人人范文网 范文大全

微机原理课程设计

发布时间:2020-03-02 16:04:16 来源:范文大全 收藏本文 下载本文 手机版

《微机原理》课程设计报告

间 学 院 专业班级 姓 名 学 号 合 作 者

指导教师

成 绩

2013 年 11 月

本文针对可燃气体检测模块MQ—K1,综合运用《微机原理》所学知识,选择合适的芯片,如微处理器808

6、存储器、可编程并行接口芯片82

55、A/D转换芯片ADC0809,LED显示芯片8279以及其它辅助芯片等,设计合理的硬件系统,实现可燃气体浓度的测量与检测结果的显示,设定阈值,超过阈值后报警,并对设计出的硬件系统运用汇编语言完成全部软件系统设计及调试。

关键词:可燃气体传感器、LED数码管显示、LCD液晶模块、语音报警

Abstract In this paper, combustible gas detection module MQ-K1, integrated use of \"Computer Architecture\" the knowledge, choosing the right chip, such as the 8086 microproceor, memory, programmable parallel interface chip 8255, A / D conversion chip ADC0809, LED display chip 8279 as well as other auxiliary chips, designed hardware system, combustible gas concentration measurement and test results show that the set threshold, exceeds the threshold alarms, and design the hardware system using aembly language software system design and complete all debugging.

Keywords: combustible gas sensor, LED digital display, LCD liquid crystal module, voice alarm

1

要 .........................................................................................................................................................1 Abstract ............................................................................................................................................................1 1实验目的 ......................................................................................................................................................3 2实验内容 ......................................................................................................................................................3 3实验设备 ......................................................................................................................................................3 4实验原理 ......................................................................................................................................................3

4.1系统概述...........................................................................................................................................3 4.2硬件介绍...........................................................................................................................................4 4.3可燃气体传感器 .............................................................................................................................6 4.4 LCD显示 ....................................................................................................错误!未定义书签。 4.5语音录放模块 .................................................................................................................................9 5设计思路 ....................................................................................................................................................10 5.1数码管显示 ....................................................................................................................................10 5.2 LCD显示 .......................................................................................................................................10 5.3语音报警.........................................................................................................................................10 6实验测试步骤 ............................................................................................................................................11 7程序流程 ....................................................................................................................................................12 8实验程序 ....................................................................................................................................................15 8.1数码管显示 ....................................................................................................................................15 8.2 LCD显示 ..................................................................................................1错误!未定义书签。 8.3数码管,LCD显示,语音报警最终程序 .................................................................................19 9实验现象及说明 ........................................................................................................................................26 10实验结论 ..................................................................................................................................................28 11承担的主要任务 ......................................................................................................................................28 12结论及设计心得与体会 .........................................................................................................................28

1、实验目的

掌握可燃气体传感器的工作原理和测量电路。通过采集气体的浓度,经过模拟量转换为数字量,即A/D转换,AD0809采样输出电压值并在数码管上显示,并改进程序,使在液晶屏上显示可燃气体传感器检测结果转换的电压值,并设定阈值,超过阈值后报警。对所设计的硬件系统运用汇编语言完成全部软件系统设计及调试。

2、实验内容

用打火机靠近可燃气体传感器并喷射少量气体,AD0809采样输出电压值并显示。并改进程序,使在液晶屏上显示可燃气体传感器检测结果转换的电压值。设定阈值,超过阈值后报警。对所设计的硬件系统运用汇编语言完成全部软件系统设计及调试。

3、实验设备

3.1 EL-MUT-III实验箱 3.2 8086CPU板

3.3 霍尔、气体传感器模块 3.4 交叉串口线 3.5 E-LAB-AUDIO-ISD1700

4、实验原理

4.1系统概述

1、微处理器:8086

2、时钟频率:6MHz

3、存储器

6264 系统RAM,地址范围 0~3FFFH,奇地址有效 6264 系统RAM,地址范围0~3FFFH,偶地址有效 27C64 系统ROM,地址范围 FFFFF~FC000H,奇地址有效 27C256 系统ROM,地址范围 FFFFF~FC000H,偶地址有效

4、系统资源分配

本系统采用可编程逻辑器件(CPLD)EPM7128 做地址的编译码工作,可通过芯片的JTAG 接口与PC机相连,对芯片进行编程。此单元也分两部分:一部分为系统CPLD,完成系统器件,如监控程序存储器、用户程序存储器、数据存储

3 器、系统显示控制器、系统串行通讯控制器等的地址译码功能,同时也由部分地址单元经译码后输出(插孔CS0—CS5)给用户使用,其地址固定,用户不可改变。另一部分为用户CPLD,它完全对用户开放,用户可在一定的地址范围内,进行编译码,输出为插孔LCS0—LCS7,注意,用户的地址不能与系统相冲突,否则将导致错误。 1)地址分配

CS0 片选信号,地址04A0~04AF 偶地址有效 CS1 片选信号,地址04B0~04BF 偶地址有效 CS2 片选信号,地址04C0~04CF 偶地址有效 CS3 片选信号,地址04D0~04DF 偶地址有效 CS4 片选信号,地址04E0~04EF 偶地址有效 CS5 片选信号,地址04F0~04FF 偶地址有效 CS6 片选信号,地址0000~01FF 偶地址有效 CS7 片选信号,地址0200~03FF 偶地址有效 8250 片选地址:0480~048F,偶地址有效 8279 片选地址:0490~049F,偶地址有效 2)硬件实验说明

所有实验程序的起始地址为01100H,CS=0100H,IP=0100H,代码段、数据段、堆栈段在同一个64K的地址空间中。 4.2硬件介绍

4.2.1整机介绍

EL-MUT-III 型微机教学实验系统由电源、系统板、CPU 板、可扩展的实验模板、微机串口通讯线、JTAG通讯线及通用连接线组成。

图1 系统板结构

4 4.2.3硬件资源

1.可编程并口接口芯片8255 一片。

2.串行接口两个:8250 芯片一个,系统与主机通讯用,用户不可用。 单片机的串行口,可供用户使用。

3.键盘、LED 显示芯片8279 一片,其地址已被系统固定为CFE8H、CFE9H。硬件系统要求编码扫描显示。

4.六位LED 数码管显示。

5.ADC0809 A/D 转换芯片一片,其地址、通道1—8 输入对用户开放。 6.DAC0832 D/A 转换芯片一片,其地址对用户开放,模拟输出可调 7.8 位简单输入接口74LS244 一个,8 位简单输出接口74LS273 一个,其地址对用户开放。

8.配有8 个逻辑电平开关,8 个发光二极管显示电路。 9.配有一个可手动产生正、负脉冲的单脉冲发生器

10.配有一个可自动产生正、负脉冲的脉冲发生器,按基频6.0MHz 进行1 分频(CLK0)、二分频(CLK1)、四分频(CLK2)、八分频 (CLK3)、十六分频(CLK4)输出方波。

11.配有一路0—5V 连续可调模拟量输出(AN0)。

12.配有可编程定时器8253 一个,其地址、三个定时器的门控输入、控制输出均对用户开放。

13.配有可编程中断控制器8259 一个,其中断IRQ 输入、控制输出均对用户开放。

14.2组总线扩展接口,最多可扩展2 块应用实验板。

15.配有两块可编程器件EPM7064,一块被系统占用。另一块供用户实验用。两块器件皆可通过JTAG接口在线编程。使用十分方便。

16.灵活的电源接口:配有PC 机电源插座,可与PC 电源直接接驳。另还配有外接开关电源,提供所需的+5V,±12V,其输入为220V 的交流电。 4.3可燃气体传感器

MQ—K1可燃气体传感器主要用于检测空气中CO、CH

4、H2等可燃气体的浓度,其原理为传感器的内部阻抗随可燃气体的浓度而变化。MQ—K1的测量范围为100—10000PPM(PPM为体积比例,表示百万分之一),工作环境的温度:-10℃~45℃,湿度≤95%。其引脚及电学参数如下:

5 可燃气体传感器的工作原理见模块说明,其测量电路如下图所示:

图2 可燃气体传感器测量电路

2 脚、5脚用于加热,

1、3脚和

4、6脚接测量电路,RL为负载电阻。

表1-可燃气体传感器标准工作条件

传感器在1000ppm的CH4中的阻抗用R0表示,在各种环境中的动态阻抗用Rs表示。在洁净的空气中Rs/ R0=5,在其它环境中如下表所示:

表2-在各种环境中的阻抗用R0与动态阻抗Rs 的关系

可燃气体传感器电路如下所示:

图3 可燃气体传感器电路

R2(SEN.)用于改变负载电阻的大小,R6(ZERO)用于零位调节,R12(ALARM)用于设置报警电压,VOUT为模拟输出,DOUT为数字输出。

使用前,应先对MQ—K1通电预热3—5分钟,以使输出稳定。在洁净的空气中,通过采样VOUT电压,求出R0;在有可燃气体的环境中,通过采样VOUT电压,求出Rs;用Rs/R0的比值确定空气中可燃气体的浓度。 4.4 LCD显示

点阵式LCD显示电路是在系统板上外挂电正式液晶显示模块,模块的数据线、状态、控制线都通过插孔引出。可直接与系统相连。 4.4.1 OCMJ2×8液晶模块介绍及使用说明

OCMJ中文模块系列液晶显示器内含 GB 2312 16*16点阵国标一级简体汉字和 ASCII8*8 (半高)及8*16(全高)点阵英文字库,用户输入区位码或 ASCII 码即可实现文本显示。也可用作一般的点阵图形显示器之用。提供位点阵和字节点阵两种图形显示功能,用户可在指定的屏幕位置上以点为单位或以字节为单位

进行图形显示。完全兼容一般的点阵模块。OCMJ中文模块系列液晶显示器可以实现汉字、ASCII 码、点阵图形和变化曲线的同屏显示,并可通过字节点阵图形方式造字。本系列模块具有上/下/左/右移动当前显示屏幕及清除屏幕的命令。 OCMJ 中文模块所有的设置初始化工作都是在上电时自动完成的,实现了“即插即用”。同时保留了一条专用的复位线供用户选择使用,可对工作中的模块进行软件或硬件强制复位。规划整齐的10个用户接口命令代码,非常容易记忆。标准用户硬件接口采用REQ/BUSY 握手协议,简单可靠。 4.4.2硬件接口

7 接口协议为请求/应答(REQ/BUSY) 握手方式。应答BUSY 高电平(BUSY =1) 表示 OCMJ 忙于内部处理,不能接收用户命令;BUSY 低电平(BUSY =0)表示 OCMJ 空闲,等待接收用户命令。发送命令到 OCMJ 可在BUSY =0 后的任意时刻开始,先把用户命令的当前字节放到数据线上,接着发高电平REQ 信号(REQ =1)通知OCMJ请求处理当前数据线上的命令或数据。OCMJ模块在收到外部的REQ高电平信号后立即读取数据线上的命令或数据,同时将应答线BUSY变为高电平,表明模块已收到数据并正在忙于对此数据的内部处理,此时,用户对模块的写操作已经完成,用户可以撤消数据线上的信号并可作模块显示以外的其它工作,也可不断地查询应答线BUSY是否为低(BUSY =0?),如果BUSY =0,表明模块对用户的写操作已经执行完毕。可以再送下一个数据。如向模块发出一个完整的显示汉字的命令,包括坐标及汉字代码在内共需5个字节,模块在接收到最后一个字节后才开始执行整个命令的内部操作,因此,最后一个字节的应答BUSY 高电平(BUSY =1)持续时间较长,具体的时序图和时间参数说明查阅相关手册。

4.2.3用户命令

用户通过用户命令调用OCMJ系列液晶显示器的各种功能。命令分为操作码及操作数两部分,操作数为十六进制。共分为3类10条,分别是:

一)、字符显示命令:

1、显示国标汉字;

2、显示8X8 ASCII字符;

3、显示8X16ASCII字符;

二)、图形显示命令:

4、显示位点阵;

5、显示字节点阵;

三)、屏幕控制命令:

6、清屏;

7、上移;

8、下移;

9、左移;

10、右移; (1)显示国标汉字

命令格式: F0 XX YY QQ WW。该命令为5字节命令(最大执行时间为1.2毫秒,Ts2=1.2mS),其中 XX为以汉字为单位的屏幕行坐标值,取值范围00到0

7、02到0

9、00到09。YY为以汉字为单位的屏幕列坐标值,取值范围00到0

1、00到0

3、00到04 。QQ WW为坐标位置上要显示的GB 2312 汉字区位码 。

(2) 显示8X8 ASCII字符

命令格式:F1 XX YY AS。该命令为4字节命令(最大执行时间为0.8毫秒,Ts2=0.8mS),其中 XX为以ASCII码为单位的屏幕行坐标值,取值范围00到0F、04到

13、00到13。YY为以ASCII码为单位的屏幕列坐标值,取值范围00到1F、00到3F、00到4F。AS坐标位置上要显示的ASCII 字符码 。

8 (3) 显示8X16 ASCII字符

命令格式:F9 XX YY AS。该命令为4字节命令(最大执行时间为1.0毫秒,Ts2=1.0mS),其中 XX为以ASCII码为单位的屏幕行坐标值,取值范围00到0F、04到

13、00到13。YY为以ASCII码为单位的屏幕列坐标值,取值范围00到1F、00到3F、00到4F。AS坐标位置上要显示的ASCII 字符码。

(4)清屏

命令格式:F4。该命令为单字节命令(最大执行时间为11毫秒,Ts2=11mS),其功能为将屏幕清空。 4.5语音录放模块

语音录放模块由单片语音录放芯片ISD2560 及其外围电路组成。 4.5.1 SD2560 芯片介绍

ISD2560 是美国ISD 公司推出的ISD2500 系列语音芯片的一种。ISD2500 系列芯片按录放时间60 秒、75 秒、90 秒和120 秒分成ISD2560、257

5、2590 和25120 四个品种。ISD2560 芯片具有抗断电、音质好,使用方便等优点,它使用单一的+5V 供电,录音部分有自动增益控制电路,录音的采样频率可达8KHz。ISD2560 片内有容量为480K 字节的E2PROM,所以录放时间长,可重复录制100000 次且可保持100 年不变。此外ISD2560 芯片支持分段录音和分段播放,有10 个地址输入端,寻址能力可达1024 位,最多能分600 段。芯片设有OVF(溢出)端,便于多个器件级联。 4.5.2 模块电路原理图

本电路中ISD2560采用按钮控制操作方式,A

9、A

8、A6接VCC,A1—A

5、A7均接GND,A0由CA0插孔引出,用于控制是否进入检索模式。ISD2560的音频输出端SP+、SP-经过音频功放LM386驱动喇叭。电位器R8(对应于模块上VOLUME电位器)用于调节喇叭的增益。 4.5.3 模块的基本测试方法

1、模块上P/-R、PD、CA0插孔分别接至实验箱的K

1、K

2、K3,EOM接实验箱指示灯L1,CE接单脉冲P-。

2、将K

1、K3拨至低电平,K2先高后低。按一下单脉冲P-, L1应熄灭。此时对这麦克风说一段话,然后再按P-,此时L1应被点亮,录音完成。

3、将K1 拨至高电平,K3 拨至低电平,K2 先高后低。按一下单脉冲P-, L1 应熄灭,此时可以听到刚才录的语音片断。播放完成后,L1 应被点亮。

9

图4 语音模块电路

5、设计思路

5.1数码管显示

通过可燃气体传感器,在有可燃气体的环境中,通过采样VOUT电压,将测试结果通过AD0809采样输出电压,A \\D转换,并通过8279显示电路使数码管显示相应的转换结果。 5.2 LCD显示

通过可燃气体传感器,在有可燃气体的环境中,通过采样VOUT电压,将测试结果通过AD0809采样输出电压,A \\D转换,并通过LCD液晶屏显示相应的转换结果。 5.3 语音报警

通过调节相应的滑阻设置阈值,当电路正常运行时,在可燃气体模块电路的Dout输出端就会有相应的开关量的输出。语音模块提前录好音,当可燃气体浓度超过阈值时,利用Dout输出量控制语音模块输出,即可实现语音报警。

6、实验测试步骤

6.1 数码管显示

1、实验连线:VOUT接A/D模块的ADIN0,CS0809选择CS3。

2、调节ZERO电位器,将VZERO调为0。将SEN.电位器调到最小,即VOUT输出最小。调节ALARM电位器,将VALARM调到2V。

3、运行实验程序,用打火机靠近可燃气体传感器并喷射少量气体,观察数码管显示的变化。 6.2 LCD显示

1、8255 的PA0~PA7接A/D PORT单元的DB0~DB7;

2、8255 的PC7接A/D PORT单元的BUSY;

3、8255 的PC0接A/D PORT单元的REQ;

4、8255CS接CS0;

5、运行实验程序,观察液晶的显示状态。 6.3 语音报警

1、实验箱上CS244 接到片选CS2。

2、实验箱上CS273 接到片选CS1。

3、实验箱上244 的输入IN0—IN1 接到实验箱上拨码开关的输出k7 和k8。

4、实验箱上273 的输出O0—O1 到ISD1700 语音模块上的REC 和PLAY。

7、程序流程

7.1数码管显示

11 7.2 LCD显示

图5 数码管显示程序流程图

图6 LCD液晶屏显示程序流程图

7.3最终程序流程图

开始LCD初始化BUSY为0?Y数据输出“检测结果”REQ置位NNBUSY为1?YREQ复位N数据读完?Y开始A\\D转换延时读入转换数据读入开关量开关量取反输出至语音模块所读数据低八位赋给BX将BX中数据取高四位数码管显示将BX中数据取高四位LCD显示将BX中数据取低四位数码管显示将BX中数据取低四位LCD显示延时

8、实验程序

14 8.1数码管显示

CON8279 EQU

0492H

;赋值伪指令给8279控制口地址赋予一个名字

DAT8279 EQU

0490H

;赋值伪指令给8279数据口地址赋予一个名字 CS0809 EQU

04D0H ;赋值伪指令给AD0809通道0控制口地址赋予一个名字

ASSUME CS:CODE

;将CS设置为存放CODE的段地址 CODE SEGMENT

PUBLIC

;PUBLIC,组合类型,逻辑段有相同的段名,集中为一个逻辑段装入内存

ORG

100H

;利用ORG伪指令使程序的起始地址为01100H,CS=0100H,IP=0100H

START: JMP

START1

;JMP无条件转移指令 START1: MOV DX,CS0809

;将CS0809放入DX寄存器中

MOV AX,34H

;任意给一个控制字,启动AD转换

OUT

DX,AX

;AD0809开始转换

WAIT:

MOV CX,0010H

;延时,等待AD转换结束 WAIT1: NOP

NOP

LOOP WAIT1

;CX不为0时转移

MOV

DX,CS0809

IN

AX,DX

;读入AD转换结果到CS0809

AND

AX,0FFH

;保留AX寄存器数据的低八位,高八位清零

MOV

BX,AX

;将AX寄存器数据传送到BX寄存器

NOP

;空操作

DISP:

MOV

DI,OFFSET SEGCOD;取SEGCOD的偏移地址放入变址寄存器DI

MOV

AX,08H

;8279控制字,左端入口,16个字符显示

MOV

DX,CON8279

OUT

DX, AX

;输出8279控制字到CON8279

MOV

AX, 90H ;8279控制字,写显示RAM 0000B内容,地址自加1

MOV

DX, CON8279

OUT

DX, AX

;输出8279控制字到CON8279

MOV

PUSH

AND

MOV

SHR

ADD 据相加

MOV AL寄存器

MOV

OUT

NOP

NOP

MOV 器DI

POP

AND

ADD 数据相加

MOV 到AL寄存器

MOV

OUT DX, DAT8279 ;将DAT8279放入DX BX

;将BX寄存器的数据压入堆栈,保护现场 BX,0F0H

;取BX寄存器数据的高四位

CL,4

;CL寄存器存放移位次数 BX,CL

;逻辑右移4位

DI,BX

;将DI中SEGCOD的偏移地址值与BX中数 AL,CS:[DI]

;将段地址为CS,偏移地址为DI的数据送到 AH,0

;AX寄存器的高八位置零

DX,AX

;将AX寄存器的数据输出到DAT8279端口

DI,OFFSET SEGCOD;取SEGCOD的偏移地址放入变址寄存

BX

;出栈,恢复现场

BX,0FH

;取BX寄存器数据的低4位

DI,BX

;将DI中SEGCOD的偏移地址值与BX中

AL,CS:[DI]

;将段地址为CS,偏移地址为DI的数据送

AH,0

;将AH寄存器置零

DX,AX

;将AX寄存器的数据输出到DAT8279端口

DELAY: MOV

CX, 2A00H

;延时

DELAY1: NOP

NOP

LOOP

DELAY1

;循环2A00H次

JMP

START1

;返回重新采集和转换数据并显示

SEGCOD DB

3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H

;空指令

;七段共阴数码管显示编码,分别对应着0123456789ABCDEF CODE ENDS

;代码段结束 END

START

;源程序结束

8.2 LCD显示

;= ;液晶显示

;CS0接CS8255,DB0-DB7接PA0-PA7,BUSY接PC7,REQ接PC0

;CS0片选信号,地址04A0-04AF,偶地址有效

ASSUME

CS:CODE

;将CS设置为存放CODE的段地址 CODE SEGMENT

PUBLIC

;PUBLIC,组合类型,逻辑段有相同的段名,集中成为一个逻辑段装入内存

ORG

100H

;ORG设置指令存储起始地址 ;= START: MOV DX, 04A6H

;将控制端口地址放入DX

MOV AX, 88H

;88H为工作方式选择控制字,A口方式0输出,PC7~PC4输入,B口方式0输出,PC3~PC0输出

OUT

DX, AX

MOV AX, 70H

OUT

DX, AX

;向控制端口发送工作方式选择控制字

;70H为C口按位置位/复位控制字,PC0复位 ;向控制端口发送C口按位置位/复位控制字

MOV AL, 0F4H

;LCD显示清屏

CALL COMD

;过程调用指令,调用过程COMD CALL DELAY

;过程调用指令,调用过程DELAY START1: MOV SI,OFFSET[TABLE] ;将TABLE的偏移地址送到SI寄存器

MOV CX, 4

;循环次数设定

WR1:

MOV DX, 04A4H

;WR1检查BUSY信号是否为零,将C数据端口地址放入DX

IN

AX, DX

;读入数据

AND

AX, 80H

;保留PC7的输出数据,即busy

JNZ

WR1

;ZF零标志位,ZF非零转移到WR1

MOV

AL, [SI]

;将地址在SI寄存器的数据送到AL

CALL

COMD

;调用过程COMD

INC

SI

;将TABLE的偏移地址缓冲区指针加1

LOOP

WR1

;CX寄存器的内容不为零,则循环WR1

CALL

DELAY

;调用过程DELAY OK:

JMP

START1

;无条件转移到START1 ;= DELAY: MOV

CX,1000H

;将1000H送入CX寄存器 DLYB: LOOP

DLYB

RET

;过程返回指令,回到原来调用过程的地方 ;= COMD: MOV

DX, 04A0H

;将A数据端口地址放入DX

OUT

DX, AL

;将相应数据输出

;将控制端口地址放入DX

MOV

DX, 04A6H

MOV

AX, 71H

;71H为C口按位置位/复位控制字,PC0置位

OUT

DX, AX

MON:

MOV

DX, 04A4H

;MON检查BUSY信号是否为零,将C数据端口地址放入DX

IN

AX, DX

;读入数据

;向控制端口发送C口按位置位/复位控制字

AND

AX, 80H

;保留PC7的输出数据,即busy

JZ

MON

;ZF零标志位,ZF非零转移到MON

MOV

DX, 04A6H

;将控制端口地址放入DX

MOV

AX, 70H

;70H为C口按位置位/复位控制字,PC0复位

OUT

DX ,AX

;向控制端口发送C口按位置位/复位控制字

RET

;过程返回指令,回到原来调用过程的地方 ;= TABLE: DB

0F9H,00D,00D,31H

;在此处输入要显示汉字的命令代码 CODE ENDS

;代码段结束 END

START

8.3 数码管,LCD显示,语音报警最终程序

CON8279 EQU

0492H

;赋值伪指令给8279控制口地址赋予一个名字 DAT8279 EQU

0490H

;赋值伪指令给8279数据口地址赋予一个名字 CS0809

EQU

04D0H

;赋值伪指令给AD0809通道0控制口地址赋予一个名字

ASSUME

CS:CODE

;将CS设置为存放CODE的段地址

CODE SEGMENT PUBLIC ;PUBLIC,组合类型,逻辑段有相同的段名,集中为一个逻辑段装入内存

ORG

100H ;利用ORG伪指令使程序的起始地址为01100H,CS=0100H,IP=0100H START: MOV DX, 04A6H

;将控制端口地址放入DX

MOV AX, 88H

;88H为工作方式选择控制字,A口方式0输

;源程序结束

出,PC7~PC4输入,B口方式0输出,PC3~PC0输出

OUT

DX, AX

;向控制端口发送工作方式选择控制字

MOV AX, 70H

;70H为C口按位置位/复位控制字,PC0复位

OUT

DX, AX

;向控制端口发送C口按位置位/复位控制字 MOV AL, 0F4H

;LCD显示清屏

CALL COMD

;过程调用指令,调用过程COMD

CALL DELAY

;过程调用指令,调用过程DELAY

19

MOV

CX, 25

;循环次数设定

MOV

SI,OFFSET JCJG ;将JCJG的偏移地址送到SI寄存器

JCJG1: MOV

DX, 04A4H

;JCJG1检查BUSY信号是否为零,将C数据端口地址放入DX IN

AX, DX

;读入数据

AND

AX, 80H

;保留PC7的输出数据,即busy信号

JNZ

JCJG1

MOV

AL, [SI]

CALL

COMD

INC

SI

LOOP

JCJG1

CALL

DELAY

JMP

START1

START1: MOV

DX, CS0809 MOV

AX, 34H

OUT

DX, AX

WAIT:

MOV

CX, 0010H

WAIT1: NOP

NOP

LOOP

WAIT1

MOV

DX, CS0809

IN

AX, DX

AND

AX, 0FFH

MOV

BX, AX

NOP

;ZF零标志位,ZF非零转移到JCJG1

;将地址在SI寄存器的数据送到AL ;调用过程COMD

;将JCJG的偏移地址缓冲区指针加1

;CX寄存器的内容不为零,则循环JCJG1 ;调用过程DELAY

;无条件转移到START1

;将CS0809放入DX寄存器中

;任意给一个控制字

;AD0809开始转换

;延时,等待AD转换结束

;CX不为0时转移

;读入AD转换结果到CS0809

保留AX寄存器数据的低八位,高八位清零

;将AX寄存器数据传送到BX寄存器

;空操作

; yy:

MOV

DX,04C0H

;74LS244地址

IN

AL,DX

;读输入开关量

NOT

AL

;将AL内容取反

MOV

DX,04B0H

;74LS273地址

OUT

DX,AL

;输出值语音模块

DISP:

MOV

DI, OFFSET SEGCOD;取SEGCOD的偏移地址放入变址寄存器DI

MOV

MOV

OUT

MOV

地址自加1

MOV

OUT

MOV

PUSH 场

AND

MOV

SHR

ADD

中数据相加

MOV

据送到AL寄存器

AX, 08H

;8279控制字,左端入口,16个字符显示 DX, CON8279

DX, AX

; 输出8279控制字到CON8279 AX, 90H

;8279控制字,写显示RAM 0000B内容,DX, CON8279

DX, AX

;输出8279控制字到CON8279 DX, DAT8279 ;将DAT8279放入DX BX

;将BX寄存器的数据压入堆栈,保护现 BX,0F0H

;取BX寄存器数据的高四位 CL,4

;CL寄存器存放移位次数

BX,CL

;逻辑右移4位

DI,BX

;将DI中SEGCOD的偏移地址值与BXAL,CS:[DI]

;将段地址为CS,偏移地址为DI的数

21

MOV

AH,0

;AX寄存器的高八位置零

OUT

DX,AX

;将AX寄存器的数据输出到DAT8279端口

NOP

NOP WR1:

MOV

DX, 04A4H

;WR1检查BUSY信号是否为零,将C数据端口地址放入DX

IN

AX, DX

;读入数据

AND

AX, 80H

;保留PC7的输出数据,即busy

JNZ

WR1

;ZF零标志位,ZF非零转移到WR1 MOV

AL, 0F9H

;显示8X16ASCII字符命令

CALL

COMD

;调用过程COMD

;输入列信息

MOV

AL, 0AH

CALL

COMD

;调用过程COMD

MOV

AL, 00H

;输入行信息

MOV

SI,OFFSET SEGCOD2 ;取SEGCOD2的偏移地址放

CALL

COMD

;调用过程COMD 入变址寄存器SI

ADD

SI, BX

;将SI中SEGCOD2的偏移地址值与BX中数据相加

MOV

AL, [SI]

;将地址在SI寄存器的数据送到AL

CALL

COMD

;调用过程COMD

MOV

DX, DAT8279 ;将DAT8279放入DX寄存器中

22

MOV

DI,OFFSET SEGCOD;取SEGCOD的偏移地址放入变址寄存器DI

POP

BX

;出栈,恢复现场

AND

BX,0FH

;取BX寄存器数据的低4位

ADD

DI,BX

;将DI中SEGCOD的偏移地址值与BX中数据相加

MOV

AL,CS:[DI]

;将段地址为CS,偏移地址为DI的数据送到AL寄存器

MOV

AH,0

;将AH寄存器置零

OUT

DX,AX

;将AX寄存器的数据输出到DAT8279端口

WR2:

MOV

DX, 04A4H

;WR2检查BUSY信号是否为零,将C数据端口地址放入DX

IN

AX, DX

;读入数据

AND

AX, 80H

;保留PC7的输出数据,即busy

JNZ

WR2

;ZF零标志位,ZF非零转移到WR2

MOV

AL, 0F9H ;显示8X16ASCII字符命令

CALL

COMD

;调用过程COMD

MOV

AL, 0BH

;输入列信息

CALL

COMD

;调用过程COMD

MOV

AL, 00H

;输入行信息

CALL

COMD

;调用过程COMD

MOV

SI,OFFSET SEGCOD2;将SEGCOD2的偏移地址送到

23 SI寄存器

ADD

SI, BX

;将SI中SEGCOD的偏移地址值与BX中数据相加

CALL

COMD

;调用过程COMD CALL

DELAY

;调用过程DELAY

DELAY0:

MOV

CX, 2A00H

;延时 DELAY1:

NOP;空指令

NOP

LOOP

DELAY1

;循环2A00H次

OK:

JMP

START1

;返回重新采集和转换数据并显示 ;= DELAY:

MOV

CX,1000H

;将1000H送入CX寄存器 DLYB:

LOOP

DLYB

RET

;过程返回指令,回到原来调用过程的地方

;= COMD:

MOV

DX, 04A0H ;将A数据端口地址放入DX

OUT

DX, AL

;将相应数据输出

MOV

AL, [SI]

;将偏移地址为SI的数据送到AL寄存

MOV

DX, 04A6H

;将控制端口地址放入DX

MOV

AX, 71H

;71H为C口按位置位/复位控制字,PC0置位

OUT

DX, AX 制字

24

;向控制端口发送C口按位置位/复位控

MON:

MOV

DX, 04A4H

;MON检查BUSY信号是否为零,将C数据端口地址放入DX

IN

AX, DX

;读入数据

AND

AX, 80H

;保留PC7的输出数据,即busy

JZ

MON

;ZF零标志位,ZF非零转移到MON

MOV

DX, 04A6H

;将控制端口地址放入DX

MOV

AX, 70H

;70H为C口按位置位/复位控制字,PC0复 位

OUT

DX ,AX

;向控制端口发送C口按位置位/复位控制字

RET

;过程返回指令,回到原来调用过程的地方

;= SEGCOD

DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H ;七段共阴数码管显示编码,分别对应着0123456789ABCDEF

SEGCOD2 DB 30H,31H,32H,33H,34H,35H,36H,37H,38H,39H,41H,42H,43H,44H,45H,46H ;0123456789ABCDEF的ASCII码 JCJG

DB 0F0H,00D,00D,28D,76D,0F0H,01H,00H,18D,66D,0F0H,02H,00H,29D,65D,0F0H,03H,00H,25D,91D,0F9H,08H,00H,3AH;显示“检测结果:”

CODE ENDS

;代码段结束 END

START

;源程序结束

9实验现象及说明

25 9.1 运行数码管显示程序

实验现象:

将打火机靠近气体传感器,数码管会显示相应AD转换结果

当气体浓度超过阈值时,LED灯会亮。

9.2 运行LCD显示程序

26 实验现象:

将打火机靠近气体传感器,液晶屏会显示相应AD转换结果

9.3 运行数码管,LCD显示,语音报警程序

实验现象:

将打火机靠近气体传感器,数码管,LCD会显示相应AD转换结果,当气体浓度超过阈值时,LED灯会亮,语音报警模块会报警。

27 10实验结论

在完成对已有程序的解读,通过可燃气体传感器检测气体浓度,并在数码管上显示气体浓度转换为的电压值后,我们改进了程序,使其在LCD液晶屏上显示气体浓度转换为的电压值,最后进一步改进,使气体浓度转换为的电压值可以同时在数码管和LCD液晶屏上显示,最后我们加入了语音报警模块,当检测值超过阈值后,会有相应的报警。

11承担的主要任务

在气体传感器模块微机原理课程设计中,我主要进行小组内成员的分工,课程设计进度的调整。以及对气体检测模块相关程序的解读,对已有程序的修改和程序的调试。

12结论及设计心得与体会

通过对气体传感器模块的相应功能的实现,我更深入的了解了微机原理课程的相关知识。通过亲身实践,对汇编语言有了更深入的理解。巩固了上学期学习的微机原理基本知识,当然还认识到自己还有很多不足,比如对汇编语言的理解还比较浅显,有些细节还没有引起自己足够的重视等。我还认识到在进行设计实验时,程序的流程图是十分重要的,在对整个程序的理解方面起着十分关键的作用。在分析程序时,先按照功能将程序分为几个部分,再对每个部分分别在细节上分析是十分有效的方法。

总之,经过微机原理课程设计,我对汇编语言程序与相应硬件外设结合实现相应的功能这整个过程有了一定的了解,对于汇编语言知识的有了更深入的了解。

28

微机原理课程设计

微机原理课程设计

微机原理课程设计

微机原理课程设计

微机原理课程设计

微机原理课程设计

微机原理课程设计题目

微机原理课程设计题目

微机原理课程设计指导书

微机原理课程设计心得体会

微机原理课程设计
《微机原理课程设计.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档