人人范文网 范文大全

线面垂直习题精讲

发布时间:2020-03-03 23:13:28 来源:范文大全 收藏本文 下载本文 手机版

线面垂直的证明中的找线技巧

 通过计算,运用勾股定理寻求线线垂直

M为CC1 的中点,AC交BD于点O,求证:AO1如图1,在正方体ABCDA平面MBD. 1BC11D1中,

1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,

∴DB⊥平面A平面A1ACC1 ∴DB⊥AO1ACC1,而AO1.1

2设正方体棱长为a,则A1O2AM在Rt△AC中,M111323a,MO2a2. 2492222a.∵AO,∴AOOM. ∵MOAM111

4OM∩DB=O,∴ AO1⊥平面MBD.

评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.

利用面面垂直寻求线面垂直

2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求

证:BC⊥平面PAC.

证明:在平面PAC内作AD⊥PC交PC于D.

因为平面PAC⊥平面PBC,且两平面交于PC,

AD平面PAC,且AD⊥PC, 由面面垂直的性质,得AD⊥平面PBC.又∵BC

平面PBC,∴AD⊥BC.

∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC.

∵AD∩PA=A,∴BC⊥平面PAC.

评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一

条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图

形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线

面垂直线线垂直.

判定

性质判定性质线面垂直面一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直

面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.

3如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AESB,AGSD.

证明:∵SA平面ABCD,

∴SABC.∵ABBC,∴BC平面SAB.又∵AE平面SAB,∴BCAE.∵SC平面AEFG,∴SCAE.∴AE平面SBC.∴AESB.同理可证AGSD.

评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.

4 如图2,在三棱锥A-BCD中,BC=AC,AD=BD,

作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

证明:取AB的中点F,连结CF,DF.

∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.

∵CD平面CDF,∴CDAB.

又CDBE,BEABB,

∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,

∴ AH平面BCD.

评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.

5如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC ,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

证明:∵AB是圆O的直径,∴ACBC.

∵PA平面ABC,BC平面ABC,

∴PABC.∴BC平面APC.

∵BC平面PBC,

∴平面APC⊥平面PBC.

∵AE⊥PC,平面APC∩平面PBC=PC,

∴AE⊥平面PBC.

∵AE平面AEF,∴平面AEF⊥平面PBC.

评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.

10如图, 在空间四边形SABC中, SA平面ABC, ABC = 90, ANSB于N, AMSC于M。求证: ①ANBC; ②SC平面ANM 分析:

①要证ANBC, 转证, BC平面SAB。

②要证SC平面ANM, 转证, SC垂直于平面ANM内的两条相交直线, 即证SCAM, SCAN。要证SCAN, 转证AN平面SBC, 就可以了。

证明:

①∵SA平面ABC

∴SABC

又∵BCAB, 且ABSA = A

∴BC平面SAB

∵AN平面SAB

∴ANBC

②∵ANBC, ANSB, 且SBBC = B

∴AN平面SBC

∵SCC平面SBC

∴ANSC

又∵AMSC, 且AMAN = A

∴SC平面ANM

[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.

图9—40

(1)求证:AB⊥BC;

(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,

又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,

∴BC⊥平面SAB.∴BC⊥AB.

[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.

(1)求平面PCD与平面ABCD所成的二面角的大小;(2)求证:平面MND⊥平面PCD

(1)【解】PA⊥平面ABCD,CD⊥AD,

∴PD⊥CD,故∠PDA为平面ABCD与平面PCD所成二面角的平面角,在Rt△PAD中,PA=AD,

∴∠PDA=45°

(2)【证明】取PD中点E,连结EN,EA,则

EN AM,∴四边形ENMA是平行四边形,∴EA∥MN.

∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.

【注】 证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.

[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B

1、BC、C1D

1、B1C1的中点.

2CD 图9—

42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.

(1)【证明】∵M、N、E是中点,∴EB1B1NNC1C1M∴ENB1MNC145

∴MNE90即MN⊥EN,又NF⊥平面A1C1,MN平面A1C1∴MN⊥NF,从而MN⊥平面ENF.∵MN 平面MNF,

∴平面MNF⊥平面ENF.

(2)【解】过N作NH⊥EF于H,连结MH.∵MN⊥平面ENF,NH为MH在平面ENF内的射影,

2

3∴由三垂线定理得MH⊥EF,∴∠MHN是二面角M—EF—N的平面角.在Rt△MNH中,求得MN=2a,NH=3a,

MN662,即二面角M—EF—N的平面角的正切值为2. ∴tan∠MHN=NH

4.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.

图9—4

5(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.

(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,

又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,

∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF 面PAD∴CD⊥AF,

又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则

GF 12CD又

AE 12CD, ∴

GF AE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG 平面PEC,

∴平面PEC⊥平面PCD.

(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC

∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与 △PCD中,∠P为公共角,

FHPFPC,设AD=2,∴PF=2,而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴CD

PC=PDCD423, 2

226623∴A到平面PEC的距离为3. ∴FH=2

【拓展练习】

一、备选题

1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.

(1)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.

(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径

∴BC⊥AC;

又PA⊥平面ABC,BC平面ABC,

∴BC⊥PA,从而BC⊥平面PAC.

∵BC 平面PBC,

∴平面PAC⊥平面PBC.

(2)【解】平面PAC⊥平面ABCD;平面PAC⊥平面PBC;平面PAD⊥平面PBD;平面PAB⊥平面ABCD;平面PAD⊥平面ABCD.

2.ABC—A′B′C′是正三棱柱,底面边长为a,D,E分别是BB′,CC′上的一点,BD=2a,EC=a.

(1)求证:平面ADE⊥平面ACC′A′;

(2)求截面△ADE的面积.

(1)【证明】分别取A′C′、AC的中点M、N,连结MN,

则MN∥A′A∥B′B,

∴B′、M、N、B共面,∵M为A′C′中点,B′C′=B′A′,∴B′M⊥A′C′,又B′M⊥AA′且AA′∩A′C′=A′

∴B′M⊥平面A′ACC′.

设MN交AE于P,

a

∵CE=AC,∴PN=NA=2.

又DB=2a,∴PN=BD.

∵PN∥BD, ∴PNBD是矩形,于是PD∥BN,BN∥B′M,

∴PD∥B′M.

∵B′M⊥平面ACC′A′,

∴PD⊥平面ACC′A′,而PD平面ADE,

∴平面ADE⊥平面ACC′A′.

(2)【解】∵PD⊥平面ACC′A′,

∴PD⊥AE,而PD=B′M=2a,

AE=2a.

∴S△ADE=2×AE×PD 13622aaa24=2×.

线面垂直

线面垂直性质习题及答案

线面垂直练习题

线面垂直4

线面垂直1

专题线面垂直

立体几何线面垂直

线面垂直高考题

线面垂直教案

线面,面面垂直

线面垂直习题精讲
《线面垂直习题精讲.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档