——30=70(只)。

答:有鸡70只,兔30只。

例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

分析:本题与例4非常类似,仿照例4的解法即可。 解:小瓶有(4×50-20)÷(4+2)=30(个),

大瓶有50-30=20(个)。

答:有大瓶20个,小瓶30个。

例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。 解:4×36÷(45-36)×45=720(吨)。

答:这批钢材有720吨。 绿藤星教育(15320475397)----小学奥数基础教程例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了

12×(2+3)=60(下)。

可求出小乐每分钟跳

(780——60)÷(2+3+3)=90(下),

小乐一共跳了90×3=270(下),因此小喜比小乐共多跳

780——270×2=240(下)。 练习13

1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

推荐第3篇:奥数教案

课题 :应用题的基本数量关系 知识点

用数学的方法解决在生活和工作中的实际问题 ————— 解应用题。 教学目标

1、分析思考题目所包含的数量关系,锻炼思维的灵活性。

2、让学生在学习数学的过程中,感受数学与日常生活的密 切联系,体验数学的价值,增强应用数学的意识。

3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。教 学 内 容

【典型例题】

例1:一根绳子原来长20米,第一天剪去3米,第二天剪去的和第一天同样多,剩下的米数比原来短几米?

解题策略:这题要求剩下的米数比原来短几米,通常我们用以下的数量关系来解: 解法一:20-3-3=14(米) 20-14=6(米)

有没有更简便的方法呢?聪明的小朋友是否考虑到“剩下的米数比原来短的米数”就是剪去的米数,这样只要用一步计算就能解答。 解法二:3+3=6米

这种方法是不是更简便?

【画龙点睛】

解答应用题时,我们不但要多动脑,分析思考题目所包含的数量关系,还要选择最简便的方法来解答,锻炼思维的灵活性,使我们应得更聪明。

第2课时

【举一反三】

1、水果店有52箱水果,卖出16箱,又运进23箱,现在水果的箱数和原来比多了还是少了?多或少几箱?

2、饲养场养的羊比牛少36只,牛比猪少29只,那么羊比猪少几只?

3、把两条长38厘米的纸条粘在一起,成为一条长72厘米的纸条,中间粘贴部分的纸条长几厘米?

4、小明、小李和小红三个朋友做红花,小明和小李共做27朵,小明和小红共做32朵,小李和小红共做25朵,问:三个小朋友各做几朵?

5、五(1)班有20名少先队员,而五(2)班的少先队员比五(1)班多9名,问两班共有多少少先队员?

6、一道既简单又复杂的题:游戏开始了,请你们快速计算:

一辆载着16名乘客的公共汽车驶进车站, 这时有4人下车,又上来4人; 在下一站上来10人,下去4人; 在下一站下去11 人,上来6人; 在下一站,下去4人,上来4人;

在下一站又下去8人,上来15。

还有,请你们接着计算:公共汽车继续往前开,到了下一站下去6人,上来7人;在下一站下去5人,没有人上来;在下一站只下去1人,又上来8人。

好了,记住你的计算结果,回答:这辆公共汽车究竟停了多少站?(不要重新计算哦)

7、商店共有61千克红糖,第一天卖掉19千克,第二天比第一天多卖4千克,商店还剩多少斤红糖?

8、买来17米布,做床单用去7米,做衣服用的和做床单用的同样多,还剩几米?

9、小王买了一只文具盒花了2元,又买了4个作业本,共

课题 :两步计算的应用题、用画图法解应用题 知识点

1、用数学的方法解决在生活和工作中的实际问题 ————— 解应用题。

2、用画图来表示题目中的条件,帮助理解题意,正确解答。

教学目标

1、分析思考题目所包含的数量关系,锻炼思维的灵活性。

2、让学生在学习数学的过程中,感学与日常生活的密切联 系,体验数学的价值,增强受数应用数学的意识。

3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。教 学 内 容

第一课时: 【典型例题】

例1:小明的钱不到5元(是整角数),如果买6枝铅笔,钱不够, 还少5角。小明原来最多有多少钱?

解题策略:问题求的是“小明原来最多有多少钱”。由题意已知小明原来的钱不到5元,但加上5角后就超过5元,且能被6整除。假设每枝笔8角钱,6枝则是48角,不到5元,所以不能;如果每枝9角,6枝就是54角,再减去少5角,原来最多49角。算式:6×9-5=49(

【画龙点睛】

解答两步计算的应用题,如果不认真思考,提笔就做,很容易出错。所以应该先从条件或问题入手,仔细分析,找出正确的解题方法。

第二课时

【举一反三】

1、一盒糖果,总数不超过20颗,把它们平均分给6个小朋友,还余2颗,这盒糖最多有几颗?最少有几颗?

2、停车场里原来停放的轿车比卡车多12辆,后来轿车开走6辆,卡车开进8辆,这时停车场里哪种车多?多多少辆?

3、有大、小两桶油共重50千克,两个桶都倒出同样多的油后,分别还剩10千克和6千克。大、小两个桶原来各装油多少千克? 第二课时: 【典型例题】

例2:小明有10枝铅笔,小红有4枝铅笔,要使两人的铅笔同样多,小明要给小红几枝铅笔?

解题策略:我们用图来表示已知条件: 小明: 小红:

从图中我们可以清楚地看到,小明比小红多6枝铅笔,把多出来的6枝铅笔平均分成两份,即6÷2=3,所以小明给小红3枝铅笔后,两人的枝数相同。

【画龙点睛】

用画图法解应用题,特别是解技巧性较强的题,能形象直观地揭示数量关系,使抽象思维与形象思维协同发挥作用,从而构建出解题思维的模式。

第三课时 【举一反三】

1、小明给小红3枝铅笔后,两人的枝数相同。问:小明比小红多几枝铅笔?

2、小红有4枝铅笔,小明给小红3枝铅笔后,两人的枝数相同,小明有几支铅笔?

3、一根12米长的木条,锯3次,每段几米?

4、小红妈妈到水果店买苹果,她的钱若买3斤多1元,若买4斤少1元5角,问妈妈带了多少钱?

6、二(1)班同学做早操,每行人数相等,小李的位置从左边数是第3个,从右边数是第4

,从前边数是第4个,从后边数是第2个。问:二(1)班有多少同学在做早操?

课题: 等量代换法 知识点

1、等量代换的思想:相等的量可以互相代替。

2、

2、运用等量代换法来解决生活中的实际问题。

3、在解决等量代换数学问题的过程中,初步体会等量代换数学题的思想方法。教学目标

1.使学生能初步学会等量代换的方法,接受等量代换的思想。 2.培养学生的观察力及初步的逻辑推理能力。

3、让学生在经历解决问题的过程中,获得经验,让学生充分感受生活中处处有数学,数学与生活息息相关,形成我要学好数学的精神风貌。

4、在学习过程中培养学生团结、友好合作,营造和谐共进的氛围。教 学 内 容 第一课时 【典型例题】

1、1只河马的体重等于2只大象的体重,1只大象的体重等于10匹马的体重。1匹马的体重是320千克,这只河马的体重是多少千克?

解题策略:

1匹马的体重是320千克,10匹马的体重就是320×10=3200(千克) ,这也就是1只大象的体重。又知1只 河马的体重等于2只大象的体重,用2只大象的体重代替1只河马,则这只河马体重是3200×2=6400(千克)

【画龙点睛】

也可以这样想:1只大象的体重是10匹马的体重,即2只大象的体重就等于2个10匹马的体重,即20匹马的体重,因为2只大象的体重与1只河马的体重相等,所以1只河马的体重就是20匹马的体重。320×(2×10)=6400(千克)

第二课时 【举一反三】

1、已知1个 =3个 , 1个 =5个 。那么1个 =( )个

2、△+△+△+□=25,□=△+△。求 △=? □=?

3、一只菠萝的重量等于2只梨的重量,也等于4只香蕉的重量,还等于2只苹果、1只梨、1只香蕉的重量之和。那么1只菠萝等于几只苹果的重量?

4、一条鱼,鱼头重9千克,鱼头重量等于鱼身一半加鱼尾的重量,而鱼身的重量等于鱼头加鱼尾的重量。问:这条鱼重几千克?

第三课时

同步练习

1.一根20米长的木条,把它据成4段,要锯几次?

2.商店有480本练习本,又运来500本,卖出去360本,商店还有多少本练习本?

3.小明的爸爸年龄比妈妈大5岁,妈妈今年38岁,爸爸今年多少岁?小明 出生时妈妈30岁,小明今年是多大?

4.○+○+○=21 ☆-□=38 □+□+□=15 ○+○+□=18 ☆-△=45 △+△+△=12 ○-□=( ) □-△=( ) □+△=( )

5.一个数加上4,减去4,乘以4,再除以2,结果是2,求这个数。

6.一条毛毛虫从幼虫长成成虫,每天长大一倍,10天时能长到20厘米。问:长到5厘米时是第几天?

2.4瓶水全倒出来能装满3大碗,5杯水正好装满2瓶。装满3大碗要几杯水?20杯水能装满几大碗?

推荐第4篇:数学奥数[材料]

胜不骄败不馁

尊敬的老师们,亲爱的同学们:

大家好! 我今天要讲的主题————“胜不骄败不馁”。

在我们现实生活中,每个人都会有成功的经历,也有遇到失败的苦涩,取得成功的时候,脸上露出的时灿烂的笑容;遇到挫折的时候,有的一败涂地,有的是努力奋进,迎难而上。对于我们学生来说,应该怎么面对学习和生活的成功和失败呢?

这就引出来我今天要讲的主题————“胜不骄败不馁”。古人曾说过:“胜者不骄傲,败者不气馁。”讲的就是这个道理,当你经过自己的一番努力取得成功的时候,决不可沾沾自喜,骄傲于世,目中无人,而应该总结成功的经验,再接再厉,向更高、更好的目标而努力奋斗;当你遇到挫折与失败的时候,决不能灰心伤气,破罐子破摔,而应该仔细检查自己做的事情,从中找出原因,不断总结,就会从一个失败走向成功。失败并不可怕,可怕的是我们不能从中意识到自己的不足。我们常说“失败是成功之母”,讲得就是通往成功的道路上,失败有时也是不可避免的,伟大的发明家爱迪生不就是经过无数次的失败才走向成功的吗?经历了无数次的失败-成功,在失败在成功,最终发明了电灯。

爱迪生是这样,雅典奥运会冠军刘翔也是一样,他也是经过了无数次的失败之后才取得了如此骄人的战绩,实现了亚洲人短跑金牌零的突破,为中国人争了光,也为亚洲人争了光!但是要从失败中不断汲取教训,多向成功的人士学习,从心理上要认识失败是暂时的,只要你能调整心态,找出问题的所在,在加上自己的刻苦努力,你一定能取得自己满意的结果。

我们刚刚进行了月考,由于各个学生的基础不一样,有的同学通过自己的努力取得了优异的成绩,而有的同学觉得自己的成绩不理想,没有达到自己的目标。这样就出现了两种心态的同学。考试好的同学会欢欣鼓舞,但绝不可骄傲,还要继续前进;考试暂时不理性的同学不要悲观失望,查漏补缺,终究会取得优异的成绩。我想告诉大家的是:考试只是一种检测手段,通过它反映开学以来你对所学知识的掌握程度,分数的高低只能代表过去,不能代表将来。只要你能从考试中分析自己的失败的原因,总结自己的不足之处,相信在以后的考试中你一定会名列前茅的。

在我们的日常学习和生活中,要保持一个良好的心态,做到胜不骄败不馁。我真心地希望每位同学,在以后的学习中,要克服学习上的困难,知难而上,勇攀高峰,力争做到:课前要认真预习,准备好必备的学习用品;课上要积极思考,大胆发言,不懂就问;课后要及时复习,认真完成老师布置

的课堂、家庭作业。作业书写工整,作业要独立完成,作业要尽量不错,错了要立即订正。我们坚信,只要同学们努力去做,期中,期末考试一定能考出优异的成绩。

胜不骄,败不馁。让我们永远保持一颗奋斗的心,总结今天的成功与失败,展望明天的辉煌,经过大家的努力学习和拼搏,相信大家都能达到自己理想的彼岸。

请牢记:“胜不骄,败不馁,”这句名言,相信它会为你的人生带来极大的鼓励和帮助。

谢谢大家! 我的演讲完毕!

推荐第5篇:立体几何教案奥数

第九讲 立体几何

知识导航:

在小学阶段,我们除了学习习近平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下:

在数学竞赛中,有许多几何趣题,解答这些趣题的关键在于精巧的构思和恰当的设计,把形象思维和抽象思维结合起来. 经典例题:

例1:下图是由 18 个边长为 1 厘米的小正方体拼成的,求它的表面积。

例2:一个圆柱体底面周长和高相等.如果高缩短了 2 厘米,表面积就减少 12.56平方厘米.求这个圆柱体的表面积?

例3:一个正方体形状的木块,棱长为 1 米.若沿正方体的三个方向分别锯成 3 份、4 份和 5 份,如下图,共得到大大小小的长方体60 块,这 60 块长方体的表面积的和是多少平方米?

例4:一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积

神经依旧制作贡献 为 26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为 6 厘米;瓶子倒放时,空余部分的高为 2 厘米。问:瓶内酒精的体积是多少立方厘米?合多少升?

例5:一个稻谷囤,上面是圆锥体,下面是圆柱体(如下图).圆柱的底面周长是 9.42 米,高 2 米,圆锥的高是 0.6 米.求这个粮囤的体积是多少立方米?

例6:皮球掉在一个盛有水的圆柱形水桶中。皮球的直径为 12 厘米,水桶底面直径为 60 厘米.皮球有一半浸在水中(下图).问皮球掉进水中后,水桶的水面升高多少厘米?

例7:下图所示为一个棱长 6 厘米的正方体,从正方体的底面向内挖去一个最

神经依旧制作贡献 大的圆锥体,求剩下的体积是原正方体的百分之几?

课堂练习

1、大、中、小三个正方体形的水缸都盛有缸水,它们的内边长分别为 4 分米、3 分米、2 分米.把两堆碎石分别沉浸在中、小水缸的水中,两个水池的水面分别升高了 4 厘米和 11 厘米.如果将这两堆碎石都沉浸在大水缸中,大水缸中水面将升高多少厘米?

2、一根圆柱形钢材,沿底面直径割开成两个相等的半圆柱体,如下图.已知一个剖面的面积是 960平方厘米,半圆柱的体积是3014.4 立方厘米.求原来钢材的体积和侧面积.

3、在一只底面直径是 40 厘米的圆柱形盛水缸里,有一个直径是10 厘米的圆锥形铸件完全浸于水中.取出铸件后,缸里的水下降 0.5厘米,求铸件的高.

4、在边长为 4 厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为 1 厘米的正方形,洞深 1 厘米(如下图).求挖洞后木块的表面积和体积.

神经依旧制作贡献

5、如下图所示一个零件,中间一段是高为 10 厘米,底面半径为 2 厘米圆柱体,上端是一个半球体,下端是一个圆锥,它的高是 2厘米.求这个零件的体积

6、塑料制的三棱柱形的筒里装着水(如图(1)是这个筒的展开图,图中数字单位为厘米).把这个筒的 A 面作为底面,放在水平桌面上,水面的高度是 2 厘米(如图(2))问:(1)若把 B 面作为底面,放在水平的桌面上,水面的高度是多少厘米?(2)若把 C 面作为底面,放在水平桌面上,水面高度是多少厘米?

7、有一个圆柱体的零件,高 10 厘米,底面直径是 6 厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是 4 厘米,孔深5 厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?

神经依旧制作贡献

推荐第6篇:六年级奥数教案

思源学校第二课堂(第六周)

判断与推理 2 授课人:雍尧

教学要求: (1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。

(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。

教学难点: 理解、掌握分析、推理方法。

教学方法:讲解法、图表法、练习法。

(一) 教学过程:

一、复习。

上节课的习题例2

二、教学新课 教学例3

甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?

(1)学生审题,理解题意。 (2)同座位讨论。

(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。 丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。 (4) 说说你的推理过程。

3、比较前面例2例3有什么相同不同之处。

三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;

(2)丙得第二,丁得第三; (3)甲得第二,丁得第四。

比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名? (1)学生审题,理解题意。 (2)同座位讨论。 (3)分析:利用图表帮助学生去推理判断。

第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出

现矛盾。所以丙第一,甲第二,丁第三,乙第四。 (4)每人口述推理过程。

四、小结。

这节课你学会了什么?

推荐第7篇:奥数教案.doc

第一讲 行程问题

(一)

路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:

路程=时间×速度 时间=路程÷速度 速度=路程÷时间

这一讲就是通过例题加深对这三个基本数量关系的理解。

例1 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。已知每辆车长5米,两车间隔10米。问:这个车队共有多少辆车?

分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。

故车队长度为460-200=260(米)。再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。

例2骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进?

分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。这就需要通过已知条件,求出时间和路程。

假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是

20÷(15-10)=4(时)。

由此知,A,B是上午7点出发的,甲、乙两地的距离是

15×4=60(千米)。

要想中午12点到,即想(12-7=)5时行60千米,速度应为

60÷(12-7)=12(千米/时)。

例3 划船比赛前讨论了两个比赛方案。第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。这两个方案哪个好?

分析与解:路程一定时,速度越快,所用时间越短。在这两个方案中,速度不是固定的,因此不好直接比较。在第二个方案中,因为两种速度划行的时间相同,所以以3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。用单线表示以2.5米/秒的速度划行的路程,用双线表示以3.5米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。其中,甲段+乙段=丙段。

在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度快,所以第二种方案比第一种方案所用时间短。

综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。

例4 小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。问:小明往返一趟共行了多少千米?

分析与解:因为上山和下山的路程相同,所以若能求出上山走1千米和下山走1千米一共需要的时间,则可以求出上山及下山的总路程。

因为上山、下山各走1千米共需

所以上山、下山的总路程为

在行程问题中,还有一个平均速度的概念:平均速度=总路程÷总时间。

例如,例4中上山与下山的平均速度是

例5一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?

解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为 11131(分钟)

502030300蚂蚁爬行一周平均每分钟爬行

311 3129(厘米)30031

在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:

顺流速度=静水速度+水流速度, 逆流速度=静水速度-水流速度, 静水速度=(顺流速度+逆流速度)÷2, 水流速度=(顺流速度-逆流速度)÷2。

此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。

例6 两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。求这条河的水流速度。

解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷

2 =(38-22)÷2=8(千米/时)

答:这条河的水流速度为8千米/时。

课堂练习:

1.小燕上学时骑车,回家时步行,路上共用50分钟。若往返都步行,则全程需要70分钟。求往返都骑车需要多少时间。

2.已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。

3.某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时。问:他步行了多远?

课后作业:

姓名:

分数:

1.小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟。已知小红下山的速度是上山速度的1.5倍,如果上山用了3时50分,那么下山用了多少时间?

2.汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。求该车的平均速度。

3.两地相距480千米,一艘轮船在其间航行,顺流需16时,逆流需20时,求水流的速度。

4.一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。

第二讲 行程问题

(二)

本讲重点讲相遇问题和追及问题。在这两个问题中,路程、时间、速度的关系表现为:

在实际问题中,总是已知路程、时间、速度中的两个,求另一个。

例1甲车每小时行40千米,乙车每小时行60千米。两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。求A,B两地的距离。

分析与解:先画示意图如下:

图中C点为相遇地点。因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。

这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是 (40+60)×2=200(千米)。

例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?

分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),

所以小明比平时早出门900÷60=15(分)。

例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。已知火车全长342米,求火车的速度。

分析与解:

在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),

从而求出火车的速度为19-2=17(米/秒)。

例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。求火车的全长。

分析与解

与例3类似,只不过由相向而行的相遇问题变成了同向而行的追及问题。由上图知,37秒火车头从B走到C,拖拉机从B走到A,火车比拖拉机多行一个火车车长的路程。用米作长度单位,用秒作时间单位,求得火车车长为

速度差×追及时间

= [(56000-20000)÷3600]×37

= 370(米)。

例5如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。已知甲每分走90米,乙每分走70米。问:至少经过多长时间甲才能看到乙?

分析与解:当甲、乙在同一条边(包括端点)上时甲才能看到乙。甲追上乙一条边,即追上300米需 300÷(90-70)=15(分),此时甲、乙的距离是一条边长,而甲走了90×15÷300=4.5(条边),位于某条边的中点,乙位于另一条边的中点,所以甲、乙不在同一条边上,甲看不到乙。甲再走0.5条边就可以看到乙了,即甲走5条边后可以看到乙,共需

例6 猎狗追赶前方30米处的野兔。猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。猎狗至少跑出多远才能追上野兔?

分析与解:这道题条件比较隐蔽,时间、速度都不明显。为了弄清兔子与猎狗的速度的关系,我们将条件都变换到猎狗跑12步的情形(想想为什么这样变换):

(1)猎狗跑12步的路程等于兔子跑21步的路程;

(2)猎狗跑12步的时间等于兔子跑16步的时间。

由此知,在猎狗跑12步的这段时间里,猎狗能跑12步,相当于兔子跑

也就是说,猎狗每跑21米,兔子跑16米,猎狗要追上兔子30米需跑21×[30÷(21-16)]=126(米)。

课堂练习1.A,B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。已知小军骑车比小明步行每分钟多行130米,小明每分钟步行多少米?

2.一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子跳4次。兔子跑出多远将被猎狗追上?

3.甲、乙两人从周长为1600米的正方形水池相对的两个顶点同时出发逆时针行走,两人每分钟分别行50米和46米。出发后多长时间两人第一次在同一边上行走?

课后作业

姓名: 分数:

1.甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米。已知甲车速度是乙车的1.2倍,求A,B两地的距离。

2.小红和小强同时从家里出发相向而行。小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。小红和小强的家相距多远?

3.一列快车和一列慢车相向而行,快车的车长是280米,慢长的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,坐在慢车上的人看见快车驶过的时间是多少秒?

4.甲、乙二人同时从A地到B地去。甲骑车每分钟行250米,每行驶10分钟后必休息20分钟;乙不间歇地步行,每分钟行100米,结果在甲即将休息的时刻两人同时到达B地。问:A,B两地相距多远?

第三讲 盈亏问题

人们在分东西的时候,经常会遇到剩余(盈)或不足(亏),根据分东西过程中的盈或亏所编成的应用题叫做盈亏问题。

例1 小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。问:有多少个小朋友分多少粒糖?

分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为

4×15+9=69(粒)。 解:(9+6)÷(5-4)=15(人), 4×15+9=69(粒)。

答:有15个小朋友,分69粒糖。

例2 小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。问:有多少个小朋友?多少粒糖果?

分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。仿照例1的解法即可。 解:(6+2)÷(4—2)=4(人),

3×4+2=14(粒)。

答:有4个小朋友,14粒糖果。

由例

1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:

分配总人数=盈亏总额÷两次分配数之差。

需要注意的是,两种分配方案的结果不一定总是一“盈”一“亏”,也会出现两“盈”、两“亏”、一“不盈不亏”一“盈”或“亏”等情况。

例3 小朋友分糖果,每人分10粒,正好分完;若每人分16粒,则有3个小朋友分不到糖果。问:有多少粒糖果?

分析与解:第一种方案是不盈不亏,第二种方案是亏16×3=48(粒),所以盈亏总额是0+48=48(粒),而两次分配数之差是16—10=6(粒)。由盈亏问题的公式得

有小朋友(0+16×3)÷(16—10)=8(人),

有 糖10×8=80(粒)。

例4 一批小朋友去买东西,若每人出10元则多8元;若每人出7元则少4元。问:有多少个小朋友?东西的价格是多少? 分析与解:两种购物方案的盈亏总额是8+4=12(元),两次分配数之差是10—7=3(元)。由公式得到

小朋友的人数(8+4)÷(10—7)=4(人),

东西的价格是10×4—8=32(元)。

例5 某班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。问:学生有多少人?

分析:本题也是盈亏问题,为清楚起见,我们将题中条件加以转化。假设船数固定不变,题目的条件“如果增加一条船„„”表示“如果每船坐6人,那么有6人无船可坐”;“如果减少一条船„„”表示“如果每船坐9人,那么就空出一条船”。这样,用盈亏问题来做,盈亏总额为6+9=15(人),两次分配的差为9—6=3(人)。

解:(6+9)÷(9—6)=5(条),

6×5+6=36(人)。

答:有36名学生。

例6在桥上用绳子测桥离水面的高度。若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米。问:桥有多高?绳子有多长? 分析与解:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米)。两种方案都是“盈”,故盈亏总额为16——6=10(米),两次分配数之差为3-2=1(折),所以

桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米)。

例7有若干个苹果和若干个梨。如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。问:苹果和梨各有多少个?

分析与解:容易看出这是一道盈亏应用题,但是盈亏总额与两次分配数之差很难找到。原因在于第一种方案是1个苹果“搭配”2个梨,第二种方案是3个苹果“搭配”5个梨。如果将这两种方案统一为1个苹果“搭配”若干个梨,那么问题就好解决了。将原题条件变为“1个苹果搭配2个梨,缺4个梨;

有梨15×2-4=26(个)。

例8乐乐家去学校上学,每分钟走50米,走了2分钟后,发觉按这样的速度走下去,到学校就会迟到8分钟。于是乐乐开始加快速度,每分钟比原来多走10米,结果到达学校时离上课还有5分钟。问:乐乐家离学校有多远?

分析与解:乐乐从改变速度的那一点到学校,若每分钟走50米,则要迟到8分钟,也就是到上课时间时,他离学校还有50×8=400(米);若每分钟多走10米,即每分钟走60米,则到达学校时离上课还有5分钟,如果一直走到上课时间,那么他将多走(50+10)×5=300(米)。所以盈亏总额,即总的路程相差

400+300=700(米)。

两种走法每分钟相差10米,因此所用时间为

700÷10=70(分),

也就是说,从乐乐改变速度起到上课时间有70分钟。所以乐乐家到学校的距离为

50×(2+70+8)=4000(米),

或 50×2+60×(70—5)=4000(米)。

课后练习

姓名: 分数:

1.小朋友分糖果,每人3粒,余30粒;每人5粒,少4粒。问:有多少个小朋友?多少粒糖?

2.一个汽车队运输一批货物,如果每辆汽车运3500千克,那么货物还剩下5000千克;如果每辆汽车运4000千克,那么货物还剩下500千克。问:这个汽车队有多少辆汽车?要运的货物有多少千克?

3.学校买来一批图书。若每人发9本,则少25本;若每人发6本,则少7本。问:有多少个学生?买了多少本图书?

4.小红家买来一篮桔子,分给全家人。如果其中二人每人分4只,其余每人分2只,那么多出4只;如果一人分6只,其余每人分4只,那么缺12只。问:小红家买来多少只桔子?小红家共有几人?

5.食堂采购员小李去买肉,如果买牛肉18千克,那么差4元;如果买猪肉20千克,那么多2元。已知牛肉、猪肉每千克差价8角,求牛肉、猪肉每千克各多少钱。

第四讲

加法原理

例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?

分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。

例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号? 分析与解:根据挂信号旗的面数可以将信号分为两类。第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。所以一共可以表示出不同的信号

3+6=9(种)。

以上两例利用的数学思想就是加法原理。

加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 „„在第n类方法中有mn种不同方法,那么完成这件任务共有 N=m1+m2+„+mn 种不同的方法。

乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。

例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?

分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。

因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。

例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?

分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。

当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。根据乘法原理,此时不同的染色方法有

5×4×3×3=180(种)。

当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。根据乘法原理,此时不同的染色方法有

5×4×3×2×2=240(种)。

再根据加法原理,不同的染色方法共有

180+240=420(种)。 例5小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法? 分析与解:登上第1级台阶只有1种登法。登上第2级台阶可由第1级台阶上去,或者从平地跨2级上去,故有2种登法。登上第3级台阶可从第1级台阶跨2级上去,或者从第2级台阶上去,所以登上第3级台阶的方法数是登上第1级台阶的方法数与登上第2级台阶的方法数之和,共有1+2=3(种)„„一般地,登上第n级台阶,或者从第(n—1)级台阶跨一级上去,或者从第(n—2)级台阶跨两级上去。根据加法原理,如果登上第(n—1)级和第(n—2)级分别有a种和b种方法,则登上第n级有(a+b)种方法。因此只要知道登上第1级和第2级台阶各有几种方法,就可以依次推算出登上以后各级的方法数。由登上第1级有1种方法,登上第2级有2种方法,可得出下面一串数:

1,2,3,5,8,13,21,34,55,89。

其中从第三个数起,每个数都是它前面两个数之和。登上第10级台阶的方法数对应这串数的第10个,即89。也可以在图上直接写出计算得出的登上各级台阶的方法数(见下图)。

例6沿左下图中箭头所指的方向从A到B共有多少种不同的走法?

分析与解:如右上图所示,先标出到C点的走法数,再标出到D点和E点的走法数,然后标出到F点的走法数,最后标出到B点的走法数。共有8种不同的走法。 例7有15根火柴,如果规定每次取2根或3根,那么取完这堆火柴共有多少种不同取法?

分析与解:为了便于理解,可以将本题转变为“上15级台阶,每次上2级或3级,共有多少种上法?”所以本题的解题方法与例1类似(见下表)。

注意,因为每次取2或3根,所以取1根的方法数是0,取2根和取3根的方法数都是1。取4根的方法数是取1根与取2根的方法数之和,即0+1=1。依此类推,取n根火柴的方法数是取(n-3)根与取(n-2)根的方法数之和。所以,这串数(取法数)中,从第4个数起,每个数都是它前面第3个数与前面第2个数之和。取完15根火柴共有28种不同取法。

课后练习

姓名: 分数:

1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?

2.光明小学

四、

五、六年级共订300份报纸,每个年级至少订99份报纸。问:共有多少种不同的订法?

3.将10颗相同的珠子分成三份,共有多少种不同的分法?

4.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法,

5.在下图中,从A点沿最短路径到B点,共有多少条不同的路线?

第五讲 还原问题

有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,同学们不难看出,这位老人的年龄是

(100÷10+15)×4—12=88(岁)。

从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。

例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。问:这个数是几?

分析:这个问题是由

(□×4—46)÷3—10=4,

求出□。我们倒着看,如果除以3以后不减去10,那么商应该是4+10=14;如果在减去46以后不除以3,那么差该是14×3=42;可知这个数乘以4后的积为42+46=88,因此这个数是88÷4=22。 解:[(4+10)×3+46]÷4=22。

答:这个数是22。

例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。问:正确的结果应是多少?

分析:利用还原法。因为把个位上的5看成9,所以多加了4;又因为把十位上的8看成3,所以少加了50。在用还原法做题时,多加了的4应减去,多减了的50应加上。

解:123-4+50=169。

答:正确的结果应是169。

例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。问:最初乐乐拿了多少棵树苗?

分析:先求乐乐与欢欢现在各拿了多少棵树苗。学校共有树苗36棵,乐乐拿的树苗数是欢欢的2倍,所以欢欢现在拿了36÷(2+1)=12(棵)树苗,而乐乐现在拿了12×2=24(棵)树苗,乐乐从欢欢那里抢走了6棵后是24棵,如果不抢,那么乐乐有树苗24-6=18(棵),欢欢看乐乐拿得太多,去抢了10棵,如果欢欢不抢,那么乐乐就有18+10=28(棵)。 解:36÷5(1+2)×2-6+10=28(棵)。

答:乐乐最初拿了28棵树苗。

例4甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。问:甲、乙、丙三个组原来各有多少本图书? 分析与解:尽管甲、乙、丙三个组之间将图书借来借去,但图书的总数90本没有变,由最后三个组拥有相同数目的图书知道,每个组都有图书90÷3=30(本)。根据题目条件,原来各组的图书为

甲组有30+3=33(本),

乙组有30—3+5=32(本),

丙组有30—5=25(本)。 上一讲我们讲了还原问题的基本思想和解法,下面再讲一些较复杂的还原问题和列表逆推法。

例5有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。问:原来至少有多少枚棋子?

分析与解:棋子最少的情况是最后一次四等分时每份为1枚。由此逆推,得到

第三次分之前有1×4+1=5(枚),

第二次分之前有5×1+1=21(枚),

第一次分之前有21×4+1=85(枚)。

所以原来至少有85枚棋子。

例6袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球。问:袋中原有多少个球?

分析与解:利用逆推法从第5次操作后向前逆推。第5次操作后有3个,第4次操作后有(3—1)×2=4(个),第3次„„为了简洁清楚,可以列表逆推如下:

所以原来袋中有34个球。 例7一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?

分析:由逆推法知,第二次用完还剩下15+7=22(米),第一次用完还剩下(22—10)×2=24(米),原来电线长(24+3)×2=54(米)。 解:[(15+7—10)×2+3]×2=54(米)。

答:这捆电线原有54米。

课后作业

姓名: 分数:

1.某数加上11,减去12,乘以13,除以14,其结果等于26,这个数是多少?

2.某数加上6,乘以6,减去6,其结果等于36,求这个数。

3.在125×□÷3×8—1=1999中,□内应填入什么数?

4.小乐爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100。问:小乐爷爷今年多少岁?

5.粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半少7吨,还剩4吨。问:粮库里原有面粉多少吨?

6.有一堆桃,第一只猴拿走其中的一半加半个,第二只猴又拿走剩下的一半加半个,第

三、

四、五只猴照此方式办理,最后还剩下一个桃。问:原来有多少个桃?

第六讲

智取火柴

在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。规定谁取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取,那么谁将获胜?

分析与解:本题采用逆推法分析。获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根„„由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

例2在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?

分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。因为60÷7=8„„4,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。

由例2看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。

例3将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?

分析与解:最后留给对方1根火柴者必胜。按照例1中的逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜。甲先取,只要第一次取3根,剩下57根(57除以4余1),以后每次都将除以4余1的根数留给乙,甲必胜。

由例3看出,在每次取1~n根火柴,取到最后一根火柴者为负的规定下,谁能做到总给对方留下(1+n)的倍数加1根火柴,谁将获胜。

有许多游戏虽然不是取火柴的形式,但游戏取胜的方法及分析思路与取火柴游戏完全相同。

例4两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。你选择先报数还是后报数?怎样才能获胜?

分析与解:对照例

1、例2可以看出,本例是取火柴游戏的变形。因为50÷(1+5)=8„„2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜。 例51111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。规定将棋子移到最后一格者输。甲为了获胜,第一步必须向右移多少格? 分析与解:本例是例3的变形,但应注意,一开始棋子已占一格,棋子的右面只有1111-1=1110(个)空格。由例3知,只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜。

(111-1)÷(1+7)=138„„6,

所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1。以后无论乙移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜。因为甲移完后,给乙留下的空格数永远是8的倍数加1。

例6今有两堆火柴,一堆35根,另一堆24根。两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。规定取得最后一根者为赢。问:先取者有何策略能获胜?

分析与解:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同。

先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同。以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴。只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到。这样先取者总可获胜。

请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?

例7有3堆火柴,分别有1根、2根与3根火柴。甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。如果采用最佳方法,那么谁将获胜?

分析与解:根据例6的解法,谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜。

甲先取,共有六种取法:从第1堆里取1根,从第2堆里取1根或2根;第3堆里取1根、2根或3根。无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜。

课后练习

姓名: 分数:

1.桌上有30根火柴,两人轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。问:先取者如何拿才能保证获胜?

2.有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。如果甲先取,那么谁将获胜?

3.甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。谁将获胜?怎样获胜?

4.有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。如果甲后取,那么他一定能获胜吗?

第七讲 逻辑问题

在日常生活中,有些问题常常要求我们主要通过分析和推理,而不是计算得出正确的结论。这类判断、推理问题,就叫做逻辑推理问题,简称逻辑问题。这类题目与我们学过的数学题目有很大不同,题中往往没有数字和图形,也不用我们学过的数学计算方法,而是根据已知条件,分析推理,得到答案。

本讲介绍利用列表法求解逻辑问题。

例1小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师? 分析与解:由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。由此得到左下表。表格中打“√”表示肯定,打“×”表示否定。

因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表。

因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王是教师。

例1中采用列表法,使得各种关系更明确。为了讲解清楚,例题中画了几个表,实际解题时,不用画这么多表,只在一个表中先后画出各种关系即可。需要注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的关系画在表上;②每行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的其余格中都应画“×”。

在下面的例题中,“√”和“×”的含义是很明显的,不再单独解释。 例2刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。事先规定:兄妹二人不许搭伴。

第一盘:刘刚和小丽对李强和小英;

第二盘:李强和小红对刘刚和马辉的妹妹。问:三个男孩的妹妹分别是谁? 分析与解:因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹。由第二盘看出,小红不是马辉的妹妹。将这些关系画在左下表中,由左下表可得右下表。

刘刚与小红、马辉与小英、李强与小丽分别是兄妹。 例3甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。此外:

(1)数学博士夸跳高冠军跳得高;

(2)跳高冠军和大作家常与甲一起去看电影;

(3)短跑健将请小画家画贺年卡;

(4)数学博士和小画家很要好;

(5)乙向大作家借过书;

(6)丙下象棋常赢乙和小画家。

你知道甲、乙、丙各有哪两个外号吗?

分析与解:由(2)知,甲不是跳高冠军和大作家;由(5)知,乙不是大作家;由(6)知,丙、乙都不是小画家。由此可得到下表:

因为甲是小画家,所以由(3)(4)知甲不是短跑健将和数学博士,推知甲是歌唱家。因为丙是大作家,所以由(2)知丙不是跳高冠军,推知乙是跳高冠军。因为乙是跳高冠军,所以由(1)知乙不是数学博士。将上面的结论依次填入上表,便得到下表:

所以,甲是小画家和歌唱家,乙是短跑健将和跳高冠军,例1四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”

宝宝说:“是星星无意打破的。”

星星说:“是乐乐打破的。”

乐乐说:“星星说谎。”

强强说:“反正不是我打破的。”

如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?

分析与解:因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。

假设星星说得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了实话”矛盾,所以星星说错了。

假设乐乐说对了,按题意其他孩子就都说错了。由强强说错了,推知玻璃是强强打破的。宝宝、星星确实都说错了。符合题意。

所以是强强打破了玻璃。

由例1看出,用假设法解逻辑问题,就是根据题目的几种可能情况,逐一假设。如果推出矛盾,那么假设不成立;如果推不出矛盾,那么符合题意,假设成立。

例4甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。

甲说:“丙第1名,我第3名。”

乙说:“我第1名,丁第4名。”

丙说:“丁第2名,我第3名。”

成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗? 分析与解:我们以“他们每人只说对了一半”作为前提,进行逻辑推理。

假设甲说的第一句话“丙第1名”是对的,第二句话“我第3名”是错的。由此推知乙说的“我第1名”是错的,“丁第4名”是对的;丙说的“丁第2名”是错的,“丙第3名”是对的。这与假设“丙第1名是对的”矛盾,所以假设不成立。

再假设甲的第二句“我第3名”是对的,那么丙说的第二句“我第3名”是错的,从而丙说的第一句话“丁第2名”是对的;由此推出乙说的“丁第4名”是错的,“我第1名”是对的。至此可以排出名次顺序:乙第1名、丁第2名、甲第3名、丙第4名。

例5甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地。

甲说:“我和乙都住在北京,丙住在天津。”

乙说:“我和丁都住在上海,丙住在天津。”

丙说:“我和甲都不住在北京,何伟住在南京。”

丁说:“甲和乙都住在北京,我住在广州。”

假定他们每个人都说了两句真话,一句假话。问:不在场的何伟住在哪儿? 分析与解:因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。

因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。

所以,何伟住在南京。

在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。

例6一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,小马虎见到这五人后就一人给了一本,结果全发错了。现在知道:

(1)甲拿的不是乙的,也不是丁的;

(2)乙拿的不是丙的,也不是丁的;

(3)丙拿的不是乙的,也不是戊的;

(4)丁拿的不是丙的,也不是戊的;

(5)戊拿的不是丁的,也不是甲的。另外,没有两人相互拿错(例如甲拿乙的,乙拿甲的)。

问:丙拿的是谁的本?丙的本被谁拿走了? 分析与解:根据“全发错了”及条件(1)~(5),可以得到表1:

由表1看出,丁的本被丙拿了。此时,再继续推理分析不大好下手,我们可用假设法。由表1知,甲拿的本不是丙的就是戊的。

先假设甲拿了丙的本。于是得到表2,表2中乙拿戊的本,戊拿乙的本。两人相互拿错,不合题意。

再假设甲拿戊的本。于是可得表3,经检验,表3符合题意。

所以丙拿了丁的本,丙的本被戊拿去了。

丙是数学博士和大作家。

课后练习

姓名: 分数:

1.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?

2.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。

(1)电工只和车工下棋;

(2)王、陈两位师傅经常与木工下棋; (3)徐师傅与电工下棋互有胜负; (4)陈师傅比钳工下得好。

问:徐、王、陈、赵四位师傅各从事什么工种?

3.在一次数学竞赛中,A,B,C,D,E五位同学分别得了前五名(没有并列同一名次的),关于各人的名次大家作出了下面的猜测:

A说:“第二名是D,第三名是B。”

B说:“第二名是C,第四名是E。”

C说:“第一名是E,第五名是A。”

D说:“第三名是C,第四名是A。”

E说:“第二名是B,第五名是D。”结果每人都只猜对了一半,他们的名次如何?

第八讲 抽屉原理

如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。

同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。

以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。

从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。

例1某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友? 分析与解:1996年是闰年,这年应有366天。把366天看作366个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。

例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除? 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。

将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。

例3在任意的五个自然数中,是否其中必有三个数的和是3的倍数?

分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。

第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。

第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。

综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。 例4在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米?

分析与解:把长度10厘米的线段10等分,那么每段线段的长度是1厘米(见下图)。

将每段线段看成是一个“抽屉”,一共有10个抽屉。现在将这11个点放到这10个抽屉中去。根据抽屉原理,至少有一个抽屉里有两个或两个以上的点(包括这些线段的端点)。由于这两个点在同一个抽屉里,它们之间的距离当然不会大于1厘米。

所以,在长度是10厘米的线段上任意取11个点,至少存在两个点,它们之间的距离不大于1厘米。

例5有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数? 分析与解:由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计。

对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:

(奇,奇),(奇,偶),(偶,奇),(偶,偶),

其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性。

将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形。由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数。

先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。

例6某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 例7一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

例8六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?

分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。

课后练习

姓名: 分数:

1.某班32名小朋友是在5月份出生的,能否找到两个生日是在同一天的小朋友?

2.班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?

3.在任意三个自然数中,是否其中必有两个数,它们的和为偶数?

4.幼儿园买来不少玩具小汽车、小火车、小飞机,每个小朋友任意选择两件,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?

5.一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种。问:至少有多少名学生订阅的杂志种类相同?

第九讲 高斯求和

德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:

1+2+3+4+„+99+100=?

老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:

1+100=2+99=3+98=„=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为

(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:

(1)1,2,3,4,5,„,100;

(2)1,3,5,7,9,„,99;

(3)8,15,22,29,36,„,71。

其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+„+1999=?

分析与解:这串加数1,2,3,„,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得

原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+„+31=?

分析与解:这串加数11,12,13,„,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+„+99=?

分析与解:3,7,11,„,99是公差为4的等差数列,

项数=(99-3)÷4+1=25,

原式=(3+99)×25÷2=1275。

例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142,

和=(25+142)×40÷2=3340。

利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:

由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。 解:(1)最大三角形面积为

(1+3+5+„+15)×1

2 =[(1+15)×8÷2]×12

=768(厘米2)。

(2)火柴棍的数目为

3+6+9+„+24

=(3+24)×8÷2=108(根)。

答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里„„第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?

分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球„„第十次多了2×10只球。因此拿了十次后,多了

2×1+2×2+„+2×10

=2×(1+2+„+10)

=2×55=110(只)。

加上原有的3只球,盒子里共有球110+3=113(只)。

综合列式为:

(3-1)×(1+2+„+10)+3 =2×[(1+10)×10÷2]+3=113(只)。

课后练习

姓名:

分数:

1.计算下列各题: (1)2+4+6+„+200;

(2)17+19+21+„+39;

(3)5+8+11+14+„+50;

(4)3+10+17+24+„+101。

2.求首项是5,末项是93,公差是4的等差数列的和。

3.求首项是13,公差是5的等差数列的前30项的和。

4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?

第十讲 鸡兔同笼问题与假设法

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。 例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。 解:有兔(44-2×16)÷(4-2)=6(只),

有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),

有兔16——10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。 例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有

100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以

买普通文化用品 24÷8=3(套),

买彩色文化用品 16-3=13(套)。

例4 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。

现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。 解:有兔(2×100——20)÷(2+4)=30(只),

有鸡100——30=70(只)。

答:有鸡70只,兔30只。

例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

分析:本题与例4非常类似,仿照例4的解法即可。 解:小瓶有(4×50-20)÷(4+2)=30(个),

大瓶有50-30=20(个)。

答:有大瓶20个,小瓶30个。

例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。

解:4×36÷(45-36)×45=720(吨)。

答:这批钢材有720吨。

例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。 解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了

12×(2+3)=60(下)。

可求出小乐每分钟跳

(780——60)÷(2+3+3)=90(下),

小乐一共跳了90×3=270(下),因此小喜比小乐共多跳

780——270×2=240(下)。

课后练习

姓名: 分数:

1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?

4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?

第十一讲 定义新运算

我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

例1 对于任意数a,b,定义运算“*”: a*b=a×b-a-b。 求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。 12*4=12×4-12-4=48-12-4=32。

根据以上的规定,求10△6的值。

3,x>=2,求x的值。 分析与解:按照定义的运算,

=2,

x=6。

由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。如例1中,a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。

分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。

四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。

按通常的规则从左至右进行运算。

例5已知a※b=(a+b)-(a-b),求9※2的值。

分析与解:这是一道很简单的题,把a=9,b=2代入新运算式,即可算出结果。但是,根据四则运算的法则,我们可以先把新运算“※”化简,再求结果。

a※b=(a+b)-(a-b)

=a+b-a+b=2b。

所以,9※2=2×2=4。

由例1可知,如果定义的新运算是用四则混合运算表示,那么在符合四则混合运算的性质、法则的前提下,不妨先化简表示式。这样,可以既减少运算量,又提高运算的准确度。

例6定义运算:a⊙b=3a+5ab+kb,

其中a,b为任意两个数,k为常数。比如:2⊙7=3×2+5×2×7+7k。

(1)已知5⊙2=73。问:8⊙5与5⊙8的值相等吗?

(2)当k取什么值时,对于任何不同的数a,b,都有a⊙b=b⊙a,

即新运算“⊙”符合交换律?

分析与解:(1)首先应当确定新运算中的常数k。因为5⊙2=3×5+5×5×2+k×

2 =65+2k,

所以由已知 5⊙2=73,得65+2k=73,求得k=(73-65)÷2=4。定义的新运算是:a⊙b=3a+5ab+4b。

8⊙5=3×8+5×8×5+4×5=244,

5⊙8=3×5+5×5×8+4×8=247。

因为244≠247,所以8⊙5≠5⊙8。

(2)要使a⊙b=b⊙a,由新运算的定义,有

3a+5ab+kb=3b+5ab+ka,

3a+kb-3b-ka=0,

3×(a-b)-k(a-b)=0,

(3-k)(a-b)=0。

对于两个任意数a,b,要使上式成立,必有3-k=0,即k=3。

当新运算是a⊙b=3a+5ab+3b时,具有交换律,即 a⊙b=b⊙a。

例7 对两个自然数a和b,它们的最小公倍数与最大公约数的差,定义为a☆b,即a☆b=[a,b]-(a,b)。

比如,10和14的最小公倍数是70,最大公约数是2,那么10☆14=70-2=68。

(1)求12☆21的值;

(2)已知6☆x=27,求x的值。

分析与解:(1)12☆21=[12,21]-(12,21)=84-3=81;

(2)因为定义的新运算“☆”没有四则运算表达式,所以不能直接把数代入表达式求x,只能用推理的方法。

因为6☆x=[6,x]-(6,x)=27,而6与x的最大公约数(6,x)只能是1,2,3,6。所以6与x的最小公倍数[6,x]只能是28, 29, 30, 33。这四个数中只有 30是 6的倍数,所以 6与x的最小公倍数和最大公约数分别是30和3。因为a×b=[a,b]×(a,b),

所以6×x=30×3,由此求得x=15。

课后练习

姓名: 分数:

1.对于任意的两个数a和b,规定a*b=3×a-b÷3。求8*9的值。

2.已知a

3.已知a

4.规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值。

5.假定m◇n表示m的3倍减去n的2倍,即 m◇n=3m-2n。 b表示(a-b)÷(a+b),试计算:(

53)

(10

6)。 b表示a除以3的余数再乘以b,求1

34的值。

(2)已知x◇(4◇1)=7,求x的值。

第十二讲 奇偶性

整数按照能不能被2整除,可以分为两类:

(1)能被2整除的自然数叫偶数,例如

0, 2, 4, 6, 8, 10, 12, 14, 16,„

(2)不能被2整除的自然数叫奇数,例如

1,3,5,7,9,11,13,15,17,„

整数由小到大排列,奇、偶数是交替出现的。相邻两个整数大小相差1,所以肯定是一奇一偶。因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数。

每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。奇偶数有如下一些重要性质:

(1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的数的和(或差)一定是奇数。反过来,两个数的和(或差)是偶数,这两个数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。

(2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。任意多个偶数的和(或差)是偶数。

(3)两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数。

(4)若干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数。反过来,如果若干个数的积是偶数,那么因数中至少有一个是偶数;如果若干个数的积是奇数,那么所有的因数都是奇数。

(5)在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数。奇数肯定不能被偶数整除。

(6)偶数的平方能被4整除;奇数的平方除以4的余数是1。

因为(2n)2=4n2=4×n2,所以(2n)2能被4整除;

因为(2n+1)2=4n2+4n+1=4×(n2+n)+1,所以(2n+1)2除以4余1。

(7)相邻两个自然数的乘积必是偶数,其和必是奇数。

(8)如果一个整数有奇数个约数(包括1和这个数本身),那么这个数一定是平方数;如果一个整数有偶数个约数,那么这个数一定不是平方数。

整数的奇偶性能解决许多与奇偶性有关的问题。有些问题表面看来似乎与奇偶性一点关系也没有,例如染色问题、覆盖问题、棋类问题等,但只要想办法编上号码,成为整数问题,便可利用整数的奇偶性加以解决。 例1下式的和是奇数还是偶数?

1+2+3+4+„+1997+1998。

分析与解:本题当然可以先求出算式的和,再来判断这个和的奇偶性。但如果能不计算,直接分析判断出和的奇偶性,那么解法将更加简洁。根据奇偶数的性质(2),和的奇偶性只与加数中奇数的个数有关,与加数中的偶数无关。1~1998中共有999个奇数,999是奇数,奇数个奇数之和是奇数。所以,本题要求的和是奇数。

例2 能否在下式的□中填上“+”或“-”,使得等式成立?

1□2□3□4□5□6□7□8□9=66。

分析与解:等号左端共有9个数参加加、减运算,其中有5个奇数,4个偶数。5个奇数的和或差仍是奇数,4个偶数的和或差仍是偶数,因为“奇数+偶数=奇数”,所以题目的要求做不到。

例3 任意给出一个五位数,将组成这个五位数的5个数码的顺序任意改变,得到一个新的五位数。那么,这两个五位数的和能不能等于99999?

分析与解:假设这两个五位数的和等于99999,则有下式:

其中组成两个加数的5个数码完全相同。因为两个个位数相加,和不会大于 9+9=18,竖式中和的个位数是9,所以个位相加没有向上进位,即两个个位数之和等于9。同理,十位、百位、千位、万位数字的和也都等于9。所以组成两个加数的10个数码之和等于 9+9+9+9+9=45,是奇数。

另一方面,因为组成两个加数的5个数码完全相同,所以组成两个加数的10个数码之和,等于组成第一个加数的5个数码之和的2倍,是偶数。

奇数≠偶数,矛盾的产生在于假设这两个五位数的和等于99999,所以假设不成立,即这两个数的和不能等于99999。 例4 7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子。能否经过若干次翻转,使得7只杯子全部杯口朝下?

分析与解:盲目的试验,可能总也找不到要领。如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题所在。一开始杯口朝上的杯子有7只,是奇数;第一次翻转后,杯口朝上的变为5只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。类似的分析可以得到,无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数0。也就是说,不可能使7只杯子全部杯口朝下。 例5 有m(m≥2)只杯子全部口朝下放在桌子上,每次翻转其中的(m-1)只杯子。经过若干次翻转,能使杯口全部朝上吗?

分析与解:当m是奇数时,(m-1)是偶数。由例2的分析知,如果每次翻转偶数只杯子,那么无论经过多少次翻转,杯口朝上(下)的杯子数的奇偶性不会改变。一开始m只杯子全部杯口朝下,即杯口朝下的杯子数是奇数,每次翻转(m-1)即偶数只杯子。无论翻转多少次,杯口朝下的杯子数永远是奇数,不可能全部朝上。

当m是偶数时,(m-1)是奇数。为了直观,我们先从m= 4的情形入手观察,在下表中用∪表示杯口朝上,∩表示杯口朝下,每次翻转3只杯子,保持不动的杯子用*号标记。翻转情况如下:

由上表看出,只要翻转4次,并且依次保持第1,2,3,4只杯子不动,就可达到要求。一般来说,对于一只杯子,要改变它的初始状态,需要翻奇数次。对于m只杯子,当m是偶数时,因为(m-1)是奇数,所以每只杯子翻转(m-1)次,就可使全部杯子改变状态。要做到这一点,只需要翻转m次,并且依次保持第1,2,„,m只杯子不动,这样在m次翻转中,每只杯子都有一次没有翻转,即都翻转了(m-1)次。

综上所述:m只杯子放在桌子上,每次翻转(m-1)只。当m是奇数时,无论翻转多少次,m只杯子不可能全部改变初始状态;当m是偶数时,翻转m次,可以使m只杯子全部改变初始状态。

课后练习

姓名: 分数:

1.能否从四个

3、三个

5、两个7中选出5个数,使这5个数的和等于22?

2.任意交换一个三位数的数字,得一个新的三位数,一位同学将原三位数与新的三位数相加,和是999。这位同学的计算有没有错?

3.一串数排成一行:1,1,2,3,5,8,13,21,34,55,„

第十三讲

列方程解应用题

有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。 例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?

分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

解:设有胶鞋x双,则有布鞋(46-x)双。

7.5x-5.9(46-x)=10,

7.5x-271.4+5.9x=10,

13.4x=281.4,

x=21。

答:胶鞋有21双。

分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以

答:袋中共有74个球。

在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。

例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

80x-40=(30x+40)×2,

80x-40=60x+80,

20x=120,

x=6(座)。

分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

(x-40)×80=(2x+40)×30,

80x-3200=60x+1200,

20x=4400,

x=220(米3)。

由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

同理,也可设有红砖x米3。留给同学们做练习。

例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?

分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程

x-10=[(x-10)×2-9]×5,

x-10=(2x-29)×5,

x-10=10x-145,

9x=135,

x=15(个)。

例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:

还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?

分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,

0×7+1×5+2×4+6×(x-7-5-4)

= 5+8+6×(x-16)

= 6x-83,

也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,

3×(x-3-4-1)+8×3+9×4+10×1,

= 3×(x-8)+24+36+10

= 3x+46。

由此可得方程

6x-83=3x+46,

3x=129,

x=43(人)。

例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。

分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程

4÷(150-3x)=8÷(150-x),

4×(150-x)=8×(150-3x),

600-4x=1200-24x,

20x=600,

x=30(千克)。

课后练习

姓名: 分数:

还剩60元。问:甲、乙二人各有存款多少元?

2.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?

3.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?

4.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?

推荐第8篇:三年级数学奥数应用题

1.39个同学在操场上跳绳,每3人一组,可以分成多少组?

2.4棵杨树苗48元,3棵松树苗63元,哪种树苗每棵的价钱贵一些?

3.三(1)班小朋友做玩具,一共做了48个,送给幼儿园15个,其余的平均分给一年级3个班,每班可以分得几个?

4.张教师带100元去商场买3个小足球,找回了7元,你能知道每个小足球多少元吗?

5.一本《故事大王》共65页,小明打算4天看完,小花打算6天看完,小明平均每天要看多少页?小花呢?

6.张大伯家养了18只鸭,养鸡的只数是鸭的2倍,张大伯家养鸡和鸭一共多少只?

7.停车场有大汽车45辆,小汽车比大汽车多17辆,大汽车和小汽车一共有多少辆?

8.明明有42张邮票,芳芳比他少15张,他们俩人一共有邮票多少张?

9.一件上衣45元,裤子比上衣便宜12元,买一套衣服要多少元?

10.小白兔拔了14个萝卜,小灰兔拔的是它的3倍。小白兔比小灰兔少拔了多少棵?

11.校园里有水杉树24棵,松树的棵数是水杉树的3倍。水杉树和松树一共有多少棵?水杉树比松树少多少棵?

12.公园里有黑天鹅28只,白天鹅的只数比黑天鹅的3倍多9只。白天鹅有多少只?

13.三年级去图书馆借书,上午借了420本,下午比上午多借20本。这一天三年级共借书多少本?

14.用6个边长1厘米的小正方形拼成一个大长方形,拼成的长方形的长和宽各是多少厘米?周长是多少厘米?

15.一个长方形操场,长55米,宽35米,小华沿操场的边跑了2圈,跑了多少米?

16.用一根线正好围成一个边长是8厘米的正方形。这根线长多少厘米?

17.养鱼场去年放养鱼苗896尾,今年放养的鱼苗数是去年的2倍。今年放养多少尾?

18.科学馆上午有3批学生来参观,每批169人,下午又有213名学生前来参观。这一天一共有多少学生来参观?

19.一头牛一天要吃32千克草。2头牛4天要吃多少千克草?

20.有一块土地, 用来种西红柿, 用来种茄子,其余用种西瓜。西瓜占地几分之几?

21.李大伯家养了200只鸡,第一天先卖128只,平均每只鸡可卖9元,李大伯这天能卖多少元?剩下的鸡第二天卖,每8只装一笼,能装多少笼?

22.48个同学去采集昆虫标本,每3人分一组,可以分成多少组?

23.同学们要种93棵树,已经种了18棵,剩下的树苗平均分给5个小组,每个小组还要种多少棵?

24.上海市六月份降水量是42毫米,七月份比六月份少了14毫米。

六、七两个月一共降水多少毫米?

25.玩具厂每小时可以生产玩具600个,从上午十时到下午二时,大约可以生产玩具多少个?

26.一个正方形花圃,边长是15米。它的周长是多少米?

27.在一块长16米,宽8米的长方形地的周围围上围栏,围栏一共长是多少米?

28.少年宫学习绘画的小朋友共108人,学习书法的小朋友人数比学习绘画的2倍少36人。少年宫学习书法的有多少人?

29.每根跳绳长2米。65米长的一根绳子,最多能剪多少根跳绳?还剩几米?

30.李教师买了2副羽毛球拍,付出70元,找回6元。每副羽毛球拍多少元?

31.一本科普书,小明准备6天看完,平均每天要看多少页?

32.同学们做了80朵纸花,每5朵扎一束,可以扎几束?每4朵扎一束,可以扎几束?

33.一种练习本每本的单价是4角。王教师用5元钱,最多可以买多少本这样的练习本?

34.小华去商店里买饮料,买了5瓶,付给营业员100元,找回35元。每瓶饮料多少钱?

35.同学们到果园参加义务劳动,男同学有40人,女同学有38人。每6人分一组,一共可以分成多少个小组?

36.三(2)班有男生26人,女生22人。全班同学平均分成4个小队。平均每个小队有多少名同学?如果每个同学发2本数学练习本,全班一共需要多少本数学练习本?

37.学校舞蹈队里有18名男生,女生人数是男生的2倍。舞蹈队男、女生一共有多少人?

38.去天文台参观的女生有9人,男生去的人数比女生的3倍还多1人。40座的汽车够坐吗?

39.一批货物,已经运走了8吨,剩下的是运走的5倍。这批货物一共有多少吨?

40.小明买了6套体育画片,每套4元,又买了一本描红字帖15元。小明一共花了多少元?

41.一场球赛从14:45开始,到16:18结束。这场球赛进行了多长时间?

42.同学们去划船。男同学去了27人,女同学去了29人,每4人坐一条船。一共需要租多少条船?

43.王大伯家养了15只鹅,养鸭的只数是鹅的4倍,养的鸡比鸭多38只。王大伯家养鸭多少只?养鸡多少只?

44.一幅画,长50厘米,宽30厘米。用一根长150厘米的木条做它的边框,够不够?

45.每袋盐重500克,6袋盐一共有多少克?合多少千克?

46.家禽养殖场饲养了257只鸭,还饲养了158笼鸡,每笼有5只。这个养殖场一共养了鸡和鸭多少只?

47.工厂每天可生产406个玩具熊,照这样计算,5天一共生产多少个玩具熊?

48.一辆卡车每分钟行驶850米,轿车每分钟行驶的米数比卡车的3倍还多50米。轿车每分钟行驶多少米?

49.一个建筑工地第一天运来180袋水泥,第二天运来的袋数比第一天的2倍少19袋。第二天运来多少袋水泥?

50.每辆卡车一次可装4吨货物。用8辆这样的卡车运5次,一共可运货物多少吨?

51.每人每天可装配自行车14辆,照这样计算,8人工作7天,一共装配自行车多少辆?

52.军军看一本书,已经看了5天,每天看24页,还剩下10页没有看。这本书一共有多少页?

53.三年级二班有男生25人,女生23人。每4人分得一个足球。一共需要准备多少个足球?

54.小红看一本故事书有154页。她爸爸看的一本科技书的页数比这本故事书的4倍还多58页。她爸爸看的科技书有多少页?

55.一台拖拉机每小时可以运货2吨。照这样计算,6台这样的拖拉机5小时可以运货多少吨?

56.有59名同学去游船。每5人租一只小船,共要租多少只小船?

57.饲养组养了68只小兔。如果每只笼子里养6只,要多少只笼子?

58.一根长绳25米,每2米做一根跳绳,一共可以做多少根跳绳?

59.一本故事书86页,小华每天看6页,第几天看完?

60.一张课桌60元,比一张椅子贵34元,一套课桌椅多少元?

61.一辆车上午8时从上海开出,每上时行55千米,晚上6时到达南京。你知道上海到南京有多远吗?

62.王伯伯家养白兔45只,养的黑兔比白兔少18只,王伯伯家一共养兔多少只?

63.李大伯家去年养鸡800只,今年养鸡的只数是去年的3倍,今年多养了多少只?

64.商店运来梨455千克,运来的苹果比梨的3倍少160千克,商店运来苹果多少千克?

65.从甲城到乙城的铁路长560千米,一列火车以每小时118千米的速度从甲城开往乙城,3小时后能到达吗?

66.王师傅上午加工零件48个,下午加工零件56个,照这样计算,一个星期工作5天,共加工零件多少个?

67.科技小组有男同学58名,女同学44名,文艺小组人数是科技小组的2倍。文艺小组共有多少人?

68.小丽跑步去学校,平均每分钟跑84米。3分钟后刚好到了全程的一半,她家到学校大约多少米?

69.学校篮球场长26米,宽14米。沿篮球场的四周跑5圈,共跑了多少米?

70.王师傅和李师傅共同加工一批零件,王师傅完成了其中的4/9 ,李师傅完成了其中的5/9 ,两人谁加工得多?多加工这批零件的几分之几?

71,宝宝有十个苹果,买进二个,决定将这些苹果送给三个朋友,每个朋友平均有多少个苹果?

72、红星小学去年植树140棵,今年植树是去年的3倍。今年比去年多植树多少棵?

73、同学们分成两组到菜园摘柿子。第一组摘了14筐,第二组比第一组少摘了2筐,每筐重25千克。第二组摘了多少千克?

74、动物园的一只大象每天吃450千克食物,一只熊猫4天吃72千克食物。一只大象每天的食量是一只熊猫的多少倍?它比熊猫每天多吃多少食物?

75、同学们栽树。一班要栽58棵,二班要栽67棵。平均栽5行,每行栽多少棵?(列综合算式解答。)

76、一艘客轮8月30日11:00从重庆开出,9月1日17:00到达武汉。从重庆到武汉的航程是1354千米。除去中途在码头上停船时间6小时,估算这艘客轮每小大约行多少千米?

77、学校组织同学去博物馆参观。三年级去了62人,四年级去的人数是三年级的2倍。两个年级一共去了多少人?

78、中、高年级同学听科学家作报告中年级有84人参加,高年级参加的人数是中年级的3倍。听报告的一共有多少人?

79、王老师要批改48篇作文,已经批改了12篇。如果每小时批改6篇,剩下的作文要多少小时批改完呢?

80、光明电影院原来每天放映3场电影,现在每天放映1场,平均每场卖票160张。现在每天可以卖多少张票?(列综合算式解答。)

81、中营村去年修了2条水渠,总长604米,今年修的水渠长度是去年的3倍。今年比去年多修多少米?

8

2、南京长江大桥正桥有10个桥孔,其中9个桥孔的长都是160米,还有一个桥孔的长是128米。正桥(10个桥孔)长多少米?

83、两辆车运苹果,第一辆车运35筐,第二辆车运38筐。第二辆车比第一辆多运75千克。平均每筐有苹果多少千克?第一辆车运了多少千克?

84、小红家今年养了4箱蜜蜂,共收蜂蜜380千克,去年平均每箱收蜂蜜84千克。今年每箱平均产蜜量比去年高多少千克?

85、一艘客轮8月30日11:00从重庆开出,9月1日17:00到达武汉。从重庆到武汉的航程是1354千米。除去中途在码头上停船时间6小时,估算这艘客轮每小大约行多少千米?

86、同学们锻炼身体。参加打球的有40人,参加跑步的比参加打球的多280人。参加跑步的是参加打球的多少倍

87、(1)除数是32,商是7,余数是25,被除数是多少?

(2)被除数是359,商是8,除数和余数各是多少?

88、一个养禽专业户养鸡980只,养的鸡比鸭的2倍多20只。养鸭多少只?

89、小刚家种了5棵苹果树,今年一共收苹果215千克。有4棵苹果树平均每棵收苹果45千克,另一棵收苹果多少千克?

90、在方框里分别填哪几个数字,才能使商是一位数,并且没有余数?

91、一个编筐专业户28天编了242个筐,比原计划多编了18个筐,原计划每天编多少个筐?

92、副食商店第一天卖出鸡蛋150千克,第二天比第一天卖出的2倍少75千克。第二天卖出鸡蛋多少千克?

93、学校开运动会。16个班共有384名运动员,平均每个班有多少名运动员?

94、一个木工组要做1450张课桌。已经做了640张,剩下的要用30天做完。平均每天要做多少张?

95、学校买来42包练习本,每包20本。每班分84本,能够分给几人班?

96、胜利果园收了118筐苹果,一辆小货车每次运15筐,需要运几次?最后一次运多少筐?

97、小兰在计算除法的时候,把除数65写成56,结果得到的商是13还余52。想一想:正确的商应该是多少?

98、同学们大扫除,打扫操场的有36人,是打扫教室的人数的3倍,打扫院子的有27人。参加大扫除的一共有多少人?

99、同学们收核桃,一工收776克,每25千克装一筐,可以装多少筐,还剩多少千克?

100、用电孵箱孵小鸡一次可孵2880只,一只母鸡一次能孵16只。用电孵箱一次孵小鸡的只数是一只母鸡一次孵的多少倍?

10

1、小燕子孵出以后,大燕子在26天里给一只小燕子一共喂养910只害虫,平均每天喂多少只?

10

2、在一条长24千米的公路的一边,一共栽了4300棵杨树,3020棵柳树。平均每千米栽了多少棵树?

10

3、同学位要栽2500棵树,如果每个同学栽4棵,大约需要多少同学参加植树劳动?

10

4、学校运来3920千克煤,计划烧5个月,平均每个月大约烧多少千克?

10

5、欣华旅馆6月份接待旅客3046人,7月份接待的旅客比6月份的2倍少968人。7月份大约接待旅客多少人?

10

6、一座楼房有6层,分为4个单元。每个单元第一层住2户,第二层到第六层各住3户,这座楼房一共可以住多少户?

10

7、一枝铅笔原来长8厘米7毫米,用去了9毫米。现在这枝铅笔有多长?

10

8、武汉长江大桥长1670米,南京长江大桥长6772米。哪座桥长?长出多少米?

10

9、运动场跑道一圈是400米。小明坚持每天跑3圈,他每天跑多少米?

110、从甲地到乙地,如果骑自行车,每小时行15千米,4小时到达。如果乘汽车,只需2小时,汽车每小时行多少千米?

1

11、一幢宿舍楼,每两层楼之间有20个台阶,每个台阶的高度是15厘米。一个同学从一楼走到三楼,他升高了多少米?

1

12、工人叔叔把机器装在载重4吨的卡车上,每行放4台,放了3行。每台机器重300千克。这些机器的重量超过这辆卡车的载重量吗?(口答)

1

13、鸽子每分钟可以飞2千米,雨燕每分钟飞的距离比鸽子多3千米。雨燕每小时可以飞多少千米?

1

14、一个粮店运来5吨大米,前2天卖出1700千克,剩下的3天卖完。前2天平均每天卖多少千克?后3天平均每天卖多少千克?

1

15、一年级有120个新同学。40个人分一班,分成了几班?

1

16、刺绣厂的工人30天用机器刺乡240块桌布,平均每天刺乡多少块?

1

17、一架直升飞机每小时飞行360千米,一列火车每小时行90千米。这架直升飞机每小时行的千米数是火车的多少倍?

1

18、一个纺织厂织出窗帘布846米,织出的床单布是窗帘布的3倍。织出的床单布比窗帘布多多少米?

1

19、从450里减去一个整十数,得到的差再除以这个整十数,商是8。这个整十数是多少?

120、一个节火车车厢可以装60吨货物,要运480吨货物,需要几节车厢。

推荐第9篇:七年级数学奥数题

数学奥数

1.下列判断正确的是( ) A.平角是一条直线 B.凡是直角都相等

C.两个锐角的和一定是锐角 D.角的大小与两条边的长短有关 3.下列哪个角不能由一副三角板作出( ) A.105° B.12° C.175°D.135°

4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是( ) A.互补 B.互余 C.和为钝角 D.和为周角

5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为( ) 6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位 于这个灯塔的( ) A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向

7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( ) A.1/2∠1 B.1/2∠2 C.1/2(∠1-∠2) D.1/2(∠1+∠2) 8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的

度数是

9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若

MN=a,BC=b,则AD的长是

10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为 度

15.如果∠a=26°,那么∠a余角的补角等于

16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=

17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票

(1)在A,B两站之间最多共有 种不同的票价;共有 种不同 的车票

(2)如果共有n(n≥3)个站点,则需要 种不同的车票 19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则( )

A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE的反向延长线

(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?

21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。(1)如图①,当∠BOC=70°时,求∠DOE的度数 (2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由

(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程)

22.(1)如下图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律

(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。”结果会有变化吗?如果有,求出结果

23.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上) (1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位

(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQ/AB的值

(3)在(1)的条件下,若C、D运动5秒后,恰好有CD-A,此时C点停 止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②2B的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值

推荐第10篇:奥数

简便计算分类练习题

第一种

(300+6)x12 25x(4+8)

125x(35+8)

(12+24+80)×50

32×(25+125)

25×(24+16)

4×(25×65+25×28)

(13+24)x8

第二种

84x101

704×25

第三种

99x64

98×199

第四种

99X13+13

79×42+79+79×57

75×27+19×2 5

504x25

78x102

25x204

88×125

102×76

101×87

99x16

638x99

999x99

58×98

99 x27

98 x34 25+199X25

32X16+14X32

178×99+178

84×36+64×84

75×99+2×75

31×870+13×310

78X4+78X3+78X3

第五种

88X125

72X125

75×24

12×25

125X32X8

75×24 25X32X125

50×(34×4)×3

138×25×4

(13×125)×(3×8)

25×32×125

第六种 3600÷25÷4

8100÷4÷75

3000÷125÷8

1250÷25÷5

7300÷25÷4

3900÷(39×25)

420÷(5×7)

800÷(20×8)

第七种

1200-624-76

2100-728-772

273-73-27

847-527-273

5001-247-1021-232

2356-(1356-721)

1235-(1780-1665)

3065-738-1065

2357-183-317-357

2365-1086-214 第八种

278+463+22+37

732+580+268

425+14+186

158+262+138

1034+780320+102

375+219+381+225

2214+638+286

(181+2564)+2719

378+44+114+242+222

276+228+353+219

(375+1034)+(966+125)

(2130+783+270)+1017

99+999+9999+99999

第九种

214-(86+14)

787-(87-29)

365-(65+118)

455-(155+230)

第十种

576-285+85

825-657+57

690-177+77

755-287+87

第十一种

871-299

157-99

363-199

968-599

1883-398

497-299

899+344

3999+498

2370+1995

157+99

第十二种

178X101-178

83X102-83X2

17X23-23X7

83×102-83×2

178×101-178

35X127-35X16-11X35

123×18-123×3+85×123

容易出错类型(共五种类型)

600-60÷15 20X4÷20X4

736-35X20 25X4÷25X4

98-18X5+25 56X8÷56X8

280-80÷ 4 12X6÷12X6

175-75÷25 25X8÷25X8

80-20X2+60 36X9÷36X9

36-36÷6-6 25X8÷(25X8)

100+45-100+45 15X97+3

100+1-100+1 48X99+1

1000+8-1000+8 5+95X28

102+1-102+1 65+35X13

25+75-25+75 40+360÷20-10

13+24X8

672-36+64

324-68+32

100-36+64

26×39+61×26 356×9-56×9 99×55+55

78×101-78 52×76+47×76+76 134×56-134+45×134

48×52×2-4×48 25×23×(40+4) 999×999+1999

184+98 695+202 864-199 738-301

380+476+120 (569+468)+(432+131) 704×25

256-147-53 373-129+29 189-(89+74)

28×4×25 125×32×25 9×72×125

720÷16÷5 630÷42 456-(256-36)

102×35 98×42 158+262+138 375+219+381+225

5001-247-1021-232 (181+2564)+2719 378+44+114+242+222

276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286

3065-738-1065 899+344 2357-183-317-357

2365-1086-214 497-299 2370+1995 7755-(2187+755)

3999+498 1883-398 12×25 75×24

138×25×4 (13×125)×(3×8) (12+24+80)×50

25×32×125 32×(25+125) 88×125 102×76

178×101-178 84×36+64×84 75×99+2×75

98×199 123×18-123×3+85×123 50×(34×4)×3

25×(24+16) 178×99+178 79×42+79+79×57

7300÷25÷4 8100÷4÷75 158+262+138

1248÷24 3150÷15 4800÷25 21500÷125

16800÷120

30100÷2100

32000÷400

49700÷700

375+219+381+225 5001-247-1021-232 (181+2564)+2719

378+44+114+242+222 276+228+353+219 (375+1034)+(966+125)

(2130+783+270)+1017 99+999+9999+99999 7755-(2187+755)

2214+638+286 3065-738-1065 899+344 3999+498

2357-183-317-357 2365-1086-214 497-299

12×25 75×24 138×25×4 (13×125)×(3×8)

(12+24+80)×50 704×25 25×32×125 32×(25+125)

88×125 102×76 58×98 178×101-178

84×36+64×84 75×99+2×75 83×102-83×2 98×199

123×18-123×3+85×123 50×(34×4)×3 25×(24+16)

178×99+178 79×42+79+79×57 21500÷125

7300÷25÷4 8100÷4÷75 16800÷120

2.73 + 0.89 + 1.27 4.37 + 0.28 + 1.63 + 5.72

10 - 0.432 - 2.568 9.3 - 5.26 - 2.74

14.9-(5.2+4.9) 18.32 - 5.47 - 4.32

25 × 6.8 × 0.04 0.25 × 32 × 0.125 6.4 × 1.25 × 12.5

0.45 × 201 0.58 × 10.1 50.2 × 99 4.7 × 9.9

3.28 × 5.7 + 6.72 × 5.7 2.1 × 99 + 2.1

23 × 0.1 + 2.3 × 9.9 0.18 +4.26 -0.18 +4.26

0.58 ×1.3 ÷ 0.58 ×1.3 7.3 ÷4 + 2.7 × 0.25

3.75 × 0.5 - 2.75 ÷ 2 5.26 × 0.125 + 2.74 ÷ 8 a ÷ b ÷ c = a ÷ (b × c)

6.3 ÷ 1.8 9.5 ÷(1.9 × 8) 12.8 ÷ (0.4 × 1.6)

930 ÷ 0.6 ÷5 63.4 ÷ 2.5 ÷ 0.4 (7.7 + 1.54)÷ 0.7

6.9+4.8+3.1 15.89+(6.75-5.89) 7.85+2.34-0.85+4.66

35.6-1.8-15.6-7.2 13.75-(3.75+6.48) 47.8-7.45+2.55

66.86-8.66-1.34 0.25×16.2×4 0.25×32 ×0.125

2 .5 ×(4 +0.4) (1.25-0.125)×8 4.8×100.1

4.2×99 56.5×9.9+56.5 7.09×10.8-0.8×7.09

3.83×4.56+3.83×5.44 3.65×4.7-36.5×0.37 5.4×11-5.4 13.7×0.25-3.7÷4 10.7×16.1-1.1×10.7 +10.7 ×5

第11篇:奥数

勾股定理

初等几何的著名定理之一。直角三角形两直角边上正方形面积的和等于斜边上正方形的面积,即如果直角三角形两直角边长度为a和b,斜边长度为c,那么a^2+b^2=c^2。中国古代称直角三角形的直角边为勾和股,斜边为弦,故此定理称为勾股定理。此定理在中国古代和西方早已被发现。数学史上普遍认为最先证明这个定理的是毕达哥拉斯,所以很多数学书上把此定理称为毕达哥拉斯定理。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。两千多年来,勾股定理由于应用的广泛性,吸引了历代众多的人,对它的证明已达数百种。

概述:

任何一个直角三角形(Rt△)中,两条直角边的长度的平方和等于斜边长度的平方和。这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a^2+b^2=c^2 勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。 同时在我国和国外都有对于最早发现这一定理的争论。我国认为该定理的时间最早见于《周髀算经》。

勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

内容:

直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。

中国古代著名数学家商高说:“若勾三,股四,则弦五。”(即勾三股四弦五。)它被记录在了《周髀算经》中。

推广:

⒈如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。

⒉勾股定理是余弦定理的特殊情况。

定理历史:

毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。

实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,其所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上。他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是近一二百年才有更深入的研究。因此,毕达哥拉斯定理这个名称一时半会儿改不了。不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

作用:

⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。

⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数\"与有理数的差别,这就是所谓第一次数学危机。

⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。

⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

证法1:

作四个全等的直角三角形,设它们的两条直角边长分别为a、b ;,斜边长为c.;把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ;≌ RtΔEBD, ∴ ∠EGF = ;∠BED,

∵ ∠EGF + ;∠GEF = 90°, ∴ ∠BED + ;∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90°

又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a.∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则A+B=C 证法2:

作两个全等的直角三角形,设它们的直角边长分别为a、b(b>a) ;,斜边长为c.;再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N.∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ,

∴ ∠BMP = 90°,

∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°, ∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即A2+B2=C2 证法3:

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ;,斜边长为c.;再作一个边长为c的正方形。把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a,

∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB =∠CFD = 90°, ∴RtΔCJB ≌ RtΔCFD ;, 同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ;≌ RtΔABG ;≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°,

∴G,B,I,J在同一直线上,A2+B2=C2。

证法4:

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)^2。于是便可得如下的式子: 4×(ab/2)+(b-a)^2 =c^2; 化简后便可得:a^2 +b^2 =c^2; 亦即:c=(a2 +b2 )1/2

第12篇:奥数植树问题教案

《植树问题》教案一

教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在不封闭线路上植树(指线路首尾不相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。 教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题1:一根木头锯成4段要付锯费1.2元,如果要锯成12段,要付锯费多少元?

二、例题分析:把一根木头平均锯成4段,需据4-1=3次,属于两端都没有点。从而可求出锯1次的费用1.2÷3=0.4元。现要锯成12段,也就是要锯12-1=11次,这样就可以求出费用。 解:1.2×(4-1)×(12-1) =0.4×11 =4.4元

三、同类练习

1、这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

解:1000÷5=200(棵) 200 +1=201(棵)(两端要种:棵树=段数+1)

2、在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(两端不种:棵树=段数—1)

3、学校有一条长60米的走道,计划在道路旁栽树。每隔3米栽一棵。如果只有一端栽树,那么共需多少棵树苗?(一段种树:棵树=段数)

4、运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。) 5.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

6、在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

四、变式练习:

1、在一条长600米的公路两旁各栽一行树,起点和终点都栽,一共栽302棵,每相邻两棵之间的距离都相等,相邻两棵之间的距离是多少?

2、一条路每隔5米有一根电线杆,连两端的电线杆在内共20根,算一算公路有多长?

3、把30米长的一条绳子分成3段,后一段总比前一段多3米,秋各段长度。

4、小英和小明同住在一幢大楼里,小英家住在6层,每天回家要走80个台阶,小明回家要走32个台阶,小明家住在几层?

5、

一座桥长116米,在桥的两侧栏杆上,分别安装了16块花纹

图案,图案的横长为2米,两头的图案离桥端都是12米,且每相邻两块图案间的间隔都相等,相邻两块图案之间应间隔多少米? 《植树问题》教案二 教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在封闭线路上植树(指线路首尾相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。 教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题

2、有一个长方形的操场,长45米,宽30米,如果沿着它的周围每隔3米栽一棵树,一共要栽多少棵树?

二、例题分析:这是在一个封闭的长方形周长上植树。首先要求出长方形的周长(45+30)×2=150米,在平均用每段3米,求出种多少棵树。 解:(45+30)×2÷3 =75×2÷3 50棵

三、同类习题:

1、一个圆形的跑道400米,如果每隔10米竖一块警示牌,共需要多少块警示牌?

2、一个湖泊的周长是1800米,沿湖泊周围每隔8米栽一棵柳树,每两棵柳树中间栽一个桃树,湖泊周围栽了多少棵柳树和桃树?

3、一个圆形花圃周围长40米,沿周围每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

4、一个圆形水池周围每隔2米栽一棵柳树,共栽了40棵,水池的周长是多少?

四、变式练习:

1、一个圆形喷水池,周长62.8米,在距池岸边均为3米的池内圆周上安装28根喷水管,每相邻两个喷水管的距离是多少米?

2、学校图书馆前摆了一个方阵花坛,这个花坛的最外层每边各摆放12盆花,最外层共摆了多少盆花?这个花坛一共要多少盆花?

3、张大伯在承包的正方形池塘四周种上树,池塘边长为60米,每隔5米种一课,四个角上各种一棵,张大伯买了50棵树苗够吗?

第13篇:小学奥数教案——循环小数

小学奥数教案---循环小数

一 本讲学习目标

1、掌握循环小数化分数的法则,还要掌握该法则的推导方法——错位相减法;

2、会进行分数与循环小数的互化;

3、掌握分数与循环小数的混合计算

二 概念解析

循环小数可分为有限循环小数,如:1.123123123(不可添加省略号)和无限循环小数,如:1.123123123……(有省略号)。前者是有限小数,后者是无限小数。

一、把循环小数的小数部分化成分数的规则

①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

二、分数转化成循环小数的判断方法:

①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

三 例题讲解

1

2

3

纯循环小数化分数

从小数点后面第一位就循环的小数叫做纯循环小数。 例 把纯循环小数化分数:

从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。9的个数与循环节的位数相同。能约分的要约分。

混循环小数化分数

不是从小数点后第一位就循环的小数叫混循环小数。 例 把混循环小数化分数。

(2)先看小数部分0.353

4

由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.

循环小数的四则运算

循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。

例1 计算下面各题:

解:先把循环小数化成分数后再计算。

例2 在计算一个正数乘以3.57的运算时,某同学误将3.57错写作3.57,结果与正确答案相差1.4.则正确的乘积结果是______.

解:设这个正数为x,依题意,得 3.57x3.571.4.

因为3.573575523, 90905257x3x1.4. 90100所以上述方程可化为3解得x180.

所以正确的乘积结果应为

3.57180322180644. 90

例3 计算下面各题。

5

分析与解:(1)把循环小数化成分数,再按分数计算。

(2)可根据乘法分配律把1.25提出,再计算。

(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。

大家都来到荷塘,挖莲藕抓鱼虾,捉泥鳅捡螃蟹,人声鼎沸,笑语欢声,相互谈说着要如何弄出一顿顿可口的美味。光是莲藕的吃法就有很多:熬汤炖肉八宝酿、清炒生吃蜜饯糖,还可以磨成藕粉,加入砂糖或蜂蜜,在温水里一泡,就是一杯清凉清甜的解暑饮料。用鲜莲叶来熬粥,蒸饭蒸鸡,或蒸其它肉类味道都是极鲜美的,做出来的食物均带着一股淡淡的莲叶清香。人们那么喜欢荷花,不单单是因为它的芳香美丽洁净高雅,更因为它全身是宝,每一处都可食可药可用。 我最喜欢的是生鲜莲子羹。把剥好的莲子对半打开去芯,莲子芯很苦,可以药用,没有芯的莲子是甜的,正好用它熬糖水。把足量的生莲子洗净,和着一小片生姜一片鲜莲叶,放进清水锅里,盖着盖子大火烧滚,转小火熬二十分钟,捞起莲叶,加入冰糖,小火慢熬,边熬边搅拌,十五分钟后,一款既清香甘美又消暑解渴的莲子羹就做成了。这样的汤水,在炎热的夏季里,只要喝过一次都不会忘记。

8

第14篇:五年级奥数教案上册

速算技巧

(一)

教学内容:速算技巧

(一)

教学要求: (1)理解简算方法,正确合理的进行简便计算. (2)培养计算能力.教学重点: 理解简算方法,灵活计算.教学难点: 能说出简算方法.教学方法:讲解法、练习法。 教学过程:

(一)复习

加法交换律、结合律;减法的性质;乘法交换律、结合律、分配律;除法 的性质各是什么?

(二)新授

(1)教学例1 计算898+899+901+907+895+911+898+897+906+890 a、观察数据特征讨论可以怎么算? b、分析这十个加数都接近900它们的和一定也接近900×10所以先把这些数当做900来加,

“多加的要减去,少加的要补上”

898+899+901+907+895+911+898+897+906+890 =900×10-2-1+1+7-5+11-2-3+6-10 =9002 c、让学生说出刚才我们是怎么算的?

(2)练习计算8888+253+249+248+250+248+246+251+255的值

(3)教学例2 计算1420×3.4+1.42×2300+14.2×430 a、观察讨论如何简算?

b、分析:根据数字特征可想到运用乘法分配律及把一个因数

扩大(或缩小若干倍)另一个因数缩小(或扩大)相同的倍数,积的大小不变,这样三个算式中有一个相同的因数。

1420×3.4+1.42×2300+14.2×430 =1420×3.4+1420×2.3+1420×4.3 =1420×(3.4+2.3+4.3) =14200 c、同座位运用积的变化规律说简算方法。

(4)练习计算0.16×5.96+264×0.0596+72×0.596的值

(5)教学例3 计算63587-3963-2065+36413-4789-3183的值 a、学生尝试练习;

b、讲评,说出你怎么做的?

63587-3963-2065+36413-4789-3183 =(63587+36413)-(3963+2065+4789+3183) =86000 (6)教学例4 计算(97932-97.932)÷(32644-32.644)的值 a、观察数据特征讨论可以怎么简算?

b、分析本题中每个小括号中的被减数是减数的一千倍,并且两个被减数、两个减数之间都是三倍关系,因此可用乘法分配律,先把被除数改写成97932-97.932= (32644-32.644)×3 再进行简算

(97932-97.932)÷(32644-32.644)

=(32644×3-32.644×3)÷(32644-32.644) =[(32644-32.644)×3]÷(32644-32.644) =3 c、你还可以怎么做?

(7)比较四个例题,说出它们有什么异同?

(三) 巩固练习P4(

1、2)、P7(

1、

3、8)

(四) 本课小结

教学内容:速算技巧

(二)

教学要求: (1)进一步理解简算方法,正确合理的进行简便计算. (2)培养计算能力.教学重点: 理解简算方法,灵活计算.教学难点: 能说出简算方法.教学方法:讲解法、练习法、比较法。

教学过程:

(一)揭示课题:速算技巧

(二)

(二)新授

(1)教学例1 计算80.8×125的值 a、学生尝试练习

b、分析点拨:我们已学过乘法分配律,知道125×8=1000第一个乘数80.8可以拆成80与0.8的和,

再运用乘法分配律简算。

解法一:80.8×125=(80+0.8)×125=10000+100=10100 解法二:80.8×125=8×10.1×125=1000×10.1=10100 解法三:80.8×125=(80.8÷8)×(125×8)=10.1×1000=10100 c、三种解法有什么不同?你还有别的方法吗?

(2)练习2468×25

(3)教学例2 计算125×239×25×64×5的值 a、学生尝试练习

b、分析点拨:当你看到1

25、

25、5时你会想题中要是有因数

2、

4、8就好了,再一看发现64=2×4×8 再运用乘法交换律、乘法结合律即可简便 125×239×25×64×5 =125×239×25×(2×4×8)×5 =(125×8)×(25×4)×(5×2)×239 =239000000 c、除法计算中是否也可以用这个方法,如50000÷125=(50000×8)

÷(125×8)=400000÷1000=400 (4)练习42000÷250 40.4×25 0.125×0.25×0.5×128 (5)比较例

一、例二有何异同?

(三) 巩固练习P7(

2、

4、

5、

6、7)

(四) 本课小结

这节课你学会了什么?

教学内容:消去问题

(一)

教学要求: (1)学会解答消去问题。 (2)培养解题能力.教学重点: 理解数量关系,掌握解题方法。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题:消去问题

(一)

(二)新授

(1)教学例1: 小明和小红去文具商店买回一些铅笔和橡皮,同学们问两样东西单价,小明说,具体价钱我们忘记了,反正我买了三支铅笔和一块橡皮,共花去2.30元,小红买了四支铅笔和一块橡皮,共花去2.80元。同学们,你能算出铅笔和橡皮的价

钱各是多少元吗? a、审题,说题意; b、讨论如何解答?

c、分析点拨:小明买的:3支铅笔的价钱+1块橡皮的价钱=2.30元

小红买的:4支铅笔的价钱+1块橡皮的价钱=2.80元

比较两条等式可看出2.80元比2.30元相差正好是1支铅

笔的钱,因为两次买的橡皮块数是相同的,利用这一条件,把1块橡皮的价钱消去。

每支铅笔:(2.80-2.30)÷(4-3)=0.5元

每块橡皮:2.30-0.5×3=0.8元 d、学生说出如何解答的?

(2) 练习P16(1)

(3) 教学例2 实验小学食堂第一次运进大米6袋,面粉5袋,共重4.

5千克,第二次又运进9袋大米 和7袋面粉,共重625千克。每袋大米和每袋面粉各重多少千克?

a、审题,说题意; b、讨论如何解答?

c、分析点拨:6袋大米的重量+5袋面粉的重量=425千克 9袋大米的重量+7袋面粉的重量=625千克

6和9的最小公倍数是18,将6袋大米和5袋面粉共重425千克都扩大3倍,9袋大米和7袋面粉共重625千克都扩大两倍,可得:

18袋大米的重量+15袋面粉的重量=1275千克

18袋大米的重量+14袋面粉的重量=1250千克

这样可消去大米的重量. 每袋面粉:(425×3-625×2)÷(5×3-7×2)=25千克

每袋大米:(425-25×2)÷6=50千克 d、同座位说出怎样解答的?

(4)比较例

1、例2的异同。

(三)巩固练习P18(

1、2)

(四)本课小结

这节课你有什么收获?

教学内容:消去问题

(二)

教学要求: (1)进一步学会解答消去问题。 (2)培养解题能力.教学重点: 理解数量关系,掌握解题方法。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题:消去问题

(二)

(二)新授

(1)教学例1 早晨妈妈买了1千克青豆和2千克菠菜,共花去4.2元;

张阿姨买了同样的2千克青和1千克菠菜,共花去4.8元。求青豆和菠菜的单价各是多少?

a、审题理解题意 b、讨论如何解答

c、分析:妈妈:1千克青豆的元数+2千克菠菜的元数=4.2元

阿姨:2千克青豆的元数+1千克菠菜的元数=4.8元

我们发现两个人各买的青豆的总重量和购买菠菜的总重量是相等的,两个人共买了3千克青豆和3千克菠菜。则

3千克青豆的元数+3千克菠菜的元数=(4.2+4.8)元

1千克青豆的元数+1千克菠菜的元数=3元

在与第一组已知条件结合起来:

(1)3千克青豆的元数+3千克菠菜的元数:4.2+4.8=9元

(2)1千克青豆的元数+1千克菠菜的元数:9÷3=3元

(3)1千克菠菜的元数:4.2-3=1.2元

(4)1千克青豆的元数:3-1.2=1.8元

d、回顾例1的解法,有时消去问题中两个未知量存在特殊关系,可以利用例1的方法。

(三)巩固练习P20(

1、2)先试做再说解题方法。 P21(

3、

4、5)

(四)本课小结:

这节课你有什么收获?

教学内容:流水行船问题

(一)

教学要求: (1)理解流水行船问题的数量关系,学会正确解答。 (2)培养解题能力.教学重点: 理解数量关系,掌握解题方法。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题:流水行船问题

(一)

(二)新授

1、知识导航:顺水速度=船速+水速

逆水速度=船速-水速

2、教学例1 一艘船在一条河中顺水航行每小时行40千米,逆水

航行每小时行30千米。这艘船在静水中的速度是每小时行多少千米?

a、理解题意; b、讨论如何解答; c、分析点拨;

由顺水速度=船速+水速 逆水速度=船速-水速 得出:

两式相加顺水速度+逆水速度=船速+船速;

一个船速=(顺水速度+逆水速度)÷2;

(40+30)÷2=35千米

3、教学例2 一艘船在一条河中顺水航行每小时行40千米,逆水航

行每小时行30千米。这条河的水速是每小时多少千米?

a、题目已知什么求什么? b、讨论如何解答? c、分析点拨:

由顺水速度=船速+水速 逆水速度=船速-水速 得出:两式相

减顺水速度-逆水速度=水速+水速

一个水速=(顺水速度-逆水速度)÷2;

(40-30)÷2=5千米

4、比较例

1、例2有什么相同、不同之处;

(三)巩固练习P23(

1、2)

(四)本课小结

这节课你学会了什么?

教学内容:流水行船问题

(二)

教学要求: (1)进一步理解流水行船问题的数量关系,学会正确解答。 (2)培养解题能力.教学重点: 理解数量关系,掌握解题方法。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题:流水行船问题

(二)

(二)新授

1、教学例1 甲、乙两港相距300米,一艘轮船从甲港顺水航行到

乙港共行了6小时,而一只漂流瓶同时也从甲港同是漂流到乙港用力量25小时。求轮船的静水速?

a、理解题意; b、讨论如何解答?

c、分析点拨:漂流瓶为什么能从甲港漂流到乙港,还不是水流

带动着瓶子往前流动吗?题目的意思其实是轮船顺水航行300千米用了6小时,漂流瓶与水速行300千米用25小时,

根据第一组条件可求出船的顺水速度,根据第二

组条件可求出水流速度。

轮船的顺水速度:300÷6=50千米

水速:300÷25=12千米

轮船的静水速度:50-12=38千米 d、同座位说出此题是如何解答的。

2、教学例2 甲、乙两港的水路长360千米,一轮船顺水航行这段路程用了15小时,逆水航行这段路程用了20小时,而另一支轮船在静水中的速度是每小时航27千米,问另一艘轮船顺水行这段

路程需多少小时? a、理解题意;

b、讨论如何解答? c、分析点拨:既然两条船都在同一河道上行驶,那么水速也

应该一样,根据第一支船的顺水速和逆水速可求出水速,这样另一支船的顺水速也就可以求出来了。

轮船的顺水速:360÷15=24千米

轮船的逆水速:360÷20=18千米

水速:(24-18)÷2=3千米

另一条船的顺水速:27+3=30千米

另一条船的航行的时间;360÷30=12小时

3、比较两例题。得出:

一些漂流物从上游漂流下来的速度其实就是

水速,并且两航行物行驶同一河道时,

水速不变,根据各自的逆水速、静水速、顺

水速、借助水速可求出其他相应量。

(三)巩固练习P25(

1、2)

(四)本课小结

这节课你学会了什么?

教学内容:流水行船问题

(三)

教学要求: (1)进一步理解流水行船问题的数量关系,学会正确解答。 (2)培养解题能力.教学重点: 理解数量关系,掌握解题方法。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题:流水行船问题

(三)

(二)新授

1、教学例1 甲、乙两船在静水中速度分别为每小时24千米和每

小时36千米,两船从某河相距336千米的两港同时出发,相向而行,几小时相遇?

a、理解题意; b、讨论如何解答?

c、分析点拨:总路程÷速度和=相遇时间,而

速度和=甲船顺水速+乙船逆水速

=(甲船速+水速)+(乙船速-水速) =甲船速度+水速+乙船速度-水速 =甲船速度+乙船速度

两船速度和:24+36=60千米

相遇时间:336÷60=5.6小时 d、同座位交流解题方法。

2、教学例2 甲、乙两船在静水中速度分别为每小时24千米和每

小时36千米,两船从某河流相距336千 米的两港同时出发同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?

a、理解题意; b、讨论如何解答? c、分析点拨:如果两船顺水行驶,则

两船速度差=乙船顺水速-甲船顺水速

=(乙船速度+水速)-(甲船速+水速) =乙船速-甲船速

如果两船逆水行驶,则

两船的速度差=乙船逆水速-甲船逆水速 =乙船速-甲船速 336÷(36-24)=28小时 d、同座位交流解题方法。

3、比较例

1、例2 两船在水中的相遇问题和陆地上相遇问题

一样,追击问题也一样。

三、巩固练习P27(1)

课外作业P28(

1、

2、

3、

4、5)

四、本课小结

这节课你有什么收获?

教学内容:列方程解应用题

(一)

教学要求: (1)学会列方程解答应用题,找准数量关系式。 (2)培养解题能力。

教学重点: 找数量关系,正确解答应用题。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题: 列方程解应用题

(一)

(二)新授

1、教学例1 妈妈和张阿姨一起上街买了一些雪梨。小明问:“妈

妈你买了这么多,是多少个呀?” 妈妈笑眯眯的说:“我和张阿姨一共买了100个,并且我比张阿姨多买了8个。你能算算看妈妈和张阿姨各买了多少个雪梨吗?”同学们,你能帮小明一起来算一算吗?

a、理解题意; b、讨论如何解答?

c、分析点拨:题中所给的已知条件都是说明两个人所买雪梨

个数的关系,碰到这种情况,我们以一组已知条件来解,另一组已知条件做为等量关系式来列方程。

设:张阿姨买X个雪梨,妈妈买X+8个雪梨 X+(X+8)=100 X=46 100-46=54(个)

d、此题还可以怎么解?同座位交流解题方法。 e、比较两种解法;

2、小结 从例题可知:题中两个已知条件都反应两个未知量之间的

关系,我们可以以其中的一个已知条件来解设,另一个已知条件做为等量关系列出方程,从而求出两个未知量。

(三)、巩固练习P30(

1、2)

(四)、本课小结

教学内容:列方程解应用题

(二)

教学要求: (1)能比较熟练的找出题中数量关系,列方程解答应用题。 (2)培养解题能力。

教学重点: 找数量关系,正确解答应用题。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题: 列方程解应用题

(二)

(二)新授

1、教学例1 实验小学少年数学爱好者俱乐部五年级有三个班,

一班人数是三班人数的1.02倍,二班比三班少4人,三个班共有147人。请问三个班各有学生多少人?

a、理解题意; b、讨论如何解答?

c、分析点拨:题中虽然有三个未知量,但都是和三班人数相

比的,因此,只要以一个未知数来表示三班的人数,其他两个班的人数可用含字母的式子表示出来。

设:三班有X人,一班1.02X人,二班X-4人 1.02X+(X-4)+X=147 X=50 一班:1.02×50=51人

二班:50-4=46人

2、教学例2 有三个数的平均数是9.4,其中第一个数是9.1,

第二个数比第三个数大0.3。求第三个数。

a、理解题意; b、讨论如何解答?

c、分析点拨:三个数平均数是4,其中隐含了三个数的和9.

4×3=28.2 即第一个数+第二个数+第三个数=9.4×3 设第三个数是X,第二个数是(X+0.3),则方

程为: 9.1+X+(X+0.3)=9.4×3 X=9.4

3、比较例

1、例2有何异同?

(三)、巩固练习P32(1)

(四)、本课小结

列方程解应用题关键找什么?

教学内容:列方程解应用题

(三)

教学要求: (1)(1)能比较熟练的找出题中数量关系,列方程解答应用题。 (2)培养解题能力。

教学重点: 找数量关系,正确解答应用题。 教学难点: 能说出解题思路 教学方法:讲解法、练习法。

教学过程:

(一)揭示课题: 列方程解应用题

(三)

(二)新授

1、教学例1 商店里现有排球和足球共98个,如果排球和足球都

卖掉9个,那么,排球个数是足球 的4倍,求原来的排球数和足球数。

a、理解题意; b、讨论如何解答?

c、分析点拨:从已知条件得出两道等量关系式,

即 原来排球的个数+原来足球的个数=98;

现在排球数+现在足球数=4 不妨以第一等量关系式来解设,第二关系式列方程

设原来有排球X个原来有足球98-X个

(X-9)÷(98-X-9)=4 X=73 原来足球数:98-73=25个 d、此题还可以怎么解答

2、教学例2 玲玲和洋洋是双胞胎,爷爷今年的岁数比他们两的岁数和还要大52岁。在过10年,爷爷的岁数将是她们两岁数和的2倍。问玲玲和洋洋今年几岁?爷爷今年多大年龄?

a、理解题意; b、讨论如何解答?

c、分析点拨:此题也存在两个等量关系式

今年爷爷的年龄-(今年玲玲的年龄+今年洋洋的年龄)=52岁 10年后爷爷的年龄÷(10年后玲玲的年龄+10年后洋洋的年龄)=2倍

设玲玲今年X岁,则洋洋也是X岁,爷爷今年52+X+X岁

(52+X+X+10)÷(X+X+10+10)=2 X=11 爷爷今年的年龄:11+11+52=72岁

d、若设10年后玲玲和洋洋年龄各是X岁,此题还可以怎么解答?

3、比较例

1、例2

(三)、巩固练习P34(1)

课外作业P35(

1、

2、

3、

4、5)

(四)、本课小结

第15篇:小学奥数教案计划

第一次课:奥数的介绍

一、奥数概述

国际数学奥林匹克(InternationalMathematicalOlympiads)简称IMO,是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。现在,IMO已成为一项国际上最有影响力的学科竞赛,同时也是公认水平最高的中学生数学竞赛。我国的数学竞赛始于1956年。在著名数学家华罗庚、苏步青等人的倡导下,由中国数学理事会发起,北京、天津、上海、武汉四城市首先举办了高中数学竞赛。

历史

1934年和1935年苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称。1959年罗马尼亚数学物理学会邀请东欧国家中学生参加,在布加勒斯特举办了第一届国际数学奥林匹克竞赛,从此每年举办一次,至今已举办了50届。

二、近年奥数在中国

近年来中国代表在数学奥林匹克上的成绩就像中国健儿在奥运会的成绩一样,突飞猛进,从40届到第43届,中国代表队连续四年总分第一。

三、奥数实质

奥数相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。有许多涉及到实际应用的问题,如计数、图论、逻辑、抽屉原理等。解决这类问题,一般都需要对实际问题的数学意义进行分析、归纳,把实际问题抽象成为数学问题,然后用相应的数学知识和方法去解决。在这一构造数学模型的过程中,能够有效地培养学生用数学观点看待和处理实际问题的能力,提高学生用数学语言和模型解决实际问题的意识和能力,提高学生揭示实际问题中隐含的数学概念及其关系的能力等等。使学生能够在这一创造性思维过程中,看到数学的实际作用,感受到数学的魅力,增强学生对数学美的感受力。在强调素质教育的今天,奥林匹克数学的这一教育功能有着更为重要的现实意义。

四、奖项介绍

国际奥林匹克数学竞赛是国际中学生数学大赛,在世界上影响非常之大。国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助。第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克、匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。目前参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约定俗成的常规,并为历届东道主所遵循。国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供,但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人,另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。 竞赛设一等奖(金牌)、二等奖(银牌)、三等奖(铜牌),比例大致为1:2:3;获奖者总数不能超过参赛学生的半数。各届获奖的标准与当届考试的成绩有关。

五、学习奥数的方法

“题海无边,题型有限”。学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。在孩子真正掌握了“奥数”的学习方法后,坚持每天做一定数量的练习题就显得尤为重要。做题的前提是对学过的知识有了透彻的领悟,做题不光是只做难题,简单、中等、难,这三类题都要做,最好把比例控制在3:5:2为最佳。从而避免了孩子难题还会做,中等题和基本题总是准确率不高的现象。五年级开始后要坚持每天做十道左右的题。为了提高孩子解题速度,根据题目的难度每次限时40-60分钟,然后由家长严格计时并根据标准答案判分。记录不会做或做错的题目,有能力的家长可以自己给孩子讲解,最好把一时不理解的题目请教相关的有丰富经验的老师,直至弄懂、弄通为止!!!对于做题中发现的问题及时解决,这是我们做题最终的也是最重要的目的!以前不会做或做错的题目,以后一定要让孩子不定时的至少再做一次!题目的选择可根据正在学习的奥数课程和辅导老师的建议,由孩子和家长一起讨论来决定。学习几个知识点后一定要做一些综合试卷或综合题,主要针对孩子学习的“薄弱”环节,要求辅导老师必须有针对性地给孩子多做些题目。做题的另一个目的就是要从小培养孩子具有举一反

三、融会贯通的能力。注意:刚开始做题前一定要对所学知识已经透彻、深刻的掌握,否则题做得再多的也只会事倍功半,起不到我们想要的效果。

六、小学奥数介绍 1:什么是小学奥数?

小学奥数全称叫“小学奥林匹克数学”,或叫“小学数学奥林匹克”,称呼起源于“数学是思维的体操”它体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。其实它更准确应称为“小学竞赛数学”。它体现了数学中的巧思、灵活、多变与其中渗透的数学美学。

2:小朋友学习奥数有什么好处?

奥数是给那些对奥数有兴趣的孩子搭建的一个舞台,正像我们给那些对英语、对绘画、对音乐、对体育等有兴趣的孩子搭建的舞台一样,让他们自由、快乐地享受童年、享受人生。

其一,奥数包涵了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等等二十几种思维方式,众所周知,思维能力是一个孩子的智力的核心,如果一个孩子在小学期间,思维能力得到了充分的锻炼,有什么比这更重要的呢?奥数能够快速有效、全面提高孩子智商的工具。奥数学习对开拓思路有着重要作用。奥数学习好的学生整个理科都会比较优秀,因为数学是理科的基础,物理化学都需要数学这个基础。正因为这个原因,重点中学喜欢招奥数比较好的学生。

其二,奥数题基本上是比书上知识有所提高的内容,当孩子在做题当中遇到困难,想办法战胜它时,那种来自内心深处的喜悦比吃了十斤蜜枣还甜。在学习、比赛中,有失败、有成功,让孩子从小就明白:不经历风雨怎能见彩虹的道理,一句话:奥数让孩子学会了面对挫折、战胜困难,学会了永不言败的精神,建立起良好的自信。可以说既提高孩子的智商又能发展孩子的情商。

3:孩子什么时候开始学奥数为好?

一般从小学三年级开始比较合适,

四、五年级入手也不算太晚。太早了孩子的理解能力有限,并且这个时候数学基础还没有打好,孩子学奥数理解起来比较吃力,很容易遇到困难。如果因此而使孩子的兴趣受打击,使他产生畏难、厌学情绪就糟了。

在孩子学奥数之前,家长可以从其他方面入手潜移默化,培养孩子的数学兴趣和能力。观察能力是数学学习的开始,比如带孩子上街时,启发他认门牌号上的数字,说说这是几位数;再比如玩具中也有数学,可以让孩子通过玩具识别三角形、长方形等各种形状……。也就是重点培养孩子观察生活中的数学,加强孩子的数感训练,这对孩子将来学数学很有帮助。

4:什么样的小朋友可以参加奥数学习?

奥数不是人人都能学好的。对于学有余力的学生来说,学习奥数确实对思维有一定帮助,而且上路得早,对以后的学习会有一定好处。但是还是一句话,要看小孩的实际情况,如果他不喜欢,数学成绩一般甚至很差,就完全没有这个必要来学习奥数了。如果强迫学习,只会让他们更加头疼,学习更感吃力,对数学更加没有兴趣。我校开设奥数培训主要也是从培养学生的数学学习兴趣出发的。学习奥数绝不是短期的功利行为,也决不可能取得立竿见影的效果,一定是持之以恒。所以客观地讲,一般的学生还是要以普通数学的要求为基础。

5:孩子数学成绩不太好,可以学奥数吗?

目前,越来越多的学生家长对奥数趋之若鹜,但并不是每个孩子都有必要学奥数,家长在送孩子学奥数之前,一定要搞清楚孩子是否具备以下两个条件:其一,是在数学方面学有余力;其二,是否有这方面的兴趣爱好。如果孩子本来就不喜欢学数学,平时也学得比较吃力,你再让他学奥数,就会适得其反,增加他在数学学科上的厌学情绪。

6:怎么给孩子选择奥数班和奥数老师?

这要因人而异,家长可根据自己孩子的情况作决定。如果你的孩子求知欲旺,学奥数的兴致很高,数学学习能力比较强,在“大课堂”上又能积极主动地提问,那就不一定请家教,上奥数班就行了。如果孩子在上述方面不很突出,可以考虑请家教,让家教老师有针对性地进行辅导。有一点需要指出的是,学好奥数的一个关键问题是一定要多问,多跟老师交流,家教能让孩子的疑问及时得到解决,对学奥数是有促进作用的。

7:做奥数题是多多益善吗?

熟能生巧,要学好奥数,当然要有选择地多做题,但切忌盲目做题,搞“题海战术”。一定要边学边总结,做题后要进行归纳和总结,让孩子具有举一反三的能力。

8:学习奥数一定要参加竞赛吗?

答:适量的竞赛对提高学生的学习兴趣是必不可少,竞赛为学生提供了一个展示的舞台。在孩子自愿的前提下,可以参加一些比赛,但应该认识到,在竞赛中获奖的必竟是少数,不应把学习奥数的目的放在竞赛获奖上,更应放在兴趣培养上,目光要长远一点。

教案计划:第二次课: 一:回忆上节课的内容:

二、导入:已知几个量,一个量变化,另外量也随着发生同样的变化,这样的问题是归一问题。

三、新课:

例1.小白兔6天挖90根萝卜,照这样计算,小白兔18天能挖多少根萝卜?

#——6天——90根 归一法:90÷6×18=270(根) #——18天——?根 倍比法:18÷6×90=270(根)

练习1:一只蜗牛6分钟爬12分米,照这样的速度,1小时爬多少米? 练习2:小乌龟3分钟能走10米,照这样计算,它1小时能走多少米?

练习3:一台碾米机2小时碾米1000千克,照这样的效率,再碾米5小时,一共可以碾米多少千克?

小结:先求单一量,再求几个单一量是多少。正归一。

例2.王大伯4天编了24个竹篮,照这样计算,编120个竹篮一共需要多少天?

#——4天——24个 归一法:120÷(24÷4)=20(天) #——?天——120个 倍比法:120÷24×4=20(天)

练习:一台织布机8分钟可织布24米,求这台织布机织234米布要用多少分钟?

一台织布机8分钟可织布23米,求这台织布机织253米布要用多少分钟?

一台织布机8分钟可织布24米,求这台织布机织15米布要用多少分钟?

小结:先求单一量,再求包含多少个单一量。反归一。

例3.王师傅2小时加工62个零件,照这样计算,8小时可以加工多少个零件?如果要加工372个零件要多少小时? #——2小时——62个 62÷2×8=248(个) #——8小时——?个 倍比法:8÷2×62=248(个) #——2小时——62个 372÷(62÷2)=12(小时) #——?小时——372个 372÷62×2=12(小时)

练习:改题 3小时加工42个,8小时多少个?加工210个零件要几小时?

例4.一个修路队要修一个长750米的公路,前5天修了250米,照这样计算修完还要几天?

#——5天——250米 (750-250)÷(250÷5)=10(天) #——?天——(750-250)米 (750-250)÷250×5=10(天) 750÷(250÷5)-5=10(天) 750÷250×5-5=10(天) 练习:改成600米

练习:一个粮食加工厂要加工6000千克大米,前2小时加工了1200千克,照这样计算加工完剩下的大米还要几小时? (8小时) 例5.5只小猴一顿吃掉20个桃,现在有60个桃,要增加几只小猴来吃?

60÷(20÷5)-5=10(只) (60-20)÷(20÷5)=10(只) (60-20)÷20×5=10(只) 60÷20×5-5=10(只)

练习:5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?

铺垫:一个台机器一天生产15个零件,求5台机器3小时能生产多少个零件?4台机器6小时?

例6.4台机器2小时能生产144个零件,照这样计算,5台机器4小时能生产多少个零件? 疑问:现在的一份量是什么? 小结: 二次归一问题

练习:织布厂一车间用3台织布机5小时织布450米,照这样计算,5台、8小时可织布多少米?

#——3台——5小时——450米 450÷3÷5×5×8=1200(米) #——5台——8小时——?米

拓展:改增加5台 450÷3÷5×(3+5)×8=1920(米)

例7.3台车床4小时可以加工零件180个,照这样计算,6 台5小时可加工多少个?5台要加工600个要几小时?3小时加工630个要几台?

#——3台——4小时——180个 正归一 180÷3÷4×6×5=450(个) #——6台——5小时——?个

#——3台——4小时——180个 反归一 600÷(180÷3÷4×5)=8小时

#——5台——?小时——600个 630÷(180÷3÷4×3)=14(台) #——?台——3小时——630个

练习:7辆车5小时运货700吨,照这样计算,3辆汽车几小时能运540吨的货物?

例7.工程队计划60人5天修好一条长4800米的公路,照这样计算,增加15人实际几天修完?

#——60人——5天——4800米 4800÷[4800÷60÷5×(60+15)] #——(60+20)人——?天——4800米 =4800÷4800×60×5÷75 练习:改6000米 =4(天)

例8.7辆卡车6趟运走336吨沙土。现有沙土560吨,要求5趟运完,需要同样的卡车多少辆?

1辆卡车1趟运走多少吨沙土:336÷6÷7=8(吨)

①先求所需卡车1趟运走多少吨沙土:560÷5=112(吨) 112÷8=14(辆)

②先求运走560吨沙土所需多少趟: 560÷8=70(趟) 70÷5=14(辆) ③先求1辆卡车5趟运走多少吨: 8×5=40(吨) 560÷40=14(辆) 练习:5只小猫5天能抓住50只老鼠,10天抓住100只老鼠需要多少只小猫?

拓展:①5只小猫5天能抓住50只老鼠,10天抓住180只老鼠需要增加多少只小猫?

②4台机器2小时能生产144个零件,照这样计算,5台机器生产360个零件需要增加几小时?

例9.有一批零件,王师傅每天生产8个,3天可以完成,如果每天生产6个零件几天可以完成? 疑问:不变的量是什么? 小结: 练习:发电厂运进一些煤,如果每天烧6吨煤,10天烧完,如果每天烧4吨,多少天烧完?

例10.修一条马路,如果每天修5千米,24天可以修完,如果每天多修1千米,几天可以修完?

练习:有一包糖,如果平均分给8个小朋友,每人可以分到20块,如果减少3个小朋友,每人可分到多少块?(32)

拓展:有一本故事书,小强计划每天看24页,5天可以看完,如果要提前2天看完,平均每天要多看多少页?(16)

例11.加工一批零件,计划14人,每天工作6小时10天完成任务。现在增加1人要求8天完成,求每天加班几小时?(1) 例12.甲乙两个打字员4小时共打字3600个,现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个,求甲乙每小时各打字多少个?

甲乙每小时打字个数的和:3600÷4=900(个)相同时间内共打字:2450+2050=4500(个)

相同时间:4500÷900=5(小时) 甲:2450÷5=490(个) 乙:2050÷5=410(个)

四、总结:归一问题归一对应法、先求单一量。

第三次课:找规律题型:

例1:下面的每组数都各自按一定的规律排列起来,请先找出规律,再根据规律填数。 (1)1,3,9,27,( ); (2)1,4,9,16,( ),( ); (3)1,2,4,8,( ),32。

例2: 按照规律,在( )里填上合适的数。 (1)11,4,8,4,5,4,( ),( ); (2)13,7,11,6,9,5,( ),( )。

例3:下面各列数中都有一个与众不同的数,请找出来。 (1)2,4,6,8,9,10,12; (2)7,14,21,28,35,39,42。

思考题:按照规律,在( )里填上合适的数。 3,4,7,12,19,28,( )。

一:回忆上节课的内容:已知几个量,一个量变化,另外量也随着发生同样的变化,这样的问题是归一问题。

二、导入:对于一些存在规律的题型,我们可以找出规律。

三、新课:

找规律题型: 第1题:0、

1、

3、

8、

21、?、144;第2题:0、

1、

4、

15、

56、?;

第3题:

1、

3、

6、

8、

16、

18、?、?、7

6、78;求各题的规律 第1题:55。第一个数加第三个数然后再除以3,就是第二个数;同样,第二个数加第四个数然后再除以3,就是第三个数,以此类推,可知为55.第2题:209。第一个数加第三个数然后再除以4,就是第二个数;同样,第二个数加第四个数然后再除以4,就是第三个数,以此类推,可知为209.第3题:36,38。第一个数与第二个数差2,第三个数与第四个数差2,第五第六到第九第十个数也是如此,所以只要比较奇数个数的规律即可,其为:

1、

6、

16、?、76.观察可知规律,它们分别相差5,10,20,40,故该问号为16+20=36,所以令一个问号为38。

从数列中找出存在的某种规律,并把括号填上 2

11 4

4 ()

1 3

6 答案:3 一共4竖行,每竖行前2个数之和是第3个数的2倍!

11

8 10 ( ) 4

18

6 10 12

20 括号里应该填什么?为什么?

理由如下:竖着看,每一列的最后一行的数减第一行的数再乘以2就是中间一行的数。所以第三列中中间的数为(12-6)*2=12.

把自然数按下图的方式排列 1 2 5 10 17…

4 3 6 11 18…

9 8 7 12 19…

16 15 14 13 20…

25 24 23 22 21…

问:

1、第9行第9列的那个数是多少?

2.、2009在第几行第几列?

(如8在第3行第2列,22在第5行第4列)

解答:

(1)据观察得出的规律可知第9行第9列的数是9×9=81,所以第9行第9列的数是81-8=73;

(2)因为45×45=2025,所以第45行第一列的数是2025,2009比2025少16,所以2009在第45行第17列。

1,2,4,7,11,16,(22),(29), 2,5,10,17,26,(37),(50), 0,3,8,15,24,(35),(48), 42,54,72,87,204,[270]

1、1,4,9,16,( 25),( 36)

第n项为n^2,所以括号里填25,36

2、2/1,4/4,6/9,8/16,(10/25 ),(12/36 ),14/49 第n项为2n/(n^2),所以括号里为10/25,12/36

3、1,2,2,4,8,32,256,( 8192)

第n项为第n-1项与n-2项的积,所以括号里为32*256=8192 有同样大小的红白黑珠共96个,按先5个红的,再4个白的,再3个黑的排列着,如图:◎ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ● ● ● ◎ ◎ ◎ ◎ ◎ ○ ○ ○ ○ ● ● ● ◎ ◎ …试问:黑珠共的几个? 解答:5+4+3=12,可以发现每隔12个珠子(5个红的4个白的3个黑的)就重复一次,96÷12=8。所以一共有8组一样的,每组有3个黑的,所以共有黑珠3×8=24个。

第16篇:小学六年级奥数教案

小学六年级奥数教案:行程问题

第一讲 行程问题

走路、行车、一个物体的移动,总是要涉及到三个数量: 距离走了多远,行驶多少千米,移动了多少米等等; 速度在单位时间内(例如1小时内)行走或移动的距离; 时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示: 距离=速度×时间

很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如

总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米

一、追及与相遇

有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内, 甲走的距离-乙走的距离

= 甲的速度×时间-乙的速度×时间 =(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米? 解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此

所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是

面包车速度是 54-6=48(千米/小时).城门离学校的距离是 48×1.5=72(千米).答:学校到城门的距离是72千米.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是

50 ×10÷(75- 50)= 20(分钟)? 因此,小张走的距离是 75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.

家到公园的距离是

一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少? 解一:自行车1小时走了 30×1-已超前距离, 自行车40分钟走了

自行车多走20分钟,走了

因此,自行车的速度是

答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差

1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:

马上可看出前一速度差是15.自行车速度是 35- 15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分? 解:画一张简单的示意图:

图上可以看出,从爸爸第一次追上到第二次追上,小明走了 8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了 4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.

小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么 甲走的距离+乙走的距离 =甲的速度×时间+乙的速度×时间 =(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇? 解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是 36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图

离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米

小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是 2÷(5-4)=2(小时).因此,甲、乙两地的距离是 (5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下

设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点

(或E点)相遇所用时间是 28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是

12÷0.4=30(千米/小时).同样道理,乙的速度是 16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.

例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.

问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇? (2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米? 解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了

因此在 B与 C之间平路上留下 3- 1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是 2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是 25+ 15= 40 (分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走

小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.

二、环形路上的行程问题

人在环形路上行走,计算行程距离常常与环形路的周长有关.例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分? (2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王? 解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是 500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是

500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.

解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是 80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少? 解:画示意图如下:

如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是 40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了 6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是 小张 10÷2=5(千米/小时), 小王 8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 解:画示意图如下.

第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了 3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是 10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了 3.5×7=24.5(千米), 24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村 8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇? 解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:

12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了

此时两人相距 24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是 5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只

爬虫出发后多少时间第一次到达同一位置? 解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要 90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是 15,,105,150,195,…… 再看看A与B什么时候到达同一位置.第一次是出发后 30÷(10-5)=6(秒),

以后再要到达同一位置是A追上B一圈.需要 90÷(10-5)=18(秒),

A与B到达同一位置,出发后的秒数是 6,24,42,,78,96,…

对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考, 3只爬虫第二次到达同一位置是出发后多少秒? 例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求

解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出

分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间 =DA所需时间-CB所需时间 =18-12 =6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得 PC上所需时间是(24+6)÷2=15, PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有 BN上所需时间-AN上所需时间 =P→D→A所需时间-CB所需时间 =(9+18)-12 = 15.BN上所需时间+AN上所需时间=AB上所需时间 =16.立即可求BN上所需时间是15.5,AN所需时间是0.5.

从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.

三、稍复杂的问题

在这一节希望读者逐渐掌握以下两个解题技巧: (1)在行程中能设置一个解题需要的点; (2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间? 解:画一张示意图:

图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于

这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是 1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要 130÷2=65(分钟).从乙地到甲地需要的时间是 130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米? 解:先画一张示意图

设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成: 骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:

不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是 1+1.5=2.5(单位).每个单位是 2000÷2.5=800(米).因此,从公园到家的距离是 800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间? 解:画一张示意图:

设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是 14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了 7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图

第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此 顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出

A至B距离是 12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的

解一:画出如下示意图:

当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的

到达D处,这样,D把第一段分成两部分

时20分相当于

因此就知道,汽车在第一段需要

第二段需要 30×3=90(分钟);

甲、乙两市距离是

答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例

8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.

第一段所用时间∶第三段所用时间=5∶2.

时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是 5∶9∶2.汽车走完全程所用时间是 80×2=160(分种).

例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米? 解:设原速度是1.

%后,所用时间缩短到原时间的

这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要

同样道理,车速提高25%,所用时间缩短到原来的

如果一开始就加速25%,可少时间

现在只少了40分钟, 72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间

真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长

答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有 x∶120=72∶32

第17篇:六年级奥数教案3

第二课堂

牛吃草问题(2)练习课

一、课堂例题:

5.快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用( )小时。

注释:12 自行车的速度是:(20×10-24×6)÷(10-6)=14(千米/小时)

三车出发时自行车距A地:(24-14)×6==60(千米)

慢车追上自行车所用的时间为:60÷(19-14)=12(小时)

6.一水池中原有一些水,装有一根进水管,若干根抽水管。进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管,( )小时可将可将水池中的水抽干。

注释:18 设1根抽水管每小时抽水量为1份。 (1)进水管每小时卸货量是:(21×8-24×6)÷(8-6)=12(份) (2)水池中原有的水量为:21×8-12×8=72(份)

(3)16根抽水管,要将水池中的水全部抽干需:72÷(16-12)=18(小时)

8.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?

注释:8天

(1)按牛的吃草量来计算,80只羊相当于80÷4=20(头)牛。 (2)设1头牛1天的吃草量为1份。 (3)先求出这片草地每天新生长的草量:(16×20-20×12)÷(20-12)=10(份)

(4)再求出草地上原有的草量:16×20-10×20=120(份) (5)最后求出10头牛与60只羊一起吃的天数:120÷(10+60÷4-10)=8(天)

9.某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加。为了防洪,需开闸泄洪。假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线。现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门?

注释:4个 设1个泄洪闸1小时的泄水量为1份。 (1)水库中每小时增加的上游河水量:(1×30-2×10)÷(30-10)=0.5(份)

(2)水库中原有的超过安全线的水量为:1×30-0.5×30=15(份) (3)在5.5小时内共要泄出的水量是:15+0.5×5.5=17.75(份) (4)至少要开的闸门个数为:17.75÷5.5≈4(个)(采用“进1”法取值)

二、学生课后练习:

1.一个水池有一根进水管,有若干相同的抽水管,进水管不间断的进水,若用24根抽水管抽水,6小时可以把池中的水抽干;若用21根抽水管抽水,8小时可以将池中的水抽干。用16根抽水管,多少小时可以将池中的水抽干?

2.甲、乙、丙三人同时从同一个地点出发,沿同一路线追赶前面的小明,他们分别用9分钟、15分钟、20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?

第18篇:奥数教案 表面积体积

1.一个零件形状大小如图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?

6−2=4(厘米),所以这个零件是两个长宽高分别为10厘米、4厘米、2厘米的长方体;所以: 体积为:2×4×10×2=160(立方厘米),

表面积为:(2×10+10×4+2×4)×2×2−10×2×2,=(20+40+8)×4−40,=68×4−40,=272−40,=232(平方厘米);

2.有一个长方体形状的零件。中间挖去一个正方体的孔。你能算出它的体积和表面积吗?

8×6×5−2×2×2,=240−8,=232(立方厘米);

(8×6+8×5+6×5)×2+4×2×2,=118×2+16,=236+16,=252(平方厘米)

3.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原正方体的表面积是多少平方厘米?

50÷4×6,=12.5×6,=75(平方厘米) 4.长方体的不同的的三个面的面积分别为10cm2,15cm2和6cm2.这个长方体的体积是多少立方厘米? 10=2×5 15=3×5 6=2×3 2×3×5 =6×5 =30(立方厘米) 5.把11块相同的长方体砖拼成一个长方体,已知每块砖的体积是288立方厘米,大长方体的表面积是______平方厘米。

设小长方体的长、宽、高分别为a、b、h, 则a=4h,即h=14a,2a=3b即b=23a, 每块砖的体积为:a×23a×14a=16a3.再据16a3=288可得:a=12(厘米), 则b=23×12=8(厘米), h=14×12=3(厘米),

于是可得:大长方体的长是12×2=24厘米,宽12厘米,高是8+3=11厘米, 大长方体表面积就为:24×12×2+24×11×2+12×11×2,=288×2+264×2+132×2,=576+528+264,=1368(平方厘米)

第19篇:三年级下册奥数教案

三年级下册奥数教案

导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦! 第一课时

1、一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米? 答案与解析:

实际上青蛙每爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!

2、有两桶油,从第一桶倒20千克给第二桶,两桶就同样多了。已知第一桶原有50千克油,求两桶油共重多少千克? 答案与解析:

第一桶油倒20千克给第二桶,两桶就同样多,说明第一桶比第二桶多了2个20千克的油,一共多20*2=40千克油,他们一共有:50+50+40=140千克油。

第二课时

3、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 答案与解析:

增加一条和减少一条,前后相差2条,也就是说,每条船坐6人正好,每条船坐9人则空出两条船。这样就是一个盈亏问题的标准形式了。

增加一条船后的船数=9*2/(9-6)=6条,这个班共有6*6=36名同学。

4、7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆? 答案与解析:

要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。

解:①一辆卡车一次能运多少吨沙土?

336÷6÷7=56÷7=8(吨)

②560吨沙土,5趟运完,每趟必须运走几吨?

560÷5=112(吨)

③需要增加同样的卡车多少辆?

112÷8-7=7(辆)

列综合算式:560÷5÷(336÷6÷7)-7=7(辆)答:需增加同样的卡车7辆。

第三课时

5、在两座楼中间每隔3米种一棵树,共种了20棵,这两座楼之间距离是多少米? 答案与解析:

在两座楼中种树,首、尾两头都不种树。

(1)一共有多少个间隔?

20+1=21(个)

(2)两座楼之间的距离是多少?

3×21=63(米)

答:两座楼之间的距离是63米。

6、一条小道两旁,每隔5米种一棵,共种202棵,这条路长多少米? 答案与解析:

202÷2=101(棵)

101-1=100(段)

5×100=500(米)

答:这条小道长500米。

第四课时

7、某校三年级同学参加植树活动,每种4棵树之间的距离是9米。照这样计算,种18棵树的距离是多少米? 答案与解析:4棵树之间的距离是9米,相当于在9米长的距离上平均分成3段,那么一段长的距离是9÷(4-1)=3(米)。种18棵树,相当于把一段路平均分成17段,再根据“总路线长=株距×段数”把这个数量关系求出总路线长。

解:种4棵树,把9米分成了几段:

4-3=1(段)

每段的长是几米:

9÷3=3(米)

18棵树的距离分成了几段:18-1=17(段)

18棵树的全长是多少米:3×17=51(米)

答:18棵树的距离是51米。

8、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 答案与解析:

第一根剪成的每段比第二根剪成的每段长2米。那么,如果同样是5段的话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种的两段长是10米,也就是说每一段为10/2=5米。所以,绳子长为5*7=35米。

原来每根绳子长为7*(2*5/2)=35米。

第五课时

9、一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评

一、

二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元? 答案与解析:

分析:每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。每个一等奖就是每个三等奖的4倍,如果评

一、

二、三等奖各两人,我们把每个三等奖的奖金看成1份,那么,总奖金就相当于分成了2*4+2*2+2=14份,因为这时的一等奖奖金是3080元,也就是说三等奖奖金是每个308/4=77元,所以总奖金等于14*77=1078元,如果评一个一等奖,两个二等奖,三个三等奖,还是以每个三等奖的奖金看成1份,那么这时总奖金就被分成了1*4+2*2+3=11份,每份三等奖奖金就等于1078/11=98元,所以,这时的一等奖奖金等于980*4=392元。

10、甲乙两队共同挖一条长8250米的水渠,乙队比甲队每天多挖150米。已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么甲队每天挖多少米? 答案与解析:

分析:余下的由两队共同挖了7天,这7天中,乙队比甲队多挖了150*7=1050米,

那么,我们可以把总数减去1050米,然后看成甲和乙每天挖同样多,

这样,就相当于甲队一个队挖7*2+4=18天,共挖了8250-1050=7200米,

说明甲每天挖7200/18=400米。

第六课时

11、华侨小学某班有60人,在收看\"邓小平同志追悼大会\"实况时,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人? 答案与解析:

分析:有34人穿黑裤子,那么穿蓝裤子的有60-34=26人,

有12人穿白上衣蓝裤子,说明还有26-12=14人是穿黑上衣蓝裤子,

有29人穿黑上衣,那么,有29-14=15人穿黑上衣黑裤子。

12、三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选? 答案与解析:

分析:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。因此,甲最少再得到4票就能够保证当选了。

(这里特别要注意到\"保证\"两个字,必须从最坏的情况考虑)

第七课时

13、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名? 答案与解析:

分析:3名工人5小时加工零件90个,就是说每人每小时加工(90/3)/5=6个,那么一个人10小时可以加工6*10=60个,540个零件在10小时做完就需要540/60=9个人。

14、有20人修筑一条公路,计划15天完成。动工3天后抽出5人植树,留下的人继续修路。如果每人工作效率不变,那么修完这段公路实际用多少天? 答案与解析:

分析:有20人修筑一条公路,计划15天完成,说明这条公路的工作量按每天计算有20*15=300人次,动工3天后抽出5人植树,20人修3天完成了20*3=60人次,那么总工作量还剩下300-60=240人次,这些剩下的工作给15人做,每人就还需要工作240/15=16天,这样,前后加起来,实际工作就有3+16=19天。

第八课时

15、小明一家五口人去登山,带了2个包,五人轮流背,走了15千米,则平均每人背包走了多少千米? 答案与解析:15×2÷5=6(千米)

16、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 答案与解析:

60/7=8......4,60/8=7......4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44/4==11,说明有11人。

60/7=8......4,60/8=7......4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。 导语:三年级正是拓展思维的好时机,多做奥数题有助于我们这方面能力的锻炼,所以同学们要每天坚持做奥数练习。

第九课时

17、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○„你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢? 答案与解析:

第90个球为白球,第100个球为黑球

18、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人? 答案与解析:

做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。算式:13+22-8=27(人)。所以这个班一共有27人。

第十课时

19、一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗? 答案与解析:假设10个动物都是兔子,那么就有10X4=40(条)腿。但实际是26条腿,与实际相差40-26=14(条)腿。每将一个兔子变成一只鸡总的腿数就减少两只,需要转化14(4-2)=7(只)那么鸡就有7只,兔子就有10-7=3(只)。

导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给希望同学们能够认真做题哦! 20、明明给在外地工作的妈妈发一封信,要贴2角钱的邮票。他手中的邮票有1张1角的、2张8分的、5张4分的和2张1分的。那么明明要把这些邮票经过搭配选出2角钱的邮票来,一共有多少种不同的搭配的方法。

答案与解析:明明手中的邮票可以按下面的几种搭配方法,得到2角钱的邮票。

1张1角的、1张8分的、2张1分的,合起来是2角。

1张1角的、2张 4分的、2张 1分的,合起来也是2角。

2张8分的、1张4分的,合起来也是2角。

1张8分的、3张4分的,合起来也是2角。

5张4分的也是2角。

由以上分析得出:贴2角钱邮票,共有5种不同的搭配方法。

第十一课时

21、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 答案与解析:

当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。所以,原有树苗=200-8=192棵。有同学12+8=20名,原有树苗20*10-8=192棵。

22、\"六一\"儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 答案与解析:

花球原价1元钱2个,白球原价1元钱3个。即花球原价10元钱20个,白球原价10元钱30个。那么,同样买花球和白球各30个,花球要比白球多花10/2=5元,共需要30/2+30/3=25元。现在两种球的售价都是2元钱5个,花球和白球各买30个需要(30/5)*2*2=24元,说明花球和白球各买30个能省下25-24=1元。现在共省了4元,说明花球和白球各有30*4=120个,共买了120*2=240个。

花球和白球各买30个时,可比原来省下=(30/2+30/3)-(30/5)*2*2=1元, 省下4元,花球和白球各买30*4=120个。所以,小明共买了240个球。

第十二课时

23、红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,他们戴的帽子一个是红的,一个是黄的,一个是蓝的。只知道红红没有戴黄帽子。聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子? 答案与解析:

先确定聪聪既不戴黄帽子,也不戴蓝帽子,那么他戴的只能是红帽子,红红没有戴黄帽子,而红帽子已经是聪聪戴的,因此红红戴的是蓝帽子,最后剩下黄帽子肯定是颖颖戴的。

24、一条大河上游与下游的两个码头相距240千米,一艘航船顺流而下的速度为每小时航行30千米,逆流而上的速度为每小时航行20千米。那么这艘船在两码头之间往返一次的平均速度是多大? 答案与解析:航行中的速度有两种,然而所求的平均速度并非是这两种速度之和除以2。

按往返一次期间的平均速度,就要分别计算总航程与经历的总时间,然后按平均速度的意义求出答案来。

解 总航程 240×2=480(千米)

总时间 240÷30+240÷20

=8+12

=20(小时)

平均速度 480÷20=24(千米)

答 往返一次的平均速度为每小时航行24千米。

第十三课时

25、一个三位数,它的个位上的数是百位上的数的3 倍,它的十位上的数是百位上的数的 2倍.这个数可能是多少? 答案与解析:

如果百位是 1,个位上的数是百位上的数的 3倍,个位就是3 ;十位上的数是百位上的数的 2倍,十位就是 2,这个数就是 123.

如果百位是2 ,个位上的数是百位上的数的3 倍,个位就是6 ;十位上的数是百位上的数的2 倍,十位就是4 ,这个数就是246 .

如果百位是3 ,个位上的数是百位上的数的 3倍,个位就是9 ;十位上的数是百位上的数的 2倍,十位就是6 ,这个数就是369 .

这样的数有3 个,分别是1

23、2

46、369

26、某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士? 答案与解析:

后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)÷2=9(人),因此可以求出总人数:9×9=81(人).

第十四课时

导语:多做奥数题有助于我们数学思维的拓展,也能让我们的数学成绩得到提升,所以同学们要勤加练习哦!现在就开始做奥数老师给我们带来的这道题吧!

27、小明、小华和小光三个人都是少先队的干部。他们中一个是大队长,一个是中队长,一个是小队长。在一次体育比赛中,他们的一百米赛跑的结果是:

(1)小光比大队长的成绩好;

(2)小明和中队长的成绩不相同;

(3)中队长比小华的成绩差。

根据以上情况,你能知道小明、小华、小光三个人中,谁是大队长吗? 答案与解析:

根据(2)小明和中队长的成绩不相同,(3)中队长比小华成绩差,我们可以知道,小明和小华都不是中队长,那小光一定是中队长。

又根据(1)小光比大队长成绩好,也就是中队长比大队长成绩好。还根据(3)中队长比小华成绩差,我们可以知道,小华不是大队长,那么小华一定是小队长,当然小明就是大队长了。

28、小花猫钓到了鲤鱼、草鱼、鲫鱼,三种鱼一共12条,放在小桶里往家走。路上遇到小白猫。小花猫问小白猫:“你最爱吃哪种鱼?”小白猫说:“那当然是鲤鱼了。”小花猫说:“好,你只要从我的桶里,随便拿出3条鱼来,一定会有你最爱吃的鲤鱼。不过,你可要先告诉我,我钓到了几条鲤鱼?”这下可难住小白猫了。小花猫钓了几条鲤鱼呢?不过聪明的小白猫,稍稍动了动脑筋,就说出来了。小白猫到底怎样想的呢? 答案与解析:

小花猫一共钓了12条鱼,只要知道草鱼、鲫鱼各几条,那么要求出钓了几条鲤鱼就容易了,难就难在不知道有几条草鱼,也不知道有几条鲫鱼。别忙,想想小花猫还说了什么话?对!小花猫说,随便拿出三条鱼,就一定会有鲤鱼。解答这题就从这里突破。

小花猫的话可以这样理解:至少有一条鲤鱼,含意是也可能有2条鲤鱼,或者3条都是鲤鱼。这就是说,小花猫钓到的三种鱼中,草鱼、鲫鱼是各有1条,其余的12-1-1=10条都是鲤鱼。

要是钓到的草鱼和鲫鱼合起来是3条或是比3条多行吗?不行!要是合起来是3条或是比3条多,那么随便拿3条就不一定有鲤鱼了。你说对吗?

29、把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段? 答案:对折一次: 2*2-1=3段

对折二次:4*2-3=5段

对折三次:8*2-5=11段

绳子被折成8股,因此相当于未对折时被剪8刀,应该成9段吧

一方面三折以后成8股,中间一剪成16;

另一方面,第一折产生1个弯头,第二折产生2个弯头,第三折产生4个弯头;

最后剪成:16-1-2-4=9根。

第十五课时

30、用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字 答案:312132 231213

31、树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原 来每棵树上各落多少只鸟? 答案与解析:

分析 倒推时以\"三棵树上鸟的只数相等\"入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16-6=10(只).同理,第二棵树上原有鸟16+6-8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.

解:①现在三棵树上各有鸟多少只?48÷3=16(只)

②第一棵树上原有鸟只数.16+8=24(只)

③第二棵树上原有鸟只数.16+6-8=14(只)

④第三棵树上原有鸟只数.16-6=10(只)

答:第

一、

二、三棵树上原来各落鸟24只、14只和10只

第十六课时

32、一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空? 答案与解析:

分析:要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

解:①进水速度:480÷8=60(吨/小时)

②排水速度:480÷6=80(吨/小时)

③排空全池水所需的时间:480÷(80-60)=24(小时)

列综合算式:

480÷(480÷6-480÷8)=24(小时)

答:两管齐开需24小时把满池水排空。

33、

妈妈上楼,从1楼走到3楼需要走40级台阶,如果各层楼之间的台阶数相同,那么妈妈从第1层走到第6层需要走多少级台阶? 答案与解析: 要求妈妈从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。

从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有40÷2=20(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯.

解:每一层楼梯有:40÷(3-1)=20(级台阶)

妈妈从1层走到6层需要走:20×(6-1)=100(级)台阶。

答:妈妈从第1层走到第6层需要走100级台

第十七课时

导语:今天奥数老师为同学们带来了一道有趣的试题,希望同学们在找到乐趣的同时也能提升我们的数学能力,同学们加油吧!

34、今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币与真币和重量不同。现需弄清楚伪币究竟比真币轻,还是比真币重,但只有一架没有砝码的天平。那么怎样利用这架天平称两次,来达到目的? 答案与解析:

答案:分成50、50、1三堆:

第一次称两个50,如果平了,第二次从这100个任意拿1个(当然是真的)与第三堆的1个称,自然会出结果;

第一次称两个50不平是正常的,第二次我们把其中的一堆(或重的或轻的都行)分成

25、

25、称第二次:

1、把轻的分成

25、25,如果平了,说明那堆重的有假,当然假的是超重;如果不平,说明这50个轻的有假,假的是轻了;

2、把重的分成

25、25,道理同上。

所以两次可以发现轻重,但是找不出哪个是假的。

35、小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 答案与解析:假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是

50×10÷(75-50)=20(分钟)·

因此,小张走的距离是

75×20=1500(米).

答:从家到公园的距离是1500米.

还有一种不少人采用的方法

第20篇:小学奥数教案——循环小数

小学奥数教案---循环小数

一 本讲学习目标

1、掌握循环小数化分数的法则,还要掌握该法则的推导方法——错位相减法;

2、会进行分数与循环小数的互化;

3、掌握分数与循环小数的混合计算

二 概念解析

循环小数可分为有限循环小数,如:1.123123123(不可添加省略号)和无限循环小数,如:1.123123123……(有省略号)。前者是有限小数,后者是无限小数。

一、把循环小数的小数部分化成分数的规则

①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

二、分数转化成循环小数的判断方法:

①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

三 例题讲解

1

2

3

纯循环小数化分数

从小数点后面第一位就循环的小数叫做纯循环小数。 例 把纯循环小数化分数:

从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。9的个数与循环节的位数相同。能约分的要约分。

混循环小数化分数

不是从小数点后第一位就循环的小数叫混循环小数。 例 把混循环小数化分数。

(2)先看小数部分0.353

4

由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.

循环小数的四则运算

循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。

例1 计算下面各题:

解:先把循环小数化成分数后再计算。

的运算时,错写作3.57,例2 在计算一个正数乘以3.57某同学误将3.57结果与正确答案相差1.4.则正确的乘积结果是______.

解:设这个正数为x,依题意,得 x3.571.4. 3.573因为3.57575523, 90905257x3x1.4. 90100所以上述方程可化为3解得x180.

所以正确的乘积结果应为

180322180644. 3.5790

例3 计算下面各题。

5

分析与解:(1)把循环小数化成分数,再按分数计算。

(2)可根据乘法分配律把1.25提出,再计算。

(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。

6

数学奥数教案模板
《数学奥数教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档