人人范文网 范文大全

高数总结

发布时间:2020-03-03 12:47:12 来源:范文大全 收藏本文 下载本文 手机版

高数总结

公式总结:

1.函数

定义域

值域

Y=arcsinx

[-1,1]

[-π/2, π/2] Y=arccosx

[-1,1]

[0, π] Y=arctanx

(-∞,+∞)

(-π/2, π/2) Y=arccotx

(-∞,+∞)

(0, π) Y=shx

(-∞,+∞)

(-∞,+∞)奇函数,递增

Y=chx

(-∞,+∞)

[1, +∞)偶函数,(-∞,0)递减 Y=thx

(-∞,+∞)

(-1,1)奇函数,递增

Y=arshx

(-∞,+∞)

(-∞,+∞)奇函数,递增 Y=archx

[1,+∞)

[0,+∞)递增

Y=arthx

(-1,1)

奇函数,递增 2.双曲函数和反双曲函数:

shx = [(e^x - e^(-x))/2,

sh(x+y)=shxchy+chxshy (shx) \' =chx

sh(x-y)=shxchy-chxshy chx = [(e^x + e^(-x)]/2

ch(x+y)=chxchy+shxshy , (chx) \' =shx

ch(x-y)=chxchy-shxshy thx = shx / chx,

(chx)^2-(shx)^2=1 (thx) \' = 1/(chx)^2

sh2x=2shxchx arsh x = ln[ x+ (x^2+1)^(1/2) ]

ch2x=(chx)^2+(shx)^2 , (arsh x) \' = 1/ (x^2+1)^(1/2) arch x = ln[ x+ (x^2-1)^(1/2) ] , (arch x) \' = 1/ (x^2-1)^(1/2) arth x =(1/2) [ ln(1+x)/(1-x) ], (arth x) \' = 1/(1-x^2) 我只记得考了几个这里的公式,不过不记得是哪次考试了,所以就给你们写上咯

3.对于x趋近于∞,f(x)/g(x)的极限,f(x)和g(x)均为多项式时,分子分母同时除以其中x的最高次项,利用x趋近于∞时,由1/(x^k)的极限为0(k>0),可以求得结果。 4.极限存在准则:

夹逼准则:证明极限存在并求得极限

单调有界准则:仅用于证明极限存在,对于有递推式的数列比较常用。一般都是先根据单调有界准则证明极限存在 P54例3 P55例5 5.两个重要极限:

(1)当x趋近于0时,sinx/x的极限等于1 (2)当x趋近于∞时,(1+1/x)^x的极限为e,也可以说当x趋近于0时,(1+x)^(1/x)的极限为e,但是不能说当x趋近于0时,(1+1/x)^x的极限为e.要求(1+在x趋近于∞或0时,该部分极限为0),指数部分为∞ 6.无穷小的比较:

b/a的极限为0,则称b是比a高阶的无穷小,b=o(a) b/a的极限为∞,则称b是比a低阶的无穷小 b/a的极限为常数,则为同阶无穷小,常数为1,为等价无穷小,记作a~b b/a^k的极限为常数(k>0),则称b是a的k阶无穷小 7.等价无穷小:

Sinx~x

tanx~x

arcsinx~x

arctanx~x

1-cosx~(1/2)x^2

ln(1+x)~x

e^x-1~x

a^x-1~xlna

(1+x)^a-1~ax

(1+ax)^b-1~abx

tanx-x~(1/3)x^3

x-sinx~(1/6)x^3

loga(x+1)~x/lna

加减运算时不能用等价无穷小,乘除的时候可以。如P61例5 8.函数的连续与间断:

函数f(x)在某点连续的充要条件为f(x)在该点处既左连续又右连续。 函数的各种间断点以及间断点的条件要记住。 我们上一年有考这种题。P64-P68 9.函数在某点可导的充要条件为函数在该点的左右导数均存在且相等。

如果函数在某点可导,则它在该点处连续。逆命题不成立。 10.熟记函数的求导法则: P96-97初等函数的求导法则。

反函数的导数等于直接函数导数的倒数。 会求复合函数的导数。 11.n阶导:

X ln(1+x)的n阶导=[(-1)^(n-1)](n-1)!/(1+x)^n

sinkx

=(k^n)sin(kx+nπ/2)

coskx

=(k^n)cos(kx+nπ/2)

1/x

=[(-1)^n]n!/[x^(n+1)]

x^a

=a(a-1)…(a-n+1)x^(a-n)

a^x

=a^x(lna)^n

e^x

=e^x

lnx

=[(-1)^(n-1)](n-1)!/x^n

1/(ax+b)

=[(-1)^n]n!a^n/[(ax+b)^(n+1)]

u(ax+b)

=a^n(ax+b)u(n)

u(n)为u的n阶导

cu(x)

=cu(x)(n)

u(x)(n)为u(x)的n阶导

u(x)+-v(x)

=u(x)(n)+-v(x)(n)

v(x)(n)为v(x)的n阶导

x^n

=n!

x^n的(n+1)阶导为0 至于莱布尼茨公式,我也不知道考不考,要是不放心还是背会吧,同情你们

12.隐函数的导数:

求隐函数的导数时,只需将确定隐函数的方程两边对自变量x求导。 (1) 对数求导法:注意x=e^(lnx)的化简

(2) 参数方程表示的函数的导数:一阶导和二阶导的公式都要记住。 (3) 极坐标表示的函数的导数:同参数都需把公式记住或者自己会推导。 (4) 相关变化率:以应用题的形式出现,看一下书上的例题P111-112。 13.函数的微分:重要

熟记基本初等函数的微分公式,考试会考,而且同求导法则一样,在下学期的高数中可能会有用。P117

应用题中,可用微分 dA近似代替△A。 复合函数的微分:dy=f’(u)du 14.函数的线性化:

L(x)=f(x0)+f’(x0)(x-x0)称为f(x)在点x0处的线性化。近似式f(x)≈L(x)称为f(x)在点x0处的标准线性近似,点x0称为该近似的中心。

常用函数在x=0处的标准线性近似公式:

(1+x)^(1/n)≈1+x/n sinx~x(x为弧度) tanx~x(x为弧度) e^x~1+x ln (1+x)~x 常用于估计某式的近似值。 15,误差计算: P123表格

16.费马引理,罗尔定理,拉格朗日中值定理,柯西中值定理。这些定理的条件以及结论均需记住,会考。 17.洛必达法则:

0/0型:当x趋近于a时,函数f(x)及g(x)都趋于0

在点a的某去心领域内,函数的导数均存在,且g’(x)不等于0 X趋近于a时,f’(x)/g’(x)存在或为无穷大

则有x趋近于a时,f(x)/g(x)的极限与f’(x)/g’(x)的极限相等 ∞/∞型:当x趋近于∞时,函数f(x)及g(x)都趋于0

对于充分大的|x|,函数的导数均存在,且g’(x)不等于0 X趋近于∞时,f’(x)/g’(x)存在或为无穷大

则有x趋近于∞时,f(x)/g(x)的极限与f’(x)/g’(x)的极限相等 0*∞型:化为0/0或者∞/∞型来计算 ∞-∞型:通分化为0/0型来计算

0^0,1^∞, ∞^0型:可先化为以e为底的指数函数,再求极限 X趋近于a时,lnf(x)的极限为A可化为

X趋近于a时,f(x)的极限等于e^(lnf(x))的极限等于e^(x趋近于a时,lnf(x)的极限)等于A。P141 18.泰勒公式:

e^x=1+x+x^2/2!+…+x^n/n!+o(x^n) sinx=x-x^3/3!+x^5/5!-…+[(-1)^n]x^(2n+1)/(2n+1)!+o(x^(2n+2)) cosx=1-x^2/2!+x^4/4!-x^6/6!+…+[(-1)^n]x^(2n)/(2n)!+o(x^(2n+1)) ln(1+x)=x-x^2/2+x^3/3-…+[(-1)^(n-1)]x^n/n+o(x^n) 1/(1-x)=1+X+x^2+…+x^n+o(x^n) (1+x)^m=1+mx+[m(m-1)/2!]x^2+…+[m(m-1)…(m-n+1)/n!]x^n+o(x^n) 泰勒公式和麦克劳林公式的一般形式也要记住。我们上一年有考过一题,不过不记得是啥题了。

19.补充一些关于三角函数的知识,可能会用到:

tan(x/2)=(1-cosx)/sinx

1+(tanx)^2=(secx)^2

1+(cotx)^2=(cscx)^2 和差化积公式:

sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]

cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2] 积化和差公式:

sinxcosy=1/2[sin(x+y)+sin(x-y)]

cosxsiny=1/2[sin(x+y)-sin(x-y)]

cosxcosy=1/2[cos(x+y)+cos(x-y)]

sinxsiny=-1/2[cos(x+y)-cos(x-y)] 补充两个公式:

(1) x^n-1=(x-1)[x^(n-1)+x^(n-2)+…+x+1] (2) n^(1/n)-1=(n-1)/[1+n^(1/n)+n^(2/n)+…+n^((n-1)/n)]

高数下册总结

高数积分总结

高数积分总结

高数符号总结

高数积分总结

高数下册总结

高数知识点总结(上册)

高数定理定义总结

高数二下知识点总结

大学高数学习方法总结

高数总结
《高数总结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题 高数知识总结 高数
点击下载本文文档