人人范文网 证明

勾股定理证明方法(精选多篇)

发布时间:2020-07-14 08:33:23 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:勾股定理证明方法

勾股定理证明方法

勾股定理的种证明方法(部分)

【证法1】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点p.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,

∴∠EGF=∠BED,

∵∠EGF+∠GEF=90°,

∴∠BED+∠GEF=90°,

∴∠BEG=180º―90º=90º.又∵AB=BE=EG=GA=c,

∴ABEG是一个边长为c的正方形.

∴∠ABC+∠CBE=90º.

∵RtΔABC≌RtΔEBD,

∴∠ABC=∠EBD.

∴∠EBD+∠CBE=90º.

即∠CBD=90º.

又∵∠BDE=90º,∠BCp=90º,

BC=BD=a.

∴BDpC是一个边长为a的正方形.

同理,HpFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

,

∴.

【证法2】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作Qp‖BC,交AC于点p.过点B作BM⊥pQ,垂足为M;再过点

F作FN⊥pQ,垂足为N.

∵∠BCA=90º,Qp‖BC,

∴∠MpC=90º,

∵BM⊥pQ,

∴∠BMp=90º,

∴BCpM是一个矩形,即∠MBC=90º.

∵∠QBM+∠MBA=∠QBA=90º,

∠ABC+∠MBA=∠MBC=90º,

∴∠QBM=∠ABC,

又∵∠BMp=90º,∠BCA=90º,BQ=BA=c,

∴RtΔBMQ≌RtΔBCA.

同理可证RtΔQNF≌RtΔAEF.

【证法3】(赵浩杰证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB=∠CFD=90º,

∴RtΔCJB≌RtΔCFD,

同理,RtΔABG≌RtΔADE,

∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

∴∠ABG=∠BCJ,

∵∠BCJ+∠CBJ=90º,

∴∠ABG+∠CBJ=90º,

∵∠ABC=90º,

∴G,B,I,J在同一直线上,

【证法4】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD.过C作CL⊥DE,

交AB于点M,交DE于点

L.∵AF=AC,AB=AD,

∠FAB=∠GAD,

∴ΔFAB≌ΔGAD,

∵ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴矩形ADLM的面积=.

同理可证,矩形MLEB的面积=.

∵正方形ADEB的面积

=矩形ADLM的面积+矩形MLEB的面积

∴,即.

勾股定理的别名

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。

证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

推荐第2篇:勾股定理证明方法

勾股定理证明方法

勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。

中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:\"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?\" 商高回答说:\"数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩\'得到的一条直角边‘勾\'等于3,另一条直角边’股\'等于4的时候,那么它的斜边\'弦\'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。\" 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。

在《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。

中国古代的数学家们最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。 赵爽创制了一幅“勾股圆方图”,

用形数结合得到方法,给出了勾股定理的详细证明。

上中间的那个小正方形组成的。

每个直角三角形的面积为ab/2;

中间的小正方形边长为b-a,则面积为(b-a)2。

于是便可得如下的式子:

4×(ab/2)+(b-a)2=c

2化简后便可得: a2+b2=c2

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加

刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入)

结果刚好填满,完全用图解法就解决了问题。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的证法。 1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法

古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

推荐第3篇:勾股定理的证明方法

勾股定理的证明方法

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

的平方=3的平方+4的平方

在图一中,DABC为一直角三角形,其中ÐA为直角。我们在边AB、BC和AC之上分别画上三个正方形ABFG、BCED和ACKH。过A点画一直线AL使其垂直於DE并交DE於L,交BC於M。不难证明,DFBC全等於DABD(S.A.S.)。所以正方形ABFG的面积=2´DFBC的面积=2´DABD的面积=长方形BMLD的面积。类似地,正方形ACKH的面积=长方形MCEL的面积。即正方形BCED的面积=正方形ABFG的面积+正方形ACKH的面积,亦即是AB2+AC2=BC2。由此证实了勾股定理。

这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以ML将正方形分成BMLD和MCEL的两个部分!

这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。

欧几里得(EuclidofAlexandria)约生於公元前325年,卒於约公元前265年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题47,就记载著以上的一个对勾股定理的证明。

图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为c,其余两边的长度为a和b,则由於大正方形的面积应该等於4个直角三角形和中间浅黄色正方形的面积之和,所以我们有

(a+b)2=4(1/2ab)+c2

展开得a2+2ab+b2=2ab+c2

化简得a2+b2=c2

由此得知勾股定理成立。

推荐第4篇:勾股定理五种证明方法

勾股定理五种证明方法

【证法1】

做8

个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即

11a2b24abc24ab22, 整理得a2b2c2.

证法2】(邹元治证明)

以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角

1ab2形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF,∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.

∴ 四边形EFGH是一个边长为c的

正方形.它的面积等于c2.∵ RtΔGDH ≌ RtΔHAE,

∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,

∴ ∠EHA + ∠GHD = 90º.

又∵ ∠GHE = 90º,

∴ ∠DHA = 90º+ 90º= 180º.

2ab∴ ABCD是一个边长为a + b的正方形,它的面积等于.

∴ ab214abc

22222.∴ abc.

【证法3】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为

c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90º.∵ RtΔABC ≌ RtΔEBD,

∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º, ABC = BD = a.

∴ BDPC是一个边长为a的正方形.

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

11a2b2S2ab,c2S2ab22,

222∴abc.

【证法4】(1876年美国总统Garfield证明)

以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角1ab2形的面积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,

∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形, 12c2它的面积等于.

又∵ ∠DAE = 90º, ∠EBC = 90º,

∴ AD∥BC.

1ab

2∴ ABCD是一个直角梯形,它的面积等于2.

1ab221ab1c2

22.∴ 2

222∴ abc.

【证法5】(辛卜松证明)

DD

设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD

222abab2ab;把正方形ABCD划分成上方右图所示的几个的面积为

部分,则正方形ABCD的面积为

222∴ab2ab2abc,

222∴abc.ab214abc222 =2abc.

初二(1)

推荐第5篇:勾股定理的证明方法

这个直角梯形是由2个直角边分别为、,斜边为 的直角

三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式

化简得

,。

推荐第6篇:勾股定理的证明方法

勾股定理的证明方法

绪论

勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。

第一节 勾股定理的基本内容

文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。 数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2 事实上,它是余弦定理之一种特殊形式。

第二节勾股定理的证明

2.1欧洲

在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。

欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。

毕达哥拉斯的证明方法(相传):

一说采用拼图法,一说采用定理法。

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像左图那样拼成两个正方形。

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。

a2+b2+4×1/2ab = c2+4×1/2ab ,整理即可得到。

定理法就是几何原本当中的证法:

设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

2.2 中国

《周髀算经》、《九章算术》当中都有相关问题的记载。

周髀算经的证明方法:

“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五,两矩共长二十有五,是谓积矩。”——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。验算勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。 赵爽弦图或许是中国人最著名的一种证法。

赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则

面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2 = c2;

化简后便可得:

a2 + b2= c2

亦即:

c=√(a2 + b2)

可见,中国古人主要采取拼图法进行证明。后来美国总统加菲尔德也曾采用拼图法,利用面积巧妙的证明了勾股定理,他用了两个全等的直角三角形拼成一个梯形,利用面积法进行证明,非常巧妙。

2.3 其他方法

最快:射影定理法,利用相似形来证明。

面积思想:利用三角形五心的性质,利用面积来证明。

综上所述,勾股定理的证明是人类智慧的结晶。

推荐第7篇:勾股定理的证明方法

勾股定理的证明方法

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式

,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为

的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)

这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为

的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式

,化简得。

勾股定理的证明

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

1.中国方法

画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是

a2+b2=c2。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法

直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA’ ≌△AA’’ C。

过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

于是,

S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等;

⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中穆畚摹豆垂稍卜酵甲ⅰ分械闹っ鳌2捎玫氖歉畈狗ǎ?

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)2 = (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD • BA, ①

由△CAD∽△BAC可得AC2=AD • AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等。

【附录】

一、【《周髀算经》简介】

《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。

《周髀算经》使用了相当繁复的分数算法和开平方法。

二、【伽菲尔德证明勾股定理的故事】

1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。

于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。

勾股定理的证明(因为图形不能显示,请详见www.daodoc.com的留言).

据不完全统计,勾股定理的证明方法已经多达400多种了。下面我便向大家介绍几种十分著名的证明方法。

【证法1】(赵爽证明)

以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 .把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB.

∵ ∠HAD + ∠HAD = 90º,

∴ ∠EAB + ∠HAD = 90º,

∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.

∴ EFGH是一个边长为b―a的正方形,它的面积等于 . ∴

∴ .

【证法2】(课本的证明)

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即

, 整理得 .

【证法3】(1876年美国总统Garfield证明)

以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 .把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.

∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.

∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于 . 又∵ ∠DAE = 90º, ∠EBC = 90º,

∴ AD‖BC.∴ ABCD是一个直角梯形,它的面积等于

∴ .∴ .

【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。”证法。

【证法4】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.

∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,

∵ ΔFAB的面积等于 ,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 = .同理可证,矩形MLEB的面积 = .

∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积

∴ ,即 .

【证法5】(利用相似三角形性质证明)

如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.

在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,

∴ ΔADC ∽ ΔACB.∴AD∶AC = AC ∶AB,即 . 同理可证,ΔCDB ∽ ΔACB,从而有 . ∴ ,即 【证法6】(邹元治证明)

以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 .把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.

∴ 四边形EFGH是一个边长为c的正方形.它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.

∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ .∴ .

【证法7】(利用切割线定理证明)

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c.如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a.因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线.由切割线定理,得

= = = ,

即 ,∴ .

【证法8】(作直角三角形的内切圆证明)

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c.作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r. ∵ AE = AF,BF = BD,CD = CE,

= = r + r = 2r,即 ,

∴ .∴ ,即 ,

∵ ,∴ ,

又∵ = = = = ,

∴ ,∴ ,

∴ , ∴ .

参考资料:根据网络搜索 1 | 评论

10654979326356913b12c736166696esafin1stsafin1st00根据网络搜索0426199173030626584 2007-7-13 10:27 宇宙大爆炸2号 魅力无比的定理证明

——勾股定理的证明

| 二级 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

1.中国方法

画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是

a2+b2=c2。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法

直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA’ ≌△AA’’ C。

过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

于是,

S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)2 = (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ②

比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD • BA, ①

由△CAD∽△BAC可得AC2=AD • AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

推荐第8篇:勾股定理的证明方法探究

勾股定理的证明方法

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面乃几千年来前人所发现的证明方法。

【证法1】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.

∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90°,

∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180°―90°= 90°

又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形.

∴ ∠ABC + ∠CBE = 90°

∵ RtΔABC ≌ RtΔEBD,

∴ ∠ABC = ∠EBD.

∴ ∠EBD + ∠CBE = 90°

即 ∠CBD= 90°

又∵ ∠BDE = 90°,∠BCP = 90°,

BC = BD = a.

∴ BDPC是一个边长为a的正方形.

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

,

∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2

【证法2】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵ ∠BCA = 90°,QP∥BC,

∴ ∠MPC = 90°,

∵ BM⊥PQ,

∴ ∠BMP = 90°,

∴ BCPM是一个矩形,即∠MBC = 90°.

∵ ∠QBM + ∠MBA = ∠QBA = °,

∠ABC + ∠MBA = ∠MBC = 90°,

∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

∴ RtΔBMQ ≌ RtΔBCA.

同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2

【证法3】(赵浩杰证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90°,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90°,

∴∠ABG +∠CBJ= 90°,

∵∠ABC= 90°,

∴G,B,I,J在同一直线上,

所以a^2+b^2=c^2

【证法4】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD.过C作CL⊥DE,

交AB于点M,交DE于点L.

∵ AF = AC,AB = AD,

∠FAB = ∠GAD,

∴ ΔFAB ≌ ΔGAD,

∵ ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴ 矩形ADLM的面积 =.

同理可证,矩形MLEB的面积 =.

∵ 正方形ADEB的面积

= 矩形ADLM的面积 + 矩形MLEB的面积

∴ 即a的平方+b的平方=c的平方

【证法5】欧几里得的证法

《几何原本》中的证明

在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线

把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

其证明如下:

设△ABC为一直角三角形,

其直角为CAB

其边为BC、AB、和CA,

依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线。

此线将分别与BC和DE直角相交于K、L。

分别连接CF、AD,形成两个三角形BCF、BDA。

∠CAB和∠BAG都是直角,

因此C、A 和 G 都是线性对应的,

同理可证B、A和H。

∠CBD和∠FBA皆为直角,

所以∠ABD等于∠FBC。

因为 AB 和 BD 分别等于 FB 和 BC,

所以△ABD 必须相等于△FBC。

因为 A 与 K 和 L是线性对应的,

所以四方形 BDLK 必须二倍面积于△ABD。

因为C、A和G有共同线性

,所以正方形BAGF必须二倍面积于△FBC。

因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。

同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。

把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC

由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC

由于CBDE是个正方形,

因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的

推荐第9篇:勾股定理的8种证明方法

勾股定理的8种证明方法

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

证法

1作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过点C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90°,

∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180°―90°= 90°

又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90°∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90°即 ∠CBD= 90°又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则

a^2+b^2=c^

2证法2

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90°,QP∥BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^

2证法

3作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再作一个边长为c的正方形.把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90°,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE∴∠ABG = ∠BCJ,∵∠BCJ +∠CBJ= 90°,∴∠ABG +∠CBJ= 90°,∵∠ABC= 90°,∴G,B,I,J在同一直线上,a^2+b^2=c^

2证法

4作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、

C、B三点在一条直线上,连结

BF、CD.过C作CL⊥DE,

交AB于点M,交DE于点L.∵ AF = AC,AB = AD,

∠FAB = ∠GAD,

∴ ΔFAB ≌ ΔGAD,

∵ ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ 即a^2+b^2=c^

2证法5(欧几里得的证法)

《几何原本》中的证明

在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于

其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

其证明如下:

设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为

C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的

证法6(欧几里德(Euclid)射影定理证法)

如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:

1)(BD)^2;=AD·DC, (2)(AB)^2;=AD·AC , (3)(BC)^2;=CD·AC 。由公式(2)+(3)得:

(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,

1即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。

证法七(赵爽弦图)

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c

2化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。

2.陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系.刊於《汉学研究》, 1989年第7卷第1期, 255-281页。

3.李国伟: 论「周髀算经」“商高曰数之法出于圆方”章.刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。

4.李继闵: 商高定理辨证.刊於《自然科学史研究》,1993年第12卷第1期,29-41页 。

5.曲安京: 商高、赵爽与刘徽关於勾股定理的证明.刊於《数学传播》20卷, 台湾, 1996年9月第3期, 20-27页

证法8(达芬奇的证法)

达芬奇的证法

三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A\'和角D\'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A\'和角D\'都是直角。证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF^2+OE^2+OF·OE 第三张纸片中多边形A\'B\'C\'D\'E\'F\'的面积S2=S正方形B\'C\'E\'F\'+2△C\'D\'E\'=E\'F\'^2+C\'D\'·D\'E\'因为S1=S2 所以OF^2+OE^2+OF·OE=E\'F\'^2+C\'D\'·D\'E\'又因为C\'D\'=CD=OE,D\'E\'=AF=OF所以OF·OE=C\'D\'·D\'E\' 则OF^2+OE^2=E\'F\'^2因为E\'F\'=EF所以OF^2+OE^2=EF^2勾股定理得证

推荐第10篇:勾股定理的证明方法探究

《勾股定理的证明方法探究》

勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a^2+b^2=c^2。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法:直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA’ ≌△AA\'C 。

过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方

形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等;

⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)

2= (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED

= ab+ ba+ c2

= (2ab+c2)。 ②

比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ? BA, ①

由△CAD∽△BAC可得AC2=AD ? AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

第11篇:勾股定理证明 中外方法鉴赏

勾股定理证明

勾股定理是几何中一个非常重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有500余种.其中我国古代的平民数学家赵爽的证法与美国第二十任总统伽菲尔德的证法在数学史上被传为佳话。

一、“弦图”证法

赵爽又名婴,字君卿,三国时吴国人.由于史书上没有他的传记,所以他的生卒年代和生平事迹已不可详考了.他在读了《周髀算经》后,深为此书的数学内容所折服,又恐怕后人不能彻底理解其中的深奥道理,于是就动手对它作了全面的注释和阐述.其中给出的《勾股圆方图》和《勾股圆方图注》,便是对勾股定理的一个严格而又巧妙的证明.

《勾股圆方图注》一开首就说:“勾股各自乘,并之

为弦实.开方除之,即弦.”这实际上给出了如下的两个

公式:

(1)勾×勾+股×股=弦×弦(a2+b2=c2);

(2)弦=勾2股2(c=a2b2);

接着,赵爽用一个“弦图”(见右图)对以上公式进行了证明。

整体看:四边形ABDE是一个 以直角三角形的弦(c)为边长的正方形,其面积为c2;

局部看:四边形ABDE是由四个直角三角形和一个正方形构成,其面积可

1表示为4×ab+(b-a)2.

21因此4× ab+(b-a)2=c2,化简便得:a2+b2=c2。

2二、总统证法

1876年一个周末的傍晚,在美国首都华盛顿的郊外,当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,由于好奇,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了.

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.

11他是这样分析的,整体看:梯形ABCD的面积= (a+b)(a+b)= (a+2

21212b)=a+ab+ b; 222

局部看:梯形ABCD的面积=△AED的面积+△BEC

1112的面积+△DEC的面积=ab+ ab+ c.222

比较上面两式便可得到 a+b=c.1876年4月1日,伽菲尔德在《新英格兰教育日志》

上发表了他对勾股定理的这一证法.

1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。 222b

第12篇:勾股定理的多种证明方法

勾股定理的多种证明方法

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

证法

1作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵ ∠BCA = 90°,QP∥BC,

∴ ∠MPC = 90°,

∵ BM⊥PQ,

∴ ∠BMP = 90°,

∴ BCPM是一个矩形,即∠MBC = 90°.

∵ ∠QBM + ∠MBA = ∠QBA = 90°,

∠ABC + ∠MBA = ∠MBC = 90°,

∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

∴ RtΔBMQ ≌ RtΔBCA.

同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^

2证法2

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再作一个边长为c的正方形.把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90°,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90°,

∴∠ABG +∠CBJ= 90°,

∵∠ABC= 90°,

∴G,B,I,J在同一直线上,

a^2+b^2=c^

2证法3(欧几里得的证法)

《几何原本》中的证明

在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在正式的证明中,我们需要四个辅助定理如下:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理

3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

其证明如下:

设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的证法4(欧几里德(Euclid)射影定理证法)

如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:

1)(BD)^2;=AD·DC, (2)(AB)^2;=AD·AC , (3)(BC)^2;=CD·AC 。由公式(2)+(3)得:

(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,

1即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。

证法5(赵爽弦图)

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c

2化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。

2.陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系.刊於《汉学研究》, 1989年第7卷第1期, 255-281页。

3.李国伟: 论「周髀算经」“商高曰数之法出于圆方”章.刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。

4.李继闵: 商高定理辨证.刊於《自然科学史研究》,1993年第12卷第1期,29-41页 。

5.曲安京: 商高、赵爽与刘徽关於勾股定理的证明.刊於《数学传播》20卷, 台湾, 1996年9月第3期, 20-27页

证法6(达芬奇的证法)

达芬奇的证法

三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A\'和角D\'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以

∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A\'和角D\'都是直角。证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形

CDEO+2S△BCO=OF^2+OE^2+OF·OE 第三张纸片中多边形A\'B\'C\'D\'E\'F\'的面积S2=S正方形B\'C\'E\'F\'+2△C\'D\'E\'=E\'F\'^2+C\'D\'·D\'E\'因为S1=S2 所以

OF^2+OE^2+OF·OE=E\'F\'^2+C\'D\'·D\'E\'又因为C\'D\'=CD=OE,D\'E\'=AF=OF所以

OF·OE=C\'D\'·D\'E\' 则OF^2+OE^2=E\'F\'^2因为E\'F\'=EF所以OF^2+OE^2=EF^2勾股定理得证

第13篇:勾股定理的证明方法(全文)

勾股定理的证明方法

勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上 一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜, 其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至 有国家总统.也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人 炒作,反复被人论证.1940 年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑, 其中收集了 367 种不同的证明方法.实际上还不止于此,有资料表明,关于勾股定理的证 明方法已有 500 余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直 角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式

,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可

的正方形“小洞”。

以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)

这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为

的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式

,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

第14篇:初二上勾股定理证明方法

勾股定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等,所以可以列出等式化简得。

,在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法

边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国总统加利菲尔德的证法

这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为

的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式

,化简得

。 ,化简得这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话

第15篇:勾股定理证明

勾股定理证明

直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

以下即为一种证明方法:

如图,这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。

∵△ABE+△AED+△CED=梯形ABCD

∴(ab+ab+c²)÷2=(a+b)(a+b)/2 ∴

∴c²=a²+b²,即在直角三角形中,斜边长的平方等于两直角边的平方和

初二十四班秦煜暄

第16篇:勾股定理证明

勾股定理证明

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦

2亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统

一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

第17篇:勾股定理证明

勾股定理的历史及证明

勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。

那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。(下图为欧几里得和他的证明图)

中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“ 数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形„矩\'得到的一条直角边„勾\'等于3,另一条直角边‟股\'等于4的时候,那么它的斜边\'弦\'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。

在稍后一点的《九章算术》一书中(约在公元50至100年间),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。中国古代数学家

们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

【证法】(辛卜松证明)

D

D

图一图二

设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.

把正方形ABCD划分成图一所示的几个部分,则正方形ABCD

2aba2b22ab; 的面积为

把正方形ABCD划分成 图二所示的几个部分,则正方形ABCD的面积为 =2abc2.

∴a2b22ab2abc2,

∴a2b2c2.

ab241abc22

第18篇:证明勾股定理

勾股定理的应用

一、引言

七年级上册的数学有讲到如何精确地画出根号2。老师说,要画一个2×2的,边长都为1的方格。然后在里面再做出一个菱形(表示方格面积的一半)。这个菱形的边长就是根号2。当时有人就埋怨方法的麻烦了,老师就回答用勾股定理会简便许多。还有印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”用勾股定理就可以很简便的解出。就勾股定理,我查阅了一些资料,弄清楚了它的意义以及它的2种证明方法。

二、提出问题

1、什么是勾股定理?

2、怎么证明勾股定理?

三、问题求解 (1)中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

勾股定理用文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。勾股定理示意图

用数学式表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么

(2)针对它的证明方法,我查阅了一些相关的资料,通过我自己的整理和理解,得出了2种证明方法。

方法一:(课本的证明)

做8个全部相同的直角三角形,设它们的直角边长分别为a和b,斜边长为c,再做3个边长分别为a,b

c

的正方形,把它们拼成两个大正方形,如下图所示:

由上图可知,两个大正方形的边长都是a加b,所以面积是相等的。用方程表

1示它们的面积关系,得:(a+b)²=c²+4× ab

2(a+b)(a+b)=c²+2ab

a(a+b)+b(a+b)=c²+2ab

a²+ab+ab+b²=c²+2ab

a²+b²+2ab=c²+2ab

a²+b²=c²

方法二:(利用相似三角形性质证明)

在直角三角形ABC中,设直角边AC和BC的长度分别为a和b,斜边AB的长度为c。过点C做AB的垂线CD,垂足是D。如图所示:

在直角三角形ABC与直角三角形ACD中,

因为角ADC=角ACB=90度

角CAD=角BAC,

所以它们互为相似的直角三角形。

因为它们互为相似的直角三角形,所以它们在各个线

段上的三角形边长的比值都是相同的。即ADAC =ACAB

对角相乘得AC²=AD·AB,

同理可证,右边的直角三角形BCD与直角三角形ABC也是互为相似的直角三角形的。从而有了BCAB =BDBC

对角相乘得 BC²=BD·AB,

因为(AC²=AD·AB)=(BC²=BD·AB)

所以AC²+BC²= AD·AB+BD·AB

AC²+BC²=(AD+BD)·AB

AC²+BC²=AB·AB

AC²+BC²=AB²

即a²+b²=c².四、总结与感想 随着数学水平的提高,很多数学的定理和公式都被人们一一推敲了出来,

勾股定理就是其中的一个重大的发现。勾股定理是人们认识宇宙中形规律的自然起点,无论在东方还是西方文明起源过程中,都有着很多动人的故事。勾股定理在几何学中的实际应用非常广泛,比如用它就可以很方便地把引言中的问题解决掉。答案是3.75尺。从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数,就如引言中的画根号2一样。

我想说的是,虽然勾股定理看似简单,只是一句话,但是它的意义以及作用是无穷大的。认识和掌握勾股定理对初一的无理数有着一定的帮助。我作为一个初一的学生,能力毕竟有限,只能把勾股定理推敲到这里。以后我一定会再接再厉,玩转勾股定理!

2013.11

第19篇:勾股定理的证明方法研究性学习

“勾股定理的证明方法研究性学习”学习小组评

价量规

模块6 作业模板

作者姓名 主题单元名称

尹勇 勾股定理

学科

数学

年级

八年级

单元评价方案的思维导图(说明:将单元评价方案的思维导图导出为jpeg文件粘贴在下面框内)。

评价量规(说明:将设计的针对主题单元中某一评价要素的评价量规粘贴在下面)

“勾股定理的证明方法研究性学习”学习小组评价量规

第20篇:几种简单证明勾股定理的方法

几种简单证明勾股定理的方法

——拼图法、定理法 江苏省泗阳县李口中学沈正中

据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学

的神奇和妙趣吧!

一、拼图法证明(举例12种)

拼法一:用四个相同的直角三角形(直角边为a、b,斜边为c)按图2拼法。

问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么?

22分析图2:S正方形=(a+b)= c2 + 4×ab

2化简可得:a2+b2 = c2

拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像左

图那样拼成两个正方形。

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即

a2+b2+4×ab = c2+4×ab整理得a2+b2 = c2 2

2拼法三:用四个相同的直角三角形(直角边为a、b,斜边为c)按图3拼法。

问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a2+b2=c2吗?

3图

4分析图3:S正方形= c2 =(a-b)2+ 4×ab 2化简可得:a2+b2 = c

2观察图

2、图3与图4的关系,并用一句话表示你的观点。

图4为图2与图3面积之和。 拼法四:用两个完全相同的直角三角形(直角边为a、

b,斜边为c)按图5拼法。

背景:在1876年一个周末的傍晚,在美国首都华盛

顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就

B

E

C

是当时美国俄亥俄州共和党议员伽菲尔德(Garfield).他发现附近的一个小石凳上,有两个小孩正在谈论着什么.由于好奇心的驱使,伽菲尔德向两个小孩走去,想搞清楚两个小

孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

问题: 图5就是伽菲尔德总统的拼法,你知道他是如何验证的吗?你能用两种方法表示图5的面积吗?

伽菲尔德总统是这样分析的: S梯形ABCD=(a+b)2

2S梯形ABCD=S△ABE+ S△ECD+ S△AED=ab+ab+c2 222则有:(a+b)2=ab+ab+c22222化简可得:a2+b2 = c2

比较图5与图2,你有什么发现? 图5面积为图2之半。

拼法五:用四个相同的直角三角形(直角边为a、b,斜边为c),拼成图6,得边长分别为a、b、c正方形。

问题:观察图6,你能发现边长分别为a、b、c的正方形吗?你能通验证到:a2+b2 = c2吗?

6分析:其实,图6可以转化为下面两图: 图a的面积可表示为:a2+b2+2×ab2图b的面积可表示为:c2+2×ab 2比较a、b两图,你发现了什么?

a

图b

a2+b2+2×ab = c+2×ab

2

2化简可得:a2+b2 = c2

D

拼法六:设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD把正方形ABCD划分成左图所示的几个部

分,则该正方形ABCD的面

积为(a+b)=a2+b2+2ab;

再把正方形ABCD划分成右

图所示的几个部分,则正方形ABCD的面积为(a+b)=c2+4×ab

2由两正方形面积相等得a2+b2+2ab=c2+4×ab整理得a2+b2 = c2 2

拼法七:用四个相同的直角三角形(直角边为a、b,斜边为c)拼成图7。

问题:你能把图7转化为图c吗?通过位置变换,你发现了什么?你能发现边长分别为a、b、c的正方

图7

图c

形吗?能否验证到:a2+b2 = c2呢? 分析:图7的面积可表示为:c2+4×ab

2图c的面积可表示为:a2+b2+4×ab 2比较图c、图7,你发现了什么?

a2+b2+4×ab = c2+4×ab化简可得:a2+b2 = c2 2

2拼法

八、

九、

十、十

一、十二:制作一个五巧

板,如图8。

方法:先作一个直角三角形,直角边为a、b,斜边为c,以斜边为边长向内作正方形,并把正方形按图中实线分割为五个部分,这就是一个五巧板。

问题:运用五巧板,拼出图d、图e、图f、图

图8

a2+b2 = c2呢?你还有其它的拼法吗?

图d

图e

g,并仔细观察、比较,你发现了什么?能否验证到:

图g

图f

二、定理法证明(举例3种)

利用切割线定理证明

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c.如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a.因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线.由切割线定理,得

AC2=AE·AD=(AB+BE) (AB-BD)=(c+a)(c-a)=c2-a2从而可得a2+b2 = c

2利用托勒密定理证明

在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图).过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆.根据托勒密定理,圆内

接四边形对角线的乘积等于两对边乘积之和,有

AB·DC=AD·BC+AC·BD从而可得a2+b2 = c2

利用射影定理证明

如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.根据射影定理,得

AC2=AD·AB,BC2=BD·BA

即AC2+BC2=AD·AB+BD·BA=AB(AD+BD)=AB2从而得a2+b2 = c

2品味各种拼图,方法各异,妙趣横生,证明思路别具匠心,极富创新。它们充分运用了几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,深刻体现了形数统

一、代数和几何紧密结合、互不可分的独特魅力。

勾股定理证明方法
《勾股定理证明方法.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档