人人范文网 其他范文

大学高数小论文范文(精选多篇)

发布时间:2022-11-06 06:06:52 来源:其他范文 收藏本文 下载本文 手机版

推荐第1篇:高数小论文

武汉工程大学

高数小论文

[键入文档副标题]

[键入作者姓名] 2017/6/2

[在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。摘要通常是对文档内容的简短总结。]

高数小论文

高数学习对许多大一学生生来讲, 有些困 难,成绩不理想.教师一直在苦苦思考:虽 然教师在授课进程中尽了种种努力, 但还 是有许多学生学习不好, 这是什么原因? 调查显示:这部分学生或者学习兴趣不高, 或者学习不得要领.因而, 高数学习必须 充分调动学习者的积极性, 掌握适合的学习方式,才能有所收获. 学习者要意识到 学习高数的重要 性, 提高学习兴趣, 变被动学习为主 动学习据懂得, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的 重要性不甚清楚,也没有学习的热情,更谈 不上积极性了

数学教育具有重要的基本性作用与素 质教育作用 现代信息、空间技巧、核能利用、基 因工程、微电子、纳米材料等引领的新技术, 以及现代人文科学的定量剖析需 要以数学为主要基本. 数学学科严密的定义方法、缜密的逻 辑思维、全面的系统剖析是辩证唯物主义 思想在数学学科中的集中反应, 在大学生 素质教育中起着不可替代的作用.素质表 现在数学意识、数学语言、数学技巧、数 学思维四个方面.素质的提高有助于学生 形成良好的思想道德素质,科学文化 素质, 生理心理素质,从而提高人的素质.这是有例子可以验证的.以北京大学 地质系为例,一个系就培养了48 位中科院 院士, 而这得益于李四光先生的理念—— 加强数理基本, 原因就是学生的工科数学 基本好、逻辑思维强、头脑清晰.培养对高数的兴趣能激发学习热情 “兴趣是最好的老师”.心理学家布鲁纳 认为:“学习是主动的进程,对学生学习内因的 最好的激发是对所学教材的兴趣.”“有了兴 趣就会乐此不疲,好之不倦,就会挤时间学习了.”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活泼,注意 力集中,察看敏锐,记忆持久而准确,思维敏锐 而丰盛,强化学习的内在动力,调动学习的积 极性,激发智力和创造力,提高学习效率.提高学习高数的兴趣首先从了解数学史做起 我们可以首先懂得中国数学史,懂得中 国数学的萌芽、发展、全盛、衰弱的进程 和原因;我们还可以从高数中的微积分发现 的历史谈起,通过对历史的懂得和感受来体 会到数学的博大高深,激发探求对数学美的观赏也可以提高学习高数的兴趣 数学是美的,但是这种美不易被人觉察, 往往被人误认为数学是枯燥的.树枝的生 长和股票技巧中蕴含着斐波纳奇数列,斐波 纳奇数列中蕴含着黄金分割,黄金分割率大 到宇宙,小到微生物,无处不在,数学具有数 字美,符号美,图形美,思想美,方式美,撼人 心魄,令人着迷,可以有意识地主动懂得. 学习高数要注重基本知识( 基础概 念、基础理论、基础方式) 的懂得及 消化 华罗庚有一句话:“我研究数学、学习数 学是从小学

一、

二、

三、

四、

五、六册开始 的,研究学问要从基本做起.”少年牛顿也是 从基本知识、基础公式重新学起,扎扎实实、步步推进的.高职学生广泛基本薄弱,很多高 职学生也不注重对基本知识的懂得和掌握,往 往一知半解,好高骛远,结果是徒劳无益.基础理论体现在定理的内容和论证,以 及实际问题抽象出的理论模型.认真思考 书上每个理论模型来源,明白是从哪个实际 情况中抽象出来的,会很大程度地提高解决 综合问题的能力.证明部分也要加以重视, 因为证明进程是一个逻辑推理进程,能很好 地锻炼大脑,会加深对定理的懂得,提高运 用能力.推导正是高数的精华所在,是需要 下工夫反复揣摩的,不懂之处要多问.基础方式的领悟体现在形成一个知识关 系网络.比如高数中基础所有的重要概念 都是用它定义和研究的;用变量代替不变量 的常用技能,体现在常数变易法解微分方 程,微分的思想,非线性问题的线性化方式; 化整为零、积零为整、分割求和积分的思 想,应用问题中的元素法;由特殊到一般、以 及化庞杂为简单的研究思维方式等等.学习和方式的运用中, 培养人的逻辑 思维、抽象思维、空间想象、以及自学能 力,培养科学的世界观,严密的科学态度, 增强学习意志,形成良好的个性品质.高数学习要调整心理状态, 注重学习方式 不要有畏难心理,要知道难是相对的, “面对悬崖峭壁,一百年也看不出条缝来, 但用斧凿,能进一寸则进一寸,能进一尺则 进一尺,不断积聚,飞跃必来,突破随之.” 树立三心:信心、决心、恒心.克服懒惰, 多思考、多归纳.学习进程中遇到困难时, 一定不要气 馁,增强克服困难的信心与意志,相信自己 一定能学好,积极调整状态,探索学习方式.紧跟教师的授课节奏, 做到高效听课 预习,先大略通读教材,不懂地方可以打 个问号;上课一定要认真听讲,对章节内容提 纲挈领,分清主次.感到重要的内容要记载 下来,不要一字不漏地记下来,只需简略几 笔,抓住精华即可.课后及时归纳总结,注意 思路的积聚,随时把收获、疑难、与前后知 识点的联系和区别、例题的不同解法等,一 切随时想到的体会整理下来,哪怕仅是大脑 的灵光一闪也要及时标注,以便于巩固加深 懂得.最好定期自我检查掌握情况.3 .2 采用适当的数学记忆方式 学习不仅要求懂得,还要有机械的记忆, 比如符号,公式,基础定义,解题技能和方式.寻找适合的记忆法,助于知识的持久度.采用形象记忆、类比记忆、系统记忆.高数的符号较多,识记困难,造成学习障碍.可以仔细察看特点,形象记忆.很多 是其英文解释的第一个字母,比如说微分, 其中可以懂得为英文“differential”(微分) 的首字母,积分号可以懂得为“sum”中首 字母的拉伸, 可以加深对定义的懂得.系 统记忆合适于对章节知识间的联系对照 学习中,有助于对知识整体脉络的梳理把握.记忆方式是相辅相成的,可以交叉运用.适当解题, 不断改正自己的思维 一定要做习题,初学新知识时,不妨参 照定理或公式依葫芦画瓢, 努力识记知识 点,再试图脱离教材独立练习,检查自己对 知识掌握程度,不会的内容,是自己思维的 断层,有些内容学习者可以自我改正,较难 内容,学习者需要请教教师或者参阅学习资 料,寻找一些知名教科书,注意察看,找出知 识的特点以及迁移,多角度、多方面地思考,过于抽象的内容不妨举出具体例子来形 象思考,自己的思维慢慢就会全面而深刻, 知识也会融会贯通,厚书也就读薄了.去探 索的知识,才是掌握得最好的.但也不提倡做大量的习题.习题并非 都有价值,尤其是现在题海中所遇到的题 目,很多都是在低级重复,反反复复并不能 得到有益启示.而有些综合题, 就是将一 些知识点揉在一起,而且明明能说得简单 的话, 却故意说得很庞杂、很曲折、绕圈子、设陷阱.学习者应该坚持清醒,思考一 些真正富有启示性的问题, 多研究问题的 意义.通常,越是简化问题,就越是能得到深刻而有价值的结论.做完一题,不停留在原有层次,多追问一些为什么,往往能导 致柳暗花明的新境界.有时要把不理解知 识暂时跳过,回过火看就解决了.积分公式:

(1) ∫x^αdx=x^(α+1)/(α+1)+C (α≠-1) (2) ∫1/x dx=ln|x|+C (3) ∫a^x dx=a^x/lna+C ∫e^x dx=e^x+C

(4) ∫cosx dx=sinx+C (5) ∫sinx dx=-cosx+C (6) ∫(secx)^2 dx=tanx+C (7) ∫(cscx)^2 dx=-cotx+C (8) ∫secxtanx dx=secx+C (9) ∫cscxcotx dx=-cscx+C (10) ∫1/(1-x^2)^0.5 dx=arcsinx+C (11) ∫1/(1+x^2)=arctanx+C (12) ∫1/(x^2±1)^0.5 dx=ln|x+(x^2±1)^0.5|+C (13) ∫tanx dx=-ln|cosx|+C (14) ∫cotx dx=ln|sinx|+C (15) ∫secx dx=ln|secx+tanx|+C (16) ∫cscx dx=ln|cscx-cotx|+C (17) ∫1/(x^2-a^2) dx=(1/2a)*ln|(x-a)/(x+a)|+C (18) ∫1/(x^2+a^2) dx=(1/a)*arctan(x/a)+C (19)∫1/(a^2-x^2)^0.5 dx=arcsin(x/a)+C (20)∫1/(x^2±a^2)^0.5 dx=ln|x+(x^2±a^2)^0.5|+C (21)∫(1-x^2)^0.5 dx=(x*(1-x^2)^0.5+arcsinx)/2+C

高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+...+z^n/n!+...

推荐第2篇:高数论文

高数求极限方法小结

高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在从初等数学这种静态的数量关系的分析到高等数学这种对动态数量关系的研究这一发展过程中,研究对象发生了很大的变化。也正是在这一背景下,极限作为一种研究事物动态数量关系的方法应运而生。极限,在学习高数中具有至关重要的作用。众所周知,高等数学的基础是微积分,而极限又是微积分的基础,我们不难从此看出极限与高等数学之间的相关性。同时根限又将高等数学各重要内容进行了统一,在高等数学中起到了十分重要的作用。极限的概念是高等数学中最重要也是最基本的概念之一。作为研究分析方法的重要理论基础,它是研究函数的导数和定积分的工具,极限的思想和方法也是微积分中的关键内容。在理解的基础上,熟练掌握求极限的方法,能够提高高等数学的学习能力。下面,我总结了一些求极限的方法:

一、几种常见的求极限方法

1、带根式的分式或简单根式加减法求极限:

1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置。)

2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式。

2、分子分母都是有界变量与无穷大量加和求极限:

分子分母同时除以该无穷大量以凑出无穷小量与有界变量的乘积结果还是无穷小量。

3、等差数列与等比数列求极限:用求和公式。

4、分母是乘积分子是相同常数的n项的和求极限:列项求和。

5、分子分母都是未知数的不同次幂求极限:看未知数的次幂,分子大为无穷大,分子小为无穷小或须先通分。

6、利用等价无穷小代换: 这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小。

(有界函数与无穷小的乘积仍是无穷小。 (3)非零无穷小与无穷大互为倒数。 (等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷代替。) (5)只能在乘除时使用,但并不是在加减时一定不能用,但是前提必须证明拆开时极限依然存在。) 还有就是,一些常用的等价无穷小换

7、洛必达法则:(大题目有时会有提示要你使用这个法则)

首先它的使用有严格的前提!!!!!!!

1、必须是X趋近而不是N趋近!!!!!(所以当求数列极限时应先转化为相应函数的极限,当然,n趋近是x趋近的一种情况而已。还有一点,数列的n趋近只可能是趋近于正无穷,不可能是负无穷)

2、必须是函数导数存在!!!!!(假如告诉你g(x)

,但没告诉你其导数存在,直接用势必会得出错误的结果。)

3、必须是0/0型或无穷比无穷型!!!!!当然,还要注意分母不能为零。洛必达法则分为三种情况:

1、0/0型或无穷比无穷时候直接用

2、0乘以无穷

无穷减无穷 (应为无穷大与无穷小成倒数关系)所以,无穷大都写成无穷小的倒数形式了。通项之后就能变成1中的形式了。

3、0的0次方

1的无穷次方

对于(指数幂数)方程,方法主要是取指数还是对数的方法,这样就能把幂上的函数移下来,就是写成0与无穷的形式了。

(这就是为什么只有三种形式的原因)

8.泰勒公式

(含有e的x次方的时候,尤其是含有正余弦的加减的时候,特别要注意!!!!!)

E的x展开 sina展开 cosa展开 ln(1+x)展开 对题目简化有很大帮助

泰勒中值定理:如果函数f(x)在含有n的某个区间(a,b)内具有直到n+1阶导数,则对任意x属于(a,b),有:

F(x)=f(x0)+

+

+

…………

+

+Rn(X)

其中Rn(X)=。。。。。。。。。。 这里的 ke see 是介于x与x0之间的某个值。

9、夹逼定理

这个主要介绍的是如何用之求数列极限,主要看见极限中的通项是方式和的形式,对之缩小或扩大。

10、无穷小与有界函数的处理方法

面对复杂函数的时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定注意用这个方法。

面对非常复杂的函数 可能只需要知道他的范围结果就出来了!!!!!

11、等比等差数列公式的应用(主要对付数列极限)

(q绝对值要小于1)

12、根号套根号型:约分,注意!!!别约错了

13、各项拆分相加:(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数。

14、利用两个重要极限

这两个极限很重要。。。对第一个而言是当X趋近于0的时候sinx比上x的值,第二个x趋近于无穷大或无穷小都有对应的形式

15、利用极限的四则运算法则来求极限

16、求数列极限的时候可以将其转化为定积分来求。

17、利用函数有界原理证明极限的存在性,利用数列的逆推求极限

(1)、单调有界数列必有极限

(2)、单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限。

18、直接使用1求导的定义求极限

当题目中告诉你F(0)=0,且F(x)的导数为0时,就暗示你一定要用导数的定义:、

(1)、设函数y=f(x)在x0的某领域内有定义,当自变量在x在x0处取得增量

的他x 时,相应的函数取得增量 的他y=f(的他x+x0)-f(x0) 。 如果 的他y与 的他x之比的极限存在,则称函数y=f(x)在x0处可导并称这个极限为这个函数的导数。

(2)、在某点处可导的充分必要条件是左右导数都存在且相等。

19、数列极限转化为函数极限求解

数列极限中是n趋近,面对数列极限时,先要转化为x趋近的情况下的极限,当然n趋近是x趋近的一种形式而已,是必要条件。(还有数列的n当然是趋近于正无穷的)

推荐第3篇:高数论文

高数论文

短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。

相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。

在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。另外,全微分,多元函数微分学也是这一章的重点。在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。在积分这一块都采用分割,近似,求和,取极限四个步骤。此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。在曲线积分与曲面积分这一章当中,化归的思想继续在体现。这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲

面积分。学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。例如只适用于正向级数的定理就不能用到任意项级数,还有对于条件收敛和绝对收敛的概念的辨析,还有对傅里叶级数的展开的条件和展开的定义域的说明以及其中用到的延拓的方法。

从上学期到这个学期,高数最重要的一大问题就是微积分,不管是什么知识都需要微积分的基础,所以总的感觉就是需要微积分的功力。数学是我们工科学生学习的基础,学好数学需要的是一种认真的态度。数学还需要学习的就是数学的思想和数学的意识。高数在大学的学习中是很重要的,需要也值得我们花时间去学习。

推荐第4篇:高数论文

高数论文

很快,这个学期已经接近尾声了,我们对高数下册的学习也结束了。就对这门课的学习,有一些心得体会,以及对高等数学下册知识点的整理,做了如下总结。 I、心得体会高数下册比上册的难度、计算量都要大。比如三重积分,计算时,不仅需要知道基本的公式,然后根据表达式选择合适的坐标系;还要注意灵活变换,例如对于二重积分注意有时需要把X-型区域换成Y-型区域来计算;总之算好一道题需要基础+技巧+细心+耐心!而且有好多三维空间立体的图形,需要对各种常见的表达式的图形非常熟悉,以及很好的空间思维能力,而且画好立体图形是做好题的前提!以及多重积分、级数等都是比较难以理解的知识点。因此本课程学习起来也我感觉比较吃力。在学习高数的时候,我们应该注重学习方法的选择,只有掌握好了学习方法,才能将这门课学好。就像切西瓜一样,首先要找好下刀的方位,才能将西瓜切正。学习高数这门课的时候,我们首先应该了解高数这门课的性质,对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。高数以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。因此,我们在学习这些内容的时候应该掌握它们之间的联系,这样我们在学习的时候就可以做到事半功倍的效果。学习高数是一个漫长的过程,学习最重要的就是不放弃,不能因为在学习高数课程的时候遇到了一点麻烦就放弃,那样是不可能学好的,我们要相信:“坚持就是胜利!”

II、对本课程主要知识点和知识体系进行下总结。⒈向量代数与空间解析几何向量是一种重要的数学工具,中学阶段也学了不少向量的知识,在本课程里,我们进一步学习了向量的方向余弦、向量积、混合积等概念;然后介绍了空间曲面的概念以及常见的集中空间曲面,例如旋转曲面、柱面、二次曲面;这些只是与后面的多元函数的几何应用有着很大的联系!而且对后面的曲面积分的计算有着很大的帮助!因此掌握常见的曲面的表达式以及其图形的画法十分重要!空间解析几何是用代数的方法研究空间图形的性质。本章主要把中学的二维曲线推广到空间三维坐标中间去,介绍了空间曲线的方程,接着以向量为工具,研究了空间与直线之间的一些关系。向量是一种重要的数学工具,是近代数学的基本概念之一,在中学阶段,我们已经学习过如何利用向量来解决一些简单的几何问题,本章在中学阶段学习的基础上,以向量为工具研究空间曲面和空间曲线,介绍空间解析几何的基本内容,是学习多元函数微分学和积分学的基础。本章中,主要的学习方向就是解决空间几何体的相关问题,例如,求解空间几何体中面积、体积、距离等相关量。特别是我们在求解曲面的时候,应该注意使用不同的坐标系来求解不同的曲面,比如说有柱面坐标、直角坐标、球面坐标等等。

2.多元函数的微分学从第二章中我们就开始学习“多元函数的微分学”,我们在第一章中就已经学习了一些有关一元函数的微积分,但在许多实际问题中,往往涉及多个因素之间的关系,反映到数学上就表现为一个变量依赖于多个变量的情形,从而产生了多元函数的概念。因此,我们就有必要研究多元函数的微积分问题。要学习多元函数微分学,就必须要先了解多元函数的基本概念和极限,本章在第一节中就介绍了有关这方面的内容。学习多元函数的重点是学习二元函数和三元函数,只要掌握了二元和三元函数的微分,则多元函数就基本掌握了。在第二节中,我们学习了偏导数。在研究一元函数时,我们就已经看到了函数关于自变量的变化率的重要性,对于二元函数也同样有函数变化率的问题。所以,我们就有必要学习一下这种变化率,即偏导数。在学习了偏导数这个工具之后,我们就要开始接触全微分,全微分是我们学习微分中的一个重要组成部分。我们学习的微分其实是建立在极限的基础上,所以,接着,我们又开始学习多元复合函数的求导法则以及隐函数的微分法等等与微分和极限有关的内容。首先先学习了一些多元函数的基本概念和极限的概念多元函数的基本概念(函数的极限、连续性、有界性与最大值最小值定理、介值定理),然后讨论了多元函数的微分方法极其应用,微分的方法,先介绍了偏倒数以及其几何意义(偏导数的概念,二阶偏导数的求解 ),再把其由二元推广到空间,其中有许多类似的,可以类似学习!其次介绍了全微分研究微分的方法,还有隐函数的微分法。接着联系到几何应用,由空间曲线的切线与法平面,接着推广到曲面的切平面与法线。接着学习了多元函数的极值极其求法,其与二元函数的定义与求法十分相似,其中不同的是,有个判别多元函数是否存在极值的方法:AC-B2与0 的关系来判断的;然后在满足一定条件问题的极值,用到了拉格朗日成数法;然后学习了用最小而成法线性拟合问题。

3.重积分本章的行文思路大都是以一个实际问题引出,然后对实际对象进行分割、近似、求和、取极限,然后引出定义,接着介绍其性质,二重积分与三重积分性质这方面都很类似!可以类似学习!对于计算,二重积分计算方法主要有选择X/Y-型区域跟上下限,然后计算二次积分,对同一个区域,X/Y型区域的选择很重要注意灵活选择;也可以转换成极坐标下的计算,关键是与r的上下限的求取。对于三重积分,首先是先根据表达式、图形选择坐标系,然后把各个变量的上下限确定好,接着就一步步的细心的计算吧!然后第四节注意讲的是应用,几何上的应用有计算面积,体积;物理上的应用有质心以及转动惯量的计算。这一点与大学物理的知识有一定的联系!在第三章中,我们开始学习“重积分”,一元函数的定积分是某种形式的极限,它在实际问题中有着广泛的应用。但由于其积分范围是数轴上的区间,因而只能用来计算与一元函数及其相应区间有关的量。但在工程和科技领域中,往往需要计算定义在某一范围上的多元函数的特定形式和式的极限,这就需要把定积分的概念加以推广。多元函数的积分要比一元函数的定积分复杂得多,当积分范围是平面或空间区域时,这样的积分就是重积分;当积分范围是曲线时,这样的积分就是曲线积分;当积分范围是曲面时,这样的积分就是曲面积分。定义这些积分的思想方法与定积分类似,都可以概括为分割、近似、求和、取极限四个步骤,本章讨论二重积分与三重积分的概念、性质、计算方法和它们的一些应用。

4.曲线积分与曲面积分在第四章中,我们学习的类容主要是对第三章类容的深入,在第三章中已经把积分概念从积分范围为数轴上的一个区间的情形推广到积分范围为平平面或空间内的团区域的情形。在本章中,把积分概念推广到积分范围为一段区线弧或一张曲面的情形。先学习了对弧长的曲线积分和对坐标的曲面积分,然后介绍两者之间的关系;中间介绍了格林公式;然后介绍对面积的曲面积分和对坐标的曲面积分;接着介绍高斯公式,其表达的是空间区域的三重积分与其边界曲面上的曲面积分之间的关系,它是格林公式的推广!斯托克斯公式介绍了曲面E上的曲面积分与沿着E的边界曲面L的曲线积分之间的联系!本章计算量大,需要极其的细心和耐心!对自己的能力的培养

5.无穷级数最后一章学习了。首先学习了常数项级数,介绍了其定义、性质以及敛散性的判别方法,其中重点掌握几何级数和调和级数的敛散性,这是后面比较判别法的比较的对象。正项级数是一类特殊的常数项级数,其中还学习了比较判别法、比值判别发与根植判别法。然后介绍了一类重要的级数类型:交错级数。有个莱布尼兹判别法来判断其收敛性。还有一个重要级数类型:幂级数。主要介绍了幂级数的收敛半径的求法以及幂级数的四则运算。后面介绍了函数展开成幂级数的方法,主要是间接展开法,其要点是要记住那几个常见的函数展开方法。最后介绍了傅立叶级数,主要介绍了其展开的方法。

III、总结通过对高数的学习,锻炼了我的逻辑思维和空间想象能力以及思维的缜密严谨性,同时锻炼了我的耐性以及浮躁的心里。我相信对我以后的生活学习都会有很大的帮助!

IV、感谢语感谢罗老师对我们的教诲!您辛苦了!祝老师工作顺利!天天开心!

推荐第5篇:高数论文

学习高数的心得体会

学院:会计学院 班级;Z1107 学号:1241110807 手机:13470031365

学习高数的心得体会

【摘要】:通过这 几个月对数学分析这门课程的学习,对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。

【关键词】:数学分析 读书心得 极限 总结进步

一、对数学的认识

经过将近一年的学习,我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。然后像背单词一样,把一堆公式与结论死记硬背下来。哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。而现在,我不再有那么多需要识记的结论。唯一需要记住的只是数目不多的一些定义、定理和推论。老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。我们必须知道解题过程中每一步的依据。正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。而高等数学课本中的每一个定理都有详细的证明。最初,我以为只要把定理内容记住,能做题就行了。然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。于是,我开始认真地学习每一个定理的推导。有时候,某些地方很难理解,我便反复思考,或请教老师、同学。尽管这个过程并不轻松,但我却认为非常值得。因为只有通过自己去探索的知识,才是掌握得最好的。

总而言之,高等数学的以上几个特点,使我的数学学习历程充满了挑战,同时也给了我难得的锻炼机会,让我收获多多。

进入大学之前,我们都是学习基础的数学知识,联系实际的东西并不多。在大学却不同了。不同专业的学生学习的数学是不同的。正是因为如此,高等数学的课本上有了更多与实际内容相关的内容,这对专业学习的帮助是不可低估的。比如“常用简单经济函数介绍”中所列举的需求函数,供给函数,生产函数等等在西方经济学的学习中都有用到。而“极值原理在经济管理和经济分析中的应用”这一节与经济学中的“边际问题”密切相关。如果没有这些知识作为基础,经济学中的许多问题都无法解决。

当我亲身学习了高等数学,并试图把它运用到经济问题的分析中时,才真正体会到了数学方法是经济学中最重要的方法之一,是经济理论取得突破性发展的重要工具。这也坚定了我努力学好高等数学的决心。希望未来自己可以凭借扎实的数理基础,在经济领域里大展鸿图。

二、把握三个环节,提高学习效率

(1)课前预习

适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果时间不多,你可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这可以在一定程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与教师讲解的有什么区别,有哪些问题需要与教师讨论。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。

(2)认真上课

注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入——听、记、思相结合的过程。教师在有限的课堂教学时间中,只能讲思路,讲重点,讲难点。不要指望教师对所有知识都讲透,要学会自学,在自学中培养学习能力和创造能力。所以要努力摆脱对于教师和对于课堂的完全依赖心理。当然也不是完全不要老师,不上课。老师能在课堂教学把主要思路,重点与难点交代清楚,从而使你自学起来条理清楚,有的放矢。对于教师在课堂上讲的知识,最重要的是获得整体的认识,而不拘泥于每个细节是否清楚。学生在课堂上听课时,也应当把主要精力集中在教师的证明思路和对于难点的分析上。如果有某些细节没有听明白,不要影响你继续听其它内容。只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。你自己完全能够在这个思路的引导下将全部细节补足,最后推出结论。应当在学习的各个环节培养自己的主动精神和自学能力,摆脱对教师与课堂的过分依赖。这不仅是今天学习的需要,而且是培养创造能力的需要。

(3)课后复习

复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。另外,复习时的思路不应当教师讲课或者教科书的翻版,一个可供参考的方法是采用倒叙式。从定理的结论倒推,为了得到定理的结论,是怎样进行推理的,定理的条件用在何处。这样倒置思维方式,更加接近这个定理的发现的思路,是一种创造性的思维活动。

三、数学分析解题方法

首先,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。上面已经提及,提高解题能力重要途径之一是掌握好基本概念和基本方法。另一方面,因为数学分析题型变化多样,解题技巧丰富多彩,许多类型的题目并不是只要掌握好基本概念和基本方法就会作的。需要看一些例题,或者需要教师的指点。不要因为某些题目一时找不到思路而失去信心。

至于如何解题,很难总结出几个适用于所有题目的通用的方法。怎样提高自己的解题能力?除了天生的智力因素之外,解题能力首先取决于基本概念和基本原理的理解与掌握程度。所以,多下功夫掌握基本概念和基本原理,尽可能地多做题目,在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架,是提高解题能力的重要途径。另外,做题要善于总结,特别是从不同的题目中提炼出一些有代表性的思想方法。

掌握一定量的题型,对于一些题目,直接知道用什么方法做。有些题目没有头绪的时候,可先尝试找反例,然后想想为什么反例不成功,从中可以的得到不少的启发。还有要充分了解函数的各种性质。做题的时候脑子里要有函数图像。另外,充分了解定义,特别是一致收敛。了解为什么有时候一致收敛才有题目的结论,如果条件收敛,是不是也有这样的条件。多想几次就有了深刻的了解。遇到不清楚的地方赶快看书,多看几遍书对于理解题目是非常有用的。再有,尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个人有不同的风格。不同的切入角度,会使你有时候读一些问题豁然开朗。

四、总结

高等数学作为大学的一门课程,自然与其它课程有着共同之处,那就是讲课速度快。刚开始,我非常不适应。上一题还没有消化,老师已经讲完下一题了。带着几分焦虑,我向学长请教学习经验,才明白大学学习的重点不仅仅是课堂,课下的预习与复习是学好高数的必要条件。于是,每节课前我都认真预习,把不懂的地方作上记号。课堂上有选择、有计划地听讲。课后及时复习,归纳总结。逐渐地,我便感到高数课变得轻松有趣。只要肯努力,高等数学并不会太难。

虽然说高等数学在我们的实际生活中,并没有什么实际的用途,但是通过学习高等数学,我们的思想逐渐成熟,高等数学对我们以后的学习奠定了基础,特别是理科方面的学习,所以说,在今后的学习中,可以充分的运用数学知识,不断地完善自己。

推荐第6篇:高数论文

微积分在信安专业的应用

信安1602班

严 倩

长期以来,微积分都是大学理工专业的基础性学科之一,也是学生普遍感觉难学的内容之一.究其原因,既有微积分自身属于抽象知识的因素,也有教学过程中方法失当的可能,因此寻找更为有效的教学思路,就成为当务之急.

数学教学中一向有建模的思路,中学教育中学生也接受过隐性的数学建模教育,因而学生进入大学之后也就有了基础的数学建模经验与能力.但由于很少经过系统的训练,因而学生对数学建模及其应用又缺乏必要的理论认识,进而不能将数学建模转换成有效的学习能力.而在微积分教学中如果能够将数学建模运用到好处,则学生的建构过程则会顺利得多.本文试对此进行论述.

一、学习价值

信安专业分为很多门类,密码学,大数据方面的内容安全,安全协议,网络安全,系统安全,攻防技术,还有物联网这些硬件一块等等。不同的方向需要不同的基础知识,比如密码学基本就是数论和近世代数,数据分析的内容安全就是工数代几概率论。本专业是计算机、通信、数学、物理、法律、管理等学科的交叉学科,主要研究确保信息安全的科学与技术。培养能够从事计算机、通信、电子商务、电子政务、电子金融等领域的信息安全高级专门人才。

大学数学教学中,微积分知识具有分析、解决实际问题的作用,其知识的建构也能培养学生的应用数学并以数学眼光看待事物的意识与能力,而这些教学目标的达成,离不开数学建模.比如说作为建构微积分概念的重要基础,导数很重要,而对于导数概念的构建而言,极值的教学又极为重要,而极值本身就与数学建模密切相关.极值在微积分教学中常常以这样的数学形式出现:设y=f(x)在x0处有导数存在,且f′(x)=0,则x=x0称为y=f(x)的驻点.又假如有f″(x0)存在,且有f’(x)=0,f″(x)≠0,则可以得出以下两个结论:如果f″(x)0,则f(x0)是其极小值.在纯粹的数学习题中,学生在解决极值问题的时候,往往可以依据以上思路来完成,但在实际问题中,这样的简单情形是很难出现的,这个时候就需要借助一些条件来求极值,而在此过程中,数学建模就起着重要的作用.譬如有这样的一个实际问题:为什么看起来体积相同的移动硬盘会有不同的容量?给定一块硬盘,又如何使其容量最大?事实证明,即使是大学生,在面对这个问题时也往往束手无策.根据调查研究,发现学生在初次面对这个问题的时候,往往都是从表面现象入手的,他们真的将思维的重点放在移动硬盘的体积上.显然,这是一种缺乏建模意识的表现.

反之,如果学生能够洞察移动硬盘的容量形成机制(这是数学建模的基础,是透过现象看本质的关键性步骤),知道硬盘的容量取决于磁道与扇区,而磁道的疏密又与磁道间的距离(简称磁道宽度)有关,有效的磁道及宽度是一个硬盘容量的重要决定因素.那就可以以之建立一个极限模型,来判断出硬盘容量最大值.从这样的例子可以看出,数学建模的意识存在与否,就决定了一个问题解决层次的高低,也反映出一名学生的真正的数学素养.因而从教学的角度来看,数学建模在于引导学生抓住事物的关键,并以关键因素及其之间的联系来构建数学模型,从而完成问题的分析与求解.笔者以为,这就是包括数学建模在内的教学理论对学生的巨大教学价值.

事实上,数学建模原本就是大学数学教育的传统思路,全国性的大学生数学建模竞赛近年来也有快速发展,李大潜院士更是提出了“把数学建模的思想和方法融入大学主干数学课程教学中去”的口号,这说明从教学的层面,数学建模的价值是得到认可与执行的.作为一线数学教师,更多的是通过自身的有效实践,总结出行之有效的实践办法,以让数学建模不仅仅是一个美丽的概念,还是一条能够促进大学数学教学健康发展的光明大道.

二、微积分教学建模应用例析

大学数学中,微积分这一部分的内容非常广泛,从最基本的极限概念,到复杂的定积分与不定积分,再到多元函数微积分、二重积分、微分方程与差分方程等,每一个内容都极为复杂抽象.从学生完整建构的角度来看,没有一个或多个坚实的模型支撑,学生是很难完成这么多内容的学习的.而根据笔者的实践,基于数学建模来促进相关知识的有效教学,是可行的.

先分析上面的极限例子.这是学生学习微积分的基础,也是数学建模初次的显性应用,在笔者看来该例子的分析具有重要的奠基性作用,也是一次重要的关于数学建模的启蒙.在实际教学过程中,笔者引导学生先建立这样的认识:

首先,全面梳理计算机硬盘的容量机制,建立实际认识.通过资料查询与梳理,学生得出的有效信息是:磁盘是一个绕轴转动的金属盘;磁道是以转轴为圆心的同心圆轨道;扇区是以圆心角为单位的扇形区域.磁道间的距离决定了磁盘容量的大小,但由于分辨率的限制,磁道之间的距离又不是越小越好.同时,一个磁道上的比特数也与磁盘容量密切相关,比特数就是一个磁道上被确定为1 B的数目.由于计算的需要,一个扇区内每一个磁道的比特数必须是相同的(这意味着离圆心越远的磁道,浪费越多).最终,决定磁盘容量的就是磁道宽度与每个磁道上的比特数.

其次,将实物转换为数学模型.显然,这个数学模型应当是一个圆,而磁盘容量与磁道及一个磁道的容量关系为:磁盘容量=磁道容量×磁道数.如果磁盘上可以有效磁化的半径范围为r至R,磁道密度为a,则可磁化磁道数目则为R-ra.由于越靠近圆心,磁道越短,因此最内一条磁道的容量决定了整体容量,设每1 B所占的弧长不小于b,于是就可以得到一个关于磁盘容量的公式:

B(r)=R-ra・2πrb.

于是,磁盘容量问题就变成了求B(r)的极大值问题.这里可以对B(r)进行求导,最终可以发现当从半径为R2处开始读写时,磁盘有最大容量.

而在其后的反思中学生会提出问题:为什么不是把整个磁盘写满而获得最大容量的?这个问题的提出实际上既反映了这部分学生没有完全理解刚才的建模过程,反过来又是一个深化理解本题数学模型的过程.反思第一步中的分析可以发现,如果选择靠近圆心的磁道作为第一道磁道,那么由于该磁道太短,而使得一个圆周无法写出太多的1 B弧长(比特数),进而影响了同一扇区内较长磁道的利用;反之,如果第一磁道距离圆心太远,又不利于更多磁道的利用.而本题极值的意义恰恰就在于磁道数与每磁道比特数的积的最大值.通过这种数学模型的建立与反思,学生往往可以有效地生成模型意识,而通过求导来求极值的数学能力,也会在此过程中悄然形成.

三、心得体会

《数学之美》的作者吴军先生说:“技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余。”我的高中数学基础较差,一直以来高数对我来说是个很恐怖的学科,我也不知道为什么计算机专业对数学要求比较高。但是通过阅读我了解到数学的作用。一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。另一个对我影响比较大的就是余弦定理和新闻的分类。以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?要计算角度,库里不都提供了吗?”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。学好高数,学的是数学的思维,学的是技术的道,这样我们才能编出更好的程序。

推荐第7篇:高数论文

摘要

一学期的高数学习即将结束,数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。上了大学我才知道之前学的数学,已经变了,它叫高等数学。大学的数学包括高等数学,线性代数,还有概率论,而这学期我们学的高数内容包括函数与极限、一元函数微分学、一元函数积分学以及常微分方程。这才让我明白,大学的数学,更加复杂多样,不是像高中那样简单那么容易学。很多概念都是抽象的,很多知识都是彼此联系的,很多应用都是综合的,相比以前所学数学,难度是挺大的。所以,我们应该要充分认识这门科目。新的《数学课程标准》提出:应加强数学与学生的生活经验相联系,从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,促进学生的主动参与,焕发出数学课堂的活力。数学学科作为工具学科,它的教学必须理论联系实际,学以致用,这就是人们常说的数学知识必须“生活化”,而且对学生实践能力、创新能力和解决问题能力的培养都是很有利的。小学数学是数学教学的基础,培养我们对数学的兴趣;初高中的数学是对小学数学的更加深入学习,重要是联系生活实际;而高等数学则是对初高中数学的细化,概念更加详细,解答更加细微,方法更加多样复杂。

关键字:高等数学、实践能力、结构

1结构

1.1结构的基本概念

数学学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。【函数及其性质(1)定义:如果当变量x在其变化范围任取一个值时,变量y按一定的法则总有确定的数值和它对应,就称y是x的函数,记作:y=f(x)或,y=F(x)等。x称为自变量,y称为因变量,或函数.自变量x的变化范围称为这函数的定义域,因变量y的取值范围称为函数的值域。(2)性质:a.有界性b.单调性c.奇偶性d.周期性】对数学结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来达到对数学知识的真正理解。

2如何利用结构加强理解

当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己

头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。

例如:第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。这里重点讲前两类函数的应用。 一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。 下面,我就为大家讲述我亲身经历的一件事。 随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);

(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。

设某顾客买茶杯x只,付款y元,(x>3且x∈N),则 用第一种方法付款y1=4×20+(x-4)×5=5x+60; 用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.接着比较y1y2的相对大小.设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.然后便要进行讨论: 当d>0时,0.5x-12>0,即x>24; 当d=0时,x=24; 当d

二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表

示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。

三、三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。 如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d.∴r=secα×d这个问题至此便迎刃而解了。

参考文献

[1]同济大学数学系。高等数学 [2]数学教育学报

[3]张定强.剖析高等数学结构,提高学生数学素质

致谢

到大学接触到微机分的知识,也开始了对微积分的探索,现在可以说是略知

一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。感谢老师带领我们走进微积分的世界,教我们学习高等数学。

谨以此致谢最后,我还要向百忙之中抽时间对我的论文进行批阅的各位老师表示衷心的感谢。谢谢您!

姓名:周剑 学号:1505032006 班级;自动化2班

推荐第8篇:大一下学期高数小论文

高等数学第二学期总结

大学一年级已接近尾声,大一高数的学习也已经完成,下学期的高数学习随着知识的深入而带领我们更进一步去了解高数学习的真谛和高数的重要性。从高数的学习中我获得了更为广阔的知识和视野,下学期的学习既是上学期的学习内容的拓展又是延伸,使我们对高数有更一步的了解和认识,让我们对这门课的研究更为深入。

大一下学期的高数学习分为六章,分别是向量代数与空间解析几何,多元函数微分学,重积分,无穷级数,微分方程和差分方程。在向量代数与空间解析几何中,我们首先学习了向量代数的基本知识,从而在后来的学习中使用向量的基本知识来解决空间几何问题。本章中我们学习的解析几何是17世纪前半叶产生的一门全新的几何学。法国数学家笛卡尔是解析几何的主要创立人。空间解析几何就是用代数的方法研究空间图形的性质。向量是一种重要的数学工具,是近代数学的基本概念之一,在中学阶段,我们已经学习过如何利用向量来解决一些简单的几何问题,这一章在中学学习的基础上,以向量为工具研究空间曲面和空间曲线,介绍空间几何的基本内容,是学习多元函数微分学和积分学的基础。

这一章中,首先介绍了向量代数的基础知识,然后通过建立空间直角坐标系,研究空间中平面与直线方程、常见曲线与曲面等内容。主要的学习方向就是解决空间几何体的相关问题,例如求解空间几何体的面积、体积、距离等相关量。特别当我们在求解曲面时,应该注意使用不同的坐标系,来求解不同的曲面,比如有柱面坐标、直角坐标等。

在多元函数微分学的学习中,上一章就已经学习了一些有关一元函数的微积分,但在许多实际问题中,往往涉及多个因素之间的关系,反映到数学上就表现为一个变量依赖于多个变量的情形,从而产生了多元函数的概念。因此,我们就有必要研究多元函数的微积分问题。

本章主要采用类比的方法来帮助我们理解多元函数的定义,通过将多元函数与一元函数微分基本理论的类比,归纳总结出多元函数微分学的基本理论,主要讨论二元函数的极限与连续的概念、偏导数与全微分及其应用。 要学习多元函数微分学,就必须要先了解多元函数的基本概念和极限,本章在第一节中就介绍了有关这方面的内容。学习多元函数的重点是学习二元函数和三元函数,只要掌握了二元和三元函数的微分,则多元函数就基本掌握了。在第二节中,我们学习了偏导数。在研究一元函数时,我们就已经看到了函数关于自变量的变化率的重要性,对于二元函数也同样有函数变化率的问题。所以,我们就有必要学习一下这种变化率,即偏导数。在学习了偏导数这个工具之后,我们就要开始接触全微分,全微分是我们学习微分中的一个重要组成部分。我们学习的微分其实是建立在极限的基础上,所以,接着,我们又开始学习多元复合函数的求导法则以及隐函数的微分法等等与微分和极限有关的内容。

在接下来的一章中,我们开始学习重积分,一元函数的定积分是某种形式的极限,它在实际问题中有着广泛的应用。但由于其积分范围是数轴上的区间,因而只能用来计算与一元函数及其相应区间有关的量。在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。在本章中将介绍重积分的概念、计算法以及它们的一些应用。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。

多元函数的积分要比一元函数的定积分复杂得多,当积分范围是平面或空间区域时,这样的积分就是重积分;当积分范围是曲线时,这样的积分就是曲线积分;当积分范围是曲面时,这样的积分就是曲面积分。定义这些积分的思想方法与定积分类似,都可以概括为分割、近似、求和、取极限四个步骤,本章讨论二重积分与三重积分的概念、性质、计算方法和它们的一些应用。

在无穷级数这一章中,课程介绍了无穷级数这个新的概念,无穷级数理论在高等数学中具有非常重要的地位,是研究微积分理论及其应用的强有力工具。研究无穷级数,是研究数列的另一种形式,尤其在研究极限的存在性及计算极限方面显示出很大的优越性。它在表示函数、研究函数的性质、计算函数值以及求解微分方程等方面都有重要的应用,在经济、管理、电学以及振动理论等诸多领域离也有广泛的应用。

无穷级数是微积分学的重要组成部分之一,是表示函数、研究函数性质和进行数值计算的有力工具。无穷级数本质上是一种特殊数列的极限。利用极限,常数项级数是把有限个数相加推广到无穷多个数相加。幂级数是把多项式的次数推广到无穷多次的结果。主要掌握常数项级数收敛性判别法和会讨论幂级数收敛性。

本章首先介绍无穷级数的概念和基本性质,然后重点讨论常数项级数的概念、性质及其敛散性的判别法,在此基础上介绍函数项级数的相关类容,以及将函数展开成幂级数的条件和方法。

正项级数的收敛判别 :各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{sn}有界,即存在某正整数M,对一切正整数 n有sn<M。从基本定理出发,我们可以由此建立一系列基本的判别法

1 比较判别法

设∑un和∑vn是两个正项级数,如果存在某正数N,对一切n>N都有un≦vn,则

(1)级数∑vn收敛,则级数∑un也收敛; (2)若级数∑un发散,则级数∑vn也发散 2 柯西判别法(根式判别法)

设∑un为正项级数,且存在某正整数N0及正常数l,(1)若对一切n>N0,成立不等式式则级数

l<1,则级数∑un收敛。(2)若对一切n>N0,成立不等∑un发散。 第十一章学习了微分方程,微分方程是数学建模最重要、最有效的工具之一。本章重点阐述了微分方程的基本概念,讨论一些常见的一阶、二阶微分方程,并举例介绍微分方程在经济、管理等方面的简单应用。通过本章的学习,理解了微分方程的基本概念,掌握常见的一阶、二阶微分方程的基本解法,通过建立微分方程模型,解决一些简单的经济问题,培养对数学建模思想的理解。凡表示自变量,未知函数以及未知函数的导数或微分之间关系的方程称为微分方程。若方程中的未知函数为一元函数,就称为常微分方程;若方程中的未知函数为多元函数,这时导数为未知的偏导数,就称为偏微分方程。只含有未知函数的一阶导数,我们称这样的方程为一阶微分方程,而微分方程中含有未知函数的二阶导数,我们称这样的方程为二阶微分方程。一般的,若方程中未知函数的最高阶导数为n阶,则称其为n阶微分方程,并称方程中未知函数导数的最高阶数n为方程的阶。每一个微分方程转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要。课本中介绍了仅关于x或仅关于y的积分因子。

第十二章我们学习了差分方程,对于连续变量y(t),可以用刻画其变化率。但是在许多应用问题中,函数是否可导,甚至是否连续都不清楚,或函数根本就不可导,而只知道函数在某些时刻的函数值,这时自变量与因变量都是离散变化的。因此我们利用函数的差商△y/△t代替导数来刻画函数y(t)的变化率。我们对函数在单位时间内的增量引入了一个新的概念就是差分。本章中比较重要的是二阶常系数线性方程,这里学到了二阶常系数齐次线性差分方程的通解以及二阶常系数非齐次线性方程特解的解法。

在学习高数的时候,我们应该注重学习方法的选择,只有掌握好了学习方法,才能将这门课学好。我们在学习的时候,要先预习,然后应该好好的完成课后作业,最好要时刻的复习总结。学习高数这门课的时候,我们首先应该了解高数这门课的性质,对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解

高数以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。因此,我们在学习这些内容的时候应该掌握它们之间的联系,这样我们在学习的时候就可以做到事半功倍的效果。

我们学习高数要坚持下去,这样我们在取得良好成绩的同时就能体会到数学的独特魅力。学习好高数,对我们的生活学习都很有帮助,在数学的海洋里遨游,我们便能体会到宇宙的智慧。

推荐第9篇:高数小结论a

高数小结论

1. 等价无穷小(x→0)

(1).sinxxtanxex1ln[1x]arcsinxarctanx1(2).1cosxx22(3).(1x)a1ax(4).ax1xlnax(5).1n1xnx(6).n1x1n(7).loga(1x)0x2.

xlna0|x|2时2时

sinxxtanx11cosxx22 3.如果limU1,limV则limUeVlim(U1)V4. [f(x)+f(-x)]/2表示偶函数

[f(x)-f(-x)]/2表示奇函数

5.直线L:y=kx+b 为y=f(x)的渐近线的充分必要条件为:

k=lim f(x)/x (x→∞)

b=lim [f(x)-kx] (x→∞) 注意:这里的∞,包括+∞和-∞ 要分开讨论 6. 常见函数的导数

(记熟后解题快)

(√x)’=1/2√x

(1/x)’=-1/x^2

(x^x)’=(x^x)(1+lnx)

7.关于n阶导数的几个重要公式

(sinx)^(n)=sin(x+nπ/2)

(cosx)^(n)=cos(x+nπ/2)

(sinkx)^(n)=k^nsin(kx+nπ/2)

(coskx)^(n)=k^ncos(kx+nπ/2)

(x^n)^(n)=n!

(a^x)^(n)=a^x (lna)^n

(e^x)^(n)=e^x

(1/t-x)^(n)=n!/(t-x)^(n+1)

(1/t+x)^(n)= n!(-1)^n/(t+x)^(n+1)

[ln(t+x)]^(n)=(n-1) !(-1)^(n-1)/(t+x)^n 8.泰勒公式(用来求极限)

sinx=x-x^3/3!+x^5/5!+o(x^6)

cosx=1-x^2/2!+x^4/4!+o(x^5)

e^x=1+x+x^2/2!+x^3/3!+o(x^3)

ln(1+x)=x-(1/2)x^2+(1/3)x^3+o(x^3)

(1+x)^a=1+ax+[a(a-1)/2!]x^2+o(x^2)

tanx=x+(1/3)x^3+o(x^3)

arctanx=x-(1/3)x^3+o(x^3)

cotx=1/x –x/3+o(x)

tan(tanx)=x+(2/3)x^3+o(x^3) sin(sinx)=x-(1/3)x^3+o(x^3) 9. 重要不定积分

secxdx(secx)(2n2)dx(secx)2nd(tanx) (sinx)(2n1)cosx(sinx)2n1(sinx)(2n1)(cosx)(2n1)(tanx)(2n1)dx[1(cotx)2]n(cosx)(2n1)sinx(cotx)(2n1)dx dx1xdxtanC 1cosx212dxtanxsecxCC 1sinxx1tan2(secx)2nd(tanx) (tanx)dx(tanx)dx(tanx)22(secx)1(tanx)nn(cscx)2(cotx)nd(cotx)(cotx)dx(cotx)(cscx)2dx1(cotx)2 nntanxdxln|cosx|Ccotxdxln|sinx|Csecxdxln|secxtanx|Ccscxdxln|cscxcotx|C x1sin2xC24x12(cox)dxsin2xC242(sinx)dx2(tanx)dxtanxxC(cotx)2dxcotxxCdx1xarctanCx2a2aadx22x2a2ln|xxa|C

dx1xax2a22aln|xa|CdxxarcsinCa2x2aa2xx2axdxarcsinax2C2a2

2ax2x2a2dxln|xx2a2|xa2C2222axeaxecosbxdxa2b2(acosbxbsinbx)C axeaxesinbxdx(asinbxbcosbx)Ca2b210. y=sinwx(w>0)

它的半个周期与x轴围成的面积为s=2/w

把它的半个周期分成三等分,中间的那部分面积为s’=1/w

显然s=2s’

20w 1S\'23wsinwxdxw3wSwsinwxdx11.定积分部分

(1)如果函数f(x)在[-a,a]上连续

aaf(x)dx[fx()fx(dx)]0a0(如果fx(为奇函数)a0)2f(xdx)如果(fx(为偶函数)

)(2)

coskxdx0sinkxdx0 (coskx)^2dx(sinkx)^2dx

(3).

设k,lN,且kl,则coskxsinlxdx0coskxcoslxdx0

sinkxsinlxdx0(4).设f(x)是以周期为T的连续函数

(1).aTaf(x)dxf(x)dx0TT2T2f(x)dx

(2).anTaf(x)dxnf(x)dx0T(5).特殊积分



0eudueaxdx221(a0)a0w

(p0,w0)0p2w2pptecoswtdt(p0,w0)0p2w2sinxdx0x2(6).关于三角函数定积分简化( 注意:f(x)是定义在[0,1]上的函数) eptsinwtdt20

20(1)f(sxindx)f(2)f(sxindx)0(xcdxos)特别的20x(dxsin)20nxndx(cos)0n20n00202fx(sdxin)(co特别的s)f2xdx20xdx(sin)xdx2(s2inx)ndx2(cos)(3)0n(cxosdx)(n为奇数)022(coxsndx)n(sxi)ndx(n为偶数)(n为奇数)(4)20042(sinx)ndx0(n为偶数)(n为奇数)(5)(cosx)ndx022042(cosx)ndx020(n为偶数)(6)(sinx)ndx(cosx)ndx00(7)2(sinx)ndxn1n3n52.........(n为正奇数)nn2n43n1n3n51.........(n为正偶数)nn2n422(8)xf(sinx)dx020f(sinx)dx

11.图像分段的函数不一定是分段函数(如y=1/x) 分段函数的图像也可以是一条不断开的曲线(如y=|x|)

12.如何证明一个数列是发散的?

(1)只要找到的两个子数列收敛于不同的值

(2)找一个发散的子数列 13.必记极限

n!(1)limnnn 01 (2)linmnn(3)lixmxlnx0x(4)lixmx00114.函数f(x)在[a,b]有定义,且|f(x)|在[a,b]上可积,此时f(x)在[a,b]上的积分不一定存在 列如:

f(x)15. 注意 1-1x为有理数

x为无理数若f\'(a)0,只能得到结论:f(x)在a点严格增加。即x(a,a)有f(x)f(a)x(a,a)有f(x)f(a);但不能得到结论:f(x)在U(a,)内单调增大16.

设f(x)=|x-a|g(x),其中g(x)在x=a处连续,则f(x)在x=a处可导g(a)=0应用:求函数f(x)=|x(x-1)(x-2)|(x2-3x+2)的可导的点显然为1,217. 函数取得极值的第二充分条件

设f(x)在x0处n阶可导,且f\'(x0)f\'\'(x0)f\'\'\'(x0)f(n1)(x0)0f(n)(x0)0(2n)(1)n2k且f(n)(x0)0f(x0)为极大值(2)n2k且f(n)(x0)0f(x0)为极小值(3)n=2k+118. 拐点的第二充分条件

f(x0)不是极值点设f(x)在x0处n阶可导(n>2且为奇数)

若f\'\'(x)f\'\'\'(x)f则(x,f(x))为拐点0000(n1)(x)0,f0n()(x)00

19 .用求导法判断数列的单调性 设An1f(An),AnI若f(x)在区间I上单调递增则:(1)(2)A2A1{An}A2A1{An}

注意:若f(x)在区间I上单调递减则:A2n1与A2n两数列具有相反的单调性20.题目中如果出现f\'\'(x)0f\'(x)单调 21.ln(x1x2)x(x0) 22. 无穷小小谈

当x0时,有(1)当0nmxmo(xn)(2)当0nmo(xm)o(xn)o(xn)o(xm)mn(3)当0nmo(x)nx注意:两个o()不可以相除(4)当m,n0xmo(xn)o(xmn)o(xm)o(xn)o(xmn)23. 无穷个无穷小之和与无穷个无穷小之积一定都是无穷小吗?????

哈哈!显然都是NO11111之和:lim()1其中(有无穷多个)nnnnnn

kn之积:取0(其中nk,1,2,3)n!1n2n3nnnn(!)n显然1nn!n!n!n!n(!)24.反三角

(1)arctxan

1arctanx2t,0t2

(2)arcsin(sint)t,a2a12t25.

求A(b)|xb|dx的最小值aa结论:当b12时21Amin(b)(a1a2)24

26. ba(xab)dx0 227.lnxdx1

010128.29. x(1x)dxxn(1x)mdx0191900mn1

作用:x(1x)dxx(1x)dx若f(x)在[a,b]上可积则f(x)dxf(abx)dxaabb这下就好求了1baf(x)dx2a[f(x)f(bx)]dx

特别的当a0时,有如下推论:b(1)f(x)dxf(bx)dx00bb1b(2)0f(x)dx20[f(x)f(bx)]dxb若f(x)在[a,b]上可积,则:30. 111110f(x)dx0x2f(x)dx20[f(x)x2f(x)]dxf2(x)C 31.f(x)f\'(x)dx232.连续函数必有原函数且原函数连续,若f(x)是不连续的分段函数,则f(x)的原函数就一定不存在 33.

有极限连续

可微偏导连续 有定义偏导存在34.对

0f(sinx)dx22f(sinx)dx进行推广:0设f(x)在[0,1]上连续,且abn(n0,1,2...) 有以下结论:nbf(sinx)dxaa2bnb n为偶数xf(cosx)dxf(cosx)dxaa2 (2)若f(x) 为偶函数,则(1)n为奇数bxf(sinx)dxnxf(sinx)dxa2bnxf(cosx)dxa2bbabf(sinx)dxf(cosx)dxa35. 线、面积分中的对称简化

(1)对弧长的曲线积分设连续且分段光滑的平面线弧L关于y轴对称,函数f(x,y)在L上有定义L 且连续,为x0的半个区域,则:

2若f(-x,y)=f(x,y)s2f(x,y)dsLf(x,y)dL2若f(-x,y)=-f(x,y)Lf(x,y)ds0例一I=(xyx2)ds,L为y=a2x2L解:I=(xyx2)dsxydsx2ds02Lx2dsLLL222a2cos2ad02a3

例二3222I(xy)ds,L为xyRL33解:I(xy)ds=xds+y(自己体会一下,为什么?)ds=0+0=0LLL(2)对坐标的曲线积分A.设连续且分段光滑的平面有向曲线弧L关于y轴对称,函数P(x,y)在L上有定义L 且连续,为x0的半个区域,则:2若P(-x,y)=P(x,y)P(x,y)dx2LP(x,y)dxL2若P(-x,y)=-P(x,y)未完待续

LP(x,y)dx0

推荐第10篇:高数小结论

高数小结论

1. 等价无穷小(x→0)

(1).sinxxtanxex1ln[1x]arcsinxarctanx1(2).1cosxx22(3).(1x)a1ax(4).ax1xlnax(5).1n1xnx(6).n1x1n(7).loga(1x)0x2.

xlna0|x|2时2时

sinxxtanx11cosxx22 3.如果limU1,limV则limUeVlim(U1)V4. [f(x)+f(-x)]/2表示偶函数

[f(x)-f(-x)]/2表示奇函数

5.直线L:y=kx+b 为y=f(x)的渐近线的充分必要条件为:

k=lim f(x)/x (x→∞)

b=lim [f(x)-kx] (x→∞) 注意:这里的∞,包括+∞和-∞ 要分开讨论 6. 常见函数的导数

(记熟后解题快)

(√x)’=1/2√x

(1/x)’=-1/x^2

(x^x)’=(x^x)(1+lnx)

7.关于n阶导数的几个重要公式

(sinx)^(n)=sin(x+nπ/2)

(cosx)^(n)=cos(x+nπ/2)

(sinkx)^(n)=k^nsin(kx+nπ/2)

(coskx)^(n)=k^ncos(kx+nπ/2)

(x^n)^(n)=n!

(a^x)^(n)=a^x (lna)^n

(e^x)^(n)=e^x

(1/t-x)^(n)=n!/(t-x)^(n+1)

(1/t+x)^(n)= n!(-1)^n/(t+x)^(n+1)

[ln(t+x)]^(n)=(n-1) !(-1)^(n-1)/(t+x)^n 8.泰勒公式(用来求极限)

sinx=x-x^3/3!+x^5/5!+o(x^6)

cosx=1-x^2/2!+x^4/4!+o(x^5)

e^x=1+x+x^2/2!+x^3/3!+o(x^3)

ln(1+x)=x-(1/2)x^2+(1/3)x^3+o(x^3)

(1+x)^a=1+ax+[a(a-1)/2!]x^2+o(x^2)

tanx=x+(1/3)x^3+o(x^3)

arctanx=x-(1/3)x^3+o(x^3)

cotx=1/x –x/3+o(x)

tan(tanx)=x+(2/3)x^3+o(x^3) sin(sinx)=x-(1/3)x^3+o(x^3) 9. 重要不定积分

secxdx(secx)(2n2)dx(secx)2nd(tanx) (sinx)(2n1)cosx(sinx)2n1(sinx)(2n1)(cosx)(2n1)(tanx)(2n1)dx[1(cotx)2]n(cosx)(2n1)sinx(cotx)(2n1)dx dx1xdxtanC 1cosx212dxtanxsecxCC 1sinxx1tan2(secx)2nd(tanx) (tanx)dx(tanx)dx(tanx)22(secx)1(tanx)nn(cscx)2(cotx)nd(cotx)(cotx)dx(cotx)(cscx)2dx1(cotx)2 nntanxdxln|cosx|Ccotxdxln|sinx|Csecxdxln|secxtanx|Ccscxdxln|cscxcotx|C x1sin2xC24x12(cox)dxsin2xC242(sinx)dx2(tanx)dxtanxxC(cotx)2dxcotxxCdx1xarctanCx2a2aadx22x2a2ln|xxa|C

dx1xax2a22aln|xa|CdxxarcsinCa2x2aa2xx2axdxarcsinax2C2a2

2ax2x2a2dxln|xx2a2|xa2C2222axeaxecosbxdxa2b2(acosbxbsinbx)C axeaxesinbxdx(asinbxbcosbx)Ca2b210. y=sinwx(w>0)

它的半个周期与x轴围成的面积为s=2/w

把它的半个周期分成三等分,中间的那部分面积为s’=1/w

显然s=2s’

20w 1S\'23wsinwxdxw3wSwsinwxdx11.定积分部分

(1)如果函数f(x)在[-a,a]上连续

aaf(x)dx[fx()fx(dx)]0a0(如果fx(为奇函数)a0)2f(xdx)如果(fx(为偶函数)

)(2)

coskxdx0sinkxdx0 (coskx)^2dx(sinkx)^2dx

(3).

设k,lN,且kl,则coskxsinlxdx0coskxcoslxdx0

sinkxsinlxdx0(4).设f(x)是以周期为T的连续函数

(1).aTaf(x)dxf(x)dx0TT2T2f(x)dx

(2).anTaf(x)dxnf(x)dx0T(5).特殊积分



0eudueaxdx221(a0)a0w

(p0,w0)0p2w2pptecoswtdt(p0,w0)0p2w2sinxdx0x2(6).关于三角函数定积分简化( 注意:f(x)是定义在[0,1]上的函数) eptsinwtdt20

20(1)f(sxindx)f(2)f(sxindx)0(xcdxos)特别的20x(dxsin)20nxndx(cos)0n20n00202fx(sdxin)(co特别的s)f2xdx20xdx(sin)xdx2(s2inx)ndx2(cos)(3)0n(cxosdx)(n为奇数)022(coxsndx)n(sxi)ndx(n为偶数)(n为奇数)(4)20042(sinx)ndx0(n为偶数)(n为奇数)(5)(cosx)ndx022042(cosx)ndx020(n为偶数)(6)(sinx)ndx(cosx)ndx00(7)2(sinx)ndxn1n3n52.........(n为正奇数)nn2n43n1n3n51.........(n为正偶数)nn2n422(8)xf(sinx)dx020f(sinx)dx

11.图像分段的函数不一定是分段函数(如y=1/x) 分段函数的图像也可以是一条不断开的曲线(如y=|x|)

12.如何证明一个数列是发散的?

(1)只要找到的两个子数列收敛于不同的值

(2)找一个发散的子数列 13.必记极限

n!(1)limnnn 01 (2)linmnn(3)lixmxlnx0x(4)lixmx00114.函数f(x)在[a,b]有定义,且|f(x)|在[a,b]上可积,此时f(x)在[a,b]上的积分不一定存在 列如:

f(x)15. 注意 1-1x为有理数

x为无理数若f\'(a)0,只能得到结论:f(x)在a点严格增加。即x(a,a)有f(x)f(a)x(a,a)有f(x)f(a);但不能得到结论:f(x)在U(a,)内单调增大15.

设f(x)=|x-a|g(x),其中g(x)在x=a处连续,则f(x)在x=a处可导g(a)=0应用:求函数f(x)=|x(x-1)(x-2)|(x2-3x+2)的可导的点显然为1,216. 函数取得极值的第二充分条件

设f(x)在x0处n阶可导,且f\'(x0)f\'\'(x0)f\'\'\'(x0)f(n1)(x0)0f(n)(x0)0(2n)(1)n2k且f(n)(x0)0f(x0)为极大值(2)n2k且f(n)(x0)0f(x0)为极小值(3)n=2k+117. 拐点的第二充分条件

f(x0)不是极值点设f(x)在x0处n阶可导(n>2且为奇数)

若f\'\'(x)f\'\'\'(x)f则(x,f(x))为拐点0000(n1)(x)0,f0n()(x)00

18 .用求导法判断数列的单调性 设An1f(An),AnI若f(x)在区间I上单调递增则:(1)(2)A2A1{An}A2A1{An}

注意:若f(x)在区间I上单调递减则:A2n1与A2n两数列具有相反的单调性19.题目中如果出现f\'\'(x)0f\'(x)单调 20.ln(x1x2)x(x0) 21. 无穷小小谈

当x0时,有(1)当0nmxmo(xn)(2)当0nmo(xm)o(xn)o(xn)o(xm)mn(3)当0nmo(x)nx注意:两个o()不可以相除(4)当m,n0xmo(xn)o(xmn)o(xm)o(xn)o(xmn)22. 无穷个无穷小之和与无穷个无穷小之积一定都是无穷小吗?????

哈哈!显然都是NO11111之和:lim()1其中(有无穷多个)nnnnnn

kn之积:取0(其中nk,1,2,3)n!1n2n3nnnn(!)n显然1nn!n!n!n!n(!)23.反三角

(1)arctxan

1arctanx2t,0t2

(2)arcsin(sint)t,a2a12t24.

求A(b)|xb|dx的最小值aa结论:当b12时21Amin(b)(a1a2)24

25. ba(xab)dx0 226.lnxdx1

010127. x(1x)dxxn(1x)mdx0191900mn1

作用:x(1x)dxx(1x)dx这下就好求了

第11篇:高数小结论

高数小结论

1. 等价无穷小(x→0)

(1).sinxxtanxex1ln[1x]arcsinxarctanx1(2).1cosxx22(3).(1x)a1ax(4).ax1xlnax(5).1n1xnx(6).n1x1n(7).loga(1x)0x2.

xlna0|x|2时2时

sinxxtanx11cosxx22 3.如果limU1,limV则limUeVlim(U1)V4. f(x)f(x)f(x)f(x)表示偶函数,表示奇函数

22直线L:ykxb为函数yf(x)的渐近线的充分必要条件为:5. f(x)klimblim[f(x)kx]这里的包括和xxx6. 常见函数的导数

(记熟后解题快) (x)\'12x11()\'2xx(xx)\'xx(1lnx)

7.关于n阶导数的几个重要公式

n)2n(sinkx)(n)knsin(x)2(xn)(n)n!(sinx)(n)sin(x(ex)(n)ex1(n)(1)nn!()tx(tx)n1n)2n(coskx)(n)kncos(x)2(ax)(n)(ax)(lna)n

1(n)n!()tx(tx)n1(cosx)(n)cos(x[ln(tx)](n)(1)n1(n1)!(tx)n1(n)(1)nn!n()aaxb(axb)n18.泰勒公式(用来求极限)

(ln(axb))(n)(1)n1(n1)! a(axb)nnx3x5x2x46sinxxo(x)cosx1o(x5)3!5!2!4!x2x3x2x3x3e1xo(x)ln(1x)xo(x3)2!3!23a(a1)2a(a1)(a2)3(1x)a1axxxo(x3)2!3!x31x tanxx o(x3)cotxo(x)3x311arcsinxxx3o(x3)arccosxxx3o(x3)626x3arctanxxo(x3)321tan(tanx)xx3o(x3)sin(sinx)xx3o(x3)339. 重要不定积分

secxdx(secx)(2n2)dx(secx)2nd(tanx) (sinx)(2n1)cosx(sinx)2n1(sinx)(2n1)(tanx)(2n1)(cosx)(2n1)dx[1(cotx)2]n(cosx)(2n1)sinx(cotx)(2n1)dcotx dx1xdxtanC 1cosx212dxtanxsecxCC 1sinxx1tan2(secx)2nd(tanx) (tanx)dx(tanx)dx(tanx)22(secx)1(tanx)nn(cscx)2(cotx)nd(cotx)(cotx)dx(cotx)(cscx)2dx1(cotx)2 nntanxdxln|cosx|C cotxdxln|sinx|Csecxdxln|secxtanx|C cscxdxln|cscxcotx|Cx1sin2xC24

x12(cox)dxsin2xC242(sinx)dx2(tanx)dxtanxxC(cotx)dxcotxxC2

dx1xarctanCx2a2aadx22x2a2ln|xxa|C

dx1xax2a22aln|xa|CdxxarcsinCa2x2aa2xx2axdxarcsinax2C2a2 2ax2x2a2dxln|xx2a2|xa2C2222axeaxecosbxdxa2b2(acosbxbsinbx)C axeaxesinbxdx(asinbxbcosbx)Ca2b210. y=sinwx(w>0)

它的半个周期与x轴围成的面积为s=2/w

把它的半个周期分成三等分,中间的那部分面积为s’=1/w

显然s=2s’

20w 1S\'23wsinwxdxw3wSwsinwxdx11.定积分部分

(1)如果函数f(x)在[-a,a]上连续

aaf(x)dx[fx()fx(dx)]0a0(如果fx(为奇函数)a0)2f(xdx)如果(fx(为偶函数)2

)(2)coskxdxsinkxdx0

(coskx)dx(sinkx)dx

2 设k,lN,且k则,l:(3)

kxcosaTsilnxdxTcoskxcolsxdxT2T2sinkxsilnxdx0

(4).设f(x)是以周期为T的连续函数

(1).af(x)dxf(x)dx0f(x)dx

(2).anTaf(x)dxnf(x)dx0T(5).特殊积分



0eudueaxdx221(a0)a0w

(p0,w0)0p2w2pptecoswtdt(p0,w0)0p2w2sinxdx0x2(6).关于三角函数定积分简化( 注意:f(x)是定义在[0,1]上的函数) eptsinwtdtn0(1)20f(sinx)dx20f(cosx)dx0特别的(sinx)dx2(cosx)ndx20(2)f(sinx)dx22f(sinx)dx22f(cosx)dx00特别的(sinx)dx22(sinx)dx22(cosx)ndx000nn(3)(cosx)ndx00(n为奇数)022(cosx)ndx0(n为偶数)(n为奇数)(4)(5)20(sinx)ndx42(sinx)ndx0(n为偶数)(n为奇数)20(cosx)ndx042(cosx)ndx0(n为偶数)(6)20(sinx)dxn20(cosx)ndx0(7)2(sinx)ndxn1n3n52.........(n为正奇数)nn2n43n1n3n51.........(n为正偶数)nn2n422

(8)xf(sinx)dx020f(sinx)dx11.图像分段的函数不一定是分段函数(如y=1/x) 分段函数的图像也可以是一条不断开的曲线(如y=|x|)

12.如何证明一个数列是发散的?

(1)只要找到的两个子数列收敛于不同的值

(2)找一个发散的子数列 13.必记极限

(1)limnnn!0nn(2)limnn

1 (3)limxlnx0 x0x(4)limx1x0an(5)lim0nn!14.函数f(x)在[a,b]有定义,且|f(x)|在[a,b]上可积,此时f(x)在[a,b]上的积分不一定存在 列如:

f(x)15. 注意 1-1x为有理数

x为无理数若f\'(a)0,只能得到结论:f(x)在a点严格增加。即x(a,a)有f(x)f(a)x(a,a)有f(x)f(a);但不能得到结论:f(x)在U(a,)内单调增大16.

设f(x)=|x-a|g(x),其中g(x)在x=a处连续,则f(x)在x=a处可导g(a)=0应用:求函数f(x)=|x(x-1)(x-2)|(x2-3x+2)的可导的点显然为1,217. 函数取得极值的第二充分条件

设f(x)在x0处n阶可导,且f\'(x0)f\'\'(x0)f\'\'\'(x0)f(n1)(x0)0f(n)(x0)0(2n)(1)n2k且f(n)(x0)0f(x0)为极大值(2)n2k且f(n)(x0)0f(x0)为极小值(3)n=2k+118. 拐点的第二充分条件

f(x0)不是极值点设f(x)在x0处n阶可导(n>2且为奇数)

若f\'\'(x)f\'\'\'(x)f则(x,f(x))为拐点0000(n1)(x)0,f0n()(x)00

19 .用求导法判断数列的单调性

设An1f(An),AnI若f(x)在区间I上单调递增则:(1)(2)A2A1{An}A2A1{An}

注意:若f(x)在区间I上单调递减则:A2n1与A2n两数列具有相反的单调性20.题目中如果出现f\'\'(x)0f\'(x)单调 21.ln(x1x2)x(x0) 22. 无穷小小谈

当x0时,有(1)当0nmxmo(xn)(2)当0nmo(xm)o(xn)o(xn)o(xm)mn(3)当0nmo(x)nx注意:两个o()不可以相除(4)当m,n0xmo(xn)o(xmn)o(xm)o(xn)o(xmn)23. 无穷个无穷小之和与无穷个无穷小之积一定都是无穷小吗?????

哈哈!显然都是NO11111之和:lim()1其中(有无穷多个)nnnnnn

kn之积:取0(其中nk,1,2,3)n!1n2n3nnnn(!)n显然1nn!n!n!n!n(!)24.反三角

(1)arctxan

1arctanx2t,0t2

(2)arcsin(sint)t,a2a12t25.

求A(b)|xb|dx的最小值aa结论:当b12时21Amin(b)(a1a2)24 26. ba(xab)dx0 227.lnxdx1

010128.29. x(1x)dxxn(1x)mdx0191900mn1

作用:x(1x)dxx(1x)dx若f(x)在[a,b]上可积则f(x)dxf(abx)dxaabb这下就好求了1baf(x)dx2a[f(x)f(abx)]dx

特别的当a0时,有如下推论:b(1)f(x)dxf(bx)dx00bb1b(2)0f(x)dx20[f(x)f(bx)]dxb若f(x)在[a,b]上可积,则:30. 111110f(x)dx0x2f(x)dx20[f(x)x2f(x)]dxf2(x)C 31.f(x)f\'(x)dx232.连续函数必有原函数且原函数连续,若f(x)是不连续的分段函数,则f(x)的原函数就一定不存在 33.

有极限连续

可微偏导连续 有定义偏导存在34.对

0f(sinx)dx22f(sinx)dx进行推广:0设f(x)在[0,1]上连续,且abn(n0,1,2...) 有以下结论:nbf(sinx)dxaa2bnb n为偶数xf(cosx)dxf(cosx)dxaa2 (2)若f(x) 为偶函数,则(1)n为奇数bxf(sinx)dxnxf(sinx)dxa2bnxf(cosx)dxa2bbabf(sinx)dxf(cosx)dxa35. 线、面积分中的对称简化

(1)对弧长的曲线积分设连续且分段光滑的平面线弧L关于y轴对称,函数f(x,y)在L上有定义L 且连续,为x0的半个区域,则:

2若f(-x,y)=f(x,y)s2f(x,y)dsLf(x,y)dL2若f(-x,y)=-f(x,y)Lf(x,y)ds0例一I=(xyx2)ds,L为y=a2x2L解:I=(xyx2)dsxydsx2ds02Lx2dsLLL222a2cos2ad02a3

例二3222I(xy)ds,L为xyRL33解:I(xy)ds=xds+y(自己体会一下,为什么?)ds=0+0=0LLL(2)对坐标的曲线积分A.设连续且分段光滑的平面有向曲线弧L关于y轴对称,函数P(x,y)在L上有定义L 且连续,为x0的半个区域,则:2若P(-x,y)=P(x,y)P(x,y)dx2LP(x,y)dxL2若P(-x,y)=-P(x,y)例一LP(x,y)dx0Ixy(ydxxdy),其中L为yR2x2,方向为从左到右LLLLL解:Ixy(ydxxdy)xy2dxx2ydy0x2ydy0(这要用到下面B的结论)例二解: 2222222Ixydy,其中L为双纽线的右半支:(x+y)=a(x-y),x0的逆时针方向L

由于图像关于x轴对称,则I0B.设连续且分段光滑的平面有向曲线弧L关于y轴对称,函数P(x,y)在L上有定义且在左半平面部分L1与右半平面部分L2方向相反,则:若P(-x,y)=P(x,y)若P(-x,y)=-P(x,y)LP(x,y)dy0(上面讲到的就是用的这个结论)LP(x,y)dy2P(x,y)dyL1

注意:这里的方向相反是指:关于哪个轴对称就关于谁的方向相反对于关于x轴对称的情况就不写了,其实是一个道理!一定要把A,B好好的比较看看两者之间的区别与联系例一Ix|y|dx,其中L为y2x上从A(1,1)到B(1,1)的一段弧L解:L关于x轴对称且方向相反且被积函数x|y|为y的偶函数故I=0例二Idxdy,其中ABCD是A(1,0)B(0,1)C(-1,0)D(0,-1)为ABCD|x||y| 顶点的正方形的边界线,方向为逆时针方向dxdy解:I+ABCD|x||y|ABCD|x||y|第一部分积分:曲线关于x轴对称,且方向相反,而函数是y的偶函数,故积分为0,同理第二部分积分也为0故I=0(3)对面积的曲面积分设分片光滑的曲面关于yoz平面对称,f(x,y,z)在上连续,则有:当f(-x,y,z)=-f(x,y,z)时,当f(-x,y,z)=f(x,y,z)时对于关于zox,xoy的平面对称有类似的性质1|x||y|2是中x0的一半

f(x,y,z)ds0f(x,y,z)dsf(x,y,z)ds=22例一I2222(xyz)ds,其中为球面xyza上z(h0

解:关于xoz面对称,故Izxds

(4)对坐标的曲面积分设分片光滑的曲面关于yoz面对称,函数p(x,y,z)在上连续,一半,则:当f(-x,y,z)=f(x,y,z)时,当f(-x,y,z)=-f(x,y,z)时2是中x0的

f(x,y,z)dydz0f(x,y,z)dydz=2f(x,y,z)dydz2

例一I的部分。xyzdxdy,其中是球面x2y2z21的外侧在x0,y0解:关于xoy面对称,故I例二2xyzdxdy2xyzdxdy52

I=x2dydzy2dzdxz2dxdy,其中为曲线弧段z=y2(x0,1z4)绕z轴旋转所成的旋转曲面的非封闭侧。解:显然曲面关于yoz,zox面对称,故Iz2dxdy21

36.轮换对称性在积分计算中的应用举例

1.设函数f(x,y)在有界闭区域D上连续,D对坐标x,y具有轮换对称性,则:f(x,y)dxdyf(y,x)dxdyDD

何为轮换对称性:将x,y互换后D不变

例一I(3x2y)dxdy,其中D为xy2与两坐标轴围成D解:D关于x,y具有轮换对称性,则:I例二I(3x2y)dxdy=D(3y2x)dxdyD520

(xy)dxdy5xdxdy23DDx2y2R2(y2x2)dxdy解:Ix2y2R2(y2x2)dxdyx2y2R2(x2y2)dxdyI,故I02.设函数f(x,y,z)在空间有界闭区域上连续,对坐标x,y具有轮换对称性,则:f(x,y,z)dvf(y,x,z)dv例一求(xyz)dv,为x0,y0,z0,x2y2z2R2解:由于积分区域关于x,y,z具有轮换对称性,则:xdv=ydvzdv(xyz)dv3zdv3R416例二求I(zx2y2)dv,为zx2y2和z(hh0)围成的区域解:积分区域关于x,y具有轮换对称性I(zx2y2)dv(zy2x2)dv132zdvh23

3.设L是xoy面上一条光滑的曲线弧,L对坐标x,y具有乱换对称性,f(x,y)在L上连续,则:f(x,y)dsf(y,x)dsLL例一Ixds,L为星形线xyaL232323232323解:显然L对x,y具有轮换对称性,则:222511Ixdsyds(x3y3)dsa3ds3a32L2LLL例二22222求(xz)ds,F是圆周xyzR,xyz0F解:F关于x,y,z具有轮换对称性,则:xds=yds=zds,FFF2222xds=yds=zdsFFF11R2222故(xz)ds(xyz)ds(xyz)ds3F3F3F2R3ds3 F4.设L是xoy面上一条光滑的或者分段光滑的有向曲线弧,L对坐标x,y具有轮换对称性,f(x,y)在L上连续,则:f(x,y)dsf(y,x)dsLL

或者f(x,y)ds+f(y,x)ds=0LL例一Iydxxdy,L为xyR上A(R,0)到B(0,R)的一段弧L解:L对坐标x,y具有轮换对称性,故ydxxdy=0L例二2222Iydxydx,L为双纽线(xy)2axy位于第一象限部分L2323

取逆时针方向解:L关于x,y具有轮换对称性,则ydxxdy=0L23235.设是光滑曲面或者分片光滑曲面,对坐标x,y具有轮换对称性,f(x,y,z)在上连续,则:f(x,y,z)dsf(y,x,z)ds11I(x2y2z2)ds,:x2y2z2R224解:1111I(x2y2z2)ds(1)z2ds24241117(1)(x2y2z2)dsR42433例二I解:2222(axbycz)ds,:xyzR位于第一挂限部分例一xdsydszds222xdsydszds

1I(abc)zdsR3(abc)46.设是光滑曲面或者分片光滑曲面,对坐标x,y具有轮换对称性,f(x,y,z)在上连续,则:

f(x,y,z)dydzf(y,x,z)dzdx例一I(0zh)的外侧(yz)dydz(zx)dzdx(xy)dxdy,为zx2y2解:关于x,y具有轮换对称性,则:(yz)dydz=(xz)dxdz所以I0例二I(xy)dxdy(yx)dydx0xydydzyzdzdxzxdxdy,为平面xyz1位于第一挂限的外侧解:关于x,y,z具有轮换对称性,则:xydydzzydydxzxdxdy

1I3xydydz837.广义的罗尔定理

设f(x)满足:(1)在区间(a,)上连续(2)在区间(a,)内可导 (3)limf(x)limf(x)xax则:a使得f\'()038.需要记忆的反例

(1)(2)f(x)|x|在x0处不可导f(x)1f(x)0x0x0在x0点不可导应用:设f(0)0,则f(x)在x0点处可导的充分必要条件为: f(1cosh)f(1eh)(A)lim存在(B)lim存在h0h0h2hf(hsinh)f(2h)f(h)(C)lim存在(D)lim存在h0h0h2h用(1)检验AC,用(2)检验D,答案为B(1)若\',\'且lim39.

11 则:()(\'\')(2)若\',\'且lim则:()(\'\')

40.特别要注意的地方

设f(x)为(,)上的连续,函数F(x)为f(x)的一原函数,则:(1)f(x)为奇函数f(x)任意原函数F(x)为偶函数(2)f(x)为偶函数f(x)的原函数只有一个是奇函数,即为f(t)dt0x(3)f(x)任意原函数F(x)为周期函数f(x)为周期函数(4)f(x)以T为周期的函数且f(x)dx0f(x)任意原函数F(x)以T为周期0T

(5)函数的单调性与其原函数的单调性之间没有逻辑上的因果关系

41.几个极限之间的关系

1.若limanan则lim2.若limana且an0na1a2anann则limna1a2anann3.若limana且an0nan1n则limnanaananan1

但要注意:若limnana且an0,不能推出lim反例:an2(n为偶数)=3(n为奇数)

42.函数与其反函数图像交点问题

函数与其反函数图像交点有如下两个结论:(1)设f(x)是增函数,其反函数为f1(x),如果这两个函数图像有交点,则交点必在函数yx上(2)设f(x)是减函数,其反函数为f(x),如果这两个函数图像有交点,则交点不一定都在函数yx上例如:yx2,其反函数就是其本身

1 43.阶乘不等式

阶乘不等式在极限证明中的应用nn(1)设n为自然数,则()nn!e()ne2n!应用:证明limn0nnne()nn!een!证明:n2nn,n时,n0,limn0nnnn22an证明lim0(a为任意实数)nn!证明:a0,显然成立ane|a|ena0,0|||an|()n()n!nn|a|e|a|enn时,0,()0nnan根据夹逼准则:lim0nn!(2)一些不常用的,可以记忆玩玩n1。设p2且p为实常数,则n!()pp2。当n4时,n!(n)nn

3。当n2时,则n!(lnn)lnn

44.中值定理

罗尔定理yf(x)满足:(1)在区间[a,b]上连续(2)区间(a,b)内可导(3)f(a)f(b)在区间(a,b)内至少存在一点使得f\'()0注意:该定理的条件只是充分的,本定理可以推广为:yf(x)在区间(a,b)内可导,limf(x)limf(x)xaxb

在区间(a,b)内至少存在一点使得f\'()0拉格朗日定理yf(x)满足:(1)在区间[a,b]上连续(2)区间(a,b)内可导在区间(a,b)内至少存在一点使得f\'()柯西定理f(x)及F(x)满足:(1)在区间[a,b]上连续(2)区间(a,b)内可导(3)区间(a,b)内F\'(x)0在区间(a,b)内至少存在一点使得f(b)f(a)f\'()F(b)F(a)F\'()

f(b)f(a)ba

45.需注意的地方

可积与连续之间的关系1.闭区间上的连续函数一定是可积的;2.可积函数不一定是连续的,但是一定有无穷多个处处稠密的连续点可积与存在原函数之间的关系11.f(x)存在原函数,但其不一定可积,例如f(x),x(0,)x2.f(x)在[a,b]上可积,但f(x)不一定存在原函数,例如:

46.用泰勒公式分解既约分式

用泰勒公式分解既约真分式(以下只给出结论)设P(x)是既约真分式,Q(x)在复数范围内可以分解为(xa1)n1(xa2)n2(xar)nr,则Q(x)其能唯一分解为:b11b12b1n1b21b22b2n2P(x)[][]Q(x)(xa1)n1(xa1)n11(xa1)(xa2)n2(xa2)n21(xa2)bi1bi2binibr1br2brnr[][](xai)ni(xai)ni1(xa1)(xar)nr(xar)nr1(xar)其中bij(i1,2,,r;j1,2,ni)都是待定的常数fi(j1)(ai)P(x)j设fi(x),且bi(xa1)n1(xa2)n2(xai1)ni1(xai1)ni1(xar)nr(j1)!例一3x分成部分分式2(x1)(x1)3x3解:令f1(x),则f(1)1(x1)243x33f2(x),则f2\'(1),f2(1)x1423x3121=[]22(x1)(x1)4x1(x1)x12x7将分成部分分式x(x1)(x3)2x77解:f1(x),f1(0)(x1)(x3)32x79f2(x),f2(1)x(x3)42x71f3(x),f3(3)x(x1)122x7791=x(x1)(x3)3x4(x1)12(x3)将9x324x248x将分成部分分式4(x1)(x2)9x324x248x解:f1(x),f1(1)1(x2)4f\'\'(2)9x324x248xf2(x),f2(2)24,f2\'(2)12,26(x1)2!f2\'\'\'(2)13!9x324x248x1241261(x1)(x2)4x1(x2)4(x2)3(x2)2x2例二由此可见此法对分母都是一次时特别简单例三 47.求不定积分的几种特殊技巧

求定积分的几种特殊技巧1.定义在对称区间[a,b]上的任何函数都可以表示为一个奇函数与一个偶函数之和f(x)f(x)f(x)f(x)表示偶函数,表示奇函数222.f(x)定义在对称区间[a,-a]上f(x)为奇函数时,f(x)dx0aaf(x)为偶函数时,f(x)dx2f(x)dxa0aa(1)求定积分xln(1ex)dx22f(x)f(x)xln(1ex)xln(1ex)1(x)xln(1ex)x2表示奇函数22222221121212xxx22xln(1e)dx=2xln(1e)2x2xdx2[xln(1e)2x]dx22xdx280x2dx03ln(x1x2)(2)求定积分dx11x21ln(x1x2)值得注意的是一眼看去不是奇函数,实际求一下发现它是奇函数21x3.巧用几何意义求定积分求ba(xa)(bx)dx(ba)ba2ab2ab)(x)是以(,0)为222ba11ba2圆心,为半径的上半圆,上半圆的面积为S=r2()(ba)222228解:被积函数f(x)(xa)(bx)(根据定积分的几何意义,(xa)(bx)dxab(ba)284.前面我面有这样一个结论:xf(sinx)dx0baf(sinx)dx02ab对称,则:2现在我们再给出特殊一点的式子:xf(x)dx?以下有结论:设函数f(x)在[a,b]上连续,且f(x)关于xbaabbxf(x)dxf(x)dx2a

48.矩阵积分法

设ui(ui1)\'vivi1dx(i1,2,)函数序列一:u0,u1,u2,un,函数序列二:v0,v1,v2,vn,一.形如xnsinaxdx的积分函数序列一:u0xn,u1nxn1,unn!1(1)n函数序列二:v0sinax,v1cosax,vnnsin[axn]aa2函数序列一和函数序列二作为矩阵的一二行,构造一个辅助矩阵,就可以方便的求得结果求(x32x3)sin3xdxx32x3sin3x3x226x601111cosxsin3xcos3xsin3x3927811111原式(x32x3)(cosx)(3x22)(sin3x)6x(cos3x)6(sin3x)3927811(3x22)2x23cos3x(x2x3)sin3xcos3xsin3xC39927注:按unvn1规则进行斜线相乘,每一项正负交替出现nax二.形如xncosaxdx,xedx的积分方法与上述一样三.形如eaxsinbxdx的积分函数序列一:u0sinbx,u1bcosbx,u2b2sinbx函数序列二:v0eax,v1求e2xsin3xdx的积分sin3xe2x原式12xe23cos3x12xe4

1ax1e,v22eaxaa9sin3x12x11esin3xe2x3cos3x(1)22(9sin3x)e2xdx244232x解方程解得:esin3xdx(sin3xcos3x)e2xC1313最后一项是(1)n2u2v2dx,实际上n就取2,最后一项就是u2v2dx49.函数的可积性与原函数存在性

定理1(1):若f为[a,b]上的连续函数,则f在[a,b]上可积(2):若f是[a,b]上只有有限个间断点的有界函数,则f在[a,b]上可积(3):若f是[a,b]上的单调函数则f在[a,b]上可积注:即使单调函数有无穷多个间断点,仍不失其可积性0如函数:f(x)1n在区间[0,1]上可积x011xn1nn1,2,3........

定理2若f为[a,b]上的连续函数,则f在[a,b]上的原函数存在定理3

(1):若f在[a,b]上含有第一类间断点,则f在[a,b]上不存在原函数(2):若f在[a,b]上有无穷型间断点,则f在[a,b]上不存在原函数(3):若f在[a,b]上存在原函数,若f存在间断点,则f在[a,b]上的间断点是第二类的

50.函数性质在原函数与其导函数之间的传递性

命题1有界不交互传递F(x)在有限空间(a,b)无界,f(x)必无界,反之不成立1反例:F(x)xsin,x(0,,1)F(x)在(0,上有界1)x111则f(x)sin2cos在(0,1)上无界xxx

命题2单调不交互传递F(x)为凸性或凹性单调函数时,f(x)具有单调性 f(x)具有单调不变号性时,F(x)必有单调性命题3奇偶性 F(x)为奇(偶),则f(x)为偶(奇)f(x)为奇(偶),则F(x)为一偶函数常数(一奇函数常数)命题4周期性

TF(x)以T为周期,f(x)以T为周期f(x)以T为周期且f(x)dx0F(x)以T为周期0

第12篇:高数课程论文

合肥学院

HEFEI UNIVERSITY

名:学

号:指导老师:班

级:系

高数课程论文

摘要:

又是一学期的匆匆而逝,高数(下)这本书,我终于将其最后一页合上了。数学是一种思想方法,学习数学的过程就是思维训练的过程。当然,这学期我学到了很多,但却未能如愿掌握很多。以下是我对本书的学习总结以及心得体会。 关键词:

向量,微分,积分,方法,态度 正文:

本书的第一章节,也即是第五章,向量代数与空间解析几何,它是高数(上)的一个延续。首先我们学习了向量代数的基本知识,接着是空间曲面及曲线的计算以及运用。这一章节中,当看到那些旋转曲面,椭圆抛物面,单叶双曲面,马鞍面······我深深感受到了高数的美。这一章节,我整体学到还不错,较为有条理,能运用公式,掌握二次曲面的图形,求法,及点线面之间问题的处理。

第六章,多元函数微分学,首先让我们掌握多元函数的基本概念及极限。要注意求偏导数时要将其他变量视为常量。同时也可根据函数关于自变量的对称性,来简化运算,提高效率。学习中,要注意二阶混合偏导数是相等的。求全微分的时候要注意可微的条件。牢记口诀:可导必连续,连续必可积。对多元复合函数求导时,要学会画出它的链式图,同时要牢记,复合函数求偏导时,只看眼前,不加深究。求曲面的切平面方程时,其在点M处的切向量即为F对x,y,z的各个偏导。同时本章节要掌握条件极值,拉格朗日乘数法在实际情况下的运用。

第七章,重积分。首先是对二重积分的概念与性质的描述,牢记积分思想:“分割,近似,求和,取极限”。本章二重积分的计算是重点,同时引入X—型区域,Y—型区域的概念。以及,点动成线,线动成面,面动成体的规则。在计算时,若遇到圆形域,或扇形域,环形域,这时要在极坐标下进行计算。接着引入三重积分,它也具有轮换对称性,计算时可以运用“先单后重法”(或称投影法,穿针引线法),或用“先重后单法”(截面法)。在柱面坐标,球面坐标系中进行求解。

第八章,曲线积分与曲面积分,上一章是把积分概念从积分范围为数轴上的一个区间的情形推广到积分范围为平面或空间内的闭区域的情形。此章节是把积分概念推广到积分概念为一段曲线弧或一张曲面的情形。注意此节偶倍奇零的运用也可简化运算,同时也出现偶零奇倍的概念,要能分析辨别,并正确运用是重点。对弧长的曲线积分,要注意将x,y换化成另外一个参数的表达式,并要对x,y求其关于t的导数。对曲线方程只有y的要补充x=x(t),对坐标的曲线积分(也称第二型曲线积分),此时要注意认准求导变量,并找到变量间的关系,既是L的变量方程式。对于格林公式要注意其满足闭区域D由分段光滑闭曲线L围成。对面积的曲面积分,要注意其投影方向,对坐标的曲面积分,要注意其法向量的选取,上下,前后,左右,里外。对于高斯公式及斯托克斯公式,如果能熟练运用,也是解决问题的一个捷径。对于本章,我掌握的不是特别的好,不能熟练的分辨及明确各类积分之间的关系及区别,以至于学习过程中,有点吃力。

第九章,无穷级数,它和前面的章节没有太大的联系,但极限的思想仍包含其中,并有所运用,来处理级数的敛散性(级数收敛性以及发散性的统称)。等比级数(几何级数)|q|=1,则其级数发散。级数收敛的必要条件是其通项趋于零。对于正项级数,其每一项都为非负数,它收敛的充要条件是其部分和数列{Sn}有界。两个级数之间的比较,也有很多方法。如比较判别法,比较判别法的极限形式,还有比值判别法(或称达朗贝尔判别法),根植判别法或柯西判别法,要牢记:大收小收,小发大发。在交错级数与绝对收敛中,要利用莱布尼茨判别法。对于幂级数,要明确其收敛半径的求法。对于将函数展开成幂级数时,要注意运用泰勒级数及迈克劳林级数。对于傅里叶级数,要能掌握其收敛定理。本章级数的求和是一难点,同时也是需要掌握的重点。 总结:

合上书本,感觉很充实。不只是看到了很多,学到了很多,也领悟到了很多,体会到了很多。同时也发现了自己的很多缺点及不足。还要经过不断的学习,上进才能学到更多。 致谢:

最后,我想对刘老师说:您辛苦了!我们大一这群顽皮的孩子,有时候真的很不听话,让你生气了,真的不好意思。同时,我也能深刻体会到你是真心的为我们好,才会在意我们,生我们的气。您是真心的希望我们学好,学到更多知识。但可惜,我们中的多数人没能懂得你的良苦用心,让你失望了。就我个人而言,我觉得我尽力了,虽然我学到不是最好的,但我用心了,努力了。谢谢您的教导!

第13篇:小高论文

浅谈数学教学中促进学生自主探索

《数学课程标准》指出“动手实践、自主探索与合作交流是学生学习数学的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”传统的课堂过于封闭,形式单一,教学机械,气氛沉闷,学生难以自主探索,创新意识逐渐淡化,这样的教学模式显然与大力提倡的创新教育不相适应。因此,要改革课堂教学,把新的学习方式还给学生,让学生真正成为学习的主人。在小学数学教学中,教师应当充分为学生提供探索、交流等多种展示才华的平台,让学生主动参与学习的全过程,全面提高学生的自主探索能力。现将促进学生自主探索的几点认识表述如下:

一、关注学生生活实际,创设自主探索的情景 荷兰数学教育家汉斯·弗赖登塔尔认为:“数学来源于现实,存在于现实,并且应用于现实,数学过程应该是帮助学生把现实问题转化为数学问题的过程。”学生所学的书本上的知识与他们的实际生活经验的距离越近,越利于掌握。有些概念,尤其是较难理解的概念,单凭学生头脑中已有的知识和分析水平往往是不够的,这样也就难以靠原有知识水平进行迁移,这就需要我们教师有目的地借助生活中的有关实际经验。让学生感到生活周围处处有数学,培养他们学会用数学的眼光观察周围的事物,思考身边的事情,创设丰富的生活情境,引导学生自主探索。

例如:在教学:“统计初步知识”一课,要解决的基本问题有两点:一是统计的方法;二是求“和”和“平均值”或“百分率”及它们的意义。教学时,从学生的现实生活入手,先将全班数学检测分数出示给每位学生,要求他们算出平均分和及格率。开始时,学生看着一堆数据无从下手,但却能激起他们的求知欲,这正是我们所期待的。随即引导其一项一项地计算、比较,然后总结计算方法,再引导学生列出图表使统计结果更直观、更具有说服力。这样从生活实际中引出问题来,再将新知识应用到实际生活中去,巩固和升华了学生所学的新知识。

二、运用探究式教学,挖掘自主探索的潜能

教学中,在教师的主导下,坚持学生是探究的主体,根据教材提供的学习材料,伴随知识的发生、形成、发展全过程进行探究活动,教师着力引导多思考、多探索,让学生学会发现问题、提出问题、分析问题、解决问题以及亲身参与问题的真实活动之中,只有这样,才能使学生亲身品尝到自己发现的乐趣,才能激起他们强烈的求知欲和创造欲。只有达到这样的境地、才会真正实现自主探索,挖掘出潜能。

如教学“垂线的认识”时,教师可先组织学生来到教室外,从“一个地点”走到“一条路上”,问题:你可以怎样走?接着学生探索实践 。回到教室后,让学生把刚才所走的路线在方格纸上画出来。(方格纸上A点表示教室外面的“出发点”,方格纸上的一条直线表示教室外面的“一条路”。)画好后请几位有代表性的学生上台展示提问:你认为那种走法最近?(学生观察测量,发现中间那条最短);最近的路线有什么特征?(在学生观察交流的基础上,教学“相互垂直”、“垂线”“垂足”等概念含义)。这样对于“垂线”的概念和“从点到直线的线段中垂线最短”的认识,就在走一走、画一画、量一量、比一比等学习活动中探索获得。

三、学会合作交流,开放自主探索的空间

小组合作学习是一种发挥学生集体智慧、共同参与、相互交流信息、互相学习、相互促进、主动求知、共同提高的有效学习形式。它能充分发挥每个学生生动活泼、主动学习的内在动力。相对而言,传统课堂教学较为重视师生之间的联系、沟通,而忽略学生之间的相互联系,忽视发挥学生群体在教学中的作用。数学教学过程应是学生主动学习的过程,它不仅是一个认识过程,而且也是一个交流和合作的过程。交流和合作的互利过程,为学生主动学习提供了开放的活动方式,提供了宽松和民主的环境,更有利于发展学生的主体性,促进学生智力、情感和社会技能的发展及创造能力的发展,为此,我们认为强化小组交流与合作学习为核心,彻底改变课堂教学中“教师主讲,学生主听”的单一的教学组织形式,促进各个层次学生的共同发展。

具体应做好以下几点:

1、改革课堂教学的空间形式

小组交流与合作学习的空间形式多种多样,比较常见的有:T型、马蹄型、蜂窝型等。这些形式以打乱原有的秧田座位排列方式为基本模式,遵循“组内异质,组间同质”的原则而构成,小组一般由5人或7人组成,也有4人、6人小组等等。小组的这种排列缩短了学生与学生之间的距离,增强了学生间相互交往的机会,有利于小组内成员的交流和合作学习。

2、小组学习任务的布置

小组内的交流与合作学习主要以协同活动为中介实现的,因此教师在组织小组交流与合作学习活动中,应把需要讨论、互相启发、反复推敲的问题布置给学习小组,让小组围绕问题进行交流和合作学习。教师不仅要指导组内交往,而且要引导组际交流,不仅要交流学习结果,更要重视交流学习方法。

3、注意培养学生的合作意识,训练学生的合作技能

教育学生树立集体主义观念和互帮互学的合作意识,使每个人都能为集体目标的实现尽心尽力。不断向学生传授合作的基本技能,使他们学会既善于积极主动地表现自己的意见,敢于说出不同的看法,又善于倾听别人的意见,相互启迪,并能够综合吸收各种不同的观点,共同寻找解决问题的思路。在具体实施过程中,教师要及时地有针对性地予以指导,训练学生养成良好的合作学习习惯。

四、开展有趣活动,培养自主探索的精神

学生的数学活动应是一个生动活泼的、主动的和富有个性的过程,在这个过程中充满着观察、实验、模拟、推断等探索性与挑战性活动。教师要转换角色,把自己置于学生学习活动的参与者、引导者和合作者的地位。改变以例题、示范、讲解为主的教学方式,为学生提供充分从事数学活动的机会。引导学生投入到自主探索的活动中去。让学生通过观察、操作、实验、猜测、验证、归纳、类比等活动,自主地发现问题、提出问题、分析问题、解决问题,从而获得基本的数学技能,学会对知识和能力的主动构建和对知识的 “再创造”,形成勇于自主探索的科学精神。

如教学平行四边形面积计算一课,让学生课前准备统一规格的平行四边形纸片和剪刀、刻度尺等学具。课堂教学时用准备的工具和已经学过的知识想办法求出手中的平行四边形面积。(有的用直尺量出平行四边形的底和高相乘; 有的用直尺量出平行四边形的底和旁边的一条边相乘。)为什么答案不相同呢?再作进一步引导尝试。(有的用剪刀从角的顶点沿着平行四边形的高剪开,然后拼成一个长方形,量出长和宽并求出它的面积;有的沿着平行四边形的任意高剪开,得到两个梯形,拼成一个长方形进行计算。有的剪成两个三角形,拼成一个平行四边形进行计算。)这样学生动手动脑,从而积极主动地参与学习过程,进行动态的探索学习。

五、放手评价体验,享受自主探索的乐趣

《数学课程标准》指出:“对数学学习的评价要关注学生的学习的结果,更要关注他们学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中表现出来的情感与态度,帮助学生认识自我,建立信心。”激励评价还有利于增强学生主动发展的动力和能力。因此,在课堂教学中,教师要不失时机地对学生在学习过程中表现出来的自主性、主动性、独创性等主体精神和思维品质进行激励评价,使学生得到心理上的满足,感受自己的进步和成功,体验成功的快乐,强化学习动机,增强学习信心。

总之,我们应根据时代的需要,转变教育观念,掌握新的教学基本功,不断进行教学探索,为最终提高数学教育教学质量而努力。

第14篇:大学高数学习方法总结

2014年大学高数学习方法总结

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢? 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。

所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。篇二:高等数学学习方法及经验总结

高等数学学习方法及经验总结

大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。

高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。

首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。

(一)做题的方法和技巧

学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。

(二)考试后的反思 每次的期中考试和期末考试结束后,应该知道自己在考场上不足的地方在哪里,需要提高的地方在哪里,这里不仅仅是对知识的掌握程度,更重要的还有考场技巧和心态的把握;并做好相应总结。期中考试结束后将卷子上的错题改正过来,将错题记到笔记上(包括解题思想和自己的感受),避免犯同样的错误;期末考试卷子不会发下来,但是考完后也要反思自己的不足,要记住学习不是为了应付考试,而是为将来学习专业基础课以及专业课。

(三)心态的养成

作为学习理工科的学生,我们应具备的素质是切勿浮躁,抵得住寂寞,无论做什么题目,一定做好冷静的分析后在做,避免走弯路,并注意平时勤思考习惯的养成,注意多种方法的比较以及发散思维的培养。以上我说的在做题是注意将自己的思想和答案的思想做比较就是培养发散思维的一方面,当题目做到一定的数量时,就会发现得心应手,习惯成自然,也不知不觉做到的举一反三,这不仅仅是对高等数学的学习,其他科目也是一样。

总之,做好了以上三大点,我想学好高等数学不会成问题了。篇三:大学高数学习方法

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近12年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,尤其是作为数学系的学生,在面对着“数学分析”之类的课程时,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢?

学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学时尤为重要。

在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,使得我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现(比如考试不及格),这时就一定得坚持住,能够知难而进,继续跟随老师学习。

很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识 。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。

比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,可能会有很多同学花很多时间来思考引入这个定理的目的是什么,但往往因为当时根本没什么基础,所以对于这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。直到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。

所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。

但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“数学是思维的体操”,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。

了解背景,理论式学习

大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题。直接反应就是大学数学系的考试几乎全是关于数学定理或定义的证明题,而中学则有很多技巧性强的计算或证明题。所以,针对这个特点,学习大学数学就应该注重建立自己的数学理论知识框架。

要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解

数学的历史背景知识。因此,向各位推荐两本数学史方面的书:《古今数学思想》(克莱因)和《20世纪数学经纬》(张奠宙)。前一本书是从古希腊一直写到了19世纪的数学发展,而后一本书则全是在讲上个世纪数学理论的发展情况,因此这两本书基本上恰好记录了整个数学理论的发展历史。

比如“数学分析”在一开始就强调对语言的掌握,而它的产生则是由于数学史上的“第二次数学危机”引起的。众所周知,newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当混乱的。newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家cauchy提出了用语言的方法来推出极限和导数的概念。借助语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习语言是很必要的,学起来也就自然得多了。《20》一书中,还写了许多有关数学家的有趣故事,尤其其中有一篇是其书作者采访数学大师陈省身的记录稿。在那篇文章中,陈省身大师就谈了他自己许多学习数学的方法和态度,尤其是关于心态的问题,这对于我们学数学的学生有很大的启发意义。因此,建议大家如果有时间就一定要读一读这本数学史书。

除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。

自然人文,全面式学习

以上全是有关学习数学知识的,但是要学好数学,并不能只单单学习数学知识,还要多了解其他学科的知识,拥有广泛的知识基础。著名应用数学家林家翘教授就曾说过,在mit每位大学生在第一年都要全面学习数、理、化、生的课程,而这也是它们学校一直保持的优良传统。自然科学当中的许多问题都是数学理论的创造源泉或应用基地。比如著名数学家riemann创造的“黎曼几何”一开始并没有发挥威力,但直到大物理学家einstein提出相对论后才使得该理论有了用武之地。因此多了解一些其它自然科学知识,有助于我们更好地理解数学理论,发现它的价值。

人文知识的学习同样必不可少,有许多数学家都有着深厚的人文知识素养。比如华裔菲尔兹奖获得者丘成桐教授就对我们的古代文学很精通,他写东西经常会引用《左传》等古文或者写古诗句来反应他的一些研究。其实,在学到很基础的数学理论知识如数理逻辑时,就必须借助人文知识来从哲学角度理解数学。著名的数理逻辑学家歌德尔在证明出了“不完备定理”之后,另一位数学家外尔就说:“上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。”这句颇有哲理的话,就是从哲学的角度反应了该数学定理的意义。

第15篇:小高评审论文

新课标下的小学作文教学

天渊落雁

作文对于小学的教师和学生来说,都是一大难。学生难于表达,无话可说,无话可写,对着文稿只能发愣。教师难于指导,找来一大批优秀的例文,总结一箩筐的技巧,却训出了一批相同思维、相同框架、相同感受的文稿。怎么样才能提高学生的作文水平呢?新课改的全面铺开给学校的教学吹了一股新风,让很多学校和教师对教学产生了新的认识。作文教学作为一大难,自然应该引起我们的沉思。在多年的教学活动中,我觉得教师应该重视以下三点:

一、重视内在感受,开掘学生真实感情

所谓作文,就是运用书面语言进行表达和交流的重要方式。通俗一点说,作文就是作者想说的话。因此,《新课程标准》强调作文要重主观感受,要感情真挚。纵观历史,没有哪篇优秀的作品是脱离了作者的情感的。所谓“文章不是无情物”没有融入感情的文章如没有灵魂的肉体,是一具僵尸,哪有感人可言,且没了真实的内心感受,学生自然无话可说,靠例文拼凑能写出几句?所以,在生活中我们要重视学生的内在感受,开掘他们的真情实感。“情动于中形于言”,只有靠学生内在的“情感冲动”,才能推动学生的写作愿望,才会有话可说。只有以情动人,才有真实感。这也避免了我们学生作文中普遍存在的“假、大、空”的毛病。开掘学生的真情实感,最好的训练要数日记。酸甜苦辣来源于生活,学生在接触生活中,总有许多不同的感受,教师鼓励学生把这些感受真实地记下来,对提高作文一定有不可缺少的效果。“学生,就只能学习吗?我很想玩耍!”,“妈妈,是您一把尿一把屎地把我养大,教我做人,可是我却伤透了你的心。妈妈,对不起,孩子我错了!”,“走进‘昌大昌’,我呆了!好大的商场啊,商品琳琅满目,人山人海,······心想,下次我还来‘昌大昌’!”······这就是我班学生在日记里的一些真情实感。

正是由于我经常鼓励学生写日记,鼓励学生敢于抒发内心感受,学生不但积累了大量的素材,而且笔下生情,到了作文的时候信手掂来,感情自然通畅,这是我找例文所不能达到的!当然,在作文教学的时候,我们要善于抓住题目,触发学生的生活感受。例如:《一次成功的体验》抓住“成功”,《 ××,我想对你说》抓住“说”,让学生有感而发,写起来自然得心应手。

二、扩展学生想象力,发散其思维

人的大脑有着丰富的想象力,并且对于自然、社会、人生会有自己独特的感受和体会。扩展学生的想象力,发散其思维,意味着不能给学生设定框框架架,走出以往的找例文,说形式,全班一个模式的现状。让学生自由驰聘于思想的天地,使他们我手写我口,不拘形式地写下见闻、感受和想象。我记得有一个教师曾上过一节《关于点的想象》的优秀作文课。教师在上课前除了鼓励的语言,没有多说什么,只是点上一点,问学生,那是什么?有的说它是句号,有的说是一滴水,教师及时表扬了那一滴水,学生的想象力张扬开来。有的说它是一个苹果,有的说它是一粒珠子,有的说它是一颗星星,甚至有的说它是一颗善良的心······全班气氛活跃,没有冥思苦想,学生大有文思泉涌之势。一节课下来,学生先是很快完成了五分钟的作文,又在教师的要求下完成了一百多字的作文,当教师问:“能写成三四百字的作文吗?”所有的学生都自信地回答:“能!”为什么会如此成功,无非是教师给学生的想象力予最大的空间。上课之前,教师没有告诉学生要写什么,也没有告诉学生怎么样开头,怎么样结尾,只是让学生自由发挥,不受任何拘束,恰恰如此,得到了最好的效果。可见,不是学生无话可说,无话可写,实在是学生的思维已经被我们禁锢住。一件有意义的事除了帮助老爷爷老奶奶以外,再也想不出什么。所以,在作文教学中,我们应避免给学生设定内容,给出框架,而应通过创设情境,启发思维,鼓励畅想,巧妙扩展等发展学生的想象力,造就写作空间,这样学生就再也不觉得难了。

三、不可缺少的阅读体验

作文和阅读就像一对不能分开的兄弟,是不能分开的,要想提高作文水平,少了阅读是不行的。人类历史悠久,留下的杰作无数,足够的阅读体验既能丰富自身的感情,又能提高写作技巧。《语文课程标准》就十分重视阅读,要求学生养成读书看报的习惯,要求学生广泛阅读各种类型的读物。注意培养学生的阅读体验,对于作文水平的提高会有意想不到的效果。学生的阅读体验,主要有课内和课外的,而课内的阅读是我们教师经常一起参与的,所以要特别注意,我们是引导者,而不是体验者,不能简单地告诉学生应该喜欢或者不应该喜欢什么,要让学生自己去体验,经历感悟的过程,享受内心的体验。记得在我上《荔枝》这一课时,我没有多讲述,只是问:“同学们,读了这篇课文,觉得熟悉吗?感觉怎么样?”有的说:“我很感动,文中的母亲很伟大。”有的说:“我很感动,它让我想起了我的妈妈。”有的说:“同作者相比我觉得很愧疚。”我顺势利导:“你们为什么会又这些感受?是文中的哪些词句感动了你?”触动学生心弦,大家纷纷议论开来。有的说:“是‘不停地抚摸’、‘小心翼翼地剥开’、‘托着’形象地写出母亲对荔枝的喜爱,对儿子孝心的珍惜。”有的说:“‘母亲——剜去了疤,洗得干干净净’,让我仿佛看到了自己的妈妈。”······学生的体验出来了,我再给浇点油:“正是这些细腻的词句描写,再加上作者的真情,才有这么感人的文章。我们的母亲一样的伟大感人,我们该怎么写出来呢?”由于那课阅读体验。学生在我的要求下写出了非常棒的关于自己母亲的作文。可见,课内阅读只要我们教师引导好学生阅读,对于学生的作文水平的提高,具有绝对的作用。

除了课内阅读,课外阅读也是不能少的。毕竟课内选篇有限,还远远满足不了学生的阅读要求,所以我们还应该根据年级的不同,向学生推介不同的好作品,让学生在不断阅读中了解中华灿烂的文化,丰富自己的知识,提高自己的写作能力。

作文不是老虎,有一定的阅读体验,只要放开学生思维,充分尊重他们的内心感受,发挥他们的想象力,在老师的引导鼓励之下,相信学生一定能写好作文,“老大难”就不会再难!

第16篇:高数小结论(完结版)

高数小结论

1. 等价无穷小(x→0)

(1).sinxxtanxex1ln[1x]arcsinxarctanx1(2).1cosxx22(3).(1x)a1ax(4).ax1xlnax(5).1n1xnx(6).n1x1n(7).loga(1x)0x2.

xlna0|x|2时2时

sinxxtanx11cosxx22 3.如果limU1,limV则limUeVlim(U1)V4. f(x)f(x)f(x)f(x)表示偶函数,表示奇函数

22直线L:ykxb为函数yf(x)的渐近线的充分必要条件为:5. f(x)klimblim[f(x)kx]这里的包括和xxx6. 常见函数的导数

(记熟后解题快) (x)\'12x11()\'2xx(xx)\'xx(1lnx)

7.关于n阶导数的几个重要公式

n)2n(sinkx)(n)knsin(x)2(xn)(n)n!(sinx)(n)sin(x(ex)(n)ex1(n)(1)nn!()tx(tx)n1n)2n(cosx)(n)cos(x)2(ax)(n)(ax)(lna)n(cosx)(n)cos(x(1(n)n!)tx(tx)n1(n)

[ln(tx)](1)n1(n1)!(tx)n8.泰勒公式(用来求极限) x3x5x2x46sinxxo(x)cosx1o(x5)3!5!2!4!x2x3x2x3x3e1xo(x)ln(1x)xo(x3)2!3!23a(a1)2a(a1)(a2)3(1x)a1axxxo(x3)2!3!x31x tanxx o(x3)cotxo(x)3x311arcsinxxx3o(x3)arccosxxx3o(x3)626x3arctanxxo(x3)321tan(tanx)xx3o(x3)sin(sinx)xx3o(x3)339. 重要不定积分

secxdx(secx)(2n2)dx(secx)2nd(tanx) (sinx)(2n1)cosx(sinx)2n1(sinx)(2n1)(cosx)(2n1)(tanx)(2n1)dx[1(cotx)2]n(cosx)(2n1)sinx(cotx)(2n1)dx dx1xdxtanC 1cosx212dxtanxsecxCC 1sinxx1tan2(secx)2nd(tanx) (tanx)dx(tanx)dx(tanx)(secx)21(tanx)2nn(cscx)2(cotx)nd(cotx)(cotx)dx(cotx)(cscx)2dx1(cotx)2 nntanxdxln|cosx|C cotxdxln|sinx|Csecxdxln|secxtanx|C cscxdxln|cscxcotx|Cx1sin2xC24

x12(cox)dxsin2xC242(sinx)dx2(tanx)dxtanxxC(cotx)dxcotxxC2

dx1xarctanCx2a2aadx22ln|xxa|Cx2a2

dx1xax2a22aln|xa|CdxxarcsinCa2x2aa2xx2axdxarcsinax2C2a2 2ax2x2a2dxln|xx2a2|xa2C2222axeaxecosbxdxa2b2(acosbxbsinbx)C axeaxesinbxdx(asinbxbcosbx)C22ab10. y=sinwx(w>0)

它的半个周期与x轴围成的面积为s=2/w

把它的半个周期分成三等分,中间的那部分面积为s’=1/w

显然s=2s’

20w 1S\'23wsinwxdxw3wSwsinwxdx11.定积分部分

(1)如果函数f(x)在[-a,a]上连续

(2) aaf(x)dx[fx()fx(dx)]0a0(如果fx(为奇函数)a0)2f(xdx)如果(fx(为偶函数)

)coskxdx0sinkxdx0 (coskx)dx(sinkx)dx22设k,lN,且k则,l(3) coskxsilnxdxcolsxdxsilnxdx000

coskxsinkx(4).设f(x)是以周期为T的连续函数

(1).aTaf(x)dxf(x)dx0TT2T2f(x)dx

(2).anTaf(x)dxnf(x)dx0T(5).特殊积分



0eudueaxdx221(a0)a0w

(p0,w0)0p2w2pptecoswtdt(p0,w0)0p2w2sinxdx0x2(6).关于三角函数定积分简化( 注意:f(x)是定义在[0,1]上的函数) eptsinwtdtn0(1)20f(sinx)dx20f(cosx)dx0特别的(sinx)dx2(cosx)ndx20(2)f(sinx)dx22f(sinx)dx22f(cosx)dx00特别的(sinx)dx2(sinx)dx22(cosx)ndx0200nn(3)(cosx)ndx00(n为奇数)022(cosx)ndx0(n为偶数)(n为奇数)(4)(5)20(sinx)ndx42(sinx)ndx0(n为偶数)(n为奇数)20(cosx)ndx042(cosx)ndx0(n为偶数)(6)20(sinx)ndx20(cosx)ndx0(7)2(sinx)ndxn1n3n52.........(n为正奇数)nn2n43n1n3n51.........(n为正偶数)nn2n422

(8)xf(sinx)dx020f(sinx)dx11.图像分段的函数不一定是分段函数(如y=1/x) 分段函数的图像也可以是一条不断开的曲线(如y=|x|)

12.如何证明一个数列是发散的?

(1)只要找到的两个子数列收敛于不同的值

(2)找一个发散的子数列 13.必记极限

(1)limnn!0nn

(2)limnn1n(3)limxlnx0x0(4)limxx1x014.函数f(x)在[a,b]有定义,且|f(x)|在[a,b]上可积,此时f(x)在[a,b]上的积分不一定存在 列如:

f(x)15. 注意 1-1x为有理数

x为无理数若f\'(a)0,只能得到结论:f(x)在a点严格增加。即x(a,a)有f(x)f(a)x(a,a)有f(x)f(a);但不能得到结论:f(x)在U(a,)内单调增大16.

设f(x)=|x-a|g(x),其中g(x)在x=a处连续,则f(x)在x=a处可导g(a)=0应用:求函数f(x)=|x(x-1)(x-2)|(x2-3x+2)的可导的点显然为1,217. 函数取得极值的第二充分条件

设f(x)在x0处n阶可导,且f\'(x0)f\'\'(x0)f\'\'\'(x0)f(n1)(x0)0f(n)(x0)0(2n)(1)n2k且f(n)(x0)0f(x0)为极大值(2)n2k且f(n)(x0)0f(x0)为极小值(3)n=2k+118. 拐点的第二充分条件

f(x0)不是极值点设f(x)在x0处n阶可导(n>2且为奇数)

若f\'\'(x)f\'\'\'(x)f则(x,f(x))为拐点0000(n1)(x)0,f0n()(x)00

19 .用求导法判断数列的单调性 设An1f(An),AnI若f(x)在区间I上单调递增则:(1)(2)A2A1{An}A2A1{An}

注意:若f(x)在区间I上单调递减则:A2n1与A2n两数列具有相反的单调性20.题目中如果出现f\'\'(x)0f\'(x)单调 21.ln(x1x2)x(x0) 22. 无穷小小谈

当x0时,有(1)当0nmxmo(xn)(2)当0nmo(xm)o(xn)o(xn)o(xm)mn(3)当0nmo(x)nx注意:两个o()不可以相除(4)当m,n0xmo(xn)o(xmn)o(xm)o(xn)o(xmn)23. 无穷个无穷小之和与无穷个无穷小之积一定都是无穷小吗?????

哈哈!显然都是NO11111之和:lim()1其中(有无穷多个)nnnnnn

kn之积:取0(其中nk,1,2,3)n!1n2n3nnnn(!)n显然1nn!n!n!n!n(!)24.反三角

(1)arctxan

1arctanx2t,0t2

(2)arcsin(sint)t,a2a12t25.

求A(b)|xb|dx的最小值aa结论:当b12时21Amin(b)(a1a2)24

26. ba(xab)dx0 227.lnxdx1

010128.29. x(1x)dxxn(1x)mdx0191900mn1

作用:x(1x)dxx(1x)dx若f(x)在[a,b]上可积则f(x)dxf(abx)dxaabb这下就好求了1baf(x)dx2a[f(x)f(bx)]dx

特别的当a0时,有如下推论:b(1)f(x)dxf(bx)dx00bb1b(2)0f(x)dx20[f(x)f(bx)]dxb若f(x)在[a,b]上可积,则:30. 111110f(x)dx0x2f(x)dx20[f(x)x2f(x)]dxf2(x)C 31.f(x)f\'(x)dx232.连续函数必有原函数且原函数连续,若f(x)是不连续的分段函数,则f(x)的原函数就一定不存在 33.

有极限连续

可微偏导连续 有定义偏导存在34.对

0f(sinx)dx22f(sinx)dx进行推广:0设f(x)在[0,1]上连续,且abn(n0,1,2...) 有以下结论:nbf(sinx)dxaa2bnb n为偶数xf(cosx)dxf(cosx)dxaa2 (2)若f(x) 为偶函数,则(1)n为奇数bxf(sinx)dxnxf(sinx)dxa2bnxf(cosx)dxa2bbabf(sinx)dxf(cosx)dxa35. 线、面积分中的对称简化

(1)对弧长的曲线积分设连续且分段光滑的平面线弧L关于y轴对称,函数f(x,y)在L上有定义L 且连续,为x0的半个区域,则:

2若f(-x,y)=f(x,y)s2f(x,y)dsLf(x,y)dL2若f(-x,y)=-f(x,y)Lf(x,y)ds0例一I=(xyx2)ds,L为y=a2x2L解:I=(xyx2)dsxydsx2ds02Lx2dsLLL222a2cos2ad02a3

例二3222I(xy)ds,L为xyRL33解:I(xy)ds=xds+y(自己体会一下,为什么?)ds=0+0=0LLL(2)对坐标的曲线积分A.设连续且分段光滑的平面有向曲线弧L关于y轴对称,函数P(x,y)在L上有定义L 且连续,为x0的半个区域,则:2若P(-x,y)=P(x,y)P(x,y)dx2LP(x,y)dxL2若P(-x,y)=-P(x,y)例一LP(x,y)dx0Ixy(ydxxdy),其中L为yR2x2,方向为从左到右LLLLL解:Ixy(ydxxdy)xy2dxx2ydy0x2ydy0(这要用到下面B的结论)例二解: 2222222Ixydy,其中L为双纽线的右半支:(x+y)=a(x-y),x0的逆时针方向L

由于图像关于x轴对称,则I0B.设连续且分段光滑的平面有向曲线弧L关于y轴对称,函数P(x,y)在L上有定义且在左半平面部分L1与右半平面部分L2方向相反,则:若P(-x,y)=P(x,y)若P(-x,y)=-P(x,y)LP(x,y)dy0(上面讲到的就是用的这个结论)LP(x,y)dy2P(x,y)dyL1

注意:这里的方向相反是指:关于哪个轴对称就关于谁的方向相反对于关于x轴对称的情况就不写了,其实是一个道理!一定要把A,B好好的比较看看两者之间的区别与联系例一Ix|y|dx,其中L为y2x上从A(1,1)到B(1,1)的一段弧L解:L关于x轴对称且方向相反且被积函数x|y|为y的偶函数故I=0例二Idxdy,其中ABCD是A(1,0)B(0,1)C(-1,0)D(0,-1)为ABCD|x||y| 顶点的正方形的边界线,方向为逆时针方向dxdy解:I+ABCD|x||y|ABCD|x||y|第一部分积分:曲线关于x轴对称,且方向相反,而函数是y的偶函数,故积分为0,同理第二部分积分也为0故I=0(3)对面积的曲面积分设分片光滑的曲面关于yoz平面对称,f(x,y,z)在上连续,则有:当f(-x,y,z)=-f(x,y,z)时,当f(-x,y,z)=f(x,y,z)时对于关于zox,xoy的平面对称有类似的性质1|x||y|2是中x0的一半

f(x,y,z)ds0f(x,y,z)dsf(x,y,z)ds=22例一I2222(xyz)ds,其中为球面xyza上z(h0

解:关于xoz面对称,故Izxds(4)对坐标的曲面积分设分片光滑的曲面关于yoz面对称,函数p(x,y,z)在上连续,一半,则:当f(-x,y,z)=f(x,y,z)时,当f(-x,y,z)=-f(x,y,z)时2是中x0的

f(x,y,z)dydz0f(x,y,z)dydz=2f(x,y,z)dydz2例一I的部分。xyzdxdy,其中是球面x2y2z21的外侧在x0,y0解:关于xoy面对称,故I例二2xyzdxdy2xyzdxdy52

I=x2dydzy2dzdxz2dxdy,其中为曲线弧段z=y2(x0,1z4)绕z轴旋转所成的旋转曲面的非封闭侧。解:显然曲面关于yoz,zox面对称,故Iz2dxdy21

36.轮换对称性在积分计算中的应用举例

1.设函数f(x,y)在有界闭区域D上连续,D对坐标x,y具有轮换对称性,则:f(x,y)dxdyf(y,x)dxdyDD

何为轮换对称性:将x,y互换后D不变

例一I(3x2y)dxdy,其中D为xy2与两坐标轴围成D解:D关于x,y具有轮换对称性,则:I例二I(3x2y)dxdy=D(3y2x)dxdyD520

(xy)dxdy5xdxdy23DDx2y2R2(y2x2)dxdy解:Ix2y2R2(y2x2)dxdyx2y2R2(x2y2)dxdyI,故I02.设函数f(x,y,z)在空间有界闭区域上连续,对坐标x,y具有轮换对称性,则:f(x,y,z)dvf(y,x,z)dv例一求(xyz)dv,为x0,y0,z0,x2y2z2R2解:由于积分区域关于x,y,z具有轮换对称性,则:xdv=ydvzdv(xyz)dv3zdv3R416例二求I(zx2y2)dv,为zx2y2和z(hh0)围成的区域解:积分区域关于x,y具有轮换对称性I(zx2y2)dv(zy2x2)dv132zdvh23

3.设L是xoy面上一条光滑的曲线弧,L对坐标x,y具有乱换对称性,f(x,y)在L上连续,则:f(x,y)dsf(y,x)dsLL例一Ixds,L为星形线xyaL232323232323解:显然L对x,y具有乱换对称性,则:222511Ixdsyds(x3y3)dsa3ds3a32L2LLL例二22222求(xz)ds,F是圆周xyzR,xyz0F解:F关于x,y,z具有乱换对称性,则:xds=yds=zds,FFF2222xds=yds=zdsFFF11R2222故(xz)ds(xyz)ds(xyz)ds3F3F3F2R3ds3 F4.设L是xoy面上一条光滑的或者分段光滑的有向曲线弧,L对坐标x,y具有轮换对称性,f(x,y)在L上连续,则:f(x,y)dsf(y,x)dsLL

或者f(x,y)ds+f(y,x)ds=0LL例一Iydxxdy,L为xyR上A(R,0)到B(0,R)的一段弧L解:L对坐标x,y具有轮换对称性,故ydxxdy=0L例二2222Iydxydx,L为双纽线(xy)2axy位于第一象限部分L2323

取逆时针方向解:L关于x,y具有轮换对称性,则ydxxdy=0L23235.设是光滑曲面或者分片光滑曲面,对坐标x,y具有轮换对称性,f(x,y,z)在上连续,则:f(x,y,z)dsf(y,x,z)ds11I(x2y2z2)ds,:x2y2z2R224解:1111I(x2y2z2)ds(1)z2ds24241117(1)(x2y2z2)dsR42433例二I解:2222(axbycz)ds,:xyzR位于第一挂限部分例一xdsydszds222xdsydszds

1I(abc)zdsR3(abc)46.设是光滑曲面或者分片光滑曲面,对坐标x,y具有轮换对称性,f(x,y,z)在上连续,则:

f(x,y,z)dydzf(y,x,z)dzdx例一I(0zh)的外侧(yz)dydz(zx)dzdx(xy)dxdy,为zx2y2解:关于x,y具有轮换对称性,则:(yz)dydz=(xz)dxdz所以I0例二I(xy)dxdy(yx)dydx0xydydzyzdzdxzxdxdy,为平面xyz1位于第一挂限的外侧解:关于x,y,z具有轮换对称性,则:xydydzzydydxzxdxdy

1I3xydydz8

37.广义的罗尔定理

设f(x)满足:(1)在区间(a,)上连续(2)在区间(a,)内可导 (3)limf(x)limf(x)xax则:a使得f\'()0

38.需要记忆的反例

(1)(2)f(x)|x|在x0处不可导f(x)1f(x)0x0x0在x0点不可导应用:设f(0)0,则f(x)在x0点处可导的充分必要条件为: f(1cosh)f(1eh)(A)lim存在(B)lim存在2h0h0hhf(hsinh)f(2h)f(h)(C)lim存在(D)lim存在h0h0h2h用(1)检验AC,用(2)检验D,答案为B(1)若\',\'且lim39.

11 则:()(\'\')(2)若\',\'且lim则:()(\'\')40.特别要注意的地方

设f(x)为(,)上的连续,函数F(x)为f(x)的一原函数,则:(1)f(x)为奇函数f(x)任意原函数F(x)为偶函数(2)f(x)为偶函数f(x)的原函数只有一个是奇函数,即为f(t)dt0x(3)f(x)任意原函数F(x)为周期函数f(x)为周期函数(4)f(x)以T为周期的函数且f(x)dx0f(x)任意原函数F(x)以T为周期0T

(5)函数的单调性与其原函数的单调性之间没有逻辑上的因果关系

第17篇:工数 论文 大学的

中国贫富差距的认识

09电信(2)班

座号14 姓名:吴炳文

摘要:《人民日报》3日刊发记者调查,称中国城乡居民不同群体之间收入差距不断拉大。官方数字显示,去年中国居民消费率(居民消费占GDP的比重)仅三成五,相当于美国的一半,比印度还低一成多。这表明虽然中国富翁人数及奢侈品消费已跃居全球前列,但大部分民众依然缺乏足够的消费能力。中国两极分化日趋严重,既与过于依赖要素投入的经济增长方式有关,亦受到经济社会体制中扭曲性因素的催化。要遏制贫富差距的进一步扩大,需要一场浩大的社会工程。其核心是要调整国家、企业与居民的收入分配结构,并斩断权力与资本的利益链条,还民众以最基本的分配公平。政府则需在二次分配领域更有作为,增加民生领域支出,完善社会保障体系,提高低收入阶层的福利,缩小实际收入差距。 关键词:贫富差距、政策、中国

正文:正如所有相关研究所指出,目前中国社会存在很大的贫富差距。这是毋容置疑的。城市居民比农村居民富裕得多,农村居民中农民工又比农民富裕得多。在城市居民中,干部和准干部比国企工人和非国企工人富裕得多。资产阶级比谁都要富裕。我认为,这些贫富差距之中,有些是正常的,有些是非常有害的。造成这些贫富差距的主要原因如下。首先,农民贫困是因为落后的生产力,这是正常的。不少农民还在用手刨食,和两千年前的农民没有根本区别。只要中国农业不实现大规模机械化的规模经济,农民相对于其他阶级只会越来越穷。只要现行户口制度不改革,农民工就不能成为城市居民,农民家庭手里的小块土地就无法变大,大规模农业机械化也就无从谈起。在最近几年,虽然中国经济保持9%的增长率,少数农民的收入不但没有增加,反而有所减少。现行户口制度把中国的城乡差距拉得越来越大。中央和省级政府正在尽力帮助农民,国家投资实现村村通公路、通电,取消农业税,恢复农村的合作医疗,等等。然而,我认为,只要现行户口制度不改革,中国农民的整体贫困状况就很难根本改变。 第二,农民工遭受的不公正待遇直接源于现行户口制度。现行户口制度使得农民工不能在他们的工作场所变为城里人。他们不能享受城市社会的失业保险、养老保险、医疗保险、贫困救济。

一、两亿农民工全国流动,引发诸多社会问题。中国工人阶级的形成是今后几十年中国社会分层变化发展的主旋律,但城乡隔离直接阻碍形成一个统一的中国工人阶级。这是非常有害的。

第三,现行户口制度正在加剧中国沿海地区、中部地区、西部地区之间的巨大收入差距。美国地区之间收入差异不大,因为各地生活消费水平不同,一个人从甲地调动到乙地,工资收入也会相应略有提高或者降低(基本同工同酬)。但在中国,由于现行户口制度所造成的巨大的地区收入差异,作相同的工作,地区之间的工资差距可以达到五倍甚至十倍(同工不同酬)。如果改革现行户口制度,地区之间的巨大收入差距将会很快得到缓和(同工同酬)。

第四,市场经济天生贫富差距。哪里有市场经济,哪里就有资产阶级。富者愈富,穷者愈穷。政府要防止富人逃税,要向穷人提供社会保障,但不能均贫富。贫富差距本身恰恰就是市场经济运行的火车头。没有这个火车头来牵引,市场经济就无法运转。政府有很多方法缩小贫富差距,例如义务教育、社会保障、高考。但是,不可能在市场经济社会消灭贫富差距。中国资产阶级是中国市场经济一个不可或缺的重要组成部分。

第五,经济全球化正在加剧中国的贫富差距,这是不可避免的。跨国公司付给其中国分支的管理人员和工程技术人员很高的工资。2004年,跨国公司中国总部总经理的年薪有的高达五十万美元,销售经理的年薪可以达到五万到六万美元,普通工程师的年薪达到一万五到两万美元。对跨国公司来说,这比在美国还低了至少四分之一,但在中国已经是天文数字了。这是普通中国工人收入的十到五十倍。如果跨国公司可以付给中国的管理人员和专业技术人员这么高的工资,如果中国想要赶超世界五百强企业和世界一百强大学,中国就不得不提高管理人员和专业技术人员的工资。如前所述,一些大型国有企事业单位包括重点大学大幅度提高了工资,主要原因就在这里。这些精英人才和农民之间的贫富差距拉得更大了,但今日中国没有多少人对此有所抱怨。这不是任何人的错。只要中国还处在世界体系的边缘,只要中国投身经济全球化,就无法避免这种贫富差距。 第六,历史原因。1978年以前,尽管从某些经济指标上看,中国获得了较为高速的增长,但是,平均主义盛行,基尼系数过小。这属于一种“不正常”的状态和“不正常”的发展。1979年以后,经过20多年的改革开放,整个社会获得了一种正常的发展,并使社会从某种意义上讲不可避免地出现了贫富差距扩大的现象。对此,可以从这样两个方面来理解:

第一,经济的发展与社会的进步。经济的发展使得一些新的经济板块迅速成长。例如,改革开放以前,农村强调以粮为纲,而忽视了非农收入的重要性,从而强化了农村居民收入的平均化程度。改革开放以后尤其是这些年农户的非农收入的得到了快速的增长,这是导致农村内部收入差距扩大的一个重要因素。

我们在考虑如何缓解贫富差距扩大的问题时,有必要重视以下几个方面的事情: 1.大力推进社会经济的发展,在发展中解决贫富差距过大的问题。只有以高度发达的生产力为基础,一个社会才能具备相应的社会经济资源,才能为缓解贫富差距扩大问题提供必要的条件和途径。发达的物质基础是现代公正社会的支撑构架。我们注意到,马克思恩格斯在谈论公正社会时,总是把高度发达的物质条件作为最为重要的前提性条件。邓小平也十分明确地指出:“社会主义的本质,是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到共同富裕。” 显然,邓小平是把解放生产力、发展生产力视为实现公正的根本前提。我们一定要防止用平均主义的方式来解决贫富差距过大的现象。实际上,平均主义也是一种不公的社会现象,是同现代化及市场经济的准则相背离的。它是另一种类型的剥夺和不公,是贡献较小的人、能力较弱的人对贡献较大的人、能力较强的人在机会方面、分配方面的剥夺。2.尽可能地实现充分就业。充分就业是指,任何一位愿意参加工作、具有必要能力并且年龄合适的社会成员都应当获得一份有经济报酬的职位。充分就业应当是社会的优先目标。实现充分就业,对于一个社会实现广泛意义上的公正具有重要的意义。获得一种职业,对于劳动者来说,就意味着拥有了相对稳定的经济收入的主要来源,意味着能够进行一些必要的平等的社会活动。所以,充分就业对于一个社会来说,是消除贫困问题、缓解贫富差距扩大问题的必要条件,也是最大限度地开发人力资源、增强社会活力、增加社会总财富的必要前提。对于现阶段的中国来说,实现充分就业的意义更为重要。中国真正从事的现代化建设的时间并不长,中国的发展只能说是起步不久,社会赖以发展的社会财富基础十分薄弱,而且长时期的计划经济体制使社会成员的个人财产积累极为有限,因此,从总体上看,中国社会成员经济来源对于就业的依赖性相对来说更强。在这种情况下,一旦出现大规模的失业现象,必定会造成较大范围的贫困现象,造成严重的贫富差距现象。从现阶段的社会实际情况来看,中国城市的贫困者多来自失业者或是半失业者。由此可见,社会应当将充分就业作为社会政策的优先目标,想方设法地为社会成员创造种种就业机会。这应成为实现社会公正的基础性内容。 3.大力推进社会保障制度的建设。 社会保障的目标是,立足于社会公正和社会安全的角度,通过社会救助、社会养老保险、医疗社会保险、生育社会保险、工伤社会保险、失业社会保险、社会福利以及社会优抚等多个方面来实现社会公正和社会安全,确保每个人有一个合理的生活水平。社会保障最为重要的意义在于对社会成员基本生存底线的确保。一个社会不可避免地存在着不平等和不确定的因素,如社会经济资源分配体制的不合理和不完善、市场经济的风险、家庭的遗传影响等等。这就使得社会成员在生存与发展的具体处境方面有着较大的差别,处境不利的社会成员有可能由于工作的丧失或是其他的原因而陷入“生存危机”的状态之中。对于这部分社会成员,社会有责任对其进行必要的社会救助,确保其基本的生活底线。4.健全合理的税收制度。

税收是一个国家财政收入的主要来源,也是社会进行必要调剂所需资金的主要来源和基础。其主要种类是所得税和遗产税等。对于社会的必要调剂来说,税收主要有两个方面的功能:一是,政府通过税收可以获得必要的公益性的资金,用来维持生活处境不利的社会成员如低收入者和无收入者的基本生计和用来提升全体社会成员的生活质量和发展能力;二是,通过所得税、遗产税等税种的征收,可以适当地减少高收入者过多的收入和财产,以有效地调整或是缓解社会过于悬殊的贫富差距,保证社会必要的整合性和稳定性。

改革开放至今,中国在快速发展的同时却出现了贫富差距过大的问题,地区之间、城乡之间、行业之间、不同人群之间收入差距过大,贫富悬殊明显。这个问题事关重大,必须及时加以解决。缩小贫富差距是社会主义的本质要求、是国民经济稳定协调持续发展的必然要求、是国家长治久安构建社会主义和谐社会的需要、是巩固党的执政地位的需要,意义重大深远。 参考文献:

【1】http://observe.icxo.com/htmlnews/2005/08/15/647261.htm 【2】http://www.daodoc.com/Article/ladu/ladu201008/ladu2010

第18篇:高数论文 大一第二学期

学习高数心得和体会

摘要:

1、数学学习方法:

一、摒弃中学的学习方法;

二、把握三个环节,提高学习效率;

三、阶段复习与全面巩固相结合;

四、学习方法五原则。

2、如何看书:第一,“学思习”是学习高等数学大的模式;第二,狠抓基础,循序渐进;第三,归类小结,从厚到薄;第五,注意学习效率。

3、处理数学问题的基本方法

4、学习心理的调整:确定目标,树立信心,制定计划,重在落实”以上十六个字不仅是学好高等数学也是学好任何一门课程,做好任何一件事情的关键所在。

目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的大学生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。我认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学……等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

数学学习方法:

那么,怎样才能学好高等数学呢?我想就自己这将近一学年的学习经验与体会,谈几点肤浅的看法。

一、摒弃中学的学习方法

从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。

中学的教学方式和方法与大学有质的差别。突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。

二、把握三个环节,提高学习效率

什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。其一是课前预习。这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等,这样带着一些问题去听老师讲课,效果就很明显了,同时预习的过程中也就培养了你的自学能力,这对自己来说将是终身受益的。预习的过程也不需要花太多时间,一般地一次课内容花

三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。其二是上课用心听讲,并且要记好课堂笔记。

三、阶段复习与全面巩固相结合。

具体步骤如下:

(一)课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。

(二)认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入----听、记、思相结合的过程。

(三)课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少,然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。

(四) 在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。

(五)按\"新=陈+差异\"思路理解深化学习知识。

(六) \"三人行,则必有我师\",参加老师的辅导,向同学请教并相互讨论。

四、学习方法五原则

学习方法与学习的过程、阶段、心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进、熟读精思、自求自得、博约结合、知行统一。

1.\"循序渐进\"──就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。

2.\"熟读精思\"──就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系、相辅相成的。一方面,只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行记忆,记忆才会牢固,\"熟读\",要做到\"三到\":心到、眼到、口到。\"精思\",要善于提出问题和解决问题,用\"自我诘难法\"和\"众说诘难法\"去质疑问难。

3.\"自求自得\"──就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。

4.\"博约结合\"──就是要根据广搏和精研的辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。

5.\"知行统一\"──就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。\"知者行之始,行者知之成\",以知为指导的行才能行之有效,

脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践、边学习、边积累。二是躬行实践,即把学习得来的知识,用在实际工作中,解决实际问题。

如何看书:

学习高等数学要有一种精神,用大数学家华罗庚的话来说,就是要有“学思契而不舍”的精神。由于高等数学自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法,分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,契而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,介绍一点学习高等数学的做法,供同学们参考。

第一,“学思习”是学习高等数学大的模式。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在学中问和问中学,才能消化数学的概念,理论。方法。所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考,善于思考,从厚到薄的学习数学的方法,值得我们借鉴。所谓习,就高等数学而言,就是做练习。这一点数学有自身的特点,练习一般分为两类,一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。

第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基础内容,它关系的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函求导法及积分法关系到今后个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习高等数学时要一步一个脚印,扎扎实实地学和练,成功的大门一定会向你开放。

第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。高等数学归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其他参考书就会迎刃而解了。

第五,注意学习效率。数学的方法和理论的掌握,就实践经验表明常常需要频率大于4否则做不到熟能生巧,触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”温故而知新”都有是指学习要经过反复多次。高等数学的记忆,必建立在理解和熟练做题的基础上,死记硬背无济于事。在学习的道路上是没有平坦大道的,可是“学习有险阻,苦战能过关“。”人生能有几回搏?“人生总能搏几回!”每个学子应当而且能与高等数学“搏一搏”。

处理数学问题的基本方法:

㈠分割求和法; ㈡以直求曲法; ㈢恒等变形法:

①等量加减法;②乘除因子法; ③积分求导法; ④三角代换法; ⑤数形结合法;⑥关系迭代法; ⑦递推公式法;⑧相互沟通法; ⑨前后夹击法; ⑩反思求证法;⑾构造函数法;⑿逐步分解法。 学习心理的调整:

确定目标,树立信心,制定计划,重在落实”以上十六个字不仅是学好高等数学也是学好任何一门课程,做好任何一件事情的关键所在。

(一) 确定目标: 除了有一个长远的奋斗目标外,可根据自己的实际情况确定一个近期目标。

(二)树立信心: 信心来源于是否敢于挑战自己,表现在是否能吃苦耐劳,排除各种干扰与诱惑,为实现长远目标与近期目标而奋进。

(三)制定计划: 有一个一周至二周的学习计划,精细到每个小时,明确应该完成的任务,每天留下半个小时的机动余地作为未完成任务的补遗。每周根据执行情况适当调整。

(四)重在坚持: 计划能否实施,重在坚持,切忌虎头蛇尾,半途而废。 关于学习高等数学课程的几点建议

(五)自学:本课程特别强调自学,包括课前、课后的预习、复习、练习、小结。这些都是在教师的视线之外,在自习时间之内学生必须去做的事。没有良好的自觉的自学习惯,谈不上能学好高等数学。

(六)听课:提高听课的效率,课前做好准备,根据教学进度表预习(粗读)内容,听课中特别注意老师指出的难点与重点,注意为加深概念与应用所举的例题,适当记笔记。

(七)习题课:高等数学特别强调做习题。概念的理解与深化,方法的灵活应用都反映在做习题上。上黑板板演固然是锻炼的好机会,而在下面做题,应看作是一种实战演习,是对自己学习的检验,而老师对每题的讲评往往是概念与方法的深化,是某种经验的总结。因此习题课绝不可光听而不动手,也不可光动手而不听,要有完整的习题课的记录。

(八)作业:作业不是任务,而是对学习内容的进一步巩固。通过练习使概念与方法真正为自己所掌握。每次作业后,要认真总结,本次作业用到哪些新概念、新知识、新方法,用在哪些地方,这些概念方法与原先掌握的概念方法有哪些相同点。作业必须认真,字迹力求工整,减少涂改。较长的分号(直线)不可信手画出,应该使用直尺去划。作业不仅是给自己看,而且是给老师批阅的,在整体上要注意美感,特别对工科学生,这是工程技术人员的必备素质,应从作业开始培养。

(九)阶段小结:每周进行一次学习小结,善于总结才有提高。

(十)关于参考读物:高等数学的参考读物很多,但良莠不齐,特别是一些题解往往贻误学子,因此参考读物的选择要慎重。

以上所谈并不全面,只有身在其中正在学习,通过实践才能悟出适合自己的好方法

第19篇:大一上学期高数论文

合肥学院 课 程 论 文

酒店管理

一班

学生姓名

张超

1514061036

论文题目

微积分在生活中的应用

王后春

微积分在生活中的应用

摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用

关键词:微积分,几何,经济学,物理学,极限,求导

绪论

作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。

希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。

一、微积分在几何中的应用

微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广!

1.1求平面图形的面积

(1)求平面图形的面积

由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。

例如:求曲线fx2和直线x=l,x=2及x轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

f21x22313722xdx

313332

(2)求旋转体的体积

(I)由连续曲线y=f(x)与直线x=a、x=b(a

ab(Ⅱ)由连续曲线y=g(y)与直线y=c、y=d(c

cd(III)由连续曲线y=f(x)( f(x)0)与直线x=a、x=b(0a

abx2y2例如:求椭圆221所围成的图形分别绕x轴和y轴旋转一周而成的旋ab转体的体积。

分析:椭圆绕x轴旋转时,旋转体可以看作是上半椭圆b2yax2(axa),与x轴所围成的图形绕轴旋转一周而成的,因此椭圆ax2y21所围成的图形绕x轴旋转一周而成的旋转体的体积为 a2b2

b2vy(ax2)aab2213a2(axx)aa3a2dxb2a2aa(a2x2)dx

4ab23椭圆绕y轴旋转时,旋转体可以看作是右半椭圆xa2by2,(byb),bx2y2与y轴所围成的图形绕y轴旋转一周而成的,因此椭圆221所围成的图形

ab绕y轴旋转一周而成的旋转体的体积为

a2a22vy(by)dy2bbb

a2213b422(byy)babb33b2bb(b2y2)dy

二、在几何中的应用

2.1微积分在几何学中的应用

(1)求曲线切线的斜率

由导数的几何意义可知,曲线y=( x)在点x0处的切线等于过该点切线的斜率。即f\'(x0)tana,由此可以求出曲线的切线方程和法线方程。

例如:求曲线yx2在点(1,1)处的切线方程和法线方程。 分析:由导数的几何意义知,所求切线的斜率为:

ky\'x12xx12,所以,所求切线的方程为y-l=2(x一1),化解得切线方程为2x-y-1=0。又因为法线的斜率为切线斜率的负倒数,所以,所求法线方1程为y1(x1),化解得法线方程为2y+x-3=0。

2(2)求函数值增量的近似值

由微分的定义可知,函数的微分是函数值增量的近似值,所以通过求函数的微分可求出函数值增量的近似值。

例如:计算sin46o的近似值。

分析:令f(x)=sin(x),则f(x)=cosx,取x0450,x10,(10由微机

0180),则

义可知

0sin460sin(451)sin45f(45)18022\'00.7194 22180

三、微积分在经济学的应用

在我所查找到的关于微积分在经济学领域的应用中,我发现高等数学在经济学中运用十分基础和广泛,是学好经济学 剖析现实经济现象的基本工具。经济学与数学是密不可分息息相关的。高等数学方法在经济学中的运用增强了经济学的严密性和说理性,将经济问题转化为数学问题,用数学方法对经济学问题进行分析,将数学中的极限,导数、微分方程知识在经济中的运用。

尤其我看到在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。这个对一个企业的发展至关重要! 1关于最值问题 例

设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润

解:总成本函数为

C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000 总收益函数为R(x)=500x 总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)

在这里我们应用了定积分,分析出利润最大,并不是意味着多增加产量就必定增加利润,只有合理安排生产量,才能取得总大的利润。

2关于增长率问题 例:

设变量y是时间t的函数y = f (t),则比值为函数f (t)在时间区间上的相对改变量;如果f (t)可微,则定义极限为函数f (t)在时间点t的瞬时增长率。

对指数函数而言,由于,因此,该函数在任何时间点t上都以常数比率r增长。

这样,关系式 (*)就不仅可作为复利公式,在经济学中还有广泛的应用。如企业的资金、投资、国民收入、人口、劳动力等这些变量都是时间t的函数,若这些变量在一个较长的时间内以常数比率增长,都可以用(*)式来描述。因此,指数函数中的“r”在经济学中就一般的解释为在任意时刻点t的增长率。如果当函数中的r取负值时,也认为是瞬时增长率,这是负增长,这时也称r

为衰减率。贴现问题就是负增长。

3.弹性函数

设函数y=f(x)在点x处可导,函数的相对改变量Δyy=f(x+Δx)-f(x)y与自变量的相对改变量Δxx之比,当Δx→0时的极限称为函数y=f(x)在点x处的相对变化率,或称为弹性函数。记为EyEx•EyEx=limδx→0

ΔyyΔxx=limδx→0ΔyΔx.xy=f’(x)xf(x) 在点x=x0处,弹性函数值Ef(x0)Ex=f’(x0)xf(x0)称为f(x)在点x=x0处的弹性值,简称弹性。EExf(x0)%表示在点x=x0处,当x产生1%的改变时,f(x)近似地改变EExf(x0)%。

经济学中,把需求量对价格的相对变化率称为需求弹性。

对于需求函数Q=f(P)(或P=P(Q)),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,ΔP与ΔQ异号,所以特殊地定义,需求对价格的弹性函数为η(p)=-f’(p)pf(p)

例 设某商品的需求函数为Q=e-p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。

解:(1)η(p)=-f’(p)pf(p)=-(-15)e-p5.pe-p5=p5;

(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.2

η(3)=0.6

η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。

除了上述几个例子之外,还有“规模报酬、等无数的经济概念和原理是在充分运用导数、积分、全微分等各种微积分知识构建的。他们极大的丰富了经济学内涵,为政府的宏观调控提供了重要帮助

四、总结与展望

数学学习是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性,因此,我们当代大学生学习高等数学的重要性就显而以见的了,我们要想在21世纪的社会有一个立足之地就需要全面的发展自己,而我们学习的高等数学又是这里面的重中重!我们只有认清当今社会的人才培养目标,深入的学习高等数学,使高等数学在我们的人生中其到应有的作用,为社会做到最大的效益!

参考文献 (5号宋体) [1] 同济大学数学教研室.高等数学(第六版)【M】.北京:高等教育出版社.2007 [2] 张丽玲.导数在微观经济学中的应用【J】.河池学院学报,2007,(27).[3]百度文库http://wenku.baidu.com/search?word=%CE%A2%BB%FD%B7%D6%BC%B8%BA%CE%D3%A6%D3%C3&lm=1&od=0&fr=top_home

http://wenku.baidu.com/search?word=%CE%A2%BB%FD%B7%D6%D4%DA%CE%EF%C0%ED%B5%C4%D3%A6%D3%C3&lm=1&od=0&fr=top_home

第20篇:小学数学报小论文

愚蠢的笨笨

“呼啦啦,哗啦啦,我是种花的大行家„„”狗熊笨笨正在为兔子一家种花赚钱,这时,狐狸狡狡正好路过,看到狗熊笨笨,心想:看那家伙熊样,让我来耍耍他。狡狡来到笨笨跟前,说:“嗨,熊大哥,怎么样,干活累吧,兔子家有三块土地,每块土地是边长30米的正方形,在那里面种花,一块地种满后是给你450元,而去我那里,种三块边长是40米的正方形,一块种满后,我给你660元,怎么样,很合算吧。”笨笨是个文盲,没学过数学,只知道基本的加减乘除,他算了算,兔子那里每米是450÷30=15元,狐狸那里每米是660÷40=16.5元,狐狸那里赚的钱多呀!于是,笨笨就答应了。

第二天,笨笨就来到狐狸那里干活了,他干得可卖力了,每天都大汗淋漓,可几天下来,却发现赚的钱不太多,笨笨心想,那可能是心理作用吧。

一天,笨笨的朋友猴子聪聪经过狡狡的田地,看到笨笨坐在边上,满头大汗,聪聪问道:“笨笨大哥,你怎么累成这个模样?”笨笨答道:“我在兔子家种花,狐狸狡狡过来说要我去他家种,而且他给我的钱多,我就答应了,没想到却干得很累。”给的钱多?狡狡从来都是不愿意吃亏的,现在怎么这么大方?聪聪不禁心生疑惑,他问笨笨:“他给你多少钱?”“种边长是40米的3块地,每块地660元。”“那兔子家呢?”“也是种三块地,每块边长30米,一块450元。”聪聪快速算了一下,说:“笨笨大哥,你上当了,兔子家是每平方米450÷(30×30)=0.5元,而狐狸家是每平方米660÷(40×40)≈0.41元,0.41元小于0.5元,所以,你是吃亏了。”笨笨听了,恍然大悟,他刚想生气,但又想这是自己答应的呀,也不能怪狡狡骗他。聪聪拉着笨笨的手,说:“走,我们找狡狡辞职去。”笨笨“哦”了一声,他边走边想:数学还真是重要啊,我也要去上数学班,学好数学,那样才不会吃亏。对了,辞职后,我还是去兔子家种花吧。

辅导教师 刘昌凤

大学高数小论文范文
《大学高数小论文范文.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档