人人范文网 范文大全

分子印迹技术原理及其在分离提纯上的应用剖析

发布时间:2020-03-04 03:53:58 来源:范文大全 收藏本文 下载本文 手机版

生物分离的新技术——分子印迹

—创新论坛—工业生物技术专家报告会

2008级生命学院3班微生物与生化药学专业

2008001243 宋汉臣

目 录

1分子印迹技术的原理与方法…………………………………………3

1.1 MIP的制备过程…………………………………………………………3 1.2制备MIP的方法………………………………………………………3 1.2.1预组装法——共价键作用…………………………………………4 1.2.2自组装法——非共价作用…………………………………………4 1.2.3 共价作用与非共价作用联合法……………………………………5

2 分子印迹技术在分离上的应用………………………………………5

2.1 MIP作为固定相的分离技术…………………………………………6 2.1.1MIP作为固定相分离天然产物………………………………………6 2.1.2MIP作为固定相检测食品中药物的残留…………………………7 2.2分子印迹膜(MIM)分离技术……………………………………………7

3问题与展望…………………………………………………………………8

4 参考文献……………………………………………………………………9

1 摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。

关键字:分子印迹 生物分离

分子印迹聚合物

2 前言:

分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

3

分子印迹技术是近年发展起来的一种新方法[2],它可为人们提供具有期望结构的性质的分子组合体。当体系中存在着模板分子时,功能单体可以通过聚合使这些模板分子以互补的形式固定下来。聚合后,模板分子可被除去,于是在这一过程中,体系变动的“快照”就可被“拍摄”或记录下来,此对模板分子具有“记忆”功能,再遇到模板分子时就表现出独特的识别性能。从而使获得的分子组装体能专一性地键合模板分子以及它的类似物。

1分子印迹技术的原理与方法

分子印迹技术是指制备对某一特定分子具有选择性识别能力的聚合物的技术。模板分子与功能单体相互作用形成超分子复合物,再在交联剂作用下形成聚合物;当在一定条件下除

[4]去模板分子后,即可得到分子印迹聚合物(MIP)。

[5]1.1 MIP的制备过程

MIP的制备过程主要由如下 4步构成: (1)印迹分子与功能单体通过共价或非共价键作用相互结合,形成印迹分子-单体配合物(图1步骤3)

(2)在配合物中加入交联剂,受引发剂、热或光引发,印迹分子-单体配合物周

围产生聚合反应。在此过程中,聚合物链通过自由基聚合将模板分子和单 体配合物“捕获”到聚合物的立体结构中。常用交联剂有:双甲基丙烯酸乙二醇酯、季戊四醇三丙烯酸酯、三甲氧基丙烷、三甲基丙烯酸酯、二乙烯基苯等。(图1步骤4)

[6](3)洗脱印迹分子,得到印迹聚合物,形成含有与印迹分子形状和功能基团排列相匹配的空穴。分子印迹的3个过程可用图1来描述。(图1步骤5)因此MIP对印迹分子有“记忆”功能,对其具有高度的选择性。

图1分子印迹示意图(4) 后处理。在适宜的操作条件下对印迹分子聚合物进行成型加工和真空干燥等后处理。所制备的分子印迹聚合物应具备良好的物理化学和生物稳定性、高吸附容量和使用寿命、特定的形状尺寸,以获得较高的应用效率。

[2]1.2制备MIP的方法

根据印迹分子和功能单体之间的作用可将制备MIP的方法分为以下三种: 1.2.1预组装法 (Pre-organized approach)——共价键作用

共价键法是由Wullf等人创立发展起来的。该方法中印迹分子 (目标分子 )和功能单体以共价键的形式结合生成单体—模板配合物,单体—模板配合物于交联剂反应生成聚合物

[3] 后,进一步在化学条件下打开共价键使印迹分子脱离。此时形成的共价键既稳定又可逆,这似乎是相互矛盾的双重特性,所以注定了其生成的分子稳定性高、抗性好、选择性强,但产物的洗脱困难的特性。共价键法主要应用于制备各种具有特异识别功能的聚合物,如糖类及其衍生物、甘油酸及其衍生物、氨基酸及其衍生物、香酮、醛类及甾醇类物质。 1.2.2自组装法(Self-aembly approach)——非共价作用

非共价键法是由Mosbach等人发展起来的,即把适当比例的印迹分子与功能单体和交联剂混合,通过非共价键结合在一起生成非共价键印迹分子聚合物。非共价作用不必合成共价的单体-模板配合物,可在温和的条件下很快的将模板从聚合物中除去,拥有较快的反应速度,但这些也恰恰反映了非共价作用的缺点:选择特异性不强、生成的聚合物不稳定。此法主要应用于下列物质的分离中: 染料、二胺、维生素、氨基酸衍生物、多肽、肾上腺素功能药物阻抑剂、茶碱、二氮杂苯、核苷酸碱基、非甾醇类抗感染药莱普生和苄胺等。

共价键法和非共价键法的主要区别在于:单体与模板分子的结合机理不同,非共价键法中通过弱的相互作用力在溶液中自发地形成单体模板分子复合物,而共价键法是通过单体和

[3]模板分子之间的可逆性共价键合成单体模板分子复合物的,见(图13)。

图13 共价作用与非共价作用过程1.2.3 共价作用与非共价作用联合法

近来 Vulfson等人又发展了一种称之为“牺牲空间法 ( sacrificial spacer method)”的分子印迹技术。该法实际上是把分子自组装和分子预组织两种方法结合起来形成的方法,其制备过程如图 14所示。

[3]

图 14 牺牲空间法示意图模板分子与功能单体以共价键的形式形成模板分子的衍生物(单体—模板分子复合物),这一步相当于分子预组织过程,然后交联聚合,使功能基固定在聚合物链上,除去模板分子后,功能基留在空穴中。当模板分子重新进入空穴中时,模板分子与功能单体上的功能基不是以共价键结合,而是以非共价键结合,如同分子自组装。那么整个过程也就是制备时模板分子与功能单体共价结合,反应时底物分子和聚合物非共价结合。这样就同时拥有了稳定性

5 高、抗性好、选择性强等预组装法过程的优点,和反应快,易分离的自组装法优点。

[7]2 分子印迹技术在分离上的应用

MIP具有良好的操作稳定性和特异的识别性质,不受酸、碱、热、有机溶剂等各种环境因素影响的特点。MIP的印迹分子范围广阔,MIP的最重要的用途之一就是用于分离混合物,MIP用于分离中最主要的用途之一是作为色谱固定相,并已用于高效液相色谱 (HPLC)、毛细管电色谱(CEC)、以及薄层色谱 (TLC)分离中,还用于膜分离、固相萃取等重要分离技术。 2.1 MIP作为固定相的分离技术

分子印迹固相萃取具有:对目标物能选择性吸附;能耐高温高压、耐有机溶剂;重复使

[8]用次数高等优点。自从Sellergren于1994年将MIPs用于戊脒的固相萃取以后,基于MIPs的固相萃取(MISPE)技术已被广泛应用于药物、生物、食品、环境样品分析,作为监测药物生物大分子、烟碱、除草剂、农药、硝基酚等的前处理 2.1.1MIP作为固定相分离天然产物

天然产物有效成分含量低,难于富集;体系复杂,大分子和小分子、生命和非生命物质共存,存在结构相近的异构体,分离纯化难度大;许多天然产物具有热敏,易水解等特点。将MIP应用于中药成分的分离纯化就是以待分离的化合物为印迹分子(也称模板、底物),制备对该类分子有选择性识别功能的MIPs,然后以这种MIPs作为吸附材料用于中药成分的分离纯化。其最大的特点是分子识别性强,选择性高,成本低,而且制得的MIPs有高度的交联性,不易变形,有良好的机械性能和较长的使用寿命,这无疑是一种高效的中药有效成分分离技术。

[9]尹艳凤等以大黄素分子为模板,甲基丙烯酸为单体,乙二醇二甲基丙烯酸酯为交联剂,甲苯和十二醇为混合致孔剂,在优化的合成条件下制得的分子印迹整体柱能有效地分离大黄[10]素及其类似物。程绍玲将MIP用于葛根提取物的分离,有效地从葛根提取物中分离出葛根素、大豆苷元和大豆苷,并且所得产品中葛根素纯度为78% ,收率为83% ,远要高于普通

[11]大孔吸附树脂对葛根提取液的分离结果。雷启福等制备了以没食子儿茶素没食子酸酯为模板分子,采用本体聚合法制备了分子印迹聚合物,研究了其特异的分子识别能力,利用聚合物的高选择性和结合能力,对茶叶提取物茶多酚中有效成分进行固相萃取剂分离富集,实现了产物的色谱分离检测。

[12]长春碱与长春新碱具有很高的理化相似性很难分离,冯建涌等将制备的长春碱(VLB)分子印迹聚合物填充于固相萃取小柱中,用甲醇:冰醋酸(6:4,v/v)为溶剂抽提聚合物,抽提后的聚合物通过氢键等非共价键作用能特异性地吸附模板分子VLB,而对VLB的结构类似

[13]物长春新碱没有选择性。向海艳以白藜芦醇为模板分子合成了对天然活性物质白藜芦醇具有较好选择性的MIPs,对白藜芦醇有较高的吸附性能和选择性:将虎杖提取物经白藜芦醇MIPs固相萃取,得到主要含白藜芦醇及少量结构与其相似的白藜芦醇苷组分,显示出分子印迹分离法在中药有效成分分离纯化中可喜的应用前景! 2.1.2MIP作为固定相检测食品中药物的残留

食品安全性问题日益突出,食品中农药、兽药残留等问题已对环境造成污染,给人类带来危害,最近的三聚氰胺事件再一次为食品检测敲响警钟。许多食品样品的基体和组成相当复杂,被分析物处于痕量状态,易受到干扰。MIP具有优越的识别性和选择性。我国非常重视此项技术的研究和发展,“十一五”开局的2006年,国家863计划将分子印迹技术在食品中农药、兽药残留检测领域的应用作为重点技术进行支持,并以现代农业技术领域专题的形式进行立项。

乐果是一种高效广谱性杀虫杀螨剂,具有强烈内吸和触杀作用,对害虫击倒快,对人、畜

[14]毒性较高。2007年北京化工大学的Lv Yongqin“研究了以杀虫剂乐果(dimethoate)为模板分子制备乐果印迹聚合物,并用该印迹聚合物装填的固相萃取柱对茶叶中的农药乐果进行 6 了分离纯化,获得了满意的效果,加标的乐果样品在MISPE柱中的回收率达100%。农药精喹禾灵是一种新型的具有光学活性的芳氧苯氧基丙酸酯类除草剂,具有高效低毒、使用安全等优点。自1995年在我国实现工业化生产并投入应用以来,得到了迅速发展和广泛应用。虽然其毒性较小,但仍对人畜有一定的毒副作用,尤其对藻类、鱼类毒性较高,而且能在土

[15]壤、环境水、果实中残留。阿布力克木·阿布力孜等采用分子印迹技术合成了对农药精喹禾灵有高选择性的印迹聚合物。该聚合物以精喹禾灵为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈(AIBN)作为自由基引发剂。以Scatchard分析表明,精喹禾灵与MAA形成两类不同的结合位点,离解常数分别为33Kd1=810mol/L和Kd2=1.34×l0 mol/L表明该聚合物对精喹禾灵呈现出高的选择性,可以作为快速检测精喹禾灵残留的方法。

动物性食品中残留的甾醇激素对人们的身体健康具有潜在的危害,成为食品安全领域的[16]研究热点。朱秋劲等,研究了分子印迹技术对奶粉样品中残留的痕量17—β一雌二醇的检测。该聚合物采用沉淀法聚合,以三氟甲基丙烯酸作单体和三甲氧基丙烷三甲基丙烯酸酯作交联剂。用MISPE柱和商品C一18柱对4种固醇标准液(孕酮、17一α一雌二醇、17—β一雌二醇、雄(甾)烯二酮)和奶粉中提取的17—β一雌二醇的吸附性能作比较,实验结果表明:用MISPE柱吸附量为3.612 mg/g,而用C一18柱吸附量为2.617mg/g,而且MISPE柱的重现性达85.5%。研究表明:分子印迹聚合物对奶粉类的复杂生物样品中的痕量17—β一雌二醇分离

[17]纯化的效果优于商品C一18柱。王慧等应用分子印迹方法合成了对青霉素有特异性吸附能力的印迹聚合物PenG-MIP,在牛乳中的吸附平衡时间为6h.在牛乳中青霉素印迹聚合物对青霉素表现出高特异性。用一定量颗粒吸附处理含有青霉素的牛乳。实现分子印迹技术用于牛乳中青霉素残留的快速定量检测,检测下限为5μg/L或以下,结果准确度高,操作简便,且PenG—MIP颗粒可以反复使用,极大的降低了检测的成本。

以上两种关于牛奶中化合物的分子印迹检测法,对现在牛奶中三聚氰胺的快速痕量检测方法的发明具有指导意义! 2.2分子印迹膜(MIM)分离技术

[18]分子印迹膜(MIM)是一种兼具分子印迹技术与膜分离技术的优点的新兴技术,近年来已成为分子印迹技术领域研究的热点之一。目前的商品膜如超滤、微滤及反渗透膜等都无法实现单个物质的选择性分离,而MIM为将特定目标分子从其结构类似物的混合物中分离出来提供了可行有效的解决途径;MIM作为一种分子印迹技术,可具有分子特异识别能力,同传统粒子型MIPs相比,MIM具有无需研磨等繁琐的制备过程,扩散阻力小,易于应用等独特的优点;同时比一般生物材料更稳定,抗恶劣环境能力更强,在传感器领域和生物活性材料领域具有很大的应用前景;将MIM应用于分离领域,由于其具有连续操作、易于放大、能耗低、能量利用率高等优点,可在医药、食品、化工和农业等行业的分离、分析与制备过程中实现“绿色化学”生产 。

[19]Mathew-KrtozJ和Shea KJ报道了选择性运输和分离中性分子的模板聚合物膜的制备技术。以 9-乙基腺嘌呤为模板,将反应混合物的N,N-二甲基甲酰胺溶液涂在硅烷化的玻璃切片上,在 65~ 70℃和氮气保护下聚合制备出MAA和EDMA基体的聚合物膜,用甲醇洗去模板分子,在一个H型双层液池中进行膜运输实验,结果表明腺嘌呤的流通量明显大于胞嘧啶和胸腺嘧啶,腺苷的流通量大于鸟苷,这种运输是腺嘌呤和膜中结合位点可逆结合和交换的结果。而且膜的稳定性和机械强度明显优于生物膜。这是分子印迹技术在生物膜仿生中一个突破性进展,给分子印迹聚合物的研究增添了新的生命力。

异丙酚为临床上广泛应用的烷基酚类短效麻醉剂,及时监测其血药浓度对指导临床用药[20]有重大的意义,李魏嶙用紫外光照射的方法制备异丙酚分子印迹复合膜,为今后监测异丙

[21]酚的血药浓度奠定基础。张春静、钟世安采用多孔醋酸纤维膜为支撑体,制备了奎宁分子 7 印迹复合膜,并对膜的选择结合性及分离性能进行了研究.研究结果表明,奎宁分子印迹复合膜对模板分子奎宁具有较好的选择结合性,奎宁在膜上结合量达到20.6μmol/g,奎宁/辛可宁的分离因子则为5.6;膜透过实验表明辛可宁透过奎宁分子印迹复合膜速率远大于奎宁的透过速率,该透过机理符合膜渗透的“溶解-扩散”模型。 3问题与展望

尽管目前分子印迹技术发展的速度比较快,而且也得到比较广泛的应用,但仍然存在许多问题:

(1) 分子印迹过程和分子识别过程的机理和表征问题、结合位点的作用机理、聚合物的形态和传质机理不明确。 (2) 目前使用的功能单体、交联剂和聚合方法都有较大的局限性。尤其是功能单体的种类太少,以至于不能满足某些分子识别的要求,这就使得分子印迹技术远远不能满足实际应用的需要。

(3) 目前分子印迹聚合物大多只能在有机相中进行聚合和应用,而天然的分子识别系统大多是在水溶液中进行的,如何能在水溶液或极性溶剂中进行分子印迹和识别仍是一大难题。

(4) 目前能用于分子印迹的大多是像药物、氨基酸和农药这样的小分子,而像多肽、酶和蛋白质这样的大分子虽有报道,但并不多见。

分子印迹技术最大的特点是分子识别性强,选择性高,成本低,而且制MIPs有高度的交联性,不易变形,有良好的机械性能和较长的使用寿命,这是别的方法技术所不能比拟的,另外分子印迹技术在痕量检测方面的杰出表现,预示着其必然能在食品、药品的快速检测有很大的作为。相信不久的将来就会有三聚氰胺的分子印迹快速检验被发明,还会有各种各样检验有毒物质的分子印迹快速检验试剂出现在市场上!

综上所述,分子印迹技术作为一种新兴的化学分析技术,已经引起普遍关注,我们相信,随着人们进一步的研究与开发,必将在以上领域取得新的进展。

参考文献

[1]张艳斌,崔元璐.分子印迹技术与中药研究.[J]中药材.2008,31(4):616-618.[2]小宫山真著, 吴世康,汪彭飞译.[M]分子印迹学——从基础到应用.科学出版社.2006:14-65.[3]谭天伟.生物分离技术.化学工业出版社.2007:207-218.[4]盖青青,刘秋叶等.分子印迹技术用于蛋白质的识别.[J]化学进展, 2008,20(6).[5]姜忠义.分子印迹聚合物的制备与应.[J]化学世界.2003,(2):105-108.[6]冯建涌,朱全红,罗佳波.长春碱分子印迹聚合物中模板分子的抽提.[J]南方医科大学学报.2007,27(3):268-271.[7]丁中涛,曹秋娥.分子印迹聚合物在分离技术中的研究进展.[J]云南化工,2002,29(2):16-20.[8]Sellergren B.Imprinted dispersion polymers:A new cla of easily acceible affinity stationary phases[J].Journal of chromatographyA, 1994,673(1):133-141.[9]尹艳凤,李倦生等.大黄素分子印迹整体柱的合成及性能表征.[J]分析测试学报.2008,27(7):758-761.[10]程绍玲,杨迎花.利用分子印迹技术分离葛根异黄酮.[J]中成药,2006,28(10):1484-1488.

[11]雷启福,钟世安,向海艳等.儿茶素活性成分分子印迹聚合物的分子识别特性及固相萃 8 取研究.[J]分析化学.2005,33(6):857-860.

[12]冯建涌,朱全红,罗佳波.长春碱分子印迹聚合物中模板分子的抽提.[J]南方医科大学学报.2007,27(3):268-271.13]向海艳,周春山,钟世安等.白藜芦醇分子印迹聚合物合成及其对中药虎杖提取液活性成分的分离.[J]应用化学.2005,22(7):739-743.

[14]Lv Yongqin,Lin Zhixing,Feng Wei,et a1.Selective recognition and large enrichment of dimethoate from tea leaves by molecularly imprinted polymers[J].Biochemical Engineering Journal,2007,4470:9-l6.[15]阿布力克木·阿布力孜,迪丽努尔·塔力甫,吐尔洪·买买提,艾来提·苏力坦.农药精喹禾灵分子印迹聚合物的制备及其识别特性.[J]新疆农业科学.2008,45(3):447-451.[16]ZHU Qiu—jin,TANG Jian,DAI Jun,et a1.Synthesis and characteristics of imprinted 17 β一estradiol microparticle and nanoparticle with TFMAA as functional monomer[J].J Applied Polymer Science,2007,104(3):1551-1558.

[17]王慧,张娟琨,毛占伟,马宁.分子印迹技术应用于牛乳青霉素残留的检测.[J]中国乳品工业.2008.36(6):58-61.[18]姜忠义,喻应霞,吴洪.[M] 膜科学与技术.2006,26(1):78-83.

[19]Math-Krotz J,Shea K J,Impinted Polymer Membranes for the Seletive Transport of Targeted Neutral Molecules,[J].J Am Chem Sco, 1996,118(34):8154-8155.[20]李魏嶙,李 莉,丁海燕.异丙酚分子印迹复合膜的制备.[J]新疆医科大学学报.2008,31(5):580-582.[21]张春静,钟世安.醋酸纤维-奎宁分子印迹复合膜的制备及分离性能研究.[J] 膜科学与技术.2008,28(4):59-62.

分子分离技术

计算机分子模拟技术在石油化工领域的应用

新型分离技术在化工生产中的应用

酶技术原理与应用

高级扫描技术原理及应用

最佳答案电化学传感器技术及原理应用

固液分离技术的概述和应用

激光切割技术的原理及应用

浅谈多媒体技术在军事领域上的应用

液压技术在抽油设备上的应用

分子印迹技术原理及其在分离提纯上的应用剖析
《分子印迹技术原理及其在分离提纯上的应用剖析.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档