人人范文网 其他范文

机械手文献综述范文(精选多篇)

发布时间:2022-11-08 18:03:03 来源:其他范文 收藏本文 下载本文 手机版

推荐第1篇:机械手文献综述

燕 山 大 学

本科毕业设计(论文)文献综述

课题名称: 顺序动作机械手 学院(系): 机械工程学院 年级专业: 机电控制 学生姓名: 杨忠合 指导教师: 郑晓军 完成日期: 2014.03.25

一、课题国内外现状

目前国内机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。

国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定成绩。目前世界高端工业机械手均有高精化,高速化,多轴化,轻量化的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,量新产品达到6轴,负载2KG的产品系统总重已突破100KG。更重要的是将机械 手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。

二、研究主要成果

机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。

搬运机械手仿真设计和制作,机械手的机械结构主要包括由两个电磁阀控制的气缸来实现机械手的上升下降运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的进退运动,并利用ADAMS 软件对搬运机械手进行建模,对其进行运动学及动力学仿真,检查机械手在运动工作过程中的正确性和准确性,同时获得各部件机械手结构设计及其受力情况是否合理,为机械手设计提供参考。并在此基础上成功研制出物理样机,通过仿真设计提高了设计质量并缩短了设计周期。

采摘机械手虚拟设计与仿真系统的研究,在产品虚拟设计与仿真系统的开发中,为了实现智能设计,虚拟设计与企业产品设计的协同性、同一性和可重用性,实体建模属性的统一规范和标准定义十分必要。第一,首次提出和制定了可以用于虚拟产品建模与仿真的命名规则标准,为虚拟机械产品的设计提供参考。第二,构建水果采摘机械手虚拟设计与仿真系统的体系结构,建立了机械手机构设计模块,它包括机构的参数化设计和知识重用;第三,构建了机械手设计知识库和三维仿真模块;第四,已知机械手视觉获取目标的三维坐标,用软件实现反求机械手运动及其算法,并实现虚拟环境下的机械手对目标定位和采摘的三维仿真;第五,开发了水果采摘机械手虚拟设计与仿真系统。最后,通过三维仿真和实验样机对关键技术进行了验证。

工业机器人机械手设计,在现代工业中,生产过程的机械化、自动化已成为突出的主题。化工等连续性生产过程的自动化已基本得到解决。但在机械工业中,加工、装配等生产是不连续的专用机床是大批量生产自动化的有效办法;程控机床、数控机床、加工中心等自动化机械是有效地解决多品种小批量生产自动化的重要办法。但除切削加工本身外,还有大量的装卸、搬运、装配等作业,有待于进一步实现机械化。机器人的出现并得到应用,为这些作业的机械化奠定了良好的基础。工业机器人多数是指程序可变(编)的独立的自动抓取、搬运工件、操作工具的装置。机器人是一种具有人体上肢的部分功能工作程序固定的自动化装置。机器人具有结构简单、成本低廉、维修容易的优势,但功能较少,适应性较差。目前我国常把具有上述特点的机器人称为专用机器人,而把工业机械人称为通用机器人。

假肢用机械手的机构设计与运动学分析,一般而言,人们所称的“手”有两种意义,一是指整个的上肢,二是腕部到指尖的部分,也就是所谓的手部。人类的单只手臂以机械学的形式分析,可以用大约27 个自由度的连杆机构来表示。但其中大约20 个自由度集中在手部[1 ] 。文中着重于假肢的手部设计。在假肢的手部应用方面,目前主流的应用是一种具有手形状的假手,市场上销售的假手大都已经具有一个自由度,可以利用拇指、食指、中指进行三指的抓取动作,自由度位于手指的根部,手指本身并没有关节。文中所设计的假手也有三个手指,除指根部的关节外,拇指另有一个关节,其余二指有两个关节,而且假手的腕部有2 个自由度,可以完成腕部的屈伸和回转。

水下机器人-机械手系统构建与研究,近年来, 随着海洋资源开发和海洋科学研究需求的不断提高, 人们对水下机器人的作业能力提出了挑战, 如进行定点取样、水下结构的建造与维护、管线铺设、援潜救生以及军事应用等。水下机器人2机械手系统(U nderw aterV eh i2cle2M anipulato r System , UVM S) 是配备机械手的水下机器人系统, 是水下作业系统的一个重要分支, 对其的科学和军事、民用应用研究逐渐受到重视。受水下机器人发展的影响, 早期的UVM S 研究主要集中于遥控水下机器人(ROV ) 与搭载的液压机械手系统之间的研究, 随着自主水下机器人技术的成熟, 研究热点转移至自治水下机器人2机械手系统的研究上。如斯坦福大学开展的自治水下机器人(A utonomous U nderw ater V eh icles, AUV ) 与单关节机械 手的协调控制研究[1 ] , 日本开展的水下电动机械手与Tw in2Burger AUV 之间的控制技术研究[2 ] , 另有部分单位对半自主作业型AUV 展开研究, 如夏威夷大学启动的SAUV IM [3 ] (Sem i2A utonomousU nderw aterV eh icle fo r In2tervent ionM iions) 项目, 韩国海洋系统发展中心开展的半自主作业型水下机器人计划, 法国Cyber2net ix 公司进行的轻作业型AUV 开发, 美国Woods Ho le 海洋学研究所着手研制的半自主作业型11 000 m 混合型遥控水下机器人[4 ] , 均对半自主水下机器人系统进行载体和机械手的开发设计。

三、发展趋势:

目前工业机械手的应用逐步扩大,技术性能在不断提高。由于发展时间较短,人们对它有一个逐步认识的过程,机械手在技术上还有一个逐步完善的过程,其目前的发展趋势是:

(一)扩大机械手在热加工行业上的应用,

国内机械手应用在机械工业冷加工作业中的较多,而在铸、锻、焊、热处理等 热加工以及装配作业等方面的应用较少。因热加工作业的物件重、形状复杂、环境温度高等,给机械手的设计、制造带来不少困难,这就需要解决技术上的难点,使机械手更 好地为热加工作业服务。同时,在其它行业和工业部门,也将随着工业技术水平的不断提高,而逐步扩大机械手的使用。

(二)提高工业机械手的工作性能

机械手工作性能的优劣,决定着它能否正常地应用于生产中。机械手工作性能中的重复定位精度和工作速度两个指标,是决定机械手能否保质保量地完成操作任务的关键因素。因此要解决好机械手的工作平稳性和快速性的要求,除了从解决缓冲定位措施入手外,还应发展满足机械手性能要求价廉的电液伺服阀,将伺服控制系统应用于机械手上。 (三)发展组合式机械手

从机械手本身的特点来说,可变程序的机械手更适应产品改型、设备更新,多品种 小批量的要求,但是它的成本高,专用机械手价廉,但适用范围又受到限制。因此,对一些特殊用途的场合,就需要专门设计、专门加工,这样就提高了产品成本。为了适应 应用领域分门别类的要求,可将机械手的结构设计成可以组合的型式。组合式机械手是将一些通用部件(如手臂伸缩部件,升降部件、回转部件和腕部回转、俯仰部份等>根据作 业的要求S选择必要的能完成预定机能的单元部件,以机座为基础进行组合,配上与其业的要求S选择必要的能完成预定机能的单元部件,以机座为基础进行组合,配上与其相适应的控制部分,即成为能完成特殊要求的机械手。它可以简化结构,兼顾了使用上的专用性和设计上的通用性,便于标准化、系列化设计和组织专业化生产,有利于提高机械手的质量和降低造价,是一种有发展前途的机械手。

(四)研制具有“视觉’’和“触觉”的所谓“智能机器人”

对于需用人工进行灵巧操作及需要进行判断的工作场合,工业机械手很难代替人的劳动。如在工作过程中出现事故、障碍和情况变化等,机械手不能自动分辨纠正,而只能停机,待人们排除意外事故后才能继续工作。因此,人们对机械手提出了更高的要求,希望使其具有“视觉”、“触觉”等功能,使之对物件进行判断、选择,能连续调节以适应变化的条件,并能进行协调动作。这就需要一个能处理大量信息的计算机,要求人与机器“对话”进行信息交流。这种带“视觉\"、“触觉”反馈的,由计算机控制的,具有人的部分“智能”的机械装置称为“智能机器人”。所谓“智能”,是包括。识别、学习、记忆、分析判断的功能。

四、存在问题

(一)应具有足够的握力(HP夹紧力) 在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。 (二)手指间应具有一定的开闭角

两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开闭角应保证工件能顺利进入或脱开。若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手指只有开闭幅度的要求。 (三)应保证工件准确定位

为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。 (四)应具有足够的强度和刚度

手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,但应尽量使结构简单紧凑,但出尽重傥玷嗣间早紫暌,目重轻,并使手部的重心在手腕的回转轴线上,使手指开闭角示意图手腕的扭转力矩最小为佳。

(五)应考虑被抓取对象的要求

1.抓取形状手指形状应根据工件形状而设计。如工件为圆柱形,则采用“V”形手指,圆球状工件用圆弧形三指手指方料用平面形手指;细丝工件用尖指勾形或细齿钳爪手指。总之应根据工件形状来选定手指形状。 2.抓取部位抓取部位的尺寸尽可能是不变的,若加工后尺寸有变化,手指应能适应尺寸变化的要求,否则不允许定为抓取部位。对于工件表面质量要求高的,抓取时尽 量避开高质量表面或在手指上加软质垫片(如橡皮、泡沫塑料、石棉衬垫等)以防夹持时损坏工件。

3.抓取数量若用一对手指抓取多个工件,为了不发生个别工件的松动或脱落现 象,在手指上可增加弹性衬垫,如橡皮、泡沫塑料等。

(六)应考虑手指的多用性

手指是专用性较强的部件,为适应小批量多品种工件的不同形状和尺寸的要求,可制成组合式的手指。对于这种手指要求结构简单,安装维修方便,更换简便。

五、主要参考文献

[1]王建军.搬运机械手仿真设计和制作,2012-9.[2]李明.单臂回转式机械手设计,2004-9.[3]程明.弹簧式机械手设计原理,2005-12.[4]张军.多工步搬运机械手设计,2000-4.[5]黄贤新.工业机器人机械手设计,2013-3.[6]吴志敏,熊锐.工业机械手运动学仿真,2009-1.[7]蔡卫国.关节型搬运机械手设计,2008-11.[8]张海英,陈子珍,翟志永.基于PLC的物料搬运机械手设计,2010-5.[9]李明,栗全庆.基于PLC的液压搬运机械手设计,2009-8.[10]张慧鹏,刘小琴,贾毅朝.基于PLC控制的工业机械手设计,2009-8. [11] 李湘伟,卿艳梅,梁荣.基于PLC控制的教学型五自由度气动机械手的设计,2008-1. [12] 王宏,姬彦巧,赵长宽.基于肌肉电信号控制的假肢用机械手的设计,2006-9. [13] 姬彦巧,王宏,赵长宽.假肢用机械手的机构设计与运动学分析,2006-6. [14] 张奇峰,唐元贵,张爱群.水下机器人_机械手系统构建与研究,2007-3. [15] 杨永清,郭虹,纪玉杰.液压摆动机机械手设计,2008-1. [16] De Xu,Carlos A.Acosta Calderon,John Q.Gan.An Analysis of the Inverse Kinematics for a 5-DOF Manipulator. [17] FENG Fei,LIU Hong,CAI Hegao.Design Schemes and Comparison Research of the End-effector of Large Space Manipulator,2012. [18] GUAN Liwen,WANG Jinsong,WANG Liping.Dynamic Feedforward Control of a Novel 3-DOF Parallel Manipulator,2011. [19] ZHU Xiaorong,SHEN Huiping.Optimal design lf the link lengths for a planar parallel manipulator,2012-12. [20] GE Hao,GAO Feng.Type Design for Heavy-payload Forging Manipulators,2012.

指导教师审阅签字:

年 月 日

说明:

1.文献综述版面设置为:B5纸,上下页边距分别为2.5cm和2cm,左右页边距分别为2.4cm和2cm。

2.文献综述正文标题及内容,宋体,小四号,行间距为固定值20磅。3.本科毕业设计(论文)文献综述一般不少于1000字。

4.查阅文献资料篇数,按《燕山大学关于本科生毕业设计(论文)工作的规定》执行。

5.以上结构格式为参考格式。6.页面不够可加页。

推荐第2篇:机械手毕业设计文献综述汇总

吉林化工学院

文 献 综 述

300X200X120°物料机械手的设计

300X200X120° Material mechanical arm design

性 质: 毕业设计 □毕业论文

教 学 院:

别: 学生学号: 学生姓名: 专业班级: 指导教师: 职

称: 起止日期:

机电工程学院 机械电子工程系 11410209 吉国光 机自1102 王集思 实验师 2015.3.1~2015.3.28

吉 林 化 工 学 院

Jilin Institute of Chemical Technology

吉林化工学院本科毕业设计文献综述

摘要:在工业生产中,为了提高劳动生产率和自动化程度,工业机械手被广泛应用。工业机械手可以用于机床间传送工件;各类有自动夹紧、进刀、退刀和松开的功能半自动车床,上下料操作;还可以用于对人体有害的工作环境。它具有对环境适应性强、持久耐劳、动作准确、通用性好、灵活性好等优点。而工业机械手技术的高低更是一个国家工业发展水平的标志。工业机械手的设计能较鲜明地体现机电一体化的设计构思。所谓机电一体化技术,是机械工程技术吸收微电子技术、信息处理技术、传感技术等而形成的一种新的综合集成技术。工业机械手的设计更是对所学知识的综合运用。

本设计对程控通用机械手进行了较为详细的设计计算。分手部、手腕、手臂、液压驱动系统和电器控制系统五部分,每部分都对各部分的结构进行了较为详细的设计计算,根据要求及相关标准进行了部件材料和器件的选择。

关键词: 机械手;手部;手腕;手臂

引言:

在当前的物料搬运设备中,可分为对大型物件和对小型物件。这两者的搬运设备选择主要针对搬运设备能提起的重量。对于小型物件而言,又可分为不易损坏和易损坏两个类型。在之前的生产搬运过程中,传统的搬运设备往往不能满足易损坏物品的要求。 因为易损坏的物品对搬运设备的力度、精度、轨迹有着严格的控制,所以企业往往采用人工搬运的方式。人工搬运虽然可以满足易损坏物件的安全,但是这种搬运方式往往效率低,费用高。这阻碍企业实现自动化和提高自身竞争力。但随着20世纪50年代一种类似于人手的机械手的兴起, 给这种易损坏物品在搬运方式上带来全新的改变。机械手的灵活多变,精确度高深受企业的喜爱。 机械手现在应用领域正在不断扩大,在海洋开发和宇宙探测有着十分出彩的变现。应该说,机械手正改变着传统的搬运方式。机械手是近年发展起来的一种高科技自动化生产设备,它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,其中物料抓取机械手就是较为典型的一种机械手。要让机器人像人一样抓取东西,最简单的基本条件是要有一套类似手指、腕、臂、关节等部分组成的抓取和移动机构—执行机构。在物流快递搬运过程中,由于货物尺寸变化较大,需要机械手能够适应不同物体的抓取需要,调整机械手的抓取运动幅度,基于此本文设计了一种多自由度机械手,满足不同货物的抓取需要。

- 1

吉林化工学院本科毕业设计文献综述

与存放物料的仓库管理方式相适应。物料搬运机械手能实现的功能应有:①在本系统中给机械手提供四个自由度的选择,可根据实际物料情况选择自由度;②利用传感器扫描物料,获得物料的基本特征(形状、尺寸、重量、材料等);③提供物料是否在加工包装确定;④提供物料信息库查询和搬运物料方式信息库查询;⑤提供二维码生成服务,即给扫描后的物料根据其特征由物料搬运方式信息库生成相应信息的二维码; ⑥提供机械手执行机构抓取物件的选择(夹持型、托持型、吸附型);⑦提供机械手驱动方式的选择(根据精度和重量选择液压、气压、电气、机械驱动);⑧提供机械手控制方式工作顺序和运动速度的选择;⑨提供机械手控制方式选择(点位控制和连续轨迹控制)。物料搬运机械手各部分的说明如下:

2.1 执行部分

执行部分主要由手部、手臂、躯干组成。其中在手部中,手指的关节由电机带动轴转动。在手指处装有传感器当检测到三个手指都已经夹持住物件,电机停止转动。执行部分能实现的动作应包括水平伸出、夹持物件、竖直上升、竖直下降、顺向转动、逆向转动、松开物件等动作[3]。

2.2 驱动部分

机械手常用的驱动方式有液压驱动、气压驱动、电气驱动和机械驱动。在选择的过程中,更根据物件的特点选择相应的驱动方式。重量大、抓取速度快的东西采用液压、体积大、坚固的东西采用气压、精度高的东西选择电气驱动、动作要求可靠,成本低的东西选用机械驱动[4]。

2.3 控制系统

控制系统是物料搬运机械手的核心部分。本系统主要可根据机械手本身的装置(传感器、光电增码器、旋转编码器、伺服电机)选择机械手的工作顺序、到达位置、动作时间、运动速度、加减速度、点位或连续控制。其中运动速度和定位精度是搬运过程中的重要参数。运动速度过低,无法保证机械手的运动时间和运动范围。运动速度过高,无法保证机械手搬运物料的平稳性。定位精度过低,无法保证物料搬运位置的准确性。 定位精度过高,会使搬运的成本提高, 降低企业的利润[5]。

- 3

吉林化工学院本科毕业设计文献综述

采集模块、物料再处理模块、物料搬运装置模块、搬运装置自检测模块。模块化可以使得装置的维修更加方便,更加高效。无给油化是为了适应搬运要求更为严格的物料需要而产生的。在日常的搬运过程中,有些物品如药物、纺织等不能接触油液。这使得需要油液润滑的装置做出进一步的改变。如果未来的物料搬运机械手能实现无给油润滑,那么将极大地丰富机械手的应用范围。机电一体化指的是将传统的搬运装置与电气、软件、电子等高新装置结合起来,提高机械手的自动化程度,解放劳动力的重复操作。物料搬运是企业生产环节中的重要一环,提高物料搬运的自动化对提高企业的自身竞争力有重要的影响。在未来,将有更多的物料采用机械手进行搬运。这对于机械行业是个机遇, 也是个挑战。

参考文献:

[1] 菜自兴.机器人学的发展趋势和战略[J].机器人技术与应用,2001(4):11-16.[2] 于靖军,刘辛军等.机器人机构学的数学基础[M].北京:机械工业出版社,2008(6):25-30.[3] 郭艳萍.基于PLC的工业机械手控制系统[J].仪表技术与传感器,2007(9):31-32.[4] 李允文.工业机械手设计[M].北京:机械工业出版社,1996.43-50.[5] 日本三菱公司.三菱PLC编程说明书[Z].[6] 张平霞,朱永强.钢板弹簧抓取机械手运动仿真[J].拖拉机与农用运输车,2013.20-22.[7] 刘晋霞,张明明.基于Solid Works的装载机工作装置设计及仿真.2000.13-18.[8] Chen C K, Freudenstein F.Tward a more exact kinematics of roller [9] SHI Xiaojuan.Operational state monitoring and fuzzy fault diagnostic system of mine drainage.Mining Science and Technology,2010.7.15 [10] George K.Adam.Design and Control of a Mechatronic Hydraulic Pre System.In Electronic Proceedings (CD-ROM) of the IEEE International Conference on Mechatronics (ICM’04), 3-5 June, 2004, Istanbul, Turkey. chain drives [J] .ASME Journal of Mechanisms Transmiions,1989.4.25

- 5

推荐第3篇:关于现代工业机械手外文文献翻译@中英文翻译@外文翻译

附录

About Modenr Industrial Manipulayor Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and meage dispose and artificial intelligence and so on.With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being.The practicality use of robot not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program.Modern industrial robots are true marvels of engineering.A robot the size of a person can easily carry a load over one hundred pounds and move it very quickly with a repeatability of 0.006inches.Furthermore these robots can do that 24hours a day for years on end with no failures whatsoever.Though they are reprogrammable, in many applications they are programmed once and then repeat that exact same task for years.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use.To development economic practicality and high reliability robot system will be value to robot social application and economy development.With he rapid progre with the control economy and expanding of the modern cities, the let of sewage is increasing quickly; with the development of modern technology and the enhancement of consciousne about environment reserve, more and more people realized the importance and urgent of sewage disposal.Active bacteria method is an effective technique for sewage disposal.The abundance requirement for lacunaris plastic makes it is a consequent for plastic producing with automation and high productivity.Therefore, it is very neceary to design a manipulator that can automatically fulfill the plastic holding.With the analysis of the problems in the design of the plastic

holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware.In this article, the mechanical configuration combines the character of direction coordinate which can improve the stability and operation flexibility of the system.The main function of the transmiion mechanism is to transmit power to implement department and complete the neceary movement.In this transmiion structure, the screw transmiion mechanism transmits the rotary motion into linear motion.Worm gear can give vary transmiion ratio.Both of the transmiion mechanisms have a characteristic of compact structure.The design of drive system often is limited by the environment condition and the factor of cost and technical lever.The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system.In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality.On this basis, the analysis of stepping motor in power calculating and style selecting is also given.The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism.The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism.These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective.The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks.Manipulators controlled in this manner move at slow speeds with unneceary vibrations.Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel proceing techniques.In the industrial production and other fields, people often endangered by such factors as high temperature, corrode, poisonous gas and so forth at work, which have increased labor intensity and even jeopardized the life sometimes.The corresponding problems are solved since the robot arm comes out.The arms can catch, put and carry objects, and its movements are flexible and diversified.It applies to medium and small-scale automated production in which production varieties can be switched.And it is widely used on soft automatic line.The robot arms are generally made by withstand high temperatures, resist corrosion of materials to adapt to the harsh environment.So they reduced the labor intensity of the workers significantly and raised work efficiency.The robot arm is an important component of industrial robot, and it can be called industrial robots on many occasions.Industrial robot is set machinery, electronics, control, computers, sensors, artificial intelligence and other advanced technologies in the integration of multidisciplinary important modern manufacturing equipment.Widely using industrial robots, not only can improve product quality and production, but also is of great significance for physical security protection, improvement of the environment for labor, reducing labor intensity, improvement of labor productivity, raw material consumption savings and lowering production costs.There are such mechanical components as ball footbridge, slides, air control mechanical hand and so on in the design.A programmable controller, a programming device, stepping motors, stepping motors drives, direct current motors, sensors, switch power supply, an electromagnetism valve and control desk are used in electrical connection.Robot is the automated production of a kind used in the proce of crawling and moving piece features automatic device, which is mechanized and automated production proce developed a new type of device.In recent years, as electronic technology, especially computer extensive use of robot development and production of hightech fields has become a rapidly developed a new technology, which further promoted the development of robot, allowing robot to better achieved with the combination of mechanization and automation.Robot can replace humans completed the risk of duplication of boring work, to reduce human labor intensity and improve labor productivity.Manipulator has been applied more and more widely, in the machinery industry, it can be used for parts aembly, work piece handling, loading and unloading, particularly in the automation of CNC machine tools, modular machine tools more commonly used.At present, the robot has developed into a FMS flexible manufacturing systems and flexible manufacturing cell in an important component of the FMC.The machine tool equipment and machinery in hand together constitute a flexible manufacturing system or a flexible manufacturing cell, it was adapted to small and medium volume production, you can save a huge amount of the work piece conveyor device, compact, and adaptable.When the work piece changes, flexible production system is very easy to change will help enterprises to continuously update the marketable variety, improve product quality, and better adapt to market competition.At present, China\'s industrial robot technology and its engineering application level and comparable to foreign countries there is a certain distance, application and industrialization of the size of the low level of robot research and development of a direct impact on raising the level of automation in China, from the economy, technical considerations are very neceary.Therefore, the study of mechanical hand design is very meaningful.

关于现代工业机械手

机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济技术的发展和各行各业对自动化程度要求的提高,机器人技术得到了迅速发展,出现了各种各样的机器人产品。现代工业机器人是人类真正的奇迹工程。一个像人那么大的机器人可以轻松地抬起超过一百磅并可以在误差0.006英寸内重复运动。更重要的是这些机器人可以每天24小时不停止地工作。在许多应用中他们是通过编程控制的,但是他们一旦编程一次,他们可以重复地做同一个工作许多年。机器人产品的实用化,既解决了许多单靠人力难以解决的实际问题,又促进了工业自动化的进程。

目前,由于机器人的研制和开发涉及多方面的技术,系统结构复杂,开发和研制的成本普遍较高,在某种程度上限制了该项技术的广泛应用,因此,研制经济型、实用化、高可靠性机器人系统具有广泛的社会现实意义和经济价值。由于我国经济建设和城市化的快速发展,城市污染排水放量增长很快,污水处理已经摆在了人们的议事日程上来。随着科学技术的发展和人类知识水平的提高,人们越来越认识到污水处理的重要性和迫切性,科学家和研究人员发现塑料制品在水中时用于污水处理的很有效地污泥菌群的附着体。塑料制品的大量需求,使得塑料制品生产的自动化和高效率要求成为经济发展的必然。本文结合塑料一次挤出成型机和塑料抓取机械手的研制过程中出现的问题,综述近几年机器人技术研究和发展的状况,在从分发挥机、电、软、硬件各自特点和优势互补的基础上,对物料抓取机械手整体机械结构、传动系统、驱动装置和控制系统进行了分析和设计,提出了一套经济型设计方案。采用直角坐标和关节坐标相结合的框架式机械结构形式,这种方式能够提高系统的稳定性和操作灵活性。传动装置的作用是将驱动元件的动力传递给机器人机械手相应的执行机构,以实现各种必要的运动,传动方式上采用结构紧凑、传动比答得蜗轮蜗杆传动和将旋转运动转换为直线运动的螺旋传动。机械手驱动系统的设计往往受到作业环境条件的限制,同时也要考虑价格因素的影响以及能够达到的技术水平。由于步进电机能都直接接收数字量,响应速度快而且工作可靠并无累计误差,常用作数字控制系统驱动机构的动力元件,因此,在驱动装置中采用由步进电机构成的环控制方式,这种方式技能满足控制精度的要求,又能达到经济型、实用化目的。

目前的工业机械臂控制将每一个机械臂的联合看做一个简单的联合伺服。伺服方法不能从分地模仿不同的动力学机械手,因为它忽略了机械手整体的运动和配置。这些控制系统的参数的变化有时是足够重要,以至于使常规的反馈控制方法失效。其结果是减少了伺服相应的速度和阻尼,限制了京都和最终效应的速度,使系统仅适用于有限精度的工作。机械手以这种方式控制速度降低而没有不必要的震动。任何在这一领域和其它领域的机械臂性能增益要求更有效率的动态模型、精密的控制方法、专门的计算机架构和并行处理技术。

在工业生产和其它领域内,由于工作的需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危及生命。自从机械手问世以来,相应的各种难题迎刃而解。机械手可在空间抓、放、搬运物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于柔性自动线。机械手一般由耐高温,抗腐蚀的材料制成,以适应现场恶劣环境,大大降低了工人的劳动强度,提高了工作效率。机械手是工业机器人的重要组成部分,在很多情况下它就可以称为工业机器人。工业机器人集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体化的现代制造业重要的自动化装备。广泛采用工业机器人,不仅可以提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。

工业机械手是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。随着工业自动化的发展, 出现了数控加工中心,它在减轻工人的劳动强度的同时, 大大提高了劳动生产率。但数控加工中常见的上下料工序, 通常仍采用人工操作或传统继电器控制的半自动化装置。前者费时费工、效率低; 后者因设计复杂, 需较多继电器,接线繁杂, 易受车体振动干扰,而存在可靠性差、故障多、维修困难等问题。可编程序控制器PLC控制的上下料机械手控制系统动作简便、线路设计合理、具有较强的抗干扰能力, 保证了系统运行的可靠性,降低了维修率, 提高了工作效率。机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

机械手主要由手部和运动机构组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势......机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手能代替人类完成危险、重复枯燥的工作,减轻人类劳动强度,提高劳动生产力。机械手越来越广泛的得到了应用,在机械行业中它可用于零部件组装 ,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,它适应于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对路的品种,提高产品质量,更好地适应市场竞争的需要。而目前我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计是非常有意义的。

推荐第4篇:机械手

毕业设计(论文)

题目:

气动机械手的设计

目 录

摘要.........................................................3

第一章 前言

1.1机械手概述...............................................4 1.2机械手的组成和分类.......................................4 1.2.1机械手的组成.......................................4 1.2.2机械手的分类.......................................6 第二章 机械手的设计方案

2.1机械手的坐标型式与自由度.............................. 8 2.2机械手的手部结构方案设计.............................. 8 2.3机械手的手腕结构方案设计.............................. 9 2.4机械手的手臂结构方案设计...............................9 2.5机械手的驱动方案设计...................................9 2.6机械手的控制方案设计...................................9 2.7机械手的主要参数.......................................9 2.8机械手的技术参数列表...................................9 第三章 手部结构设计

3.1夹持式手部结构.........................................11 3.1.1手指的形状和分类.................................11 3.1.2设计时考虑的几个问题.............................14 3.1.3手部夹紧气缸的设计...............................14 第四章 手腕结构设计

4.1手腕的自由度.......................................... 19 4.2手腕的驱动力矩的计算.................................. 19 4.2.1手腕转动时所需的驱动力矩........................ 20 4.2.2回转气缸的驱动力矩计算...........................22 第五章 手臂伸缩,升降,回转气缸的设计与校核

5.1手臂伸缩部分尺寸设计与校核.............................23 5.1.1尺寸设计.........................................23 5.1.2尺寸校核.........................................24 5 .1 .3导向装置.......................................25 5 .1 .4平衡装置.......................................25 5.2手臂升降部分尺寸设计与校核.............................26 5.2.1尺寸设计.........................................26. 5.2.2尺寸校核.........................................26 5.3手臂回转部分尺寸设计与校核.............................27 5.3.1尺寸设计.........................................27 5.3.2尺寸校核.........................................27

第六章 机械手的PLC控制设计...................................27 6.1可编程序控制器的选择及工作过程.........................27 6.1.1可编程序控制器的选择.............................27 6.1.2可编程序控制器的工作过程.........................27 6.2可编程序控制器的使用步骤...............................23 第七章 结论....................................................24 参考文献.......................................................25 2

摘 要

在设计机械手臂座的时候,用两个电机提供动力。左边一电机通过谐波减速器减速后,通过齿轮来控制手臂的回转,而手臂弯曲动作的动力,由右边一电机提供。电机2同样也是通过谐波减速器减速后,通过一个长轴,把动力传到底部的小齿轮上,再由小齿轮与大齿轮的啮合,把动力传到那竖直的锥齿轮上,又通过锥齿轮之间的啮合,把动力与运动传递到横轴上,这样,再通过键连接,就能把动力传到那带轮上。这样,带轮就以一定的速度不停的转,以给臂关节通过同步齿型带传递动力。

在设计臂关节结构时,我们用两个同步齿形带轮来传递动力,而带轮又与轴和机械式离合器的左半边相连,这样,就使轴与左半边相连的离合器转动。在右半边为一电磁制动器,制动器的左半边与离合器的右半边相连,而且通过盘与上臂相连。这时,当电磁铁通电时,制动器吸合,这时离合器也分开。这样,上臂就停止在所要求的位置上了。当电磁铁失电时,由于弹簧力的作用,把制动器推开,同时离合器在弹簧力的作用下自动啮合,手臂恢复原有的运动。

注:机械手臂的运动范围手其结构的限制,在手臂的运动到达结构位置之前,必须使其自动停止。机械手臂的运动机械位置是有关节处牙嵌离合齿上的突起部分而定。手臂在极限位置自动停止,反向运行的条件完全是靠离合齿上的凸起部分与滑块的接触实现的。为了使离合齿轮能顺利的脱开和啮合,对离合齿上的凸起部分斜面的升角β≥arctgμν。只有满足这个条件,离合齿上凸起部分的斜面与滑块在滑动时才不会发生自锁。这样手臂才能自动停止和反向动作! 方案二

此方案在臂关节的结构设计上与方案一有所不同。这里设计成中心轴不转动。改在同步带轮处装两个轴承。这样,带轮可自由转动,而不会影响轴,且把离合器的左半边加工在带轮上,这样,不仅可以缩小空间,而且可以提高强度。其余与方案一相同。

关键词:机械手臂;极限位置;啮合;

第一章 前言

1.1.工业机械手概述

工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

1.2 .机械手的组成和分类

1.2.1.机械手的组成

机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。各系统相互之间的关系如方框图2-1所示。

机械手组成方框图:1-1 (一)执行机构

包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。

1、手部: 即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手在本课题中我们采用夹持式手部结构。夹持式手部由手指(或手爪)和传力机构所构成。手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。回转型手指结构简单,制造容易,故应用较广泛。平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。而传力机构则通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较多时常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。

2、手腕: 是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)

3、手臂: 手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。

4、立柱: 立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。机械手的立I因工作需要,有时也可作横向移动,即称为可移式立柱。

5、行走机构: 当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。滚轮式布为有轨的和无轨的两种。驱动滚轮运动则应另外增设机械传动装置。

6、机座:

机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。 (二)驱动系统

驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组成。常用的驱动系统有液压传动、气压传动、机械传动。控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,

并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。 (二)控制系统

控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。

1.2.2 .机械手的分类

工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式和控制系统等进行分类。 (一)按用途分

机械手可分为专用机械手和通用机械手两种:

1、专用机械手

它是附属于主机的、具有固定程序而无独立控制系统的机械装置。专用机械手具有动作少、工作对象单

一、结构简单、使用可靠和造价低等特点,适用于大批量的自动化生产的自动换刀机械手,如自动机床、自动线的上、下料机械手和加工中心。

2、通用机械手

它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。在性能范围内,其动作程序是可变的,通过调整可在不同场合使用,驱动系统和控制系统是独立的。通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批量自动化的生产。通用机械手按其控制定位的方式不同可分为简易型和伺服型两种:简易型以“开一关”式控制定位,只能是点位控制,伺服型可以是点位的,也可以实现连续控制,伺服型具有伺服系统定位控制系统,一般的伺服型通用机械手属于数控类型。 (二)按驱动方式分

1、液压传动机械手

是以液压的压力来驱动执行机构运动的机械手。其主要特点是:抓重可达几百公斤以上、传动平稳、结构紧凑、动作灵敏。但对密封装置要求严格,不然油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工

作。若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通用性扩大,但是电液伺服阀的制造精度高,油液过滤要求严格,成本高。

2、气压传动机械手

是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:介质李源极为方便,输出力小,气动动作迅速,结构简单,成本低。但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。

3、机械传动机械手

即由机械传动机构(如凸轮、连杆、齿轮和齿条、间歇机构等)驱动的机械手。它是一种附属于工作主机的专用机械手,其动力是由工作机械传递的。它的主要特点是运动准确可靠,用于工作主机的上、下料。动作频率大,但结构较大,动作程序不可变。

4、电力传动机械手

即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的械手,因为不需要中间的转换机构,故机械结构简单。其中直线电机机械手的运动速度快和行程长,维护和使用方便。此类机械手目前还不多,但有发展前途。 (三)按控制方式分

1、点位控制

它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不能控制其运动轨迹。若欲控制的点数多,则必然增加电气控制系统的复杂性。目前使用的专用和通用工业机械手均属于此类。

2、连续轨迹控制

它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个移动过程处于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气控制系统复杂。这类工业机械手一般采用小型计算机进行控制。

第二章 机械手的设计方案

对气动机械手的基本要求是能快速、准确地拾-放和搬运物件,这就要求它们具有高精度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及在任意位置都能自动定位等特性。设计气动机械手的原则是:充分分析作业对象(工件)的作业技术要求,拟定最合理的作业工序和工艺,并满足系统功能要求和环境条件;明确工件的结构形状和材料特性,定位精度要求,抓取、搬运时的受力特性、尺寸和质量参数等,从而进一步确定对机械手结构及运行控制的要求;尽量选用定型的标准组件,简化设计制造过程,兼顾通用性和专用性,并能实现柔性转换和编程控制.本次设计的机械手是通用气动上下料机械手,是一种适合于成批或中、小批生产的、可以改变动作程序的自动搬运或操作设备,劳动强度大和操作单调频繁的生产场合。也可用于操作环境恶劣的生产场合。

2.1.机械手的坐标型式与自由度

按机械手手臂的不同运动形式及其组合情况,其坐标型式可分为直角坐标式、圆柱坐标式、球坐标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆动的自由度

2.2 .机械手的手部结构方案设计

为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。

2.3 .机械手的手腕结构方案设计

考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。

2.4 .机械手的手臂结构方案设计

按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。手臂的各种运动由气缸来实现。

2.5 .机械手的驱动方案设计

由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用气压传动方式。

2.6 .机械手的控制方案设计

考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。

2.7 .机械手的主要参数

1.机械手的最大抓重是其规格的主参数,由于是采用气动方式驱动,因此考虑抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取的工件质量为5公斤 2.基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。该机械手最大移动速度设计为1.0m/s。最大回转速度设计为90/s。平均移动速度为0.8m/s。平均回转速度为60/s。机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。在这种情况下宜采用自动传送装置为好。根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为1400mm。手臂升降行程定为120mm。定位精度也是基本参数之一。该机械手的定位精度为1mm。

2.8.机械手的技术参数列表

一、用途: 用于自动输送线的上下料。

二、设计技术参数:

1、抓重:5kg

2、自由度数:4个自由度

3、坐标型式:圆柱坐标

4、最大工作半径:1400mm

5、手臂最大中心高:1250mm

6、手臂运动参数: 伸缩行程1200mm

伸缩速度400mm/s 升降行程120mm 升降速度250mm/s

回转范围0180 回转速度90/s

7、手腕运动参数: 回转范围 0180

回转速度90/s

8、手指夹持范围:棒料:80mm150mm

9、定位方式:行程开关或可调机械挡块等

10、定位精度:1mm

11、驱动方式:气压传动

12、控制方式:

第三章 手部结构设计

为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部:如果有实际需要,还可以换成气压吸盘式结构,

3.1夹持式手部结构

夹持式手部结构由手指(或手爪)和传力机构所组成。其传力结构形式比较多,如滑槽杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。 3.1.1手指的形状和分类

夹持式是最常见的一种,其中常用的有两指式、多指式和双手双指式:按手指夹持工件的部位又可分为内卡式(或内涨式)和外夹式两种:按模仿人手手指的动作,手指可分为一支点回转型,二支点回转型和移动型(或称直进型),其中以二支点回转型为基本型式。当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指;同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。回转型手指开闭角较小,结构简单,制造容易,应用广泛。移动型应用较少,其结构比较复杂庞大,当移动型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。 3.1.2设计时考虑的几个问题 (一)具有足够的握力(即夹紧力) 在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。 (二)手指间应具有一定的开闭角

两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手指只有开闭幅度的要求。 (三)保证工件准确定位

为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。 (四)具有足够的强度和刚度

手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。

(五)考虑被抓取对象的要求

根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点 两指回转型,由于工件多为圆柱形,故手指形状设计成V型,其结构如附图所示。 3.1.3手部夹紧气缸的设计

1、手部驱动力计算 其工件重量G=5公斤,

V形手指的角度2120,b120mmR24mm,摩擦系数为f0.10 (1)驱动力为:

p2bN R(2)根据手指夹持工件的方位,可N0.5tg()

: 0.55tg(60542')

25(N)2bN245(N) R(3)实际驱动力: 所以pp实际pK1K2

因为传力机构为齿轮齿条传动,故取0.94,并取K11.5。若被抓取工件的最大加

速度取a3g时,则:K21所以p实际245a4 g1.541563(N) 0.94所以夹持工件时所需夹紧气缸的驱动力为1563N。

2、气缸的直径

本气缸属于单向作用气缸。根据力平衡原理,单向作用气缸活塞杆上的输出推力必须克服弹簧的反作用力和活塞杆工作时的总阻力,其公式为: F1D2P4FtFz

式中: F1弹簧反作用力,N Fz- 气缸工作时的总阻力,N P- 气缸工作压力,Pa 弹簧反作用按下式计算: FtGf(1s)

GfGd134D1n

Gf=Gd148D1n3

式中:Gf- 弹簧刚度,N/m 1- 弹簧预压缩量,m s- 活塞行程,m d1- 弹簧钢丝直径,m D1- 弹簧平均直径,.n- 弹簧有效圈数.G- 弹簧材料剪切模量,一般取G79.4109Pa

在设计中,必须考虑负载率的影响,则: F1D2p4Ft

由以上分析得单向作用气缸的直径: D4(F1Ft)

pGd1479.4109(3.5103)代入有关数据,可得Gf 3338(3010)158D1n.46(N/m)

36774FtGf(1s)

3677.4660103

220.6(N)所以:D4(F1Ft)pn4(490220.6)

0.510665.23(mm)

查有关手册圆整,得D65mm

由d/D0.20.3,可得活塞杆直径:d(0.20.3)D1319.5mm 圆整后,取活塞杆直径d18mm校核,按公式F1/(/4d2)[] 有:d(4F1/[])0.5

其中,[]120MPa,F1750N 则:d(4490/120)0.5

2.2818

满足实际设计要求。 3,缸筒壁厚的设计

缸筒直接承受压缩空气压力,必须有一定厚度。一般气缸缸筒壁厚与内径之比小于或等于1/10,其壁厚可按薄壁筒公式计算: DPp/2[]

式中:6- 缸筒壁厚,mm D- 气缸内径,mm Pp- 实验压力,取Pp1.5P, Pa 材料为:ZL3,[]=3MPa 代入己知数据,则壁厚为: DPp/2[]

656105/(23106)

6.5(mm)取7.5mm,则缸筒外径为:D1657.5280(mm)

第四章 手腕结构设计

考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。

4.1 手腕的自由度

手腕是连接手部和手臂的部件,它的作用是调整或改变工件的方位,因而它具有独立的自由度,以使机械手适应复杂的动作要求。手腕自由度的选用与机械手的通用性、加工工艺要求、工件放置方位和定位精度等许多因素有关。由于本机械手抓取的工件是水平放置,同时考虑到通用性,因此给手腕设一绕x轴转动回转运动才可满足工作的要求目前实现手腕回转运动的机构,应用最多的为回转油(气)缸,因此我们选用回转气缸。它的结构紧凑,但回转角度小于360,并且要求严格的密封。

4.2手腕的驱动力矩的计算

4.2.1手腕转动时所需的驱动力矩 手腕的回转、上下和左右摆动均为回转运动,驱动手腕回转时的驱动力矩必须克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖等处密封装置的摩擦阻力矩以及由于转动件的中心与转动轴线不重合所产生的偏重力矩。

手腕转动时所需的驱动力矩可按下式计算: M驱M惯M偏M摩M封

式中: M驱- 驱动手腕转动的驱动力矩(Ncm); M惯- 惯性力矩(Ncm); M偏- 参与转动的零部件的重量(包括工件、手部、手腕回转缸的动片)对转动轴线所产生的偏重力矩(Ncm)., ; M封- 手腕回转缸的动片与定片、缸径、端盖等处密封装置的摩擦阻力 矩(Ncm); 根据手腕受力情况,分析各阻力矩的计算:

1、手腕加速运动时所产生的惯性力矩M悦

若手腕起动过程按等加速运动,手腕转动时的角速度为,起动过程所用的时间为t,则: M惯(JJ1)(N.cm)

t

式中:J- 参与手腕转动的部件对转动轴线的转动惯量(N.cm.s2); J1- 工件对手腕转动轴线的转动惯量(N.cm.s2)`。 若工件中心与转动轴线不重合,其转动惯量J1为: J1JcG12e1 g式中: Jc- 工件对过重心轴线的转动惯量(N.cm.s2): G1- 工件的重量(N); e1- 工件的重心到转动轴线的偏心距(cm), - 手腕转动时的角速度(弧度/s); t- 起动过程所需的时间(s); — 起动过程所转过的角度(弧度)。

2、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩M偏

M偏G1e1 +G3e3 (Ncm) 式中: G3- 手腕转动件的重量(N); e3- 手腕转动件的重心到转动轴线的偏心距(cm)

当工件的重心与手腕转动轴线重合时,则G1e10.

3、手腕转动轴在轴颈处的摩擦阻力矩M封

M封f(RAd2RBd1)(Ncm) 2式中:d1 ,d2- 转动轴的轴颈直径(cm); f- 摩擦系数,对于滚动轴承f0.01,对于滑动轴承f0.1; RA,RB- 处的支承反力(N),可按手腕转动轴的受力分析求解, 0,得: 根据M(AF)RBlG3l3G2l2G1l

RBG1l1G2l2G3l3

l同理,根据MB(F)0,得: RAG1(ll1)G2(ll2)G3(ll3)

l式中:G2- 的重量(N)

4、转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密衬装置的类型有关,应根据具体情况加以分析。4.2.2回转气缸的驱动力矩计算

在机械手的手腕回转运动中所采用的回转缸是单叶片回转气缸,定片与缸体固连,动片与回转轴固连。动片封圈把气腔分隔成两个.当压缩气体从孔a进入时,推动输出轴作逆时回转,则低压腔的气从b孔排出。反之,输出轴作顺时针方向回转。单叶气缸的压力P驱动力矩M的关系为: pb(R2r2)2MM, 或p 222b(Rr)

第五章 手臂伸缩、升降、回转气缸的尺寸设计与校核

5.1手臂伸缩气缸的尺寸设计与校核

5.1.1 手臂伸缩气缸的尺寸设计

手臂伸缩气缸采用标准气缸,参看各种型号的结构特点,尺寸参数,结合本设计的实际要求,气缸用CTA型气缸,尺寸系列初选内径为100/63: 5.1.2 尺寸校核

1.在校核尺寸时,只需校核气缸内径D1=63mm,半径R=31.5mm的气缸的尺寸满足使用要求即可,设计使用压强P0.4MPa, 则驱动力:

FPR2

0.41063.140.03152

1246(N) 测定手腕质量为50kg,设计加速度a10(m/s),则惯性力

F1ma

5010

500(N)2.考虑活塞等的摩擦力,设定摩擦系数k0.2, Fmk.F1 0.2500

100(N)  总受力F0F1Fm 500100

600(N) F0F

所以标准CTA气缸的尺寸符合实际使用驱动力要求要求。

5.1.3.导向装置

气压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以保证手指的正确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性,在设计手臂结构时,

应该采用导向装置。具体的安装形式应该根据本设计的具体结构和抓取物体重量等因素来确定,同时在结构设计和布局上应该尽量减少运动部件的重量和减少对回转中心的惯量。

导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才用单导向杆来增加手臂的刚性和导向性。 5.1.4平衡装置

在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧重力矩对性能的影响,故在手臂伸缩气缸一侧加装平衡装置,装置内加放砝码,砝码块的质量根据抓取物体的重量和气缸的运行参数视具体情况加以调节,务求使两端尽量接近平衡。

5.2 手臂升降气缸的尺寸设计与校核 5.2.1 尺寸设计

气缸运行长度设计为l=118mm,气缸内径为D1=110mm,半径R=55mm,气缸运行速度,加速度时间t=0.1s,压强p=0.4MPa,则驱动力

G0p.R2``

0.41063.140.05

523799(N)

5.2.2 尺寸校核

1.测定手腕质量为80kg,则重力

Gmg

8010

800(N)1,设计加速度a5(m/s),则惯性力

G1ma 805

400(N)3.考虑活塞等的摩擦力,设定一摩擦系数k0.1,

Gmk.G1

0.1400

40(N) 19

 总受力GqGG1Gm

80040040

1240(N) GqG0

所以设计尺寸符合实际使用要求。

5.3 手臂回转气缸的尺寸设计与校核

5.3.1 尺寸设计

气缸长度设计为b120mm,气缸内径为D1210mm,半径R=105mm,轴径D240mm半径R20mm,气缸运行角速度=90/s,加速度时间t0.5s,压强P0.4MPa,

pb(R2r2) 则力矩:M

20.41060.12(0.10520.0202) 2255(N.m)

5.3.2 尺寸校核

1.测定参与手臂转动的部件的质量m1120kg,分析部件的质量分布情况,

质量密度等效分布在一个半径r200mm的圆盘上,那么转动惯量:

m1r2J

21200.102 

2 0.6(kg.m2) M惯J.t

90 0.5

108(N.m)0.6考虑轴承,油封之间的摩擦力,设定摩擦系数k0.2, 20

M摩k.M惯

总驱动力矩

M驱M惯M摩 1085.4 0.2108

5.(4N.m)M驱〈M

113.(4N.m) 设计尺寸满足使用要求。

21

第六章 机械手的PLC控制设计

考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制.当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。

6.1可编程序控制器的选择及工作过程

6.1.1 可编程序控制器的选择

目前,国际上生产可编程序控制器的厂家很多,如日本三菱公司的F系列PC,德国西门子公司的SIMATIC N5系列PC、日本OMRON(立石)公司的C型、P型PC等。考虑到本机械手的输入输出点不多,工作流程较简单,同时考虑到制造成本,因此在本次设计中选择了OMRON公司的C28P型可编程序控制器。

6.1.2 可编程序控制器的工作过程

可编程序控制器是通过执行用户程序来完成各种不同控制任务的。为此采用了循环扫描的工作方式。具体的工作过程可分为4个阶段。 第一阶段是初始化处理。

可编程序控制器的输入端子不是直接与主机相连,CPU对输入输出状态的询问是针对输入输出状态暂存器而言的。输入输出状态暂存器也称为I/0状态表.该表是一个专门存放输入输出状态信息的存储区。其中存放输入状态信息的存储器叫输入状态暂存器;存放输出状态信息的存储器叫输出状态暂存器。开机时,CPU首先使I/0状态表清零,然后进行自诊断。当确认其硬件工作正常后,进入下一阶段。

第二阶段是处理输入信号阶段。

在处理输入信号阶段,CPU对输入状态进行扫描,将获得的各个输入端子的状态信息送到I/0状态表中存放。在同一扫描周期内,各个输入点的状态在I/0状态表中一直保持不变,不会受到各个输入端子信号变化的影响,因此不能造成运算结果混乱,保证了本周期内用户程序的正确执行。 第三阶段是程序处理阶段。

当输入状态信息全部进入I/0状态表后,CPU工作进入到第三个阶段。在这个阶段中,可编程序控制器对用户程序进行依次扫描,并根据各I/0状态和有关指令进行运算和处理,最后将结果写入I/0状态表的输出状态暂存器中。 第四阶段是输出处理阶段。

段CPU对用户程序已扫描处理完毕,并将运算结果写入到I/0状态表状态暂存器中。此时将输入信号从输出状态暂存器中取出,送到输出锁存电路,驱动输出继电器线圈,控制被控设备进行各种相应的动作。然后,CPU又返回执行下一个循环的扫描周期。

6.2 机械手可编程序控制器控制方案

22

23

第七章 结论

1、本次设计的是气动通用机械手,相对于专用机械手,通用机械手的自由 度可变,控制程序可调,因此适用面更广。

2、采用气压传动,动作迅速,反应灵敏,能实现过载保护,便于自动控制。工作环境适应性好,不会因环境变化影响传动及控制性能。阻力损失和泄漏较小, 不会污染环境。同时成本低廉。

3、通过对气压传动系统工作原理图的参数化绘制,大大提高了绘图速度, 节省了大量时间和避免了不必要的重复劳动,同时做到了图纸的统一规范。

4、机械手采用PLC控制,具有可靠性高、改变程序灵活等优点,无论是进

行时间控制还是行程控制或混合控制,都可通过设定PLC程序来实现。可以根据 机械手的动作顺序修改程序,使机械手的通用性更强。

24

参考文献:

[1] 张建民.工业机器人.北京:北京理工大学出版社,2007 [2] 蔡自兴.机器人学的发展趋势和发展战略.机器人技术,2003 [3] 金茂青,曲忠萍,张桂华.国外工业机器人发展势态分析.机器人技术与应用 , 2005 [4] 王雄耀.近代气动机器人(气动机械手)的发展及应用.液压气动与密封,2004 [5] 严学高,孟正大.机器人原理.南京:东南大学出版社,2003 [6] 机械设计师手册.北京:机械工业出版社,2006 [7] 黄锡恺,郑文伟.机械原理.北京:人民教育出版社,2006 [8] 成大先.机械设计图册.北京:化学工业出版社

[9] 郑洪生.气压传动及控制.北京:机械工业出版社,2007 [10] 吴振顺.气压传动与控制.哈尔滨:哈尔滨工业大学出版社,2004 [11] 徐永生.气压传动.北京:机械工业出版社,2002 [12]傅祥志,机械原理(第二版),武汉:华中科技大学出版社,2000.10 [13]吴昌林等,机械设计(第二版),武汉:华中科技大学出版社,2001.2 [14]徐钢涛等,机械设计基础,北京:高等教育出版社,2008.5

25

推荐第5篇:基于PLC的搬运机械手控制系统设计文献综述

文献综述

目学生姓名专业班级学

号院 (系)指导教师完成时间

工业机械手的应用

自动化200 级 班

电气信息工程学院 2011年 06月 05日

工业机械手的应用

1 机械手概述

用于再现人手功能的技术装置称为机械手。机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为工业机械手。

工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

工业机械手是近几十年发展起来的一种高科技自动生产设备。工业机械手也是工业机器人的一个重要分支。他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

机械手的发展是由于它的积极作用正日益为人们所认识:其

一、它能部分的代替人工操作;其

二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其

三、它能操作必要的工具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。因而,受到很多国家的重视,投入大量的人力物力来研究和应用。尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的重视。

机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。机械手的结构形式开始比较简单,专用性较强。 随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。 2 机械手的发展史

现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化 。

机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。

1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。不少球坐标式通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。

1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本。如Unimate公司建立了8年机械手试验台,进行各种性能的试验。准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。

瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。

日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进二种典型机械手后,大力研究机械手的研究。据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个。1976年个大学和国家研究部门用在机械手的研究费用42%。1979年日本机械手的产值达443亿日元,产量为14535台。其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。智能机械手约为17亿日元,为1978年的6倍。截止1979年,机械手累计产量达56900台。在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。使用机械手最多的是汽车工业,其次是电机、电器。预计到1990年将有55万机器人在工作。

第二代机械手正在加紧研制。它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。

第三代机械手(机械人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。

随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。

3 工业机械手在生产中的应用

机械手是工业自动控制领域中经常遇到的一种控制对象。机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。

在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。可在机械工业中,加工、装配等生产很大程度上不是连续的。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。本文以能够实现这类工作的搬运机械手为研究对象。下面具体说明机械手在工业方面的应用。 3.1 建造旋转零件(转轴、盘类、环类)自动线

一般都采用机械手在机床之间传递零件。国内这类生产线很多,如沈阳永泵厂的深井泵轴承体加工自动线(环类),大连电机厂的4号和5号电动机加工自动线(轴类),上海拖拉机厂的齿坯自动线(盘类)等。

加工箱体类零件的组合机床自动线,一般采用随行夹具传送工件,也有采用机械手的,如上海动力机厂的气盖加工自动线转位机械手。

3.2 在实现单机自动化方面

各类半自动车床,有自动加紧、进刀、切削、退刀和松开的功能,单仍需人工上下料;装上机械手,可实现全自动化生产,一人看管多台机床。目前,机械手在这方面应用很多,如上海柴油机厂的曲拐自动车床和座圈自动车床机械手,大连第二车床厂的自动循环液压仿行车床机械手,沈阳第三机床厂的Y38滚齿机械手,青海第二机床厂的滚铣花键机床机械手等。由于这方面的使用已有成功的经验,国内一些机床厂已在这类产品出厂是就附上机械手,或为用户安装机械手提供条件。如上海第二汽车配件厂的灯壳冲压生产线机械手(生产线中有两台多工位机床)和天津二注塑机有加料、合模、成型、分模等自动工作循环,装上机械手的自动装卸工件,可实现全自动化生产。目前机械手在冲床上应用有两个方面:一是160t以上的冲床用机械手的较多。如沈阳低压开关厂200t环类冲床磁力起重器壳体下料机械手和天京拖拉机厂400t冲床的下料机械手等。

4 机械手控制方法

机器人控制系统硬件结构要围绕着如何更好地实现机器人的控制功能而设计和选择。以控制器的核心计算机的分布方式来看,机器人控制系统硬件控制结构大体可分为集中控制、主从控制、分级控制等三类。

在核心控制器的选择上可以有多种方案,目前在机电一体化设计中主要有三种:单片机、工业控制计算机、可编程控制器(PLC)。随着计算机系统的不断发展,也出现了运动控制卡和逻辑控制器等新型控制硬件。

单片机控制机械手能够完成简单的逻辑控制或模拟量控制,可按需要自行配置通信功能,软硬件开发工作量很多,输出带负载能力和抗干扰能力差,可靠性差,环境适应能力差,成本较为低廉。

PLC控制机械手可按使用要求选购相应的产品完成复杂的逻辑控制,逻辑控制为主,也可以组成模拟量控制系统,软硬件开发工作量较少,输出带负载能力和抗干扰能力强,可靠性好,环境适应能力强,成本较为高。

工业控制计算机具备完善的控制功能,软件丰富,执行速度快,软件开发工作量较多,硬件开发工作量较少,执行速度较慢,环境适应力一半,可靠性好,成本较为高。

参考文献

[1] 蔡自兴.机器人学的发展趋势和发展战略[J].机器人技术与应用,2001,76(4):11-16.[2] 张波.多功能上下料用机械手液压系统[J].液压与气动,2002,8(2):31-32.[3] 李允文.工业机械手设计[M].北京:机械工业出版社,1996.[4] 张建民.工业机械人[M].北京:北京理工大学出版社,1992 [5] 史国生.PLC在机械手步进控制中的应用[J].中国工控信息网,2005.1 [6] 王永华.现代电气控制及PLC应用技术[M].北京:北京航空航天大学出版社,2009.[7] 朱春波.PLC控制的气动上下料机械手[J].液压气动与密封,1999,21-24.[8] 王勤.计算机控制技术[M].南京:东南大学出版社,2003.[9] 张万忠.可编程控制器入门与应用实例(西门子S7-200系列)[M].北京:中国电力出

版社,2005.

[10] 刘轩,王丽伟.机械手的PLC控制[J].机床电器,2006,34-49.[11] 张铁异,何国金,黄振峰.基于PLC控制的混合型气动机械手的设计与实现[J].液

压与气动,2008,18(9):6—8.[12] 郭艳萍.基于PLC 的工业机械手控制系统[J].仪表技术与传感器,2007,9(9):31-32.[13] ClavelR .Delta,a fast robot wth parallel geometry[J].The18thInt.Symposium on in

dustrial robots( ISIR),Sydney,Australia,1988,91-100.

[14] John J.Craig,Introduction to Robotics Mechanics and Control[J],Second Edition,

Addison-Wesley,Reading,MA,1989.[15] Durstewitz,M ;Kiefner,B ,Virtual collaboration environment for aircraft

design[J],Information Visualisation,2002.Proceedings.Sixth International Conference

on,10-12 July 2002,Page: 502- 507

推荐第6篇:机械手调查报告

关于机械手的调查了解

机械手是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

它是在早期出现的古代机器人基础上发展起来的,机械手研究始于20世纪中期,随着计算机和自动化技术的发展,特别是1946年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。同时,大批量生产的迫切需求推动了自动化技术的进展,又为机器人的开发奠定了基础。另一方面,核能技术的研究要求某些操作机械代替人处理放射性物质。在这一需求背景下,美国于1947年开发了遥控机械手,1948年又开发了机械式的主从机械手。机械手首先是从美国开始研制的。1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1958年美国联合控制公司研制出第一台机械手铆接机器人。作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的‚VERSTRAN‛和UNIMATION公司推出的‚UNIMATE‛。 机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。控制系统是通过对机械手每个自由度的电机的控制,来完成特定动作。同时接收传感器反馈的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。 机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。机械手在锻造工业中的应用能进一步发展锻造设备的生产能力,改善热、累等劳动条件。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术领域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。我国塑料机械已成为机械制造业发展最快的行业之一,年需求量在不断的加大。我国塑料机械产业的高速发展主要有以下两个大因素:一是对高技术含量装备的需求所带来的设备更新及陈旧设备的淘汰;二是海内塑料加工产业的高速发展,对塑料机械的需求旺盛。

东莞松山湖长盈精密技术有限公司,是一家生产、销售手机系列连接器、屏蔽件和超精密五金端子及模具的高新技术企业。该公司正在推进的‚无人工厂‛建造体系首期计划投入1000个无人机械手,前期已有100个机械手率先‚上岗‛。该公司常务副总经理任项生介绍,以前人工操作数控机床的产品加工,经常容易出现安全问题,产品质量的稳定性也比较差。‚‘无人工厂’并不是说完全没有人,但会大规模压缩人工数量,甚至可达到90%的水平。‛东莞市经济和信息化局负责人介绍,至今东莞推动传统产业和优势产业‚机器换人‛应用项目达到505个,投资金额达42亿元,可减少企业用工3万余人,企业投资成本有望在两年内收回。事实上,当前劳动力成本上升的情况,决定了东莞等地‚机器换人‛战略实施的必要性。随着珠三角人力成本的迅速上升,企业普遍感到存续压力大,东莞台资企业协会会长翟所领认为,尽管初期工业机器人等基础设施投入较大,但成长性较强的企业有望在几年内收回成本,‚比起人力成本每年增长20%以上的不确定性,还是要划算。‛据深圳众为兴技术股份有限公司市场总监李悦伟说:‚随着一些地区劳动力短缺现象日益严重,机器人的需求将逐渐增加,这也将倒逼机器人科研技术实现更多突破、更多国产化。‛

随着低碳理念的深入人心,机械手的发展也将以无污染、节能为前提,如用一些新型材料可以制造无润滑元件应用于气动机械手当中,不仅使系统简化,且有着稳定的摩擦性能以及较长的寿命。值得重视的是,随着机电一体化的发展,控制系统将向基于PC 机的开放型控制器的方向发展,并且,随着传感器作用的日益加重,由‚可编程控制器、传感器、动作元件‛组成的典型的自动化控制系统依然会是主流发展方向,在此系统中,传统的‚开关控制‛也将转变为‚反馈控制‛,从而进一步提升系统的精度。从1958 年美国联合控制公司研制出第一台机械手,到20 世纪70 年代初期制造业开始引进机械手的使用,再到1972 年我国第一台机械手的开发以及随之而来的全国范围都开始研制和应用机械手,机械手的发展历经了这短短几十年,迎来的是制造业的全新面貌。并且机械手依旧在发展,在进步,其应用领域更在向着非制造业和服务业发展,可以预见,机械手一定会继续蓬勃发展,为其涉及的行业做出更大的贡献。

推荐第7篇:机械手 年终总结

年终总结

2014年即将逝去,回顾2014年河南区域工作中的一年,在公司领导的关怀和帮助下取得了客户的一致认可但是也有些不足之处。具体如下

一: 河南区域客户现状:

河南区域在今年一年中新客户主要增加了河南瑞孚实业、郑州翼宇汽车零部件、洛阳莱普生生物科技、河南源德福科技这几家,整个河南区域客户比较分散,客户人员使用和接受机械手能力比较低,致使客户处往返和培训比较多。其中在整年中整个区域没有出现重大问题,

二:区域机器典型状况

1’河南鹤壁方圆馨宇T1300ws-s3 泰志达三轴固定式 频繁出现开模完后 两次下行取物,经系统排查后系干扰所致。

2‘郑州卓达汽车使用的T2200ws-s3 2014年4月机器 MZ线轨螺丝整体断裂

3’郑州卓达T1300ws-s3 出厂日期2014年MZ轴松下驱动器损坏

4‘新乡海宝电器T1300ws-s3 2013年机器 两次出现模具在闭合状态下 下行,系统排查后系客户海天注塑机开模完信号在模具闭合状态下有给予我司机械手信号所致 5,郑州全兴工业T1700WS-s3机器Y轴线轨螺丝基本上整体断掉

三:区域使用情况建议:

经过一年半河南区域客户使用和反应,一点不成熟建议如下:

1,TRC1300系统所适配的A系列机器电源开关和启动按钮位置建议更改下,所负责区域客户反应其现在的位置在电控箱部位,但是过高并且在机器尾部使用时不方便。

2,TRC1300系统 在手动状态下客户在调试位置时 如果开模完消失 其允许关模和模区安全信号无法复归只有关电重启解决致使客户使用不方便,希望能改进。

3,客户培训方面,建议公司能出几个培训视频,各个机台系列尽量都有,这样方便新客户快速学习使用减少我司来回培训客户的成本

这一年工作还有许多要改进,希望在即将到来的2015年终能更好的为公司,和客户服务。

河南办:康清华

2014年12月19日

推荐第8篇:机械手毕业论文...

毕业设计论文

题目:气动机械手的设计

设 计 人:

指导教师:

所属院系:

专业班级:

2014年11月10日

太原科技大学毕业设计(论文)

第1章 前言

1.1工业机械手概述

工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

1.2 机械手的组成和分类

1.2.1机械手的组成

机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。各系统

- 1

太原科技大学毕业设计(论文)

4、立柱: 立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。机械手的立I因工作需要,有时也可作横向移动,即称为可移式立柱。

5、行走机构: 当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。滚轮式布为有轨的和无轨的两种。驱动滚轮运动则应另外增设机械传动装置。

6、机座: 机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。 (二)驱动系统

驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组成。常用的驱动系统有液压传动、气压传动、机械传动。控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,

并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。 (二)控制系统

控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。 1.2.2 机械手的分类

工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式和控制系统等进行分类。 (一)按用途分

- 3

太原科技大学毕业设计(论文)

即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的械手,因为不需要中间的转换机构,故机械结构简单。其中直线电机机械手的运动速度快和行程长,维护和使用方便。此类机械手目前还不多,但有发展前途。 (三)按控制方式分

1、点位控制

它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不能控制其运动轨迹。若欲控制的点数多,则必然增加电气控制系统的复杂性。目前使用的专用和通用工业机械手均属于此类。

2、连续轨迹控制

它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个移动过程处于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气控制系统复杂。这类工业机械手一般采用小型计算机进行控制。

- 5

太原科技大学毕业设计(论文) 图2-1 机械手的运动示意图

2.2 机械手的手部结构方案设计

为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。

2.3 机械手的手腕结构方案设计

考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。

2.4 机械手的手臂结构方案设计

按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。手臂的各种运动由气缸来实现。

2.5 机械手的驱动方案设计

由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用气压传动方式。

2.6 机械手的控制方案设计

考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。

2.7 机械手的主要参数

1.机械手的最大抓重是其规格的主参数,由于是采用气动方式驱动,因此考虑抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取的工件质量为5公斤

2.基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。该机械手最大移动速度设计为1.0m/s。最大回转速度设计为90°/s。平均移动速度为0.8m/s。平均回转速度为60°/s。机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平

- 7

太原科技大学毕业设计(论文)

机械手臂剖视图图2-6

- 9

太原科技大学毕业设计(论文)

自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。 (五)考虑被抓取对象的要求

根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点 两指回转型,由于工件多为圆柱形,故手指形状设计成V型,其结构如附图所示。 3.1.3手部夹紧气缸的设计

1、手部驱动力计算

本课题气动机械手的手部结构如图3-2所示,

图3-2 齿轮齿条式手部

其工件重量G=5公斤,

V形手指的角度2120,b120mmR24mm,摩擦系数为f0.10 (1)根据手部结构的传动示意图,其驱动力为: p2bN R(2)根据手指夹持工件的方位,可得握力计算公式: N0.5tg()

0.55tg(60542')

25(N)所以p2bN245(N) R- 11活塞杆上的推力,N Ft

太原科技大学毕业设计(论文)

n- 弹簧有效圈数.G- 弹簧材料剪切模量,一般取G79.4109Pa

在设计中,必须考虑负载率的影响,则: F1D2p4Ft

由以上分析得单向作用气缸的直径: D4(F1Ft)

pGd1479.4109(3.5103)代入有关数据,可得Gf 3338(3010)158D1n.46(N/m)

36774FtGf(1s)

3677.4660103

220.6(N)所以:D4(F1Ft)pn4(490220.6)

0.510665.23(mm)

查有关手册圆整,得D65mm

由d/D0.20.3,可得活塞杆直径:d(0.20.3)D1319.5mm 圆整后,取活塞杆直径d18mm校核,按公式F1/(/4d2)[] 有:d(4F1/[])0.5

其中,[]120MPa,F1750N 则:d(4490/120)0.5

2.2818

满足实际设计要求。 3,缸筒壁厚的设计

缸筒直接承受压缩空气压力,必须有一定厚度。一般气缸缸筒壁厚与内径之比小于或

- 13

太原科技大学毕业设计(论文)

第4章 手腕结构设计

考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。

4.1 手腕的自由度

手腕是连接手部和手臂的部件,它的作用是调整或改变工件的方位,因而它具有独立的自由度,以使机械手适应复杂的动作要求。手腕自由度的选用与机械手的通用性、加工工艺要求、工件放置方位和定位精度等许多因素有关。由于本机械手抓取的工件是水平放置,同时考虑到通用性,因此给手腕设一绕x轴转动回转运动才可满足工作的要求目前实现手腕回转运动的机构,应用最多的为回转油(气)缸,因此我们选用回转气缸。它的结构紧凑,但回转角度小于360,并且要求严格的密封。

4.2 手腕的驱动力矩的计算

4.2.1手腕转动时所需的驱动力矩

手腕的回转、上下和左右摆动均为回转运动,驱动手腕回转时的驱动力矩必须克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖等处密封装置的摩擦阻力矩以及由于转动件的中心与转动轴线不重合所产生的偏重力矩.图4-1所示为手腕受力的示意图。

- 15

太原科技大学毕业设计(论文)

式中:J- 参与手腕转动的部件对转动轴线的转动惯量(N.cm.s2); J1- 工件对手腕转动轴线的转动惯量(N.cm.s2)`。 若工件中心与转动轴线不重合,其转动惯量J1为: J1JcG12e1 g式中: Jc- 工件对过重心轴线的转动惯量(N.cm.s2): G1- 工件的重量(N); e1- 工件的重心到转动轴线的偏心距(cm), - 手腕转动时的角速度(弧度/s); t- 起动过程所需的时间(s); — 起动过程所转过的角度(弧度)。

2、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩M偏

M偏G1e1 +G3e3 (Ncm) 式中: G3- 手腕转动件的重量(N); e3- 手腕转动件的重心到转动轴线的偏心距(cm) 当工件的重心与手腕转动轴线重合时,则G1e10.

3、手腕转动轴在轴颈处的摩擦阻力矩M封

M封f(RAd2RBd1)(Ncm) 2式中:d1 ,d2- 转动轴的轴颈直径(cm); f- 摩擦系数,对于滚动轴承f0.01,对于滑动轴承f0.1; RA,RB- 处的支承反力(N),可按手腕转动轴的受力分析求解, 根据M(0,得: AF)RBlG3l3G2l2G1l

- 17

太原科技大学毕业设计(论文)

- 19

太原科技大学毕业设计(论文)

气压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以保证手指的正确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性,在设计手臂结构时,

应该采用导向装置。具体的安装形式应该根据本设计的具体结构和抓取物体重量等因素来确定,同时在结构设计和布局上应该尽量减少运动部件的重量和减少对回转中心的惯量。

导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才用单导向杆来增加手臂的刚性和导向性。 5.1.4平衡装置

在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧重力矩对性能的影响,故在手臂伸缩气缸一侧加装平衡装置,装置内加放砝码,砝码块的质量根据抓取物体的重量和气缸的运行参数视具体情况加以调节,务求使两端尽量接近平衡。 5.2 手臂升降气缸的尺寸设计与校核 5.2.1 尺寸设计

气缸运行长度设计为l=118mm,气缸内径为D1=110mm,半径R=55mm,气缸运行速度,加速度时间t=0.1s,压强p=0.4MPa,则驱动力

G0p.R2``

0.41063.140.05

523799(N) 5.2.2 尺寸校核

1.测定手腕质量为80kg,则重力

Gmg

8010

800(N)1,设计加速度a5(m/s),则惯性力

G1ma

805

400(N)3.考虑活塞等的摩擦力,设定一摩擦系数k0.1,

- 21

太原科技大学毕业设计(论文)

90 0.5

108(N.m)0.6考虑轴承,油封之间的摩擦力,设定摩擦系数k0.2, M摩k.M惯

总驱动力矩

M驱M惯M摩 1085.4

113.(4N.m)0.2108

5.(4N.m)M驱〈M  设计尺寸满足使用要求。

- 23

太原科技大学毕业设计(论文)

入信号从输出状态暂存器中取出,送到输出锁存电路,驱动输出继电器线圈,控制被控设备进行各种相应的动作。然后,CPU又返回执行下一个循环的扫描周期。

6.2 机械手可编程序控制器控制方案

图6-1

- 25

太原科技大学毕业设计(论文)

参考文献

[1] 张建民.工业机器人.[M]北京:北京理工大学出版社,2007 [2] 蔡自兴.机器人学的发展趋势和发展战略.[N]机器人技术,2003 [3] 金茂青,曲忠萍,张桂华.国外工业机器人发展势态分析.[N]机器人技术与应用 , 2005 [4] 王雄耀.近代气动机器人(气动机械手)的发展及应用.[N]液压气动与密封,2004 [5] 严学高,孟正大.机器人原理.[M]南京:东南大学出版社,2003 [6] 机械设计师手册.[M]北京:机械工业出版社,2006 [7] 黄锡恺,郑文伟.机械原理.[M]北京:人民教育出版社,2006 [8] 成大先.机械设计图册.[M]北京:化学工业出版社

[9] 郑洪生.气压传动及控制.[M]北京:机械工业出版社,2007 [10] 吴振顺.气压传动与控制.[M]哈尔滨:哈尔滨工业大学出版社,2004 [11] 徐永生.气压传动.[M]北京:机械工业出版社,2002 [12]傅祥志,机械原理(第二版)[M]武汉:华中科技大学出版社,2000.10 [13]吴昌林等,机械设计(第二版)[M],武汉:华中科技大学出版社,2001.2 [14]徐钢涛等,机械设计基础,[M]北京:高等教育出版社,2008.5

- 27

推荐第9篇:机械手结构设计

四川大学锦城学院文献综述

机械手结构设计与应用

Manipulator structure design and

application

专 业 机械设计制造及其自动化 姓 名 张凡 学 号 110920627 年级 2011级 指导教师 张月天

二Ο一二年 三月 二十二日

1

机械手结构设计与应用

Manipulator structure design and application

张凡

(四川大学锦城学院 四川•成都)

摘要:在机械工业中,加工、装配等环节中运用的机械手已经越来越普遍。本文参阅了大量的国内外期刊杂志,论述了机械手的肩部、手腕、材料和成本等方面进行结构设计和研究。同时对国内外机械手在工业和农业中常见的应用方式也做了一番分析。

关键词: 机械手;结构;设计; 应用

ABSTRACT: In the mechanical industry, proceing, aembly and other links in the use of the mechanical hand is more and more widespread.In this paper, a large number of domestic and foreign periodicals, discues the mechanical hand shoulder, wrist, material and cost and other aspects of structure design and the research.At the same time to the domestic and foreign machinery hand in industrial and agricultural in the common application method is an analysis of the.

Key words:Manipulator; Structure; Design; application

2

前言

自动化设备代替人工作业成为现代工业发展的趋势.工业机器人的发展和应用, 结合计算机辅助设计系统、计算机辅助制造系统, 引导工业自动化向一个新的领域过渡.机械手作为一种自动执行设备,能模仿人手和手臂的某些动作功能, 按固定程序抓取、搬运物件或进行装配操作.它可代替人的繁重劳动以实现生产的机械化和自动化, 能在有害环境下操作以保护人身安全.提出一种可用于搬运、自动装配等任务的小型机械手, 并通过控制系统调试, 验证此结构的实用性和可靠性.

一、机械手的结构与设计

(一)机械手总体结构分析与设计

机械手总体结构如图1所示, 由底座、转座、大臂、小臂和手抓等部分组成.考虑到机械手的作用范围及其功效, 采用转动关节, 设定4个自由度, 为转座转动关节( 腰关节)、大臂关节( 肩关节)、小臂关节( 肘关节) 和手抓关节( 腕关节) .考虑到所研究的是小型机械手, 转矩较小, 所以选择电机驱动.虽然, 气压和液压都能提供驱动力矩, 但是, 气压信号的传递速度较慢, 而且空气具有可压缩性, 导致运动速度的稳定性较差, 而液压装置密封困难, 会有一定的漏油, 所以, 综合来看, 电机控制性好, 噪音小, 运行精度高, 适合要求.关节独立驱动, 采用同步带传动, 结构紧凑, 传动准确.控制及驱动电路部分安装在底座, 通过导线连接至大臂、小臂及手腕的驱动电机能, 合理利用空间.。大臂长220mm, 小臂长180mm, 各关节的回转角度范围:

腰关节±90°,

肘关节±45°

肩关节﹣180°~-60°, 腕关节±90°.臂体采用铝合金加工, 质量轻, 强度刚度大, 耐腐蚀.底座采用钢材加工, 质量较大, 在机械手工作期间, 能保持良好的稳定性.

(二).主要部件分析与设计

通过UG建模, 模拟装配, 并通过ADAMS软件进行运动学分析, 最终设计出机械手的三维模型.下面介绍主要部件的分析设计.。

1.转座及臂体结构设计

机械手转座设计的关键在于, 使其既能够稳定支撑上面的大臂、小臂和手抓,又能够绕关节轴自由转动.考虑到这些因素, 转座结构设计, 其主体由支撑板及固连在其上的空心转轴组成.支撑板作为平台, 支撑上面的大小臂及驱动电机, 电机通信导线通过转座中心的空心转轴与底座的控制系统连接.空心转轴为台 3 阶轴, 与底座轴承座配合实现腰关节的转动.转座材料为硬铝, 有一定刚度和强度, 自重轻.大小臂的设计主要考虑实际应用, 在满足应用条件下尽量减轻自重.大臂主要是有两片硬铝板搭建而成, 为增加其刚度, 用一U型铝板将两片铝板连接, 在大臂的臂端安装有轴承使其顺利转动.小臂为铝制薄壁圆筒状结构, 薄壁圆筒两端分别有端盖,里面安装有一个小步进电机, 从腕部输出以驱动手腕转动, 圆筒肘关节附近开有小孔, 方便小电机导线通过.手抓为末端执行机构, 独立结构, 完成不同任务可以更换不同的执行机构.2.电机的选型

上面研究了机械手的结构原理, 要使机械手完成指定任务, 则需驱动其运动, 使其按照任务要求执行控制程序, 完成相应的任务.通过对机械手的综合分析, 采用电机提供驱动力矩, 下面介绍选型.步进电机的技术参数主要有相数、步距角、保持转矩和额定电流等, 根据需要, 在初步选型时, 主要考虑保持转矩, 以确保机械手能够正常运动.在整个系统中, 需要克服驱动机构的摩擦转矩、负载转矩以及负载惯量启动转矩.由于各关节传动都有轴承支撑, 相对于负载转矩及负载惯量启动转矩, 摩擦转矩要小得多, 所以忽略克服摩擦所需要的转矩.对于腰关节和腕关节, 驱动转矩只克服负载惯量启动转矩,对于肩关节和肘关节驱动, 驱动力矩要克服负载转矩和负载惯量的启动转矩.根据转矩公式可以估算出相应的转矩.最终选取腰关节、肩关节、肘关节和腕关节的电机型号分别为42HS0

2、57HS0

9、57HS04 和28HS02, 这些电机都是两相四线或八线, 不能像直流电机那样在常规状态进行控制, 需选择与之相匹配的驱动器, 电机型号确定后, 厂家会给出相应的驱动器型号, 可以直接选用.3.关节传动方式分析与设计

通常的传动方式有齿轮传动、带传动和链传动等, 由于肘关节驱动力矩需要远距离传输, 不适合齿轮传动, 而链传动又有噪声大等缺点, 所以选用同步齿型带传动.同步齿型带传动是通过带齿与轮齿的啮合传递运动和动力, 与摩擦型带传动相比, 同步带传动兼有带传动、链传动和齿轮传动的一些特点.传动比准确, 啮合传动, 工作时无滑动;传动效率高, 高于98%, 节能效果明显; 不需依靠摩擦传动, 预紧张力小, 对轴和轴承的作用力小, 带轮直径小, 所占空间小,

4 重量轻, 结构紧凑, 传动平稳,动态特性良好, 能吸振, 噪音小.肩关节和肘关节传动结构:驱动电机和机械臂分别置于转座中心两旁, 利于转座受力的平衡, 结构稳定.肩关节驱动电机输出轴上装有同步带轮, 大臂末端安装有相同齿型的带轮, 通过同步带将驱动力矩传至肩关节, 从而带动大臂运动, 传动比为3:1, 腰关节的传动方式及传动比和肩关节相同.肘关节驱动电机安装在转座上, 以减少大臂的负载, 电机输出轴上装有同步带轮, 通过同步带将驱动力矩传至肩关节处的中间带轮, 中间带轮带动肘关节转动, 从而驱动小臂运动, 传动比为3:1.(三).小结

以机器人运动学为基础的小型机械手, 结构可靠, 传动紧凑, 运行平稳高效.通过抓取实验验证, 机械手能够按照设定程序执行任务, 能够较为精准地抓取并移动小物块.而且, 机械手成本低廉, 操作简便, 能部分代替人工作业, 具有较好的应用前景.

二.机械手的应用

(一) 机械手在工业上的应用

工业机械手是近代自动控制领域中出现的一项新技术, 并已成为现代机械制造生 产系统中的一个重要组成部分。

目前在我国机械手常用于完成的工作有: 注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。机械手在自动化车间中用来运送物料,从事焊接、喷漆、装配等工艺操作,可将操作工人从繁重、单调、重复的体力劳动中解放出来。特别是在高温、危险、有害的作业环境(放射性、有毒气体、粉尘、易燃、易爆、强噪声等)中, 可用机械手代替人的部分操作 。其中铸造、锻造、冲压、切削加工、喷漆、装配等各种工艺已经广泛应用。

(二) 机械手在农业上的应用

1.荔枝采摘机械手果实识别与定位技术的运用。2.苹果被动抓取柔性机械手的运用

5 (三).结语

以机器人运动学为基础的小型机械手, 结构可靠, 传动紧凑, 运行平稳高效.通过抓取实验验证, 机械手能够按照设定程序执行任务, 能够较为精准地抓取并移动小物块.而且, 机械手成本低廉, 操作简便, 能部分代替人工作业, 具有较好的应用前景.

参考文献: [1] JohnJ.Craig.机器人学导论[ M] .贠 超, 等译.北京:机械工业出版社,2006.[2] 安江波,孙昌将, 凌华.机械手结构设计与研究[ J].机械工程与自动化,2009,( 2) :91- 95.[3] 方传青,尹丽娟.仿真设计(ADAMS)在农业机械手设计中的应用[J].农业装备与车辆工程, 2008,( 2) :20-22.[4] 吴振彪.工业机器人.2版[ M] .武汉: 华中科技大学出版社,2006.[5] 李发海,王岩.电机与拖动基础[ M].北京: 清华大学出版社,2008.[6] 熊根良,胡泓, 张春慨.同步带传动机械手的建模与振动控制研究[J].机械传动,2006, (6) :58- 60.[7] 席思文,李伟光, 罗玮韬,等.一种搬运机械手的运动学仿真研究[J].机电工程技术,2009, (2) :22- 24.[8] 章军.六关节三指苹果抓取机械手的自适应柔性分析 [ J].农业工程学报, 2010(1): 141- 144.[9] 王金政, 薛晓敏, 路超.我国苹果生产现状与发展对策

[ J].山东农业科学,2010(6): 117- 119.[10] 李允文.工业机械手设计[M].北京:机械工业出版社,1996.[11] 张建民.工业机械人[M].北京:北京理工大学出版社,1992 [12] 黄纯颖、于晓红、唐进元等编著,机械创新设计[M],北京:高等教育出版社, 2006.51 ~238 [13] 龚振帮,《机器人机械设计》[M]电子工业出版社 1995.[14]刘惟信 机械最优化设计第二版 北京清华大学出版社 1997 [15]王孙.关节式机械手本体及控制系统设计.西安交大机械电子工程研究所,CN44-1259/TH.[16]左建民.液压与气压传动[TH].北京:机械工业出版社.2005.1 [17]Wei Zhan.Robust designof motor PWMcontrol using modeling andsimulation[ J] .Lecture NotesinElectrical Engineering, 2009,(14) :439- 449.[18] 单以才.机器人机械操作臂的模块化设计及其控制的研究[J].扬州大学学报, 2003, (3).[19] 濮良贵, 纪名刚.机械设计[M] 北京: 高等教育出版社, 1996.[20] 杨延力.机器人机构拓扑结构学[M], 北京: 机械工业出版社

2004.

推荐第10篇:机械手简介

机械手简介

能模仿人手和某些动作功能,固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门

历史

它是在早期出现的古代机器人基础上发展起来的,机械手研究始于20世纪中期,随着计算机和自动化技术的发展,特别是1946年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。同时,大批量生产的迫切需求推动了自动化技术的进展,又为机器人的开发奠定了基础。另一方面,核能技术的研究要求某些操作机械代替人处理放射性物质。在这一需求背景下,美国于1947年开发了遥控机械手,1948年又开发了机械式的主从机械手。 构成

机械手主要由手部、运动机构和控制系统三大部分组成。手部工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度

分类

机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。

机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。

助力机械手

助力机械手,又称机械手、平衡吊、平衡助力器、手动移载机,是一种新颖的、用于物料搬运及安装时省力

操作的助力设备。它巧妙地应用力的平衡原理,使操作者对重物进行相应的推拉。重物在提升或下降时形成浮动状态。无需熟练的点动操作,操作者用手推拉重物,就可以把重物正确地放到空间中的任何位置。

助力机械手应用

由于具有无重力化、精确直观、操作便捷、安全高效等特点,“平衡吊”广泛应用于现代工业中的物料移载、高频率搬运、精确定位、部件装配等场合。

从接受原材料和物料开始,一直到加工、生产、保管及配送等物料流动过程中的每一个环节,平衡吊的作用是令人瞩目的。

正确使用相应的物料移载手段,对于各行业中,重物的移载、搬运现场的操作人员的健康、安全,作业的合理性、劳动力的节省、生产效率的提高、产品品质的保障等多方面都有极大改善。

系统组成

一套完整的助力机械手装备主要由三部分组成:平衡吊主机、抓取夹具(或机械手)及安装结构。

机械手主机是实现物料(或工件)在空中无重力化浮动状态的主体装置。

机械手则是实现工件抓取,并完成用户相应搬运和装配要求的装置。

安装结构则是根据用户服务区域及现场状况要求以支撑整套设备的机构。

产品系列

为实现物料移载的省力操作,上海永乾公司已推出丰富的平衡吊机型,满足不同行业中不同物料不同工艺要求的搬运需要。

助力机械手

按工作原理不一样,有臂杆式和软索式。其中臂杆式平衡吊又因工作曲线差异,有PBF、PBC等;软索式则因主体执行元件不同,分卷筒式(IRB)和直线气缸式(PBB)、钢丝绳式和链条式等。根据动力源不同,有气动式和电动式(EBC)等。

另外,按系统所采用基座不同,有落地固定式、落地移动式、悬挂固定式、悬挂移动式、附墙式等。

系统组成

主要包括四部分:

1)轨道行走系 统;

2)机械手主机;

3)夹具部分;

4)气路控制系统。 轨道系统部分:

本方案采用双排C型铝合金轨道与移动平台小车配合。使整个设备在轨道行程内平稳行走。C型轨道采用进口材料,强度、精度高。

非金属滚轮采用高强度耐磨尼龙材料加工而成,使用寿命长。 机械手主机部分:

a) 可实现不同重量物料的重力平衡状态,适用于物料的精确移载操作。

b) 空载、满载及处理不同工件时,系统可感知其重量变化,并实现载荷在三维空间中的浮动状态,便于精确定位。

c) 全程平衡、运动顺滑等特点,使得操作者可以很便捷地实现工件的搬运、定位、装配等操作。

d) 刚性手臂可使机械手带工件越过障碍;物料在相关场所进行横向放入、横向取出等动作要求。

e) 系统可始终保持机械手头部的水平,发挥高作业性。

f) 关节刹车装置,具有多个回转关节,以实现广域范围内的物料取置;配备有刹车装置,操作者可在操作过程中随时中断机械手的运动。 气动夹具部分:

a) 主机控制与夹具(机械手)集成为一体,方便操作者双手控制工件。主机操作按钮都集成于夹具控制面板上,控制部分及指示灯、指示器等按人体工学原理布置,便于操作及紧急情况的处理。 气路控制系统部分

a) 设置有元件保护盒,以保护主要精密气动元器件,避免操作时意外撞击及灰尘沉积。气路排布完全按丰田AMS标准执行,方便维修。

b) 系统配备二联件、单向阀和储气罐,为系统提供持续稳定的压缩空气,当主供气源意外断气时,可提供一定时间的安全保障,并使系统有足够的动力完成本次操作或将工件卸载。

系统安全

a) 配备有负载显示器,指示负载状态,告知操作者:此时物料是否可被提起或被卸载。当系统处于负载状态时,显示器呈红色。

b) 配备有负载压力表,指示压缩空气工作状况。

c) 配备有安全误操作保护装置,防止误动作对人身或设备造成伤害;在操作者未对安装状况进行确认前,即工件未安装到位前,如果工人误操作松开按钮,工件不能被卸载(限于动力夹具)。

d) 系统配备了失气保护装置,当主供气源意外断气时,主机动作,机械手停止作业,避免意外的伤害。

e) 设备配套安全控制系统,在操作时,系统不会因为误动作,而突然改变负载或空载压力,因此机械手不会因此快速上升或下降而对人身、设备和产品造成伤害。 助力机械手应用

由于具有无重力化、精确直观、操作便捷、安全高效等特点,“平衡吊”广泛应用于现代工业中的物料移载、高频率搬运、精确定位、部件装配等场合。 系统组成

一套完整的助力机械手装备主要由三部分组成:平衡吊主机、抓取夹具(或机械手)及安装结构。

机械手主机是实现物料(或工件)在空中无重力化浮动状态的主体装置。

机械手则是实现工件抓取,并完成用户相应搬运和装配要求的装置。

安装结构则是根据用户服务区域及现场状况要求以支撑整套设备的机构。 产品系列

为实现物料移载的省力操作,上海永乾公司已推出丰富的平衡吊机型,满足不同行业中不同物料不同工艺要求的搬运需要。

助力机械手 按工作原理不一样,有臂杆式和软索式。其中臂杆式平衡吊又因工作曲线差异,有PBF、PBC等;软索式则因主体执行元件不同,分卷筒式(IRB)和直线气缸式(PBB)、钢丝绳式和链条式等。根据动力源不同,有气动式和电动式(EBC)等。

另外,按系统所采用基座不同,有落地固定式、落地移动式、悬挂固定式、悬挂移动式。

1)轨道行走系 统;

2)机械手主机;

助力机械手

3)夹具部分;

4)气路控制系统。 轨道系统部分:

本方案采用双排C型铝合金轨道与移动平台小车配合,平台小车下法兰机械手。使整个设备在轨道行程内平稳行走。C型轨道采用进口材料,强度、精度高。

非金属滚轮采用高强度耐磨尼龙材料加工而成,使用寿命长。 机械手主机部分:

a) 可实现不同重量物料的重力平衡状态,适用于物料的精确移载操作。

b) 空载、满载及处理不同工件时,系统可感知其重量变化,并实现载荷在三维空间中的浮动状态,便于精确定位。

c) 全程平衡、运动顺滑等特点,使得操作者可以很便捷地实现工件的搬运、定位、装配等操作。

d) 刚性手臂可使机械手带工件越过障碍;物料在相关场所进行横向放入、横向取出等动作要求。

e) 系统可始终保持机械手头部的水平,发挥高作业性。

f) 关节刹车装置,具有多个回转关节,以实现广域范围内的物料取置;配备有刹车装置,操作者可在操作过程中随时中断机械手的运动。 气动夹具部分:

a) 主机控制与夹具(机械手)集成为一体,方便操作者双手控制工件。主机操作按钮都集成于夹具控制面板上,控制部分及指示灯、指示器等按人体工学原理布置,便于操作及紧急情况的处理。 气路控制系统部分

a) 设置有元件保护盒,以保护主要精密气动元器件,避免操作时意外撞击及灰尘沉积。气路排布完全按丰田AMS标准执行,方便维修。

b)

系统配备二联件、单向阀和储气罐,为系统提供持续稳定的压缩空气,当主供气源意外断气时,可提供一定时间的安全保障,并使系统有足够的动力完成本次操作或将工件卸载。

个人感想

通过对机械手详细的学习,并且认真地思考其对日常生活所带的,便利与作用。我明白了,日常我们所学的东西,特别是机械类的知识,只要我们认真地,学习,并且把其运用到以后的学习工作之中去,我们就会发现,每一类知识,或者说每一方面的知识,都有其独特的意义。以前的时候我对于机械各类的知识,总是只能在课本上知道各类机械设备的图画或者其使用的方法。只有当通过了实践,我才明白只有通过实践,才能更好的运用所学的知识,

所以片面的学习书本上的知识只是一个开始,只有在以后的实践中认真地学习。发现自己的不足,才能成为机械专业的合格人才。同时也说明了,要想成为合格人才,只有过勤奋的学习,日常生活之中的点点滴滴的搜寻,才能在机械专业上有所建树。

至此

第11篇:plc机械手

搬运机械手PLC控制系统设计 摘

随着工业自动化的普及和发展,控制器的需求量逐年增大,搬运机械手的应用也逐渐普及,主要在汽车,电子,机械加工、食品、医药等领域的生产流水线或货物装卸调运, 可以更好地节约能源和提高运输设备或产品的效率,以降低其他搬运方式的限制和不足,满足现代经济发展的要求。

本机械手的机械结构主要包括由两个电磁阀控制的液压钢来实现机械手的上升下降运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的快进、慢进、快退、慢退的运动运动;其动作转换靠设置在各个不同部位的行程开关(SQ1---SQ9)产生的通断信号传输到PLC控制器,通过PLC内部程序输出不同的信号,从而驱动外部线圈来控制电动机或电磁阀产生不同的动作,可实现机械手的精确定位;其动作过程包括:下降、夹紧、上升、慢进、快进、慢进、延时、下降、放松、上升、慢退、快退、慢退;其操作方式包括:回原位、手动、单步、单周期、连续;来满足生产中的各种操作要求。

关键词:搬运机械手,可编程控制器(PLC),液压,电磁阀 ABSTRACT With the popularity of industrial automation and development, the demand for year-on-year increase of controller, handling the application of robot gradually popularity, mainly in the automotive, electronic, mechanical proceing, food, medicine and other areas of the production line or cargo transport, we can be more good to save energy and improve the transport efficiency of equipment or products, to reduce restrictions on other modes of transportation and inadequate to meet the requirements of modern economic development.The manipulator mechanical structure includes two solenoid valves controlled by hydraulic manipulator steel to achieve the increased decline in sports and workpiece clamping action, the two different motor speed through the two motor coils positive control in order to achieve car of the fast-forward, slow forward, fast rewind, slow movement back movement; conversion by setting its action in various different parts of the trip switch (SQ1 --- SQ9) generated on-off signal transmiion to the PLC controller, through the PLC internal different output signal, which drives the external coil to control the motor or solenoid valves have a different action, the robot can achieve precise positioning; their course of action include: decline in clamping increased, slow forward, fast forward, slow progre, the extension of , the drop in, relax, rise, slow back, rewind, slow back; its operation, including: Back in situ, manual, single-step, single cycle, continuous; to meet the production requirements of the various operations and maintenance.Keywords: handling mechanical hands, Programmable Logic Controller (PLC), hydraulic, solenoid valve 目

录 前

言………………………………………………………………………………….1 第一章 机械手的概况 1.1 搬运机械手的应用简况…………………………………………………2 1.2 机械手的应用意义………………………………………………………3 1.3 机械手的发展概况………………………………………………………3 第三章 搬运机械手PLC控制系统设计

3.1 搬运机械手结构及其动作……………………………………………… 3.2 搬运机械手系统硬件设计……………………………………………… 3.3 搬运机械手控制程序设计……………………………………………… 1 操作面板及动作说明…………………………………………………… 2 I/O分配………………………………………………………………… 3 梯形图的设计…………………………………………………………… 1) 梯形图的总体设计…………………………………………………… 2) 各部分梯形图的设计………………………………………………… 3) 绘制搬运机械手PLC控制梯形图……………………………………

论……………………………………………………………………………… 谢

辞……………………………………………………………………………… 参考文献………………………………………………………………………………….附:语句表

梯形图

I/O接线图 前

机械手:mechanical hand,也被称为自动手,auto hand 能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度 。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机 械手设计的关 键参数。自由 度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。

机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。

机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。机械手在锻造工业中的应用能进一步发展锻造设备的生产能力,改善热、累等劳动条件。

机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。

第一章 机械手概况

1.1搬运机械手的应用简况 在现代工业中,生产过程的机械化、自动化已成为突出的主题。在机械工业中,加工、装配等生产是不连续的。专用机床是大批量生产自动化的有效办法,程控机床、数控机床、加工中心等自动化机械是有效解决多品种小批量生产自动化的重要办法。

但除切削加工本身外,还有大量的装卸、搬运、装配等作业,有待于进一步实现机械化。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。从这里可看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于柔性自动线。

国内外机械工业、铁路部门中机搬运械手主要应用于以下几方面: 1.热加工方面的应用

热加工是高温、危险的笨重体力劳动,很久以来就要求实现自动化。为了提高工作效率,和确保工人的人身安全,尤其对于大件、少量、低速和人力所不能胜任的作业就更需要采用机械手操作。 2.冷加工方面的应用

冷加工方面机械手主要用于柴油机配件以及轴类、盘类和箱体类等零件单机加工时的上下料和刀具安装等。进而在程序控制、数字控制等机床上应用,成为设备的一个组成部分。最近更在加工生产线、自动线上应用,成为机床、设备上下工序联接的重要于段。 3.拆修装方面

拆修装是铁路工业系统繁重体力劳动较多的部门之一,促进了机械手的发展。目前国内铁路工厂、机务段等部门,已采用机械手拆装三通阀、钩舌、分解制动缸、装卸轴箱、组装轮对、清除石棉等,减轻了劳动强度,提高了拆修装的效率。近年还研制了一种客车车内喷漆通用机械手,可用以对客车内部进行连续喷漆,以改善劳动条件,提高喷漆的质量和效率。近些年,随着计算机技术、电子技术以及传感技术等在机械手中越来越多的应用,工业机械手已经成为工业生产中提高劳动生产率的重要因素。 1.2机械手的应用意义

在机械工业中,机械手的应用意义可以概括如下: 1.可以提高生产过程的自动化程度

应用机械手,有利于提高材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化程度,从而可以提高劳动生产率,降低生产成本,加快实现工业生产机械化和自动化的步伐。

2.可以改善劳动条件、避免人身事故在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其它毒性污染以及工作空间狭窄等场合中,用人手直接操作是有危险或根本不可能的。而应用机械手即可部分或全部代替人安全地完成作业,大大地改善了工人的劳动条件。在一些动作简单但又重复作业的操作中,以机械手代替人手进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 3.可以减少人力,便于有节奏地生产 应用机械手代替人手进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续地工作,这是减少人力的另一个侧面。因此,在自动化机床和综合加工自动生产线上,目前几乎都设有机械手,以减少人力和更准确地控制生产的节拍,便于有节奏地进行生产。

综上所述,有效地应用机械手是发展机械工业的必然趋势。1.3.3机械手的发展概况与发展趋势

1.3机械手的发展概况

专用机械手经过几十年的发展,如今已进入以通用机械手为标志的时代。由于通用机械手的应用和发展,进而促进了智能机器人的研制。智能机器人涉及的知识内容,不仅包括一般的机械、液压、气动等基础知识,而且还应用一些电子技术、电视技术、通讯技术、计算技术、无线电控制、仿生学和假肢工艺等,因此它是一项综合性较强的新技术。目前国内外对发展这一新技术都很重视,几十年来,这项技术的研究和发展一直比较活跃,设计在不断地修改,品种在不断地增加,应用领域也在不断地扩大。

早在40年代,随着原子能工业的发展,已出现了模拟关节式的第一代机械手。 50~60年代即制成了传送和装卸工件的通用机械手和数控示教再现型机械手。这种机械手也称第二代机械手。如尤尼曼特(Unimate)机械手即属于这种类型。 60~70年代,又相继把通用机械手用于汽车车身的点焊和冲压生产自动线上,亦即是第二代机械手这一新技术进入了应用阶段。 80-90年代,装配机械手处于鼎盛时期,尤其是日本。

90年代机械手在特殊用途上有较大的发展,除了在工业上广泛应用外,农、林、矿业、航天、海洋、文娱、体育、医疗、服务业、军事领域上有较大的应用。 90年代以后,随着计算机技术、微电子技术、网络技术等的快速发展,机械手技术也得到飞速的多元化发展。

总之,目前机械手的主要经历分为三代:

第一代机械手主要是靠人工进行控制,控制方式为开环式,没有识别能力;改进的方向主要是将低成本和提高精度;第二代机械手设有电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把接收到的信息反馈,使机械手具有感觉机能;第三代机械手能独立完成工作过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展成为柔性系统FMS(Flexible Manufacturing System)和柔性制造单元FMC(Flexible Manufacturing Cell)中重要一环。

1.4机械手的发展趋势

目前国内工业机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。

因此,国内主要是逐步扩大机械手应用范围,重点发展铸锻、热处理方面的机械手,以减轻劳动强度,改善作业条件。在应用专用机械手的同时,相应地发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合式机械手等。

将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,以及适于不同类型的夹紧机构,设计成典型的通用机构,以便根据不同的作业要求,选用不用的典型部件,即可组成各种不同用途的机械手。既便于设计制造,又便于改换工作,扩大了应用的范围。同时要提高精度,减少冲击,定位精确,以更好地发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能地机械手,并考虑于计算机联用,逐步成为整个机械制造系统中的一个基本单元。 在国外机械制造业中,工业机械手应用较多,发展较快。目前主要用于机床、模锻压力机的上下料,以及点焊、喷漆等作业中,它可按照事先制定的作业程序完成规定的操作,但是还不具备任何传感反馈能力,不能应付外界的变化。如发生某些偏离时,就将引起零部件甚至机械手本身的损坏。为此,国外机械手的发展趋势是大力研制具有某些智能的机械手,使其拥有一定的传感能力,能反馈外界条件的变化,做出相应的变更。如位置发生稍些偏差时,即能更正,并自行检测,重点是研究视觉功能和触觉功能。

视觉功能即在机械手上安装有电视照相机和光学测距仪(即距离传感器)以及卫星计算机。工作时,电视照相机将物体形象变成视频信号,然后传送给计算机,以便分析物体的种类、大小、颜色和方位,并发出指令控制机械手进行工作。 触觉功能即在机械手上安装有触觉反馈控制装置。工作时机械手先伸出手指寻找工件,通过装在手指内的压力敏感元件产生触感作用,然后伸向前方,抓住工件。 手的抓力大小可通过装在手指内侧的压力敏感元件来控制,达到自动调整握力的大小。总之,随着传感技术的发展,机械手的装配作业的能力将进一步提高。到1995年,全世界约有50%的汽车由机械手装配。

现今机械手的发展更主要的是将机械手和柔性制造系统以及柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。 1.5 PLC概况及在机械手中的应用 1.可编程序控制器的应用和发展概况

可编程序控制器(programmable controller),现在一般简称为PLC(programmable logic controller),它是以微处理器为基础,综合了计算机技术、半导体集成技术、自动控制技术、数字技术、通 信网络技发展起来的一种通用的工业自动控制装置。以其显著的优点在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制三大支柱之一。 在可编程序控制器问世以前,工业控制领域中是继电器控制占主导地位。传统的继电器控制具有结构简单、易于掌握、价格便宜等优点,在工业生产中应用甚广。但是控制装置体积大、动作速度较慢、耗电较多、功能少,特别是由于它靠硬件连线构成系统,接线繁杂,当生产工艺或控制对象改变时,原有的接线刻控制盘(柜)就必须随之改变或更换,通用性和灵活性较差 2.PLC的应用概况

PLC的应用领域非常广,并在迅速扩大,对于而今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC,尤其近几年来PLC的性价比不断提高已被广泛应用在冶金、机械、石油、化工、轻功、电力等各行业。 按PLC的控制类型,其应用大致可分为以下几个方面。 1).用于逻辑控制

这是PLC最基本,也是最广泛的应用方面。用PLC取代继电器控制和顺序控制器控制。例如机床的电气控制、包装机械的控制、自动电梯控制等。 2).用于模拟量控制

PLC通过模拟量I/O模块,可实现模拟量和数字量之间转换,并对模拟量控制。 3).用于机械加工中的数字控制

现代PLC具有很强的数据处理功能,它可以与机械加工中的数字控制(NC)及计算机控制(CNC)紧密结合,实现数字控制。 4).用于工业机器人控制 5).用于多层分布式控制系统 高功能的PLC具有较强的通信联通能力,可实现PLC与PLC之间、PLC与远程I/O之间、PLC与上位机之间的通信。从而形成多层分布式控制系统或工厂自动化网络。 3.PLC的特点

1).可靠性高、抗干扰能力强

PLC能在恶劣的环境如电磁干扰、电源电压波动、机械振动、温度变化等中可靠地工作,PLC的平均无故障间隔时间高,日本三菱公司的F1系列PLC平均无故障时间间隔长达30万h,这是一般微机所不能比拟的。 2).控制系统构成简单、通用性强

由于PLC是采用软件编程来实现控制功能,对同一控制对象,当控制要求改变需改变控制系统的功能时,不必改变PLC的硬件设备,只需相应改变软件程序。 3

第12篇:机械手包装

机械手包装单元Ⅱ组态

1.1 组态软件概述

俗称组态软件,译自英文SCADA,即 Supervisory Control and Data Acquisition(数据采集与监视控制)。

组态软件的应用领域很广,它可以应用于电力系统、给水系统、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。在电力系统以及电气化铁道上又称远动系统(RTU System,Remote Terminal Unit)。

组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。

起源于DCS(Distributed Control System分布式控制系统,DCS由仪器,仪表发展而来)

发展于PLC(Programmable Logic Controller,可编程逻辑控制器,一种数字运算操作的电子系统,专为在工业环境应用而设计的);

1.2 组态组成、功能和特点

(1)实验全部用软件来实现,只需利用现有的计算机就可完成自动控制系统课程的实验,从而大大减少购置仪器的经费。

(2)该系统是中文界面,具有人机界面友好、结果可视化的优点。对用户而言,操作简单易学且编程简单,参数输入与修改灵活,具有多次或重复仿真运行的控制能力,可以实时地显示参数变化前后系统的特性曲线,能很直观地显示控制系统的实时趋势曲线,这些很强的交互能力使其在自动控制系统的实验中可以发挥理想的效果。

在采用组态王开发系统编制应用程序过程中要考虑以下三个方面

(1)图形,是用抽象的图形画面来模拟实际的工业现场和相应的工控设备。

(2)数据,就是创建一个具体的数据库,并用此数据库中的变量描述工控对象的各种属性,比如水位、流量等。

(3)连接,就是画面上的图素以怎样的动画来模拟现场设备的运行,以及怎样让操作者输入控制设备的指令。

机械手介绍与分析

2.1机械手介绍

机械手是一种能模拟人手臂的部分动作,按预定的程序、轨迹及其它要求,实现抓取、搬运工件或操纵工具的自动化装置。可编程控制器是以微处理技术为基础,综合计算机技术和自动控制技术发展起来的一种新型工业控制器。它在工业现场中对机械手能起到有效而灵活的控制。可编程控制器和监控系统的通讯,往往需要采用高级语言编程实现,对用户有着很高的要求。这需要用户必须熟悉互联的可编程控制器及其网络采用的通讯协议,严格按照通讯协议规定为计算机编写通讯程序。然而,用户希望监控系统具有界面简单、便于操作、实时性好、开发周期短和可移植性强等特点。组态技术在数据处理、网络通讯和图形界面等方面给监控系统提供了有力的支持。

机械手首先是从美国开始研制的。1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1958年美国联合控制公司研制出第一台机械手铆接机器人。作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。这些工业机器人主要由类似人的手和臂组成它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

2.2

分析机械手控制系统的控制要求。机械手具有启动、停止、移动、抓、放等功能。机械手操作人员可以通过启动、停止按钮来控制机械手的启动和停止。移动和抓、放功能通过内在程序自动完成。 机械手的动作有如下过程:

(1) 当按钮启停调整为开始时,机械手开始动作。 (2) 机械手下放,(包括伸缩杆、抓) (3) 机械手抓物体。

(4) 机械手与物体一起上台,(包括伸缩杆、抓、物体) (5) 机械手与与物体一起平移,(包括伸缩杆、抓、物体)

(6) 机械手与物下放,(包括伸缩杆、抓、物体) (7) 机械手上并回到原点

2.3参数设定与画面设计

在设计中有用到很多参数变量,其中有些实体共同包括多个变量,其中部分变量设定如下:

2-3-1物体垂直移动变量设置

2-3-2设计中所有变量

2-3-3动画连接设置

2-3-4伸缩杆水平移动距离设置

传送带旋转设置

2-3-5机械手整体设计图

2.4设计控制程序清单

清单如下:

if(\\本站点\\启停==1) {\\本站点\\时间=\\本站点\\时间+1; if(\\本站点\\时间10 &&\\本站点\\时间15 &&\\本站点\\时间

\\本站点\\d2=\\本站点\\d2-10; \\本站点\\e2=\\本站点\\e2+10; \\本站点\\f2=\\本站点\\f2-10; } if(\\本站点\\时间>25 &&\\本站点\\时间35 &&\\本站点\\时间45 &&\\本站点\\时间50 &&\\本站点\\时间60 &&\\本站点\\时间70 &&\\本站点\\时间

{ \\本站点\\a1=0; \\本站点\\a2=0; \\本站点\\b1= 0;\\本站点\\b2= 0; \\本站点\\c1= 0; \\本站点\\c2= 0; \\本站点\\d1= 0;\\本站点\\d2= 0; \\本站点\\e1=0;\\本站点\\e2= 0; \\本站点\\时间=0; } } 总结

本次课程设计的主要目的是:熟悉并熟练掌握组态王软件的功能和特点、掌握组态软件的系统构成、通过组态王软件的使用,进一步掌握了解机械手的工作原理、培养自主查找资料,搜索信息的能力、培养实践动手能力与合作精神。

设计主要任务:了解机械手的控制要求、确定系统的控制方案、利用组态软件编制监控系统图形界面、建立实时数据库、画面的图形对象与数据库的数据变量之间的关系、编制程序实现对机械手以及物品的控制和监视。

课程设计主要内容:熟悉所用组态软件的操作、查看有关参考书籍、查阅相关文献资料、独立设计基于组态软件的机械手的控制方案、根据实际系统的要求,进行简单的画面设计与编辑,简单控制程序的编写,设定动画连接等功能、进行程序的运行,调试与改进。

本次课程设计使我们加深了对组态软件的了解,熟悉组态软件对机械手控制系统的设计、画面的设计、参数变量的设定、程序的编制,运行,调试与改进、机械手控制系统的动画连接。

这次课程设计帮助我们更加深刻的了解和掌握了一些关于组态王的应用知识和方法。在这个学习调试运行的过程中我也遇到很多问题经过老师和同学的帮助最终解决了这些问题,成功地调试出结果,完成了本次课程设计,达到了预期的效果和目标。但这使我更加深刻地体会到对于这门课程还有多东西没有完全掌握也认识到这门课程的重要性,,使我受益匪浅。

参考文献(References):

[1]廖常初.PLC编程及应用[M].北京:机械工业出版社,2004:198—210. [2]北京亚控科技有限公司.组态王电子参考手册EZ].2003.

[3]吴明亮,蔡夕忠.可编程控制器实训教程[M].北京:化学工业出版社,2005:44—51.

[4]Wonderware Corporation.In Touch 7.0 Advanced,Training Manual[z].1998. [5]常斗南.可编程控制其原理、应用、实验[M].北京:机械工业出版社,1998:l1O一132.

[6]刘彬,杜金翔.关于建立PLC立体教学实验新体系的探讨[J].实验技术与管理,2005,22(8) [7]何立新.PLC控制技术实践教学的改革[J].实验室研究与探索,2005,24(52):30—32.

第13篇:机械手自动化控制

毕业设计(论文)

1、机械手发展经历及主要构成

机械手是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人。

1.1发展历史

机械手首先是从美国开始研制的。1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1958年美国联合控制公司研制出第一台机械手铆接机器人。作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。这些工业机器人主要由类似人的手和臂组成它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工、原子能和制药等行业。

1.2构成部分

机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。控制系统是通过对机械手每个自由度的电机的控制,

• 1 •

毕业设计(论文)

来完成特定动作。同时接收传感器反馈的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。

1.3机械手分类

机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。

1.4多关节机械手的优势

多关节机械手的优点是:动作灵活、运动惯性小、通用性强、能抓取靠近机座的工件,并能绕过机体和工作机械之间的障碍物进行工作。随着生产的需要,对多关节手臂的灵活性,定位精度及作业空间等提出越来越高的要求。多关节手臂也突破了传统的概念,其关节数量可以从三个到十几个甚至更多,其外形也不局限于像人的手臂,而根据不同的场合有所变化,多关节手臂的优良性能是单关节机械手所不能比拟的。

1.5机械手发展大事记

1958年美国联合控制公司研制出第一台机械手。(电磁铁工件抓放机构)

1962年,美国联合控制公司试制成一台数控示教再现型机械手。

1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。

联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

• 2 •

毕业设计(论文)

2、基于S7-200的机械手PLC控制程序

S7-200 PLC(Program Logic Controler)是德国西门子公司生产的小型可编程控制器,具有良好的可扩展性、价格低廉、指令功能强大, 十分适合在机械手控制系统中应用。但一般在工业机器人执行机械手机构多为形状简单的夹钳式、托持式、吸附式等结构,其结构和抓握目标物的原理决定了其有限的抓握功能。随着机器人应用范围的日益扩大和向智能化、拟人化方向的发展, 其手部也有多指多关节的拟人化要求;另外在工伤、事故中断手的残疾人也需要功能价格比高的多关节机械手。为此我们研制出一套新的基于S7-200 PLC的多关节机械手控制系统,该系统动作简便、线路设计合理、具有较强的抗干扰能力,保证了系统运行的可靠性,降低了维修率,提高了工作效率。由于PLC控制受环境的限制,在使用过程中会受到各种干扰,影响系统的可靠性。因此必须采取各种抗干扰措施,以提高控制系统的可靠性。

3、西门子公司及S7-200主要参数功能介绍

西门子股份公司(SIEMENS AG FWB:SIE, NYSE:SI)是世界最大的机电类公司之一,1847年由维尔纳·冯·西门子建立。如今,它的国际总部位于德国慕尼黑。西门子股份公司是在法兰克福证券交易所和纽约证券交易所上市的公司。2005年,西门子全集团在190个国家和地区雇用员工460,800人,全球收入为754.45亿欧元(2004年为702.37亿欧元),税后利润较2004年的36.6亿欧元降至24.2亿欧元。

西门子是一家大型国际公司,其业务遍及全球190多个国家,在全世界拥有大约600家工厂、研发中心和销售办事处。公司的业务主要集中于6大领域:信息和通讯、自动化和控制、电力、交通、医疗系统和照明。西门子的全球业务运营分别由13个业务集团负责,其中包括西门子财务服务有限公司和西门子房地资产管理集团。此外,西门子还拥有两家合资企业——博士-西门子家用电器集团和富士通计算机(控股)公司。

• 3 •

毕业设计(论文)

S7-200 是一种小型的可编程控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。

3.1适用范围

S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。

S7-200系列PLC可提供4个不同的基本型号的8种CPU可供选择使用。

3.2模拟电位器

CPU 221/222 1个 CPU 224/224XP/226 2个

3.3脉冲输出

2路高频率脉冲输出(最大20KHz),用于控制步进电机或伺服电机实现定位任务。

3.4电池模块

用于长时间数据后备。用户数据(如标志位状态,数据块,定时器,计数器)可通过内部的超级电容存贮大约5天。选用电池模块能延长存贮时间到200天(10年寿命)。电池模块插在存储器模块的卡槽中。

• 4 •

毕业设计(论文)

3.5各型号的优点

CPU221

本机集成6输入/4输出共10个数字量I/O点。无I/O扩展能力。6K字节程序和数据存储空间。4个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出。1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。非常适合于小点数控制的微型控制器。

CPU222

本机集成8输入/6输出共14个数字量I/O点。可连接2个扩展模块。6K字节程序和数据存储空间。4个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出。1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。非常适合于小点数控制的微型控制器。

CPU224

本机集成14输入/10输出共24个数字量I/O点。可连接7个扩展模块,最大扩展至168路数字量I/O点或35路模拟量I/O 点。13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。是具有较强控制能力的控制器。

CPU224XP 本机集成24输入/16输出共40个数字量I/O 点。可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。用于较高要求的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功能。可完全适应于一些复杂的中小型控制系统。

• 5 •

毕业设计(论文)

4、机械手设计要求及功能

图3.1

机械手模拟控制窗口如图所示。图中机械手可抓紧、放送工件,可上下、左右移动,模拟界面的右侧为按控制要求设计的操作台。

4.1控制要求

机械手设有调整、连续、单周及步进四种工作方式,工作时要首先选择工作方式,然后操作对应按钮。

4.2机械手运行方式

4.2.1调整工作方式

可按相应按钮实现左移、右移、上移、下移、加紧、放松各个动作的单独调整。

4.2.2连续工作方式

按下起动按钮,机械手按下降→加紧→上升→右移→下降→放松→上升→左

• 6 •

毕业设计(论文)

移的顺序周而复始的连续工作;按下停止按钮,机械手将自动结束本周期的工作,回到原位后停止。按下急停按钮,系统立即停车。

4.2.3单周工作方式

按下起动按钮后,机械手按下降→加紧→上升→右移→下降→放松→上升→左移的顺序自动工作一个周期停止。若要再工作一个周期,可再次按下起动按钮。按下停止按钮,机械手将自动结束本周期的工作,回到原位后停止。按下急停按钮,系统立即停车。

4.2.4步进工作方式

每按一次起动按钮,机械手完成一步动作后自动停止。按下急停按钮,系统立即停车。

4.3程序设计要点

由机械手的工作过程可知,这是一个典型的顺序控制系统。为此,可从机械手的连续工作方式入手编写程序。首先应绘出连续工作时的功能表图,然后直接列写逻辑表达式,用触点线圈指令编程,也可使用置位复位指令或顺序控制继电器指令来完成。为了将每一步的工作状态显示出来,动画模拟软件使用了内部存储器位M

51、M

52、M

53、M

54、M

55、M

56、M

57、M40、M41来分别表示①~⑧的运行状态。编程过程中,需要注意特别处理的问题是①、⑤和③、⑦步的动作问题,虽然①、⑤步都是下降操作,但却具有不同的意义,①步下降是空钩下降,而⑤步下降则是夹着工件下降。③、⑦步的上升操作也是这样。

单周期操作的程序实现可在连续工作程序的基础上通过经验修改实现。其要点是是设法阻止机械手在一个周期工作结束后自动进入下一周期,一般在下降的启动回路想办法。

单步操作的实现与单周期工作的实现是相似的。即设法在每一步工作结束后,不是直接启动下一步的工作,而是等待启动按钮的命令后再工作。

• 7 •

毕业设计(论文)

4.4程序结构框图

图3.4.1

• 8 •

毕业设计(论文)

5、结论

该设计方式初步满足了设计要求,实验证明能够按照设定的工作方式稳定运行。以上是在同一个顺序控制程序中完成的连续工作、单周期工作和单步工作的程序编制思路,实际上也可以采用分段跳转的办法来完成这三种操作。这种方法编制的程序结构清晰,但程序数量长于前一种方法。

机械手在我国的经济建设中担当着重要的角色,随着我国现代化经济建设的高速发展,我国制造行业所面临的国际社会的巨大竞争压力和挑战日益加剧。从节约能源,保护环境出发,高效率、高智能的机械手是目前国际发展的趋势。这样看来,推广中国的高效率、高智能机械手是非常有必要的。但是在日常使用过程中如何去维护好,其影响可见一斑。本文着重从机械手的技术发展及现状、工作原理、运行系统等进行了初略的探讨和分析,希望能给正在或即将从事机械手工作的人士一些帮助。

• 9 •

毕业设计(论文)

参考资料

[1] 林伟.典型机电一体化系统及应用[M] 高等教育出版社

[2] 陈远玲、黎亚元、富国强 机床电气自动控制[M] 重庆大学出版社 [3] 王承义 机械手及其应用[M] 机械工业出版社 [4] 王建明 自动线与工业机械手技术[M] 天津大学出版社

[5] 杨后川、高建设 西门子S7-200PLC应用100例[M] 电子工业出版社 [6] 肖峰、贺哲荣 PLC编程100例[M] 中国电力出版社

• 10 •

毕业设计(论文)

致谢

多年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。多年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。 伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的指导老师。我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,树立了宏伟的学术目标,领会了基本的思考方式,常常让我有“山重水复疑无路,柳暗花明又一村”。

感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意!

这些年中还得到众多老师的关心支持和帮助。在此,谨向老师们致以衷心的感谢和崇高的敬意

同时也感谢学院为我提供良好的做毕业设计的环境。

最后再一次感谢所有在毕业设计中曾经帮助过我的良师益友和同学,以及在设计中被我引用或参考的论著的作者。

• 11 •

第14篇:机械手论文(整理)

在当今大规模的制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机械手作为自动化生产线上的重要成员,逐渐被企业认同并采用。工业机械手的技术水平和应用程度在一定程度上反映了一个国家的工业自动化水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重要性并且劳动强度极大的工作,工作方式一般采取试教在线的方式。

本文通过分析现代机械手的作用,发展简史,组成(包括执行机构,驱动机构,控制系统),全面详尽地讨论了直角坐标机械手的手部,腕部,手臂以及机身等主要部件的结构设计,其中包括机械部分的零部件,比如滚珠丝杠,联轴器,单轴驱动器的使用条件,种类选型,设计基本要求,优点特点分析,结构设计,基本参数的选定,计算与校核,以及安全性的分析。还有控制部分的各电机的马达型号,种类,简介,控制步骤分析,部分控制程序的编写,运行特性分析,基本参数的计算和校核。

最终实现的目标包括:实现步进电机的开环控制,通过手臂的执行机构实现空间任意位置的抓取,实现手部快速,有效的抓取物体,有良好的传感和限位功能使每个自由度上的运停快速,准确。做到尽量体积小,重量轻,功耗低,维护方便,外形美观,动作灵敏,传动平稳,程序简洁,运行误差小等优点。

关键词:机械手,滚珠丝杠,单轴驱动器,步进电机,手臂,手部,直角坐标

The design of the Cartesian coordinate manipulator

ABSTRACT

In today\'s large-scale manufacturing, the enterprise to improve production efficiency and ensure product quality, universal attention production proce automation degree, manipulator as an important member of automatic production line, gradually by enterprise and the use of identity.Industrial robot technology level and application degree to a certain extent reflect a nation of industrial automation level.Currently, the manipulator main bear the welding, painting, handling and storage, and the intensity of labor great importance of the work, work way to try to teach the general way online.

This article elaborates the structure design of the major parts of the Cartesian coordinate manipulator, such as hand, wrist, arm and the machine body.In which includes designing the components of the mechanical part.Such as ball screws, coupling, single axis actuator, mainly describing the use condition, type selection, basic requirement of design, analysis of the strong point, characteristic, calculate and proofread the basic parameter, analysis of security.Besides, it also includes designing of the control part.Such as the motor model, kind, brief introduction, analysis of the control steps, compile control procedure partly, analysis of the motion characteristic, designate, calculate and proofread the basic parameter.

The target which should be terminally realize including: achieving the open loop control of the step motor, achieving grabbing object in space arbitrarily position by the actuator of the arm.Realizing grabbing object by hand quickly, effectively. Poeing the good function of sense and limiting position, which makes the motion and stop quickly and precisely.Realizing the merits including small volume, light weight, low power diipation, easy maintenance, beautiful appearance, sensitive action, smooth transmiion, succinct procedure, operation in small error. Key words:

manipulator, ball screws, single axis actuator, step motor, arm, hand, Cartesian coordinate

第15篇:PLC机械手(材料)

PLC机械手

随着工业自动化的普及和发展,控制器的需求量逐年增大,搬运机械手的应用也逐渐普及,主要在汽车,电子,机械加工、食品、医药等领域的生产流水线或货物装卸调运, 可以更好地节约能源和提高运输设备或产品的效率,以降低其他搬运方式的限制和不足,满足现代经济发展的要求。

本机械手的机械结构主要包括由两个电磁阀控制的液压钢来实现机械手的上升下降运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的快进、慢进、快退、慢退的运动运动;其动作转换靠设置在各个不同部位的行程开关(SQ1---SQ9)产生的通断信号传输到PLC控制器,通过PLC内部程序输出不同的信号,从而驱动外部线圈来控制电动机或电磁阀产生不同的动作,可实现机械手的精确定位;其动作过程包括:下降、夹紧、上升、慢进、快进、慢进、延时、下降、放松、上升、慢退、快退、慢退;其操作方式包括:回原位、手动、单步、单周期、连续;来满足生产中的各种操作要求。

关键词:搬运机械手,可编程控制器(PLC),液压,电磁阀 目

录 前

言………………………………………………………………………………….1 第一章 机械手的概况

1.1 搬运机械手的应用简况…………………………………………………2 1.2 机械手的应用意义………………………………………………………3 1.3 机械手的发展概况………………………………………………………3 第三章 搬运机械手PLC控制系统设计

3.1 搬运机械手结构及其动作……………………………………………… 3.2 搬运机械手系统硬件设计……………………………………………… 3.3 搬运机械手控制程序设计……………………………………………… 1 操作面板及动作说明…………………………………………………… 2 I/O分配………………………………………………………………… 3 梯形图的设计…………………………………………………………… 1) 梯形图的总体设计…………………………………………………… 2) 各部分梯形图的设计………………………………………………… 3) 绘制搬运机械手PLC控制梯形图……………………………………

论……………………………………………………………………………… 谢

辞……………………………………………………………………………… 参考文献………………………………………………………………………………….附:语句表

梯形图

I/O接线图 前

机械手:mechanical hand,也被称为自动手,auto hand 能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度 。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机 械手设计的关 键参数。自由 度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。

机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。

机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。机械手在锻造工业中的应用能进一步发展锻造设备的生产能力,改善热、累等劳动条件。

机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。

第一章 机械手概况

1.1搬运机械手的应用简况

在现代工业中,生产过程的机械化、自动化已成为突出的主题。在机械工业中,加工、装配等生产是不连续的。专用机床是大批量生产自动化的有效办法,程控机床、数控机床、加工中心等自动化机械是有效解决多品种小批量生产自动化的重要办法。

但除切削加工本身外,还有大量的装卸、搬运、装配等作业,有待于进一步实现机械化。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。从这里可看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于柔性自动线。

国内外机械工业、铁路部门中机搬运械手主要应用于以下几方面: 1.热加工方面的应用

热加工是高温、危险的笨重体力劳动,很久以来就要求实现自动化。为了提高工作效率,和确保工人的人身安全,尤其对于大件、少量、低速和人力所不能胜任的作业就更需要采用机械手操作。 2.冷加工方面的应用 冷加工方面机械手主要用于柴油机配件以及轴类、盘类和箱体类等零件单机加工时的上下料和刀具安装等。进而在程序控制、数字控制等机床上应用,成为设备的一个组成部分。最近更在加工生产线、自动线上应用,成为机床、设备上下工序联接的重要于段。 3.拆修装方面

拆修装是铁路工业系统繁重体力劳动较多的部门之一,促进了机械手的发展。目前国内铁路工厂、机务段等部门,已采用机械手拆装三通阀、钩舌、分解制动缸、装卸轴箱、组装轮对、清除石棉等,减轻了劳动强度,提高了拆修装的效率。近年还研制了一种客车车内喷漆通用机械手,可用以对客车内部进行连续喷漆,以改善劳动条件,提高喷漆的质量和效率。近些年,随着计算机技术、电子技术以及传感技术等在机械手中越来越多的应用,工业机械手已经成为工业生产中提高劳动生产率的重要因素。 1.2机械手的应用意义

在机械工业中,机械手的应用意义可以概括如下: 1.可以提高生产过程的自动化程度

应用机械手,有利于提高材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化程度,从而可以提高劳动生产率,降低生产成本,加快实现工业生产机械化和自动化的步伐。

2.可以改善劳动条件、避免人身事故在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其它毒性污染以及工作空间狭窄等场合中,用人手直接操作是有危险或根本不可能的。而应用机械手即可部分或全部代替人安全地完成作业,大大地改善了工人的劳动条件。在一些动作简单但又重复作业的操作中,以机械手代替人手进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 3.可以减少人力,便于有节奏地生产 应用机械手代替人手进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续地工作,这是减少人力的另一个侧面。因此,在自动化机床和综合加工自动生产线上,目前几乎都设有机械手,以减少人力和更准确地控制生产的节拍,便于有节奏地进行生产。

综上所述,有效地应用机械手是发展机械工业的必然趋势。1.3.3机械手的发展概况与发展趋势

1.3机械手的发展概况

专用机械手经过几十年的发展,如今已进入以通用机械手为标志的时代。由于通用机械手的应用和发展,进而促进了智能机器人的研制。智能机器人涉及的知识内容,不仅包括一般的机械、液压、气动等基础知识,而且还应用一些电子技术、电视技术、通讯技术、计算技术、无线电控制、仿生学和假肢工艺等,因此它是一项综合性较强的新技术。目前国内外对发展这一新技术都很重视,几十年来,这项技术的研究和发展一直比较活跃,设计在不断地修改,品种在不断地增加,应用领域也在不断地扩大。

早在40年代,随着原子能工业的发展,已出现了模拟关节式的第一代机械手。 50~60年代即制成了传送和装卸工件的通用机械手和数控示教再现型机械手。这种机械手也称第二代机械手。如尤尼曼特(Unimate)机械手即属于这种类型。 60~70年代,又相继把通用机械手用于汽车车身的点焊和冲压生产自动线上,亦即是第二代机械手这一新技术进入了应用阶段。 80-90年代,装配机械手处于鼎盛时期,尤其是日本。

90年代机械手在特殊用途上有较大的发展,除了在工业上广泛应用外,农、林、矿业、航天、海洋、文娱、体育、医疗、服务业、军事领域上有较大的应用。 90年代以后,随着计算机技术、微电子技术、网络技术等的快速发展,机械手技术也得到飞速的多元化发展。

总之,目前机械手的主要经历分为三代:

第一代机械手主要是靠人工进行控制,控制方式为开环式,没有识别能力;改进的方向主要是将低成本和提高精度;第二代机械手设有电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把接收到的信息反馈,使机械手具有感觉机能;第三代机械手能独立完成工作过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展成为柔性系统FMS(Flexible Manufacturing System)和柔性制造单元FMC(Flexible Manufacturing Cell)中重要一环。

1.4机械手的发展趋势

目前国内工业机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。

因此,国内主要是逐步扩大机械手应用范围,重点发展铸锻、热处理方面的机械手,以减轻劳动强度,改善作业条件。在应用专用机械手的同时,相应地发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合式机械手等。

将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,以及适于不同类型的夹紧机构,设计成典型的通用机构,以便根据不同的作业要求,选用不用的典型部件,即可组成各种不同用途的机械手。既便于设计制造,又便于改换工作,扩大了应用的范围。同时要提高精度,减少冲击,定位精确,以更好地发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能地机械手,并考虑于计算机联用,逐步成为整个机械制造系统中的一个基本单元。

在国外机械制造业中,工业机械手应用较多,发展较快。目前主要用于机床、模锻压力机的上下料,以及点焊、喷漆等作业中,它可按照事先制定的作业程序完成规定的操作,但是还不具备任何传感反馈能力,不能应付外界的变化。如发生某些偏离时,就将引起零部件甚至机械手本身的损坏。为此,国外机械手的发展趋势是大力研制具有某些智能的机械手,使其拥有一定的传感能力,能反馈外界条件的变化,做出相应的变更。如位置发生稍些偏差时,即能更正,并自行检测,重点是研究视觉功能和触觉功能。

视觉功能即在机械手上安装有电视照相机和光学测距仪(即距离传感器)以及卫星计算机。工作时,电视照相机将物体形象变成视频信号,然后传送给计算机,以便分析物体的种类、大小、颜色和方位,并发出指令控制机械手进行工作。 触觉功能即在机械手上安装有触觉反馈控制装置。工作时机械手先伸出手指寻找工件,通过装在手指内的压力敏感元件产生触感作用,然后伸向前方,抓住工件。 手的抓力大小可通过装在手指内侧的压力敏感元件来控制,达到自动调整握力的大小。总之,随着传感技术的发展,机械手的装配作业的能力将进一步提高。到1995年,全世界约有50%的汽车由机械手装配。

现今机械手的发展更主要的是将机械手和柔性制造系统以及柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。 1.5 PLC概况及在机械手中的应用 1.可编程序控制器的应用和发展概况

可编程序控制器(programmable controller),现在一般简称为PLC(programmable logic controller),它是以微处理器为基础,综合了计算机技术、半导体集成技术、自动控制技术、数字技术、通 信网络技发展起来的一种通用的工业自动控制装置。以其显著的优点在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制三大支柱之一。 在可编程序控制器问世以前,工业控制领域中是继电器控制占主导地位。传统的继电器控制具有结构简单、易于掌握、价格便宜等优点,在工业生产中应用甚广。但是控制装置体积大、动作速度较慢、耗电较多、功能少,特别是由于它靠硬件连线构成系统,接线繁杂,当生产工艺或控制对象改变时,原有的接线刻控制盘(柜)就必须随之改变或更换,通用性和灵活性较差 2.PLC的应用概况

PLC的应用领域非常广,并在迅速扩大,对于而今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC,尤其近几年来PLC的性价比不断提高已被广泛应用在冶金、机械、石油、化工、轻功、电力等各行业。 按PLC的控制类型,其应用大致可分为以下几个方面。 1).用于逻辑控制

这是PLC最基本,也是最广泛的应用方面。用PLC取代继电器控制和顺序控制器控制。例如机床的电气控制、包装机械的控制、自动电梯控制等。 2).用于模拟量控制

PLC通过模拟量I/O模块,可实现模拟量和数字量之间转换,并对模拟量控制。 3).用于机械加工中的数字控制

现代PLC具有很强的数据处理功能,它可以与机械加工中的数字控制(NC)及计算机控制(CNC)紧密结合,实现数字控制。 4).用于工业机器人控制 5).用于多层分布式控制系统

高功能的PLC具有较强的通信联通能力,可实现PLC与PLC之间、PLC与远程I/O之间、PLC与上位机之间的通信。从而形成多层分布式控制系统或工厂自动化网络。 3.PLC的特点

1).可靠性高、抗干扰能力强

PLC能在恶劣的环境如电磁干扰、电源电压波动、机械振动、温度变化等中可靠地工作,PLC的平均无故障间隔时间高,日本三菱公司的F1系列PLC平均无故障时间间隔长达30万h,这是一般微机所不能比拟的。 2).控制系统构成简单、通用性强 由于PLC是采用软件编程来实现控制功能,对同一控制对象,当控制要求改变需改变控制系统的功能时,不必改变PLC的硬件设备,只需相应改变软件程序。 3

自上世纪六十年代,机械手被实现为一种产品后,对它的开发应用也在不断发展,利用机械手搬运物体、装配、切割、喷染等等,应用非常广泛。现在已经应用在了机械制造、冶金、化工、电力、采矿、建材、轻工、食品、环保等各行各业之中。比如:最典型的发展是生产者将此产品大量应用于卫生行业(全自动生化分析仪),从而实现了卫生检验中急需短时间、大量样品数据的要求,但在卫生领域的机械手因采用样品加单一酶试剂显色法,且采用滤光片结构设计,造成试剂价格昂贵,限制了产品市场的发展。 随着技术的进步,机械手的设计已经实破了单一试剂、加热及滤光片的束缚。随着社会的快速发展,工业现场机械手的要求将越来越高,其技术也越来越成熟。

机械手是工业自动控制领域中经常遇到的一种控制对象。机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。应用PLC控制机械手实现各种规定的工序动作,可以简化控制线路,节省成本,提高劳动生产率。图1 是机械手搬运物品示意图。

图1 机械手搬物示意图

图中机械手的任务是将传送带A上的物品搬运到传送带B。为使机械手动作准确,在机械手的极限位置安装了限位开关SQ

1、SQ

2、SQ

3、SQ

4、SQ5,对机械手分别进行抓紧、左转、右转、上升、下降动作的限位,并发出动作到位的输入信号。传送带A上装有光电开关SP,用于检测传送带A上物品是否到位。机械手的起、停由图中的起动按钮SB

1、停止按钮SB2控制。

传送带A、B由电动机拖动。机械手的上、下、左、右、抓紧、放松等动作由液压驱动,并分别由六个电磁阀来控制。 2 机械手的动作流程

传送带B处于连续运行状态,故不需要用PLC控制。 机械手及传送带C 顺序动作的要求是:

1) 按下起动按钮SB1时,机械手系统工作。首先上升电磁阀通电,手臂上升,至上升限位开关动作;

2) 左转电磁阀通电,手臂左转,至左转限位开关动作; 3) 下降电磁阀通电,手臂下降,至下降限位开关动作;

4) 启动传送带A运行,由光电开关SP检测传送带A上有无物品送来,若检测到物品,则抓紧电磁阀通电,机械手抓紧,至抓紧限位开关动作; 5) 手臂再次上升,至上升限位开关再次动作;

6) 右转电磁阀通电,手臂右转,至右转限位开关动作; 7) 手臂再次下降,至下降限位开关再次动作;

8) 放松电磁阀通电,机械手松开手爪,经延时2秒后,完成一次搬运任务,然后重复循环以上过程。

9) 按下停止按钮SB2或断电时,机械手停止在现行工步上,重新起动时,机械手按停止前的动作继续工作。 根据对机械手的顺序动作要求,可以画出时序图如图2所示。由时序图可作出图3所示的机械手动作流程图。

图2 机械手佛那故作布序图

图3 机械手动作流程图

3 PLC选型及其I/O点编号分配 3.1 PLC的选型

由于机械手系统的输入/输出接点少,要求电气控制部分体积小,成本低,并能够用计算机对PLC进行监控和管理,故选用日本OMRON(立石)公司生产的多功能小型C20P主机。该机输入点为12,输出点为8。内部主要有:136个辅助继电器、16个特殊功能继电器、160个保持继电器、8个暂存继电器、48个定时/计数器、64个16位数据存贮器。 3.2 I/O点编号分配

根据图3所示的机械手动作流程图,可以确定电气控制系统的I/O点分配,如表1所示。

表1 机械手控制I/O分配表

根据图3流程图和表1的I/O分配表,可以编制出状态转移图如图4所示。

图4 机械手状态转移图 4 编程及程序运行 4.1 用步进指令编程

根据图4状态转移图,编制的步进梯形图程序如图5所示。

图5中,“全部输出禁止”部分的作用是在停止时禁止全部输出,使机械手停止在现行的工步上;重新起动时又能从停止前的工步继续动作。

在状态由HR010转移至HR000的条件中,增加了保持继电器的常闭触点 ,其作用是:当机械手工作在某一中间工步时,若 PLC断电或停止运行,机械手停止在中间工步上。PLC复电或重新投入运行后,由于保持继电器HR具有状态断电保护的功能,因此在重新起动时,中有某一个是断开的,使得HR000不能置位,机械手只能从停止前被置位的保持继电器的后续工步继续动作。 4.2 程序运行

按下起动按钮SB1,输入点0000为ON,则作为互锁条件的辅助继电器1000为ON,互锁指令IL接通,IL与ILC之间的线圈正常工作,“全部输出禁止”解除。若(抓图1)常闭触点都为ON,保持继电器HR000接通,输出点0503使上升电磁阀得电,手臂上升。当手臂上升到位时,上升限位开关使输入点0005闭合,保持继电器HR001 接通,HR000复位,输出点0501使左转电磁阀得电,手臂左转。......以后每当一步动作到位,限位条件满足时,状态转移,进行下一工步动作。当状态转移到HR008为ON时,输出点0506使放松电磁阀得电,机械手放松,同时定时器TIM00计时。当计时2秒到,状态又转移到HR000,程序又重新从第一工步开始循环。

停止时,按下停止按钮SB2,0001断开,辅助继电器1000为OFF,互锁指令断开,全部输出被禁止,但各保持继电器的状态是断电保护的,机械手停在现行的工步上。当重新按起动按钮时,互锁指令接通,停止前的输出被恢复,机械手继续在停止前某保持继电器为ON的工步动作。 5 结束语

本文介绍了日本OMRON公司生产的C系列P型小型多功能PLC在机械手步进控制中的设计应用。说明了机械手的动作原理,设计要求,程序设计方法。本文介绍的程序已在实际生产中获得了成功的应用。

第16篇:工业机械手概述

第1章 绪论

1.1前言

所谓机械手是指用于再现人手的功能的技术装置。机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为工业机械手。

工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

工业机械手是近几十年发展起来的一种高科技自动生产设备。工业机械手也是工业机器人的一个重要分支。他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

机械手的发展是由于它的积极作用正日益为人们所认识:其

一、它能部分的代替人工操作;其

二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其

三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。因而,受到很多国家的重视,投入大量的人力物力来研究和应用。尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的重视。 3机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

机械手的结构形式开始比较简单,专用性较强。 随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

1.2 工业机械手的简史

现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品。

4机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。

1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。不少球坐标式通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。

1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本。如Unimate公司建立了8年机械手试验台,进行各种性能的试验。准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。德国KuKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。 瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。

日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进二种典型机械手后,大力研究机械手的研究。据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个。1976年个大学和国家研究部门用在机械手的研究费用42%。1979年日本机械手的产值达443亿日元,产量为14535台。其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。智能机械手约为17亿日元,为1978年的6倍。截止1979年,机械手累计产量达56900台。在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。使用机械手最多的是汽车工业,其次是电机、电器。预计到1990年将有55万机器人在工作。

第二代机械手正在加紧研制。它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。

第三代机械手(机械人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。

随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。

1.3工业机械手在生产中的应用

机械手是工业自动控制领域中经常遇到的一种控制对象。机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛广泛。

5在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。可在机械工业中,加工、装配等生产很大程度上不是连续的。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。本文以能够实现这类工作的搬运机械手为研究对象。下面具体说明机械手在工业方面的应用。

1.3.1 建造旋转零件(转轴、盘类、环类)自动线

一般都采用机械手在机床之间传递零件。国内这类生产线很多,如沈阳永泵厂的深井泵轴承体加工自动线(环类),大连电机厂的4号和5号电动机加工自动线(轴类),上海拖拉机厂的齿坯自动线(盘类)等。

加工箱体类零件的组合机床自动线,一般采用随行夹具传送工件,也有采用机械手的,如上海动力机厂的气盖加工自动线转位机械手。

1.3.2 实现单机自动化方面

各类半自动车床,有自动加紧、进刀、切削、退刀和松开的功能,单仍需人工上下料;装上机械手,可实现全自动化生产,一人看管多台机床。目前,机械手在这方面应用很多,如上海柴油机厂的曲拐自动车床和座圈自动车床机械手,大连第二车床厂的自动循环液压仿行车床机械手,沈阳第三机床厂的Y38滚齿机械手,青海第二机床厂的滚铣花键机床机械手等。由于这方面的使用已有成功的经验,国内一些机床厂已在这类产品出厂是就附上机械手,或为用户安装机械手提供条件。如上海第二汽车配件厂的灯壳冲压生产线机械手(生产线中有两台多工位机床)和天津二注塑机有加料、合模、成型、分模等自动工作循环,装上机械手的自动装卸工件,可实现全自动化生产。目前机械手在冲床上应用有两个方面:一是160t以上的冲床用机械手的较多。如沈阳低压开关厂200t环类冲床磁力起重器壳体下料机械手和天京拖拉机厂400t冲床的下料机械手等;其一是用于多工位冲床,用作冲压件工位间步进轻局技术研究所制作的120t和40t多工位冲床机械手等。

1.3.3 铸、锻、焊热处理等热加工方面

模锻方面,国内大批量生产的3t、5t、10t模锻锤,其所配的转底炉,用两只机械手成一定角度布置早炉前,实现进出料自动化。上海柴油机厂、北京内燃机厂、洛阳拖拉机厂等已有较成熟的经验。

1.4 机械手的组成

工业的机械手由执行机构、驱动机构和控制机构三部分组成组成。

61.4.1 执行机构

(1)手部 既直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。手部多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、楔块杠杆式、齿轮齿条平行连杆式、内撑连杆式、右丝杠螺母式、弹簧式和重力式。

(2) 腕部 是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。手腕有独立的自由度。有回转运动、上下摆动、左右摆动。一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。 目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小(一般小于 2700),并且要求严格密封,否则就难保证稳定的输出扭距。因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。

(3)臂部 手臂部件是机械手的重要握持部件。它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。

臂部运动的目的:把手部送到空间运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。

手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。

(4)行走机构 有的工业机械手带有行走机构,我国的正处于仿真阶段。

1.4.2 驱动机构

驱动机构是工业机械手的重要组成部分。根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便、可获得较大的输出功率、液体不可压缩,压力、流量易于控制,反应灵敏、控位精确等优秀特点。

1.4.3 控制系统分类

在机械手的控制上,有点动控制和连续控制两种方式。大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。主要控制的是坐标位置,并注意其加速度特性。

1.5工业机械手的发展趋势

(1)工业机械手性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。

(2)机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装 配机器人产品问市。 (3)工业机械手控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。

(4)机械手中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制多传感器融合配置技术在产品化系统中已有成熟应用。

(5)虚拟现实技术在机械手中的作用已从仿真、预演发展到用于过程控制如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。

(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。

(7)机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品:机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种:在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中710。

1.6 本文主要研究内容

本文研究了国内外机械手发展的现状,通过学习机械手的工作原理,熟悉了组合机床自动上料液压机械手的运动机理。在此基础上,确定了组合机床自动上料液压机械手的基本系统结构,对组合机床自动上料液压机械手的运动进行了简单的力学模型分析,完成了自动上下料机械手的控制系统、液压系统和机械手机械方面的设计工作(包括传动部分、执行部分、驱动部分)的设计工作。

1.7 本章小结

本章简要的介绍了机械手的基本概念、发展历程及应用领域。在机械手的组成上,系统的从执行机构、驱动机构以及控制部分三个方面说明。比较细致的介绍了机械手的发展趋势,简要的叙述了本文研究的内容。

第17篇:小型搬运机械手

湖南大捷智能装备有限公司

小型搬运机械手

搬运机械手由PLC控制+触摸屏+伺服电机控制,采用占用空间少的框架式结构,生产能力大,码垛的方式可以采用示教是编程,电脑能够储存100套码垛方案,全部采用国内外名牌元件,适用于电子、食品、饮料、烟酒等行业的纸箱包装产品和热收缩膜产品码垛、堆垛作业。

主要技术参数

适应垛板: 850x850 到1250x1250 mm

最大码垛能力: 60包/小时

适应箱类: 膜包、纸箱、塑料箱等

最大码垛高度: 1800mm (根据需求可选择2200mm)

压缩空气: 0.12M3 /min , 6bar

电机配置: 380V/50Hz , 4kw

产品用途、特点

在工业自动化生产中,无论是单机还是组合机床,以及自动生产流水线,都要用到机械手来完成工件的取放。对机械手的控制主要是位置识别、运动方向控制和物料是否存在的判别。其任务是将传送带A上的工件或物品搬运到传送带B上。机械手的上升、下移、左移、右移抓紧和放松都是用双线圈三位电磁阀气动缸完成。当某个电磁阀通电时,就保持相对应的动作,即使线圈再断电仍然保持,直到相反方向的线圈通电,相对应的动作才结束。设备上装有上、下、左、右、抓紧、放松六个限位开关,控制对应工步的结束。传送带上设有一个光点开关,监视工件到位与否。

机械手是模仿人的手部动作,按给定程序、轨迹和要求实现自动抓取、搬运和操作的自动装置。它特别是在高温、高压、多粉尘、易燃、易爆、放射性等恶劣环境中,以及笨重、单调、频繁的操作中代替人作业,因此获得日益广泛的应用。机械手一般由执行机构、驱动系统、控制系统及检测装置三大部分组成,智能机械手还具有感觉系统和智能系统。

工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

在工业上,自动控制系统有着广泛的应用,如工业自动化机床控制,计算机系统,机器人等。而工业机器人是相对较新的电子设备,它正开始改变现代化工业面貌。实际的机器人由带有腕(或称为手臂)的主机身和机身端部的工具(通常是某些类型的夹持器)组成,同时也包括一个辅助动力系统。本文是对整个设计工作较全面的介绍和总 机械手技术涉及到力

湖南大捷智能装备有限公司

学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

第18篇:机械手开题报告

本科毕业设计开题报告

题 目:铣床上下料机械手结构与控制系统设计

院 (系): 机械工程学院

班 级: 机电08-4班

姓 名: 杨绍宝

学 号: 080514010415 指导教师: 李大勇

教师职称:

黑龙江科技学院本科毕业设计开题报告 篇2:机械手开题报告

附表6:

郑州科技学院毕业设计(论文)开题报告

注:课题来源要填写明确(如教师拟定、学生建议、某企事业单位项目等)

课题类型:(1)a—工程设计;b—技术开发;c—软件工程;d—理论研究;e—调研报告

(2)x—真实课题;y—模拟课题;z—虚拟课题;

要求(1)、(2)均要填,如ay,by等。

开题报告内容:(调研资料的准备,设计的目的、要求、思路与预期成果;任务完成的 阶段内容及时间安排;完成设计(论文)所具备的条件因素等。)篇3:机械手毕业设计开题报告[1]123 山 东 科 技 大 学

本科毕业设计(论文)开题报告

题 目 工业机械手

学 院 名 称 机电工程系

专业班级 机制(专本)10-3班

学生姓名 xxx 学 号 1022060xx 指 导 教 师

填表时间: 2012 年3月 23日

填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用a4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。 1 2 3 4 篇4:机械手开题报告

毕业设计(论文)学生开题报告 篇5:机械手设计_开题报告

沈 阳 工 程 学 院

毕业设计(论文)开题报告 课程名称: 机械手设计

专 业: 机械制造与自动化

班 级: 机制专101 学 号: 2010543112 学生姓名: 李晓军

1、课题来源

目前在我国的许多中小型汽车生产以及轻工业生产中,往往流水线上的作业

工作还需要人工上下料,既费时费力,又影响效率。而随着电子技术特别是电子

计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一

门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和

自动化的有机结合。机械手能代替人类完成危险、重复枯燥的工作,减轻人类劳

动强度,提高劳动生产力。机械手是在自动化生产过程中使用的一种具有抓取和

移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种

新型装置。机械手越来越广泛的得到了应用,在机械行业中它可用于零部件组

装 ,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普

遍。

近年来,机械手已发展成为柔性制造系统fms和柔性制造单元fmc中一个重

要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,它适应于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应

性很强。当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对

路的品种,提高产品质量,更好地适应市场竞争的需要。而目前我国的工业机器

人技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平

低,机械手的研究和开发直接影响到我国自动化生产水平的提高,从经济上、技

术上考虑都是十分必要的。为此,我们把设计制作输送线上助力搬运机械手作为

我们研究的课题。

2、研究的目的、意义 2.1 课题研究的目的

现代汽车制造工厂的生产流水线,尤其是主要工艺的焊接生产线,大多采用

了气动机械手。车身在每个工序的移动;车身外壳被真空吸盘吸起和放下,在指

定工位的夹紧和定位;点焊机焊头的快速接近、减速软着陆后的变压控制点焊,都采用了各种特殊功能的气动机械手。高频率的点焊、力控的准确性及完成整个

工序过程的高度自动化,堪称是最有代表性的气动机械手应用之一。

现在的机械手大多采用液压传动,液压传动存在以下几个缺点: (1)液压传动在工作过程中常有较多的能量损失(摩擦损失、泄露损失等); 液压传动易泄漏,不仅污染工作场地,限制其应用范围,可能引起失火事故,而

且影响执行部分的运动平稳性及正确性。 (2)工作时受温度变化影响较大。油温变化时,液体粘度变化,引起运动特

性变化。

(3)因液压脉动和液体中混入空气,易产生噪声。 (4)为了减少泄漏,液压元件的制造工艺水平要求较高,故价格较高;且使用 维护需要较高技术水平。

鉴于以上这些缺陷,本机械手拟采用气压传动,气动技术有以下优点: (1)介质提取和处理方便。气压传动工作压力较低,工作介质提取容易,而

后排入大气,处理方便,一般不需设置回收管道和容器:介质清洁,管道不易堵 塞,不存在介质变质及补充的问题. (2)阻力损失和泄漏较小,在压缩空气的输送过程中,阻力损失较小(一般仅

为油路的千分之一),空气便于集中供应和远距离输送。外泄漏不会像液压传动

那样,造成压力明显降低和严重污染。 (3)动作迅速,反应灵敏。气动系统一般只需要0.02s-0.3s即可建立起所需

的压力和速度。气动系统也能实现过载保护,便于自动控制。 (4)能源可储存。压缩空气可存贮在储气罐中,因此,发生突然断电等情况

时,机器及其工艺流程不致突然中断。 (5)工作环境适应性好。在易燃、易爆、多尘埃、强磁、强辐射、振动等恶

劣环境中,气压传动与控制系统比机械、电器及液压系统优越,而且不会因温度

变化影响传动及控制性能。

(6)成本低廉。由于气动系统工作压力较低,因此降低了气动元、辅件的材

质和加工精度要求,制造容易,成本较低。

传统观点认为:由于气体具有可压缩性,因此,在气动伺服系统中要实现高

精度定位比较困难(尤其在高速情况下,似乎更难想象)。此外气源工作压力较低,

抓举力较小。虽然气动技术作为机器人中的驱动功能已有部分被工业界所接受,

而且对于不太复杂的机械手,用气动元件组成的控制系统己被接受,但由于气动

机器人这一体系己经取得的一系列重要进展过去介绍得不够,因此在工业自动化

领域里,对气动机械手、气动机器人的实用性和前景存在不少疑虑。 2.2 课题研究的意义

在机械工业中,应用机械手的意义可以概括如下:

一、以提高生产过程中的自动化程度

应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装

配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。

二、以改善劳动条件,避免人身事故

在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性

污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而

应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。在一

些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由

于操作疲劳或疏忽而造成的人身事故。

三、可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这

是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人

力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机

械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。

综上所述,有效的应用机械手,是发展机械工业的必然趋势。

3、国内外研究现状和发展趋势 3.1 国内的研究现状

工业机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。

工业机械手延伸和扩大了人的 手足和大脑功能,它可替代人从事危险、有害、

有毒、低温和高温等恶劣环境中工作:代替人完成繁重、单调重复劳动,提高劳

动生产率,保证产品质量。目前主要应用与制造业中,特别是电器制造、汽车制

造、塑料加工、通用机械制造及金属加工等工业。工业机械手与数控加工中心,

自动搬运小车与自动检测系统可组成柔性制造系统和计算机集成制造系统,实现

生产自动化。随着生产的发展,功能和性能的不断改善和提高,机械手的应用领 域日益扩大。

我国的工业机械手发展主要是逐步扩大其应用范围。在应用专业机械手的同 时,相应的发展通用机械手,研制出示教式机械手、计算机控制机械手和组合式

机械手等。可以将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,

设计成典型的通用机构,以便根据不同的作业要求,选用不用的典型机构,组装

成各种用途的机械手,即便于设计制造,又便于跟换工件,扩大了应用范围。目

前国内机械手主要用于机床加工、锻造。热处理等方面,数量、品种、性能方面

都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专业机械手的同时,相应的发展通用机械手,有条件的要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。 3.2 国外研究现状

国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如 发生少许偏差时候,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定的成绩。 3.3 发展趋势

目前世界高端工业机械手均具有高精化,高速化,多轴化,轻量化等的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3m/s,良新产品可以达到6轴,负载2kg的产品系统总重已突破100kg。更重要的是将机械手、柔性制造系统和柔性制造单元相互结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,从而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。 4.发展前景及方向 4.1 重复高精度

精度是指机器人、机械手到达指定点的精确程度,它与驱动器的分辨率以及反馈装置有关。重复精度是指如果动作重复多次,机械手到达同样位置的精确程度。重复精度比精度更重要,如果一个机器人定位不够精确,通常会显示一个固定的误差,这个误差是可以预测的,因此可以通过编程予以校正。重复精度限定的是一个随机误差的范围,它通过一定次数地重复运行机器人来测定。随着微电子技术和现代控制技术的发展,以及气动伺服技术走出实验室和气动伺服定位系统的成套化。

第19篇:机械手的程序设计

渤海船舶职业学院(毕业论文)专用纸

毕业论文中文摘要

题目:机械手的PLC程序设计

摘 要

工业机器人由操作机 (机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。

机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。

机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷 漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用。

关键词:机械手,PLC.程序流程图

1 渤海船舶职业学院(毕业论文)专用纸

目录

摘要 ···························································································· 错误!未定义书签。 前言 ···························································································· 错误!未定义书签。 1机械手简介 ············································································· 错误!未定义书签。 1.1机械手历史 ········································································· 错误!未定义书签。 1.2机械手构成 ·········································································· 错误!未定义书签。

1.3机械手分类 ·········································································· 错误!未定义书签。 2设计目标 ················································································· 错误!未定义书签。 3机械手移动工件控制系统程序设计 ····································· 错误!未定义书签。 3.1 编程软件及应用 ······························································ 错误!未定义书签。 3.2 程序流程图 ······································································ 错误!未定义书签。 4 机械手移动工件控制系统PLC程序 ·································· 错误!未定义书签。 4.1 系统资源分配 ·································································· 错误!未定义书签。 4.2 源程序 ··········································································

错误!未定义书签。 4.2.1 总体安排 ································································ 错误!未定义书签。 4.2.2 手动操作程序 ························································ 错误!未定义书签。 4.2.3 自动操作程序 ························································ 错误!未定义书签。 4.2.4 操作系统总程序 ···················································· 错误!未定义书签。 5结论

····················································································· 错误!未定义书签。 6参考文献 ················································································· 错误!未定义书签。

2 渤海船舶职业学院(毕业论文)专用纸

前言

工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和

维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的65万美元。

机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高

机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。

当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。

3 渤海船舶职业学院(毕业论文)专用纸

1机械手简介

1.1机械手历史

机械手是在早期出现的古代机器人基础上发展起来的,机械手研究始于20世纪中期,随着计算机和自动化技术的发展,特别是1946年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。同时,大批量生产的迫切需求推动了自动化技术的进展,又为机器人的开发奠定了基础。另一方面,核能技术的研究要求某些操作机械代替人处理放射性物质。在这一需求背景下,美国于1947年开发了遥控机械手,1948年又开发了机械式的主从机械手。

机械手首先是从美国开始研制的。1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1958年美国联合控制公司研制出第一台机械手铆接机器人。作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。这些工业机器人主要由类似人的手和臂组成它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

1.2机械手构成

机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度 。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机 械手设计的关 键

4 渤海船舶职业学院(毕业论文)专用纸

参数。自由 度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。控制系统是通过对机械手每个自由度的电机的控制,来完成特定动作。同时接收传感器反馈的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。

1.3机械手分类

机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等

机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。机械手在锻造工业中的应用能进一步发展锻造设备的生产能力,改善热、累等劳动条件。

机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。

5 渤海船舶职业学院(毕业论文)专用纸

2.设计目标

当机械手在原点时,按下启动按钮,接通状态S20,其接点接通Y3,执行下降动作。当碰到下限位开关时X4接通,又接通下一个状态S21,接着执行下一步动作。当机械手夹紧工件时,计时器计时结束,计时器的常开触点闭合,接通状态S22,执行上升动作。当碰到上限开关时,X3接通,输入继电器的常开触点闭合,接通下一个状态S23,机械手前进。当前进到最右边时,当碰到右限开关时,X6接通,输入继电器的常开触点闭合,接通下一个状态S24,机械手开始下降。当碰到下限开关时,X4接通,输入继电器的常开触点闭合,接通下一个状态S25,机械手松开。当机械手完全松开时,碰到松限开关时,X7接通,其输入继电器的常开触点闭合,接通下一个状态S26,机械手上升。再碰到上限开关时,X3接通,其输入继电器的常开触点闭合,接通下一个状态S27,机械手后退。碰到左限开关时,X5接通,其输入继电器的常开触点闭合,接通下一个状态S20,机械手重复上个周期的操作。

6 渤海船舶职业学院(毕业论文)专用纸

3 机械手移动工件控制系统程序设计

3.1 编程软件及应用

由于本设计采用的是三菱FX2N-48MR-001模块,故选择三菱GX Developer编程软件。GX-Developer是三菱公司所制作的PLC编程软件,它包含了LLT仿真软件,用户可在个人计算器上模仿PLC的运作情况,大大减低测试的时间。它可以对三菱的所有PLC进行编程,包括FX系列PLC、A系列PLC和Q系列PLC。

它对计算机要求的最低配置为:

1)Pentium级CPU,主频90MHz或者更快。 2)最少16MB内存配置,40MB硬盘空间。

3)微软Windows环境(Microsoft Windows95 或者更新版本,或Microsoft WindowsNT 4.0 Service Pack3 或者更新版本)。

4)800×600 SVGA或者更高分辨率显示系统。

当程序编辑完成以后,运行程序,程序自动写入PLC的存储器,若以后固定使用该程序,则可拔除RS-232C数据通讯线,用CPU模块自带的RUN/STOP开关来运行/停止程序。需要改动程序时,先将PLC设定在STOP的状态下,连接PC,运行GX-Developer编程软件,修改程序并写入PLC存储器,也可使用编程器进行编程和程序修改[11]。

3.2 程序流程图

1)正常运行流程图

正常运行的流程图如图3-1所示:

7 渤海船舶职业学院(毕业论文)专用纸

图3-1正常运行流程图 2)紧急停止流程图

紧急停止流程图如图3-2所示:

图3-2紧急停止流程图

8 渤海船舶职业学院(毕业论文)专用纸

4 机械手移动工件控制系统PLC程序

4.1 系统资源分配

1)数字输入部分

这个控制系统的输入有启动按钮,停止按钮,急停按钮,上、下、前、后、松限位开关,手动,单步,单周期,连续操作方式选择,正/反、上/下、夹/松运动选择共15输入点,具体的输入分配如下:

x000 → 启动按钮 x001 → 停止按钮 x002 → 急停按钮 x003 → 上限位开关 x004 → 下限位开关 x005 → 后限位开关 x006 → 前限位开关 x007 → 松限位开关 x010 → 手动操作方式选择 x011 → 单步操作方式选择 x012 → 单周期操作方式选择 x013 → 连续操作方式选择 x014 → 左/右运动选择 x015 → 夹/松运动选择 X016 → 上/下运动选择

2)数字量输出部分

这个控制系统需要控制的外部设备有正转/反转旋转电磁阀线圈,正转/反转旋转电磁阀线圈,正转/反转旋转电磁阀线圈3个设备和一个原点指示灯,每个电磁阀线圈有

9 渤海船舶职业学院(毕业论文)专用纸

两个状态,所以输出点应该有7点。具体的输出分配如下:

Y000 → 正转/反转旋转电磁阀线圈(正转) Y001 → 正转/反转旋转电磁阀线圈(反转) Y002 → 正转/反转旋转电磁阀线圈(上升) Y003 → 上升/下降电磁阀线圈(下降) Y004 →正转/反转旋转电磁阀线圈(夹紧) Y005 → 夹紧/放松电磁阀线圈(放松) Y006 → 原点指示

3)定时器部分

这个控制系统夹紧工件时需要定时器来控制夹紧程度。根据现场设备的控制要求和工艺要求,设定夹紧/放下电磁阀线圈(夹紧)通电5s后即夹紧动作完成。

由此,选择定时器 T0 ,其参数设置为 K50 。

4)内部继电器部分

在机械手移动工件控制系统中,需要根据所选择的不同操作方式来实现程序的不同流程。另外,在自动操作过程中,由于按下“停止按钮”的时间是任意的,但是又不需要系统立即停止,而是完成一个周期的运动后自动的停止在原点,即完成一个周期的运动后,之前的按下“停止按钮”的动作才开始起作用,因此,也需要一个内部继电器把之前按下“停止按钮”的动作(电信号)存储起来。因此需要选择的内部继电器如下:

M0 → 连续、单步、单周期的选择

M1 → 存储“停止”操作信号

5)状态器部分

在控制系统中,由于自动操作是一个顺控操作,整个流程是步进的,所以在自动控制操作程序中,依据机械手的动作过程,需要用到的状态器如下:

S 0 → 初始状态 S20 → 下降工步工作状态 S21 → 夹紧工步工作状态 S22 → 上升工步工作状态 S23 → 正转工步工作状态 S24 → 下降工步工作状态

10 渤海船舶职业学院(毕业论文)专用纸

S25 → 放松工步工作状态 S26 → 上升工步工作状态 S27 → 反转工步工作状态

6)指针P部分

在控制系统中,由于操作系统总体上分为手动操作和自动操作两部分,而且两部分是不允许同时出现在运行的程序中,所以需要用跳转指令跳过手动操作程序或者自动操作程序,使得在每次程序的运行过程中,只有手动操作程序和自动操作程序中的一个运行。选择的指针为 P0 ,P1 。

4.2 源程序 4.2.1 总体安排

本控制电路有四种控制方式,但其中的三种为自动方式,都与步进控制有关,可以一起设计。这样仅考虑两种情况就可以了,这两种情况可用跳转指令予以区分,其总程序结构框图如图4-1所示,由于手动程序和自动程序采用了跳转指令,故这两个程序可以采用同样的输出端子[12]。

11 渤海船舶职业学院(毕业论文)专用纸

图4-1总程序结构框图

在该结构图中,当操作方式选择开关置于“手动”时,输入点X010接通,其输入继电器常闭触点断开,执行手动操作程序。当操作选择开关置于“单步”或“单周期”或“连续”时,其对应的输入点X0

11、X0

12、X013接通,CJ前的梯级为假,程序不跳转而执行自动操作程序。

4.2.2 手动操作程序

在手动操作方式下,各种动作都是用按钮操作来实现的,其控制程序可以独立于自动操作程序而另行设计。手动操作控制很简单,可以很方便地按一般继电器控制线路来设计,其梯形图如图4-2所示。

12 渤海船舶职业学院(毕业论文)专用纸

图 4-2手动操作程序梯形图

当运动选择开关置于“进/退”时,如机械手置于上限位置,则按启动按钮机械手前进;按下停止按钮机械手左移。当运动选择开关置于“夹/松”时,按启动按钮时夹紧;按停止按钮时放松。当运动选择开关置于“上/下”时,按启动按钮时下降;按停止按钮时上升。

在手动操作过程中,有两点是需要注意的:

1)在单步、单周期、连续操作过程中,如果在夹紧过程中,按下“急停”,则机械手停止动作。再次启动机械手运行时,需要先进行手动操作将机械手返回原点。手动操作时,选择“夹/松”运行方式,只允许按“停止按钮”,使机械手执行放松动作。若此时需要机械手进行手动操作使机械手执行夹紧动作,也只能是先按“停止按钮”,然后按“启动按钮”进行操作,使机械手完全松开后,再执行夹紧动作。这样操作的目的是防止机械手由于前后两次的“夹紧”的动作运行超过5s(由定时器控制),从而使机械手手部由于长时间的夹紧发生形变。

2)手动操作也有“急停”形式,操作过程中只需按下相应的按钮,直到到达相应的位置,限位开关动作,运动停止。若在运行过程中需要机械手停止动作,则只需要按

13 渤海船舶职业学院(毕业论文)专用纸

下“急停按钮”即可。

4.2.3 自动操作程序

1)连续操作

当机械手在原点时,按下启动按钮,接通状态S20,其接点接通Y3,执行下降动作。当碰到下限位开关时X4接通,又接通下一个状态S21,接着执行下一步动作。当机械手夹紧工件时,计时器计时结束,计时器的常开触点闭合,接通状态S22,执行上升动作。当碰到上限开关时,X3接通,输入继电器的常开触点闭合,接通下一个状态S23,机械手前进。当前进到最右边时,当碰到右限开关时,X6接通,输入继电器的常开触点闭合,接通下一个状态S24,机械手开始下降。当碰到下限开关时,X4接通,输入继电器的常开触点闭合,接通下一个状态S25,机械手松开。当机械手完全松开时,碰到松限开关时,X7接通,其输入继电器的常开触点闭合,接通下一个状态S26,机械手上升。再碰到上限开关时,X3接通,其输入继电器的常开触点闭合,接通下一个状态S27,机械手后退。碰到左限开关时,X5接通,其输入继电器的常开触点闭合,接通下一个状态S20,机械手重复上个周期的操作。

其自动操作中连续运动的状态转换图如图4-3所示。

14 渤海船舶职业学院(毕业论文)专用纸

图4-3自动操作中连续运动的状态转换图

渤海船舶职业学院(毕业论文)专用纸

下面从可编程序控制器的工作原理来分析所设计的工作流程状态转换图。 可编程序控制器采用周期性方式工作,每个循环周期含有若干阶段:

a 诊断阶段:可编程序控制器自检,当状态正常时,进入下一步工作,否则待机。 b 联机通信阶段:可编程序控制器与上位计算机及其它可编程序控制器相联时,进行联机通信,传送本机状态信息和接收上位计算机指令。

c 输入采样阶段:对现场信号输入端口状态(ON或OFF,即“0”和“1”)进行扫描,并将信号状态存放输入状态寄存器,也称输入刷新,可编程序控制器工作在其它阶段时,即使信号状态发生变化,输入状态寄存器内的内容也不会发生变化,状态变化只能在下一个工作周期的输入采样阶段才能被读入。

d 程序执行阶段:可编程序控制器从程序第一条指令开始按顺序执行,所需要的数据如输入状态和其他元素状态分别由输入状态寄存器和其他状态寄存器中读出,程序执行的结果分别写入相应的元素状态寄存器(包括输入状态寄存器),输出状态寄存器中的内容会随着程序执行的进程而变化。

e 输出刷新阶段:程序执行结束后,输出状态寄存器中的内容送输出锁存器,产生设备驱动信号,驱动负载设备,完成实际的输出。

可编程序控制器依次执行每个工作阶段工作,如此往复循环,完成一个周期工作的时间即是一个工作周期(或扫描周期),工作周期的长度与用户程序的长度对应[4]。

可编程序控制器程序开始“RUN”后,M8002发出一个扫描周期的脉冲,在可编程序控制器“STOP”之前,即可编程序控制器一直处于“RUN”状态,M8002就不会再发生脉冲。

注意:有时候机械手没有动作,并不能说明可编程序控制器没有运行。有可能是程序依然在运行,只是此时的程序不满足机械手动作的条件,所以这种条件下,M8002不会发生脉冲。所以只在可编程序控制器开始运行、按下“停止”按钮和单周期操作方式时,RST M1 指令才被执行,其余的任何时候的任何一个扫描周期均不执行。

值得说明的是连续操作的条件,只有当旋转按钮选择“连续”操作方式的时候,并且在运行的过程中没有按下“停止”按钮,该机械手移动系统才能连续不断的运行下去。但是如果选择“连续”操作方式,在运行的过程中按下了“停止”按钮,机械手完成一个周期后自动停止在原点,而不继续运行。同样,无论是在什么操作方式下,如果按下“急停”按钮,机械手立即停止动作。再次运行时,需要手动操作先将机械手移动

16 渤海船舶职业学院(毕业论文)专用纸

原点,然后再执行其他操作。

在机械手的自动操作方式中,用内部继电器M0将自动方式分为了连续/单步操作和单周期操作。内部继电器M0通电,机械手运动程序转向连续/单步操作。内部继电器M0不通电,机械手运动程序转向单周期操作。 2)单步操作

当连续操作程序要实现单步操作的功能时,可以在连续操作的程序基础上作一些简单的修改,即在连续操作的程序中加上图8-4中的虚线部分的单步操作单元即可。

图4-4单步操作单元

当没有选择“单步”操作时,对应的输入继电器不通电,其常闭触点闭合,常开触点断开,该单步操作单元可以看作一条导线,没有实际意义。如果选择“单步”操作方式,对应的输入继电器通电,其常闭触点断开,常开触点闭合,按下“启动”按钮,常开触点支路通电,其连接的相应继电器带电,带电继电器的自锁触点闭合,从而使该带电继电器持续带电,使得机械手能够完成完整的一步动作。

3)单周期操作

单周期操作是机械手自动完成一个周期的动作后自动的停止在原点。当操作方式旋转开关选择“单周期”时,按下“启动”按钮,机械手就能实现这样的操作。同时,如果选择“连续”操作方式,按下“启动”按钮,机械手开始连续工作方式运动,如果在此之后的任意时刻按下“停止”按钮,此后机械手的动作过程也同于“单周期”,即运动到原点自动停止。

当内部继电器M0不通电,机械手运动程序转向单周期操作。

4.2.4 操作系统总程序

由前面的章节,依据操作系统总程序结构框图,将手动操作、单步、单周期、连续操作的程序全部编辑到总程序中,即可得到操作系统的总程序。机械手移动工件控制系

17 渤海船舶职业学院(毕业论文)专用纸

统的总程序梯形图如图4-5所示。

到此为止,基于PLC的机械手移动工件控制系统硬件和软件部分均已全部设计完毕。

18 渤海船舶职业学院(毕业论文)专用纸

19 渤海船舶职业学院(毕业论文)专用纸

渤海船舶职业学院(毕业论文)专用纸

图4-5机械手移动工件控制系统的总程序梯形图

21

渤海船舶职业学院(毕业论文)专用纸

5 结论

在机械手移动物体控制系统中,用PLC控制机械手的正转/反转、上升/下降、夹紧/松开。这种控制的好处在于只要系统有输入(按下相应操作的按钮),相应的电磁阀线圈就会马上得电,系统就会马上动作,响应时间迅速。而且通过限位开关来控制最大行程,控制精度也得到了提高。在控制系统中采用了可编程序控制器来控制驱动装置,可编程序控制器不仅仅内置了许多继电器,而且还设置了多个定时器,计数器,这样使系统的接线达到了最简,减少了误差产生的机会。

应用可编程序控制器的最大的一个好处在于它是通过编辑程序来完成控制要求的,根据不同的控制要求,编辑不同的控制程序。在系统接线不变更的情况下,只需要适当改变控制程序,就能满足新的要求。而且系统的动作严格按照程序执行,减少了误动作。在人力、物力、财力上都得到了节余。

因此,在机械手移动工件控制系统的设计中,采用技术先进,可靠性非常高的可编程控制器,这使得机械设备更灵活有效,动作准确,易于维护,劳动生产率大大提高,各种操作方式的自由切换,满足了各种生产需求。

22 渤海船舶职业学院(毕业论文)专用纸

6参考文献

[1] 陆祥生,杨秀莲.机械手理论及应用[M].北京:中国铁道出版社,1993.[2] 工业机械手设计基础编写组.工业机械手设计基础[M].天津:天津科学技术出版社,1997.[3] 吕景泉等.可编程控制器技术教程[M].北京:高等教育出版社,2001.[4] 周军.电气控制及PLC[M].北京:机械工业出版社,2001.[5] 钟肇新.可编程控制器原理及应用[M].广州:华南理工大学出版社,2003.[6] 陈立定.电气控制与可编程序控制器的原理及应用[M].北京:机械工业出版社,2004.[7] Mitsubishi Electric .CC—Link Manual,2001.[8] 袁任光.可编程序控制器选用手册[M].北京:机械工业出版社,2002.[9] Mitsubishi Electric.FX2N—10GM/20GM Hardware/Programming Manual,1999(12).[10] 王卫兵.PLC系统通信、扩展与网络互连技术[M].北京:机械工业出版社,2004.[11] 求是科技.PLC应用开发技术与工程实践[M].北京:人民邮电出版社,2005.

23

第20篇:机械手PLC控制程序

附录3

1.主程序:

1

2

2.油泵电机保护及启停:

3

4

3.手动:

5

7

4.单步:

8

5.单周期:

9

6.自动:

10

7.回原点:

11

12

13

8.获取位置:

9.子单周期:

15

10.SBR_8:

16

17

18

机械手文献综述范文
《机械手文献综述范文.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档