人人范文网 范文大全

数字信号处理习题解答1

发布时间:2020-03-01 18:39:43 来源:范文大全 收藏本文 下载本文 手机版

第一章

3.判断下面的序列是否周期的(1).x(n)Acos(3n),A是常数78j(1n)(2).x(n)e85.试判断系统是否为线性时不变的(5)y(n)=x2(n)(7) y(n)=x(n)sin(n)6.试判断系统是否为因果稳定系统(4)y(n)=x(n-n) 0x(n)(5)y(n)e第二章

1.求下列序列的傅里叶变换(7)x(2n)DTFT[x(2n)]=x(2n)e-jnn=-令m=2n,于是DTFT[x(2n)]==1212m=-,m为偶数x(m)e-jm/2mm=-[x(m)(1)-jm/2m=-x(m)]e-jm/2[x(m)e12[X(ej12m=-j(1)2e)]jmx(m)e-jm/2] )X(e14.求出下列序列的z变换及收敛域 (1) 2-nu(n)X(z)n2znnu(n)zn

n2n11,|(2z)|111(2z)z,|z|121z2-3z-117.已知X(z)=,分别求:-1-22-5z+2z(1)收敛域0.5 2对应的原序列x(n) 解:X(z)=11--11-11-2z-12z

收敛域0.5 2时:nnx(n)=(1)u(n)-2u(n)221.已知线性因果网络用下面差分方程表示: y(n)=0.9y(n-1)+x(n)+0.9x(n-1)(1)求网络的系统函数及单位脉冲响应h(n)(2)写出网络频率响应函数H(ej)的表达式,并定性画出其幅频特性曲线解:1+0.9z-1(1)H(z)=,|z|>0.9-11-0.9z-1n-11+0.9z令F(z)=H(z)z=zn-1-11-0.9z当n1时,有极点z=0.9h(n)=Res[F(z),0.9]1+0.9z-1n-1=z(z-0.9)|z=0.91-0.9z-1=20.9n因为系统是因果系统,所以有h(n)=0,n

=h(m)ej0ne-j0mm=0=ej0nH(ej0)=ej0nej0+0.9ej0-0.9

第三章

6.设下列x(n)长度为N,求下列x(n)的DFT (1)x(n)(n) (2)x(n)(nn0)0n0N

1(3)x(n)an(5)x(6)(4)x(n)ej0nRNn

ncos0nRNn

xnsin0nRNn (7)xnnRNn

100kN1

其他0kN1

其他解:(1)X(k)kn0j2Ne

(2)X(k)0kn0N1j2N1aNe2jk

(3)X(k)n0N1ae00kN1其他2knNj(02k)nN

(4)X(k)x(n)Wn0N1nkNen0N1j0neje

(5)x(n)cos(0n)RN(n)1j0n(eej0n)RN(n) 211ej0N1ej0NX(k)j0kk21eWN1ej0WN

kk1ej0N1ej0WN11ej0N1ej0WN j0j0kk21eWN1eWNk1cos0Ncos0N1cos0WNk2k12cos0WNWN

(6)

1x(n)sin(0n)RN(n)(ej0nej0n)RN(n)

211ej0N1ej0NX(k)j0kk2j1eWN1ej0WNjNjkk1ej0N1ej0WN11e01e0WN

 kk2j1ej0WN1ej0WNsin0N1sin0WNksin0Nk2k12cos0WNWN1zN

(7)设x1(n)RN(n),则X1(z)

1z1d1zN

x(n)nx1(n),则X(z)z1dz1z 

X(z)zNzN11z1z21zNX(k)X(z)zWkN1zNW1WW1W12kNNkNkNk2NNz1zz1z

1z1WN

N11N12kNNkWN1kNkN

因为WN1,WN10

N1n0X(k)k0n123(N1)N(N1) 221.(1)模拟数据以10.24KHz速率取样,若已知1024个取样的离散傅立叶变换。求频谱取样之间的频率间隔。

(2)以上数字数据经处理以后又进行了离散傅立叶反变换,求离散傅立叶反变换后抽样点的间隔为多少?整个1024点的时宽为多少?

10240Hz10Hz

10241s97.66s (2)抽样点的间隔

T10.24103整个1024点的时宽

T97.661024ms100ms 解:(1)频率间隔

F第四章

1.如果一台通用计算机的速度为平均每次复数乘法需要50us,每次复数加法需要5us。用它来计算N=512点DFT,问直接计算需要多少时间,用FFT计算需要多少时间?照这样计算,用FFT进行快速卷积对信号进行处理时,估算可实现实时处理的信号最高频率。 解:

(1)512点直接DFT计算的时间: 复数乘法:N=512x512x50us=13.1072s 复数加法:N(N-1)=512x511x5us=1.308s 512点直接DFT计算的时间=13.1072s+1.308s=14.4152s (2)用FFT计算的时间:

复数乘法:N0.5x512x9x50us=0.1152s 2log2N=复数加法:Nlog2N=512x9x5us =0.023s 用FFT计算的时间=0.1152s+0.023s=0.1382s (3)用FFT进行快速卷积对信号处理时间: 假设IFFT也用FFT程序计算,则在实时计算中使用的时间是两次FFT时间(h(n)的FFT计算按照事先计算好存储备用),外加一次512点的复数乘法:

用FFT进行快速卷积对信号处理时间=2 x 0.1382s +512x50us = 0.302s 实时处理时,信号采样的最高采样频率:210.302512=1695.36Hz 信号的最高频率=1695.36/2=847.68Hz 7.某运算流图如图所示,问:

(1)图示是按时间还是按频率抽取的FFT? (2)把图示中未完成的系数和线条补充完整。 解:

(1) 分析图示的流图结构,发现其中基本的蝶形运算单元是先加减后乘系数的,因此是按频率抽取的基2FFT x(0) x(2) -1 x(1)

-1 x(3) -1 (2) 第五章

6.用脉冲响应不变法及双线性变换法将模拟传递函数HasX(0) X (1)

W04

WW04

X (2)

W14

-1 04

X (3)

3s1s3转变为数字传递函数H(z),采样周期T0.5。

解:Ha(s)3113();ha(s)(ete3t)u(t)2s1s323h(n)T(enTe3nT)u(n),代入T0.523(en2e3n2)u(n)43113(1e32z1)(1e12z1)H(z)()12132141ez4(1e12z1)(1e32z1)1ez3(e12e32)z10.2876z1123212241(ee)zez10.829z10.135z2(2)双线性变换H(z)Ha(s)T1z121z1s3s24s3s41z11z131z121z116()163111z1z3(12z1z2)36z13z21632z116z21616z236z13z23526z13z20.08750.1714z10.0857z210.7429z10.0857z2MATLAB程序及运算结果如下:%脉冲不变法、双线性变换法;b[003];a[143];3(1z1)216(1z1)216(1z1)(1z1)3(1z1)2

[bz1az1]impinvar(b,a,2)%脉冲不变法bz1分子系数az1分母系数;[bz2az2]bilinear(b,a,2)%s双线性变换法bz2分子系数az2分母系数;结果:

bz1=0

0.2876

0

az1=1.0000

-0.8297

0.1353

bz2=0.0857

0.1714

0.0857

az2=1.0000

-0.7429

0.0857 7.用脉冲响应不变法及双线性变换法将模拟传递函数Has3转变为数字传递函数H(z),采样周期2ss1T2。

解:(1)脉冲响应不变法Ha(s)111s2s1(s12)234(s12)2(32)2A1s12j(32)1s12j(32)*s12j(32)A2s12j(32)1j31j3T(12j(32)T1A1j3j3)将T2代入A2A1H(z)1s12j(32)j31e(T(12j(32)Ts12j(32)1ez22e1sin3z10.8386z1121122312ecos3zez10.1181z0..135z其中:sin3sin3180./0.987cos3cos3180./0.1606(2)双线性变换H(z)Ha(s)11z11z1z1s1s2s1s1z11z11z121z1()1111z1z(12z1z2)12z1z21221212zz1z12zz3z20.33330.6667z10.3333z210.3333z2(1z1)2(1z1)2(1z1)(1z1)(1z1)2

MATLAB程序及运算结果如下:%脉冲不变法、双线性变换法;b[001];a[111];[bz1az1]impinvar(b,a,0.5)%脉冲不变法bz1分子系数az1分母系数;[bz2az2]bilinear(b,a,0.5)%s双线性变换法bz2分子系数az2分母系数;

结果:

bz1=0

0.8386

0

az1=1.0000

0.1181

0.1353

ba2=0.3333

0.6667

0.3333 az2=1.0000

0

0.3333 10.设有一模拟滤波器Ha(s)

1,采样周期T2,用双线性变换法将其转换为数字系统函数H(z)。

s2s1解

由变化公式

1z1

sc 11z及c2,T2,可得 T1z1

s

1z1所以

H(z)Ha(s)1z11z1

s

=

11z121z1()()1111z1z

(1z1)2

=

3z218.用双线性变换法设计巴特沃兹数字高通滤波器,要求通带边界频率为0.8rad,通带最大衰减为3dB,阻带边界频率为0.5rad,阻带最小衰减为18dB。

解:已知p0.8rad,s0.5rad,p3dB,s18dB

(1)将数字高通滤波器的边界频率转换为相应的模拟高通滤波器Ha(s)的边界频率。(令T=2)

phtanp2tan0.80.50.006981,shtanstan0.004363 222(2)将Ha(s)的指数转换为模拟低通归一化原型滤波器G(p)的指标

p1,p3dB;sphsh1.6,s18dB

设计程序:

% 调用函数buttord,butter,lp2hp和bilinear用双线性变换法设计巴特沃思数字高通滤波器程序: ex623.m

wp=1;ws=1.6;rp=3;as=18;

[N,wc]=buttord(wp,ws,rp,as,’s’); [Bap,Aap]=butter(N,wc,’s’); [BHP,AHP]=lp2hp(Bap,Aap,1.6); [Bz,Az]=bilinear(BHP,AHP,0.5); % N,Bz,Az为所设计巴特沃思数字高通滤波器的阶数和系统函数; 运行结果:

N=5

Bz=[0.0165-0.0824 0.1648-0.1648 0.0824-0.0165]

Az=[1.0000 1.2604 1.1914 0.5375 0.1505 0.0166]

19.设计巴特沃兹数字带通滤波器,要求通带范围为0.25rad0.45rad,通带最大衰减为3dB,阻带范围为00.15rad和0.55radrad,阻带最小衰减为15dB。 解:(1)确定数字带通滤波器性能

,10.25rad,s20.55rad,s10.15rad u0.45rad通带内最大衰减p3dB,阻带内最小衰减s15dB (2)确定模拟滤波器性能。若T=2s

u2tanutan0.2250.854r1ad/s T2

12tan1tan0.1250.414r2ad/s T2

s22tans2tan0.2751.170r8ad/s T2

s12tans1tan0.0750.2401rad/s T2u10.5948rad/s, 通带心频率0带宽Bu10.4399将频率对B归一化,得到相应归一化带通边界频率:

uu1.941,6110.9416,s2s22.6615, BBBs10.5458,0u11.3521 B

s1(3)由归一化带通性能确定相应模拟归一化低通性能

s2202

归一化阻带截频率为s1.9746

s2

归一化通带截频率为p1,p3dB,s18dB (4) 设计模拟归一化低通G(p)

s10p1100.31

ksp,1.9746 0.1266sp0.1s1.8p101101

N

取N=3.

查表得,G(p)0.1lgksplgsplg0.12663.04

lg1.97461p32p22p1

(5)频率变换,将G(p)转换成模拟带通Ha(s) HasG(p)ps202

sBB3s3s2203222s20sB2s20s2B2s3B332

0.08s55432s60.879s81.448s40.707s60.512s40.110s10.0443(6)用双线性变换公式将Ha(s)转换成H(z) H(z)Hass21z1T1z1[0.01811.77641015z10.0543z24.4409z30.0543z42.77561015z50.0181z6][12.272z13.515z23.2685z32.3129z40.9628z50.278z6]1 第七章

7.画出下面系统函数的直接型结构图

2.52z10.6z2

H(z)

10.5z10.6z20.5z3解:

8.用级联方式画出下面系统的结构图

2(z1)(z21.414z1)

H(z)

(z0.3)(z20.9z0.81)21z111.414z1z2解:Hz

10.3z110.9z10.81z2

6.已知FIR的系统函数为

H(z)1(10.9z12.1z20.3z32.2z40.3z52.1z60.9z7z8) 15

画出该系统的直接型结构。 解:

9.已知FIR系统的16个频率采样值为:

H(0)12,H(1)3j3,H(2)1j ,H(3)H(4)......H(13)0,H(2)1j,H(1)3j3 ,

试画出其频率采样结构图,如果取r=0.95,画出其修正的采用实系数乘法的频率采样结构图。

1zN解:HzNHk,k1k01WNzN1N16

取修正半径r=0.95,将上式中互为复共轭得并联支路合并,得

1r16z16Hz16Hk11610.4401zk116k01rW16z15H010.95z1H110.95W1z116

H15H2H14 1512114110.95W16z10.95W16z10.95W16z110.4401z16

161266.5254z122.6870z1其结构图如1121211.3435z0.9025z11.7554z0.9025z10.95z下图:

数字信号处理习题解答

《数字信号处理(第四版)》部分课后习题解答

数字信号处理习题与答案

数字信号处理课后习题Matlab作业

《数字信号处理》教学大纲

数字信号处理课程设计

数字信号处理课程设计..

数字信号处理学习心得

数字信号处理教案

数字信号处理实验报告

数字信号处理习题解答1
《数字信号处理习题解答1.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档