人人范文网 范文大全

计算机分子模拟技术在石油化工领域的应用

发布时间:2020-03-03 14:28:39 来源:范文大全 收藏本文 下载本文 手机版

计算机分子模拟技术在石油化工领域的应用

摘要:计算机分子模拟技术自九十年代初以来发展迅速,在新材料的设计开发领域已成为一种十分重要的方法和工具,从产品设计方法学来说,也是一种卓有成效的革命。本文介绍了该技术在石油化工领域的高分子材料、分子筛催化剂以及油品添加剂产品设计开发方面的应用现状及发展前景。

关键词:分子模拟,分子建模,高分子,分子筛催化剂,添加剂

一、前言

计算机分子模拟技术在材料科学领域的应用至九十年代初进入一个新的阶段,它不仅能提供定性的描述,而且能模拟出分子体系的一些结构与性能的定量结果。计算机模拟使得理论物理学家、实验化学家、实验物理学家可以直接在计算机屏幕上模拟逼真的分子运动图象。分子力场、模拟分子体系算法及计算机软硬件的发展为分子模拟方法的发展奠定了坚实的基础。

分子模拟技术集现代计算化学(ComputationalChemistry)之大成,包括量子力学法、MonteCarlo法,分子力学法及分子动态法等。分子模拟法是用计算机以原子水平的分子模型来模拟分子的结构与行为,进而模拟分子体系的各种物理化学性质。分子模拟不仅可以模拟分子的静态结构,也可以模拟分子的动态行为(如氢键的缔合与解缔、吸附、扩散等)。分子模拟法可以模拟现代物理实验方法还无法考察的物理现象与物理过程,从而发展新的理论;研究化学反应的路径、过渡态、反应机理等十分关键的问题;代替以往的化学合成、结构分析、物性检测等实验而进行新材料的设计,可以缩短新材料研制的周期,降低开发成本。

分子模拟法不但可以模拟分子体系中的物理问题和化学反应过程,也可以模拟分子体系的各种光谱(如晶体及非晶体的X光衍射图,低能电子衍射谱等等)。光谱的模拟可以使我们能够更合理地解释实验结果,进行产品(如新型分子筛)的结构解析。

进入九十年以来,分子模拟技术在分子筛催化剂、高分子材料及其它固体化学、无机材料研究开发领域的应用已非常广泛,许多大公司如MOBIL、Shell、Dow、EXXON等积极应用分子模拟技术来推动高分子材料、分子筛催化剂的研究开发工作。

二、分子模拟技术在分子筛催化剂研究开发领域的应用 1.研究沸石催化剂的吸附和扩散性质

鉴于沸石在分离方面的重要地位,以及吸附是研究沸石结构的一种工具,有关沸石吸附方面的文献是大量的,而沸石的扩散性质对确定沸石催化剂能达到的优异选择性是十分重要的,在以前由于缺乏进行预测的理论根据,每一个有研究价值的体系的扩散系数必需通过实验测定[1]。

分子模拟技术的发展及应用,为研究沸石催化剂的吸附和扩散性质、温度对扩散系数的影响、选择合适的沸石结构及进行精细调节提供了优良的工具。

对寻找可以用于形态选择性反应的可能的催化剂这方面的工作来说,一种高效的方法是建立沸石和被吸附分子的计算模型。采用分子图形法(moleculargraphics)可以很快在计算机屏幕上显示出各种反应物或产品的分子与候选的(candidate)沸石孔的形状与尺径的匹配程度[2],用量子力学[3-5]或分子动力学[6]研究沸石内的分子扩散可以提供对所显示的分子图像的证明。

线性双烷基萘是一种在生产液晶高分子以及其它特殊高分子材料过程中有重要作用的中间体,2,6-DIPN可通过萘和丙烷在酸性固体催化剂的作用下进行萘的丙基化获得,然而,无定形的酸性固体催化剂生产出等量混合的异构体2,6-和2,7-DIPN[9],二者的分子平均分布十分相似,要分离它们很困难,费用很高。2,6-和2,7-DIPN在分子形态上的不同足以使它们在某一指定沸石中的扩散速率产生足够大的差异。文献[7]在SGI工作站上用INSIGHTⅡ软件[10]对可能的沸石进行检索,研究发现,丝光沸石的孔径形态和2,6-异构体的匹配要比与2,7-异构体的匹配好得多,对2,7-异构体存在足够大的势垒,而2,6-异构体可以很顺利地通过。文献[7]还将计算和预测的结果与各种催化剂催化萘异丙基化的反应结果进行了对比,证实了计算结果的可靠性。

苯与聚丙烯的烷基化反应是一个重要的石油化工过程,其产物异丙基苯用于酚与酮类产品的合成中,传统的工业化过程使用AlCl3或\"固体磷酸\"催化剂,在安全性、腐蚀及废物处理等方面存在诸多问题,避免这些问题的一个有效途径就是使用分子筛催化剂。最近几年已经开发出了一些这样的催化剂如FAU,MOR及β沸石等等,.Millini[8]采用MSI软件的SolidsDocking模块计算了异丙基苯和该反应的副产物在上述分子筛中的能量最低的扩散路径,上述所有分子筛均显示出了对产品的形态选择性。

沸石的三维网状结构为气体的分离提供了一个理想的场所,对于某一具体的分离过程应该可以从大量的已经很成熟的可能结构的沸石中找到一种满足分离效率的要求,这种搜索的传统方法的实验工作量是很大的。文献[11]应用Cerius软件中的Sorption模块预测氧气和氮气及氮氧混合气在沸石中的吸附等温线,为搜索可能的沸石结构提供了一种快捷、耗资少的方法。该研究发现Li-X是一种理想的氮气优选吸附剂,可用于生产纯净的氧气。

非均相催化开始于有机分子在催化剂表面的吸附。在吸附过程中,催化剂和有机分子的形态(shape)会因为吸附剂与吸附质之间的非键合相互作用均会发生改变,这种改变在产生吸附中心及影响系统的反应动力学起着至关重要的作用。ZSM-5沸石在吸附二甲苯过程中,其空间结构将从单斜晶变化成斜方晶[12],文献[13]用Cerius的Sorption模块模拟了对位和间位二甲苯分别在T,M和O-ZSM-5沸石上的吸附过程。 2.沸石结构的解析

分子模拟方法可以将建模技术和分析实验方法紧密结合起来,衍射数据、组成及几何特征数据、孔的坐标及体积数据、EXAFS和固体NMR数据可以从原子水平的模型直接模拟出来。上述模型的变化对模拟谱图的影响可由结构和分析数据之间的动态联系直接控制。扫描电子显微镜、电子衍射和高分辩率晶象测定的晶粒的形态学性质也可以用原子水平的模型直接模拟。通过分子模拟技术,可以在屏幕上观察到晶体结构的不断变化、模拟的衍射曲线和实验曲线的不断拟合。红外光谱和拉曼光谱等晶体振动光谱的模拟,可以表征晶体的构象及原子间相互作用的特征[14,15]。

沸石材料的骨架结构的几何特征及拓扑特征的识别对于理解它们在催化和分离过程中的行为是至关重要的。由于大部分新合成的沸石为粉状,其结构的解析用传统的单晶X射线技术难以实现,需要由粉末X射线衍射或粉末中子衍射技术来进行结构解。分子模拟技术可以用来对从X射线衍射数据得到的沸石结构模型进行精修以产生精确的模型,文献[16]报道了分子模拟技术应用于该领域的工作,并给出了利用分子模拟软件Cerius确定沸石骨架结构的几何特征过程的流程图。 3.新型分子筛的设计

由于分子模拟技术在综上所述的各个方面对分子筛催化剂研究开发工作的卓有成效的帮助,它已经成为分子筛催化剂专家们手中重要的、甚至是必不可少的先进工具。分子模拟技术作为工具至少可以在以下几个方面对新型分子筛的设计提供有效的支持: (1)利用分子模拟软件中的分子筛数据库中提供的已知的分子筛结构及其有关参数考察现有分子筛是否符合所要解决的具体问题的要求,使搜索可能的分子筛结构的速度大大提高而费用大大减少。

(2)利用分子模拟技术可以从多个方面确定分子筛的框架结构并对其进行精修,可以得到晶胞参数,原子位置,原子占有率,温度因子等性质,如利用与已发表的结构或模拟实验数据进行结构精修;利用Rietveld方法,通过对比实验X-Ray衍射数据进行结构精修;利用距离优化法(DLS)进行结构精修。

(3)利用分子模拟技术可以对任意建造的分子筛结构预报其稳定性及相应的参数,分子筛设计专家可以在计算机屏幕上进行新型分子筛的设计。

(4)利用分子模拟技术可以进行分子筛光谱波谱的模拟及其结构的表征与解析。

(5)利用分子模拟技术可以很直观很方便地\"观察\"到分子筛的吸附散现象以及温度等因素对吸附的影响,可以考察分子筛催化剂的催化机理,有目标地设计新型高效的分子筛催化剂。

三、分子模拟技术在高分子材料研究开发领域中的应用 1.研究弹性材料的结构和性质

计算机模拟目前在弹性材料(elastomericmaterials)的结构表征和性质(性能)的解析及预测方面起着越来越重要的作用[18-20],其在该领域中的应用主要包括以下几个部分: (1)对表现出可逆转弹性性质(reversibleelastomericproperties)的材料的开发而进行的对凝胶过程(gelationproce)的模拟,其目的在于充分表征溶胶相(solphase)的量和构成以及凝胶相(gelphase)的结构以预测它们的模量(moduli)[21,22]。

(2)对多环分子(macrocyclicmolecules)的立体构像的模拟,尤其是对其\"孔径\"的表征,可用以预测其在端连接过程中的捕获效率[23]。

(3)高聚物的结晶目前也是一个引人注目的研究方向。Windle等[24]发展了一些模型来模拟含两种可结晶组分的共聚物的链的序列。Madkour[25,26]用MonteCarlo法研究了二甲基硅氧烷和二苯基硅氧烷的共聚结晶。

(4)某些高分子材料因其具有很好的透气性能而被考虑应用在气体分离工作中,考察的高分子材料有无定形聚乙烯(PE)和聚二甲基硅氧烷(PDMS),参见文献[27,28]。

(5)研究共聚物的结构和性能的关系。Subramanian等[29]用分子模拟技术研究理想的支化的乙烯-丙烯共聚物(EPcopolymer)的结构,发现和线性共聚物相比,支化共聚物具有较小的回转半径,和溶剂的相互作用较小,粘度较低。EP共聚物经常被用于调整各种润滑剂(如内燃机油)的粘温性能[30],该项研究具有很强的实用价值。

2.高分子共混体系的预报

通过共混的物理方法得到具有工程上要求的特定物理性质的高分子材料而无须再去进行具有类似性质的共聚物的设计。目前,尚没有简单可循的方法来判断哪些高分子能够共混,从经验上可以提出很多共混的高分子组份的方案,要从实验上(包括化学合成,结构鉴定和物性检验等环节)寻找有效的方案,费用很大。用分子模拟的方法来判断哪些高分子能够共混,会极大地缩短所用的时间,整个过程可分为两个部分,其一是用分子模拟技术来评价各方案的可行性,其二是优化的几个方案的实施[31]。

3.催化剂选择性的设计

分子模拟技术可以建立催化剂中心与反应分子相互作用的模型,计算出各种取向的构型之间的能量差,能量低的其存在的几率大于能量高的,由此可以评价、筛选各种设计方案,得到对催化剂选择性机理的正确认识,得到优秀催化剂设计方案的可靠选择。 (1)Ziegler-Natta催化剂和金属茂催化剂

文献[32]介绍了用于丙烯等规(isotatic)聚合的Ziegler-Natta催化剂的分子模拟设计,利用电子结构从头计算技术结合经验力场分子动力学技术,研究了环桥1,2-亚乙基双茚基锆Ziegler-Natta催化剂的定向性;基于外消旋1,2-亚乙基双茚基锆和外消旋1,2-亚乙基双四氢茚锆催化剂的等规立构实验观测结果可以和计算结果相吻合;提供了内消旋1,2-亚乙基双四氢茚锆催化剂的无规立构性质;报导了模拟修正后的外消旋1,2-亚乙基双四氢茚锆催化剂对等规立构度的影响(增加或减少)。

近来有关分子动力学在有机金属化学中的应用的报道包括不少对环戊二烯基类化合物的研究[33-36]。对于这类化合物,最近的研究包括用于连接金属的处于Cp环中心的模拟原子(pseudoatom)[35,36]。

EniChem的Longo等[43]利用MSI的DMOL模块研究了基于金属茂催化剂的烯烃聚合反应的机理,得出了许多重要的结论。 (2)INSITE技术中的分子结构控制

单一活性中心催化技术的出现导致了一系列新的聚合物的产生,它对产品开发的新途径的进一步开拓,正在改变着塑料工业的现状。作为MSI分子模拟软件主要用户之一,Dow公司结合分子模拟技术,近年来开发了INSITE技术[37],并用该技术开发生产了AFFINITY聚烯烃塑性体系列(POPs)和ENGAGE聚烯烃弹性体系列(POEs)。

Dow的INSITE技术主要由两种方法结合而成,其一是并行开发技术[38](concurrentdevelopmentapproach),其二则是分子结构控制(moleculararchitecturecontrol)。Dow的分子结构控制技术可以使得设计者打破原有的设计规则,控制所用的分子的类型(如支化长链,支化短链,Mw分布等)。将这种分子设计和过程动态控制结合起来,可以使设计者直接制造出高分子而勿需采用工业应用中原有的失败-尝试法,可使材料科学家用模型方法探索新的结构-组成关系,开发新产品,缩短开发周期。 4.分子光谱波谱的模拟

对非晶体衍射(如玻璃体)的衍射图已达到很精确的程度,可以用于确定分子链内的构像特征[39]。用粉末晶的衍射曲线来确定分子晶体的结构已成为现实。NMR谱作为X射线等其它分析方法的重要补充已被广泛应用于测定分子的溶液结构,这一工作的数据量很大,应用分子模拟技术,将其和多维光谱分析技术结合起来以形成一种集成系统,可以方便高效地进行数据处理和更准确地预报结构。

分子动态模拟法的发展为模拟真实的分子体系的振动光谱奠定了坚实的基础。分子动态模拟法可以按时间序列描述分子的每个原子的运动轨迹,从而模拟分子的各种层次上的运动行为,可以预报分子的振动频率、谱带的强度,还可以模拟谱带的形状。分子模拟法可以计算多分子体系、非晶态分子、溶液体系、表面或界面上分子的光谱[40]。

四、分子模拟技术在添加剂研究开发领域的应用

分子模拟技术在一定程度上可以应用于油品添加剂的设计开发工作中。油品添加剂种类和产品很多,随着工程技术的进步而提出的要求,油品添加剂的新产品还在不断涌现,利用分子模拟技术,可以辅助新产品的开发;可以;预测其物理与化学性质。其中,研究添加剂的结构对性能的影响可由分子模拟领域的三维QSAR分析技术来实现。

QSAR技术近年来发展迅速,该技术虽然是针对药物分子设计而开发的,但因其卓越的分析化合物结构与性能关系的统计分析能力和计算化合物分子各种结构性质的大量有效的工具和方法,已逐步从药物分子设计领域渗透到其它的产品设计领域,如配方(formulations)、润滑剂、添加剂设计领域。QSAR

的全称是\"定量的结构-活性关系\"(QuantitiveStructureActivityRelationship),当前的QSAR研究工作集中于开发一些理论和方法以将构像和分子的形态(shape)的物化性质带入QSAR开发过程中,由此而导致了可比较的分子场分析技术(CoMFA)、分子形态分析技术(MSA)以及接受体模型方法(ReceptorModel)的开发和发展,这种类型的QSAR被称为三维QSAR。另外,GFA(GeneticFunctionAnalysis)技术为研究结构-组成关系提供了一种新的高效的遗传函数分析方法,该方法可以快速生成统计上合理的一组结构-性能模型,而不是一个模型,这样就可以发现那些其它技术发现不了的关系[41]。如为防止油井管因无机沉淀物的生长而导致管道堵塞,Bendickson[42]等应用Cerius2的QSAR+模块研究了24种聚合物对抑制碳酸钙和磷酸钙晶体生长的作用,对Calgon公司在这一领域12年的研究成果进行了极为有效的总结,成功地描述了防垢剂的结晶抑制过程。另外还有一些应用QSAR的成功报道,如判断洗涤剂的流变学性质、聚合物的熔态粘度、防锈剂的开发等等。

计算机在中药领域的应用

焊接技术在领域的应用

CNASCL36: 分子诊断领域应用说明

计算机在医学领域的应用(推荐)

无线通信技术在消防领域的应用

冷冻干燥技术在制药领域的应用

先进控制技术在石油化工工业中的应用

计算机在企业人力资源管理领域的应用

虚拟技术在计算机教学的应用

区块链技术在通信领域的应用

计算机分子模拟技术在石油化工领域的应用
《计算机分子模拟技术在石油化工领域的应用.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档