人人范文网 教案模板

离散型随机变量教案模板(精选多篇)

发布时间:2021-04-29 07:43:09 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:离散型随机变量的方差教案

离散型随机变量的方差

一、三维目标:

1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

2、过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差

3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

二、教学重点:

三、教学难点:

四、教学过程:

(一)、复习引入:

1..数学期望

则称 Ex1p1x2p2„xnpn„为ξ的数学期望,简称期望.2.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平

3.期望的一个性质: E(ab)aEb

5、如果随机变量X服从二项分布,即X ~ B(n,p),则EX=np

(二)、讲解新课:

1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?111122 X2334101

4321102103104102

(探究2)某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少?

s21[(x1x)2(xix)2(x2 n

nx)]

s21

[(12)2(12)2(12)2(12)2(22)2

10

(22)2(22)2(32)2(32)2(42)2]1

s24(12)23(22)22(32)2110101010(42)2

2、离散型随机变量取值的方差的定义: 设离散型随机变量X的分布为:

则(xi-EX)2描述了xi(i=1,2,„n)相对于均值EX的偏离程度,而n

DX (x2iEX)pi

i

1为这些偏离程度的加权平均,刻画了随机变量X与其均值EX的平均偏离程度。我们称DX为随机变量X的方差,其算术平方根DX叫做随机变量X的标准差.随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。

(三)、基础训练

求DX和DX解:EX00.110.220.430.240.1

2DX(02)20.1(12)20.2(22)20.4(32)20.2(42)20.11.2

= 40 000 ;

DX.21.09

5(四)、方差的应用

用击中环数的期望与方差分析比较两名射手的射击水平。解:EX19,EX29DX10.4,DX20.8

表明甲、乙射击的平均水平没有差别,在多次射击中平均得分差别不会很大,但甲通常发挥比较稳定,多数得分在9环,而乙得分比较分散,近似平均分布在8-10环。

问题1:如果你是教练,你会派谁参加比赛呢?

问题2:如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?

问题3:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?

解:根据月工资的分布列,利用计算器可算得

EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1= 1400 ,

DX1 = (1200-1400) 2 ×0.4 + (1400-1400 ) 2×0.3+ (1600 -1400 )2×0.2+(1800-1400) 2×0.

1EX2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,

DX2 = (1000-1400)2×0.4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l

= 160000 .因为EX1 =EX2, DX1

(五)、几个常用公式:

(1)若X服从两点分布,则DX=p(1-p)。 (2)若X~B(n,p),则DX=np(1-p) (3)D(ax+b)= a2DX; (六)、练习:

1、已知318

,且D13,则D

2、已知随机变量X的分布列

求DX和 DX

3、若随机变量X满足P(X=c)=1,其中c为常数,求DX。

(七)、小结:

1、离散型随机变量取值的方差、标准差及意义

2、记住几个常见公式:

(1)若X服从两点分布,则DX=p(1-p)。 (2)若X~B(n,p),则DX=np(1-p) (3)D(ax+b)= a2DX; (八)、作业:P69

1、4

推荐第2篇:很好的离散型随机变量

“离散型随机变量”的教学反思与再设计 杨智平发布时间: 2010-8-4 23:33:52

“离散型随机变量”的教学反思与再设计

一、教学内容解析

概率是研究随机现象的数量规律的.认识随机现象就是指:知道这个随机现象中所有可能出现的结果,以及每一个结果出现的概率.而对于给定的随机现象,首先要描述所有可能出现的结果.在数学上处理时,一个常用的、也很自然的做法就是用数来表示结果,即把随机试验的结果数量化,使得每个结果对应一个数,这样就可以通过实数空间(定量的角度)来刻画随机现象,从而就可以利用数学工具,用数学分析的方法来研究所感兴趣的随机现象.简言之,随机变量是连接随机现象和实数空间的一座桥梁,它使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,这便是为什么要引入随机变量的缘由.

随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的,随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.

离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.本节课的重点是认识离散型随机变量的特征,了解其本质属性,体会引入随机变量的作用.

二、教学目标解析

1.在对具体实例的分析中,认识和体会随机变量对刻画随机现象的重要性和建立随机变量概念的必要性,并会恰当地定义随机变量来描述所感兴趣的随机现象,能叙述随机变量可能取的值及其所表示的随机试验的结果;

2.在列举的随机试验中,通过对随机变量取值类型的分辨,归纳和概括离散型随机变量的特征,形成离散型随机变量的概念,并会利用离散型随机变量刻画随机试验的结果;

3.在举例、观察、思考、发现中经历将随机试验结果数量化的过程,渗透将实际问题转化为数学问题的思想方法,进一步形成用随机观念观察和分析问题的意识.

三、教学问题诊断分析

本节课学生学习的难点是对引入随机变量目的与作用的认识,以及随机变量和普通变量的本质区别.随机变量这个概念其实早已存在于学生的意识之中,而且在不少场合都已不自觉的“实际使用”,只是没有明朗化.学生学习这一概念就是把这些“实际使用的”规则、程序、步骤等进一步加以明确.所以,教师的责任就是为学生建立随机变量这个概念修通渠道.可通过学生熟悉的掷骰子的随机试验让学生体会随机变量概念的发生,在师生举例中来体会随机变量概念的发展,特别是诸如抛掷一枚硬币等试验,其结果不具有数量性质,怎么让学生自然地想到用数来表示其试验结果,并且所用的数又尽量简单,便于研究.教学中需多举试验结果本身已具有数值意义的实例,来发挥正迁移作用.通过多举例让学生理解:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.

另外,随机变量和离散型随机变量是上、下位概念的关系,从学习的认知方式看,下位学习依靠的主要是同化,上位学习依靠的主要是顺应,上位学习一般采用的思维方法主要是概括和综合,它主要通过改造(归纳和综合)原有认知结构中的有关内容而建立新的认知结构.因此,从这一角度来分析,学生对随机变量概念的学习和真正理解比离散型随机变量的学习要困难一些.故在随机变量的教学中,要特别重视学生举例,让学生在充分的自主活动中体验数学化的过程,体验将随机试验结果数量化的过程,体会随机变量对刻画随机现象的重要性和研究随机现象的工具性作用,从而来把握随机变量的内核.

四、教学支持条件分析

学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括.

五、教学过程设计

(一)教学基本流程

(二)教学过程

1.理解随机变量概念

问题1:抛掷一枚骰子,可能出现的结果有哪些?概率分别是多少? [设计意图] 以学生熟悉的随机试验为例,在复习旧知中孕育新知.

[师生活动] 画表一,指出试验结果分别有“1点的面朝上”、“2点的面朝上”、“3点的面朝上”、“4点的面朝上”、“5点的面朝上”、“6点的面朝上”,它们都是基本事件.为了研究这些事件,常常把它们分别与一个数字对应起来.比如,用数字1与“1点的面朝上”这个试验结果(样本点)对应,用数字2与“2点的面朝上”这个试验结果(样本点)对应,等等.师生共同填写数字,形成表二.

引导学生分析,像这样“用数字表示随机试验的结果”的量用X来表示,它可以取集合{1,2,3,4,5,6}的值,说明X是一个变量.

[设计意图] “用数字来表示随机试验的结果”实际上早已存在于学生的意识之中,而且在不少场合都已不自觉地“实际使用”,如射击比赛中会用“环数”去表示射击成绩,掷骰子时会用“点数”去表示掷出结果,抽奖时会先对奖券“编号”,随机抽取一部分学生时会用“学号”去代替等等,只是没有明朗化.因而,“用数字来表示随机试验的结果”可以通过教师有启发地提问,有意义地讲授进行,让学生觉得问题的提出,概念的发生、发展过程较为自然,能够从教师的讲授中感受数学是怎样一步步研究现实世界的.

问题2:在这里(指着表二),每一个试验结果用唯一确定的数字与它对应,这个对应关系是什么?

[设计意图]建立一个从试验结果的集合到实数集合的映射.让学生感悟:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每一个值时的概率,从而感受把随机试验的结果数字化(成为实数)的必要性,体会引入随机变量的必要性.同时让学生感受概念的从无到有、自然形成的过程.

[师生活动] 启发诱导,引导学生发现在这里建立了一个从试验结果的集合到实数集合的映射.形成下表三:抛掷一枚骰子

让学生观察、思考:刚才,用数字表示试验结果的变量X,它根据什么在变化?让学生发现它的取值随试验结果的变化而变化,它的变化是有规律的,这是个特殊的变量,与随机试验的结果有关,在试验之前不知道会出现哪个值(即它的取值依赖于试验结果,因此取值具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定).同时,教师指出:在这个试验中,我们确定了一个对应关系(也即建立了一个试验结果到实数的映射)使得每一个试验结果(样本点)都用一个确定的数字表示(即所有可能取值是明确的).在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.随机变量常用字母表示.

问题3:随机变量这个概念与我们曾经学过的函数概念有类似的地方吗?

[设计意图]引导学生与曾经学过的函数概念比较,从而加深对随机变量概念的理解.

[师生活动]“类比”函数概念,领悟随机变量和函数概念在本质上都是一种对应关系,都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.随机变量的取值范围我们称为随机变量的值域.如抛掷一枚骰子,随机变量的值域为;

引导学生利用随机变量表达一些事件,例如抛掷一枚骰子中, 表示“1点的面朝上”; “3点的面朝上”可以用表示;表示“5点的面朝上”或“6点的面朝上”.

同时指出:通过映射把随机试验结果与实数进行对应,也就是,把随机试验的结果数量化,用随机变量表示随机试验的结果,这样“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,即可把“对随机现象统计规律的研究具体转化为对随机变量概率分布的研究”.这样我们就可以借用有关实数的数学工具来研究随机现象的本质了.

接着,进一步指出:在学习《数学(必修3)》时我们曾经学习过概率、方差等概念,学过简单的概率模型,在今后的学习中,我们将利用随机变量描述和分析某些随机现象,进一步体会概率模型的作用及运用概率思想思考和解决一些实际问题.(体现章引言)

2.对随机变量的深刻认识(对对应思想——映射的体验)

问题4:你能再举些例子吗?(请学生列举随机试验,并将试验结果数量化,不必写出概率)

[设计意图] 让学生参与举例,体验将实际问题数学化(把实际问题数学化是学习数学极其重要的数学方法)和将随机试验结果数量化的过程.其意义在于两个方面:其一,学生通过寻找(寻找本身就是一个甄别随机与非随机的过程),选择自己感兴趣的随机现象,并学会用随机变量表示随机事件;其二,在将试验结果数量化的过程中体会随机变量在研究随机现象中的重要作用.同时进一步深刻理解随机变量的概念,领悟随机变量学习的重要性,进一步形成用随机观念观察和分析问题的意识.

[师生活动]教师关注学生的举例,关注其关键过程:随机试验中所有可能出现的结果有哪些?如何将试验的结果数量化?要求学生画表,体会映射的过程.教师给学生充分展示和交流所举例子的时间.同时,教师也参与举例(教材中有关于抽取产品、射击、浏览某网页等例子可以纳入进来),深刻体会将实际问题(随机现象)数学化(数字化)的过程,感受建立随机变量概念的重要意义.

对学生列举的试验结果没有数量标志的随机事件,诸如投掷一枚硬币的试验等,要引导学生分析比较,让学生体会对于同一个随机试验,可以用不同的随机变量来表示.但用哪两个数字来表示,主要是要尽量简单,合理,便于研究.如表四:抛掷一枚骰子

在学生举例中学习如何用随机变量去定义试验结果没有数量标志的随机事件(中间表示映射的一栏表格可以省略).

问题5:任何随机试验的所有结果都可以用数字表示吗?同一个随机试验的结果,可以用不同的数字表示吗?

[设计意图]让学生领悟任何随机试验的所有结果都可以用数字来表示(试验结果不具有数量性质的可以通过赋值,将其数量化),同一个随机试验的结果,可以用不同的数字表示,表示的原则主要是有实际意义,简单合理,便于研究.

3.形成离散型随机变量概念

问题6:随机变量的取值都是整数吗?你能否举个(些)例子,而随机变量的取值不是整数呢?

[设计意图] 关注学生的举例,借学生举出的例子,引导分析数学化之后的随机变量取值的集合的特征(一个新概念产生之后,我们应该端详它一番),分辨随机变量的类型,即某些随机变量的取值是离散的,而有些不是,从而给出离散型随机变量的概念.如果学生列举的都是离散型随机变量,则教师可启发点拨,启发后引导学生再举例,或给出以下问题7:

问题7:请仿照刚才的例子,分析下列随机现象,随机变量可以取哪些值?你能够一个一个列出来吗?

(1)某公交车站每隔10分钟有1辆汽车到站,某人到达该车站的时刻是随机的,他等车的时间;

(2)检测一批灯泡(相同型号)的使用寿命.

[设计意图]通过与前面列举例子的比较,引导学生发现这两个试验结果中,表示随机事件的随机变量的取值是一个区间,其值无法一一列出,以此形成离散型随机变量的概念.同时明晰在随机现象中随机变量的取值类型是丰富多样的,这也是对随机变量概念(外延)的进一步认识.

问题8:如果我们仅仅关心“某人等车的时间多于5分钟或不多于5分钟”两种情况,那该怎样定义随机变量呢?

[设计意图] 在研究随机现象时,为研究方便,有时需要根据所关心的问题恰当地定义随机变量.让学生明白恰当定义随机变量给我们研究问题带来方便.问(2)让学生选择自己关心的问题来恰当定义随机变量.

[师生活动]通过分析,让学生明白,在研究随机现象时,有时需要根据所关心的问题恰当地定义随机变量.

4.练习反馈(见教科书第45页)

下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.

(1)抛掷两枚骰子,所得点数之和;

(2)某足球队在5次点球中射进的球数;

(3)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差.

[设计意图]在应用中巩固离散型随机变量的概念,并能熟练利用离散型随机变量刻画随机试验的结果.

5.小结回授

问题9:你能用自己的语言描述随机变量和离散型随机变量的定义及它们之间的区别吗?(学生回答后,可以再问:你能简单地说说引入随机变量的好处吗?)

[设计意图] 学生用自己的语言来概括本节课学到的知识,是一种“主动建构”,也真正体现知识学到了手.

[师生活动]引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来.认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.也即把随机试验的结果数量化,用随机变量表示随机试验的结果,我们就可以借助于有关实数的数学工具来研究所感兴趣的随机现象了.

六、目标检测设计

人教A版教科书第49页习题2.1中A组,第1,2,3题.

教学反思 对随机变量概念学习的设计上,分两步走:第一步是认识“用数字表示随机试验的结果”的量是一个变量,第二步是通过建立“一个从试验结果的集合到实数集合的映射” 认识到在这个对应关系下,数字随着试验结果的变化而变化,即这是一个特殊的变量,与随机试验的结果有关,在此基础上学习随机变量概念,并理解随机变量的特征:它的取值依赖于试验结果,具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定,且所有可能取值是明确的.进一步,如何让学生深刻认识和理解“随机变量”这一概念?原教学设计采用让学生举例的方式,在学生的活动中来完成对“随机变量”概念的理解,这一设计思路得到同行肯定.事实上,要使学生真正理解数学知识,必须要有他们身体力行的实践,从自己亲历亲为的探索思考中获得体验,从自己不断深入的概括活动中,获得对数学概念、原理的本质的领悟.此处安排学生举例正是基于这种考虑,其意义在于:其一,可以观察学生是否领会把随机试验结果数学化的思想,以及怎样把随机试验结果数学化(尤其是试验的结果不具有数量性质的随机现象);其二,体会引入随机变量概念后,随机试验中的事件就可以通过随机变量的取值表达出来,“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,(即研究随机现象的统计规律就可以转化为研究随机变量的概率分布).

推荐第3篇:离散型随机变量的教学设计

“离散型随机变量”的教学设计

一、内容和内容解析

“随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。

“离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。

对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。

二、目标和目标解析

1.了解本章学习的内容和意义。具体要求为:

(1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识;

(2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关;

(3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。

2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是:

(1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;

1

(2)通过具体问题的对比分析,帮助学生理解随机变量有两个类型:

取有限个值的离散型随机变量离散型随机变量

随机变量 随型机变量取无穷多个值的离散连续型随机变量能够根据具体问题,把随机试验的结果用一个随机变量表示,并能写出其取值范围;能够熟练地用随机变量的取值表示一个随机事件;

(3)通过反思随机变量的定义过程,引导学生体会,在实际应用中如何根据实际问题恰当地定义随机变量(如根据所关心的问题,定义随机变量),以达到事半功倍的效果。

三、重点和难点解析

本节内容是为求分布列作铺垫的一节概念课。所以要把随机变量和离散型随机变量的概念讲清楚。于是,可以确定的重点、难点是:

重点:用随机变量表示随机试验结果的意义和方法;

难点:对随机变量意义的理解;构造随机变量的方法;随机变量取值范围的确定。

四、教学问题诊断分析

1.是否讲解“随机试验”的概念?

研究随机现象,就是要研究随机试验可能出现的结果(其中的每一个结果即为一个随机事件)和每一个结果发生的概率(即描述每一个随机事件发生可能性大小的度量),从而把握它的统计规律。这里有三个概念:随机事件、随机现象和随机试验。

在必修三中,学生已经学习了随机事件的概念(即在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件),之前,学生通过在初中数学和必修三的概率学习,又有了随机现象的观念,因此,学生对“随机试验”的概念是能够不加定义而自明的,也就是“随机试验”可以作为不加定义的原始概念引入。事实上,教材在介绍随机变量的概念时,不加定义地引入了“随机试验”的概念(教材第44页第一个思考下方第一行),就是基于这样的考虑,因此,在教学中,对“随机试验”的概念不需要(也根本没有必要)引导学生下定义,以避免严格的定义可能造成学生理解的模糊,影响对主干概念“随机变量”的理解。

事实上,“试验”一词有十分广泛的含义:凡是对对象的观察或为此而进行的实验都称之为试验。如果一个试验满足以下条件,则称之为随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有结果是明确且可以知道的,并且不止一个;(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。

2.怎样建构“随机变量”的概念?

本节内容围绕随机试验的结果可以用“数”表示进行展开。掷骰子试验、掷硬币试验是学生比较熟悉的两个随机试验,对掷骰子试验的结果和数字1~6对应起来学生很容易理解,而掷硬币试验的结果则不容易联想到数字。可以引导学生思考:值一枚硬币的结果是否也可以用数字表示呢?通过把“正面向上”与1对应,“反面向上”与0对应,使得掷硬币的试验结果同样也可以用数字表示,这样的问题还可以列举,如新生婴儿性别抽查:可能是男,也可能是女,同样可以分别用1和0表示这两种结果,在此基础上抽象概括出随机变量的描述性定义。

3.怎样深化对“随机变量”概念本质的理解? 对随机变量概念的理解,不是下个定义一步完成的,为了帮助学生深入地体会随机变量的本质,可以对掷硬币的试验结果的表示方法提出下面问题:还可以用其他的数来表示这两个试验结果吗?目的是鼓励学生提出其他表示方法,比如“正面向上”用1表示,“反面向上”用-1表示等,以使学生理解随机变量的本质。事实上,对于同一个随机试验,可以用不同的随机变量来表示其所有可能出现的结果。为了帮助学生体会,究竟选择什么样的随机

2

变量更为合适?这就涉及到构造随机变量应当注意的一些基本问题:如随机变量应该有实际意义,应该尽量简单,以便于研究。例如,对于掷n次硬币出现正面的次数可以表示为12„n,其中i1,第i次试验出现正面0,第i次试验出现反面,通过这样的例子,帮助学生体会用数字1和0表示,能够直接反应出正面向上的次数,这显然很方便;而用1和-1分别表示试验结果的反面和正面,那么掷n次硬币出现正面的次数的表达式就会变得很复杂。 为了进一步深化对概念的理解,可以引导学生将随机变量与函数概念进行类比:随机变量与函数有类似的地方吗?使他们了解随机变量的概念实际上也可以看作是函数概念的推广。

4.如何通过随机变量表示所关心的随机事件?

引入随机变量的目的是为了研究随机现象,那么如何通过随机变量表示所关心的随机事件呢?可以通过一些例子介绍用随机变量表示随机事件的方法,特别是一些较为复杂的随机事件的表示方法。例子的类型列举可以广泛:如有穷可列、无穷可列、不可列等三个类型。 特别是对不可列的随机变量问题,可以根据所关心的问题,能够把它构造成可列的随机变量。从而进一步体会用随机变量表示随机事件的方法。

五、教学过程设计

1.情境引入

情境1:在射击运动中,运动员每次射击的成绩具有什么特征?(随机性)运动员每次射击的成绩是一个什么事件?(随机事件)

如何刻画每个运动员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选择优秀运动员代表国家参加奥运会的比赛才能使得获胜的概率大?解决这个问题要涉及到离散型随机变量的概率分布模型。

情境2:高尔顿是英国生物学家和统计学家,他设计了一个著名的游戏——高尔顿板游戏。如图,在一块木板上钉上钉着若干排相互平行并相互错开的圆柱形小模块,小木块之间留有适当的空隙作为通道,前后挡有玻璃,然后让一个个小球从高尔顿板上方的通道口落下,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?

这个问题近似地服从正态分布,它是很多自然现象和生产、生活实际问题中经常遇到的一种连续型随机变量的概率分布模型。

3

以上两个问题就是我们本章要学习的两个重要的随机变量概率分布模型,本章的课题是——随机变量及其分布。

引言:我们知道,概率是描述随机事件发生可能性大小的度量。无论是运动员的一次射击,还是利用高尔顿板做一次游戏,都是随机试验,只要了解了这些随机试验可能出现的结果(即每一个结果就是一个随机事件),以及每一个结果发生的概率,我们也就基本把握了它的统计规律。随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,他们就会呈现出一些共性;如果把随机试验的结果数量化,应随机变量表示试验结果,就可以用数学工具来研究这些随机现象。

引导学生阅读章头图的内容。然后展示本章的知识结构图:两类随机变量的概率分布模型:离散型随机变量——(在讲概率分布列、均值和方差的基础上)研究二项分布和超几何分布模型;连续型随机变量——正态分布模型。

2.离散型随机变量

问题1:概率是描述在一次随机试验中某个随机事件发生可能性大小的度量。如掷骰子就是一个随机试验,它有六种可能性结果。你还能举出一些随机试验的例子吗?该随机试验的所有可能结果有哪些?

设计意图:能够判定简单的随机试验,并能列举出所有可能的结果,为用“数”表示这些结果做好准备。

问题2:(1)掷一枚骰子,出现向上的点数X是1,2,3,4,5,6中的某一个数;

(2)在一块地上种10棵树苗,成活的棵树Y是0,1,2,3,„,10中的某个数。

下面两个随机试验的结果是否可以用数字表示呢?

(3)掷一枚硬币所有可能的结果;正面向上——1;反面向上——0

(4)新生儿性别,抽查的所有可能的结果;男——1;女——0 设计意图:通过讨论引导学生发现任何一个随机试验的结果都可用数字进行表示,这样随机试验的结果与数字之间就构成了一个对应关系,这为引入随机变量的概念奠定基础。

问题3:上述四个例子说明,随机试验的结果与数字之间构成了一个对应关系,使得每一个试验的结果都用一个确定的数字表示。这样随机试验的结果就可以看成是一个变量,我们称其为随机变量。你能给随机变量下一个定义吗?

设计意图:引导学生通过分析、综合活动,尝试给随机变量下定义。这种定义方式是描述性的,学生可以凭借自己的理解下定义,只要这种描述比较准确就可以,不一定按照课本的描述性定义。如一般地,如果一个随机试验的结果可以用一个变量表示,这个变量就叫做随机变量,等。

问题4:在(3)和(4)的两个随机试验中,其试验的结果是否还可以用其他人数字表示?

4

设计意图:通过讨论,得出结论:一个随机试验的结果可以用不同的随机变量表示。 如上面两个试验的结果还可以用-1和1表示等。

问题5:在掷一枚硬币的随机试验中,其结果可以用1和0表示,也可以用-1和1等其他数字表示,那么,在5次掷硬币的随机试验中,出现“正面向上”的次数可以怎样表示?由此你认为定义一个随机变量需要遵循哪些原则?

设计意图:出现“正面向上”次数125,

1,第i次试验出现正面,当一次试验的结果表示为i =0,1,2,3,4,5;

0,第i次试验出现反面。1,第i次试验正面向上,当一次试验的结果表示为i i-5,-4,-3,-2,-1,0.

-1,第i次试验反面向上。从使用意义上看,显然把正面向上的次数表示成负数不太合适,而且这样也不方便,因此,构造随机变量时,应当注意一些基本问题:如随机变量应该有实际意义,应当尽量简单,以便于研究。

问题6:随机变量和函数有类似的地方吗?

设计意图:引导学生把随机变量和函数进行类比,使他们了解随机变量的概念实际上也可以看作是函数概念的推广:随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数。在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当与函数的值域。

例1 判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由。 (1)每天你接到的电话的个数X; (2)标准大气压下,水沸腾的温度T; (3)某一自动装置无故障运转的时间t; (4)体积64立方米的正方体的棱长a; (5)抛掷两次骰子,两次结果的和s.(6)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数η. 设计意图:进行随机变量概念辨析。

例2.写出下列各随机变量可能的取值(或范围):

(1)从10张已编号的卡片(从1号到10号)中任取1张被取出的卡片的号数X. (2)一个袋中装有3个白球和5个黑球,从中任取5个,其中所含白球数Y. (3)抛掷两枚骰子,所得点数之和ξ.

(4)接连不断地射击,首次命中目标需要的射击次数ξ. (5)某网页在24小时内被浏览的次数η.(6)某一自动装置无故障运转的时间T (7)电灯泡的寿命X。

设计意图:训练写出随机变量的取值或范围,并在此基础上通过分类得到“离散型随机变量”的概念。

问题7:在前面所举这些例子中,这些随机变量都有什么特征? 设计意图:引导学生发现这些随机变量的取值都可以一一列出。

问题8:所有取值能够一一列出的随机变量,称为离散型随机变量。离散型随机变量有两类:一类是离散型随机变量的取有限个值的,一类是离散型随机变量取无限个值的(如例2(3)),我们主要研究取有限个值的离散型随机变量。

5

例3.写出下列离散型随机变量可能的取值:

(1)在考试中需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的可能取值有哪些?

(2)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).甲乙两人租车的时间都不超过4小时(两人不一定同时回来),则两人所付的总费用X的可能取值有哪些?

设计意图:练习写出较为复杂的离散型随机变量取值

问题9:利用随机变量可以表示一些事件。在例1中,你能说出{X=0}、{X=4}、{X

设计意图:引导学生学习用随机变量表示随机事件,使学生能够清晰地说出每一个随机变量取值的实际意义。

问题10:在研究随机现象时,需要根据所关心的问题恰当第定义随机变量。例如,对灯泡的使用寿命,如果我们仅关心灯泡的使用寿命是否不少于1000小时,那么就可以定义0,寿命1000小时如下的随机变量:,与灯泡的寿命X相比较,随机变量的构造更1,寿命1000小时简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易。你能根据实际意义,把能对(2)定义一个随机变量吗?

设计意图:引导学生能够根据所关心的问题,定义出离散型随机变量。 例4.请根据所关心的问题,定义一个离散型随机变量: (1)掷一枚骰子,关心“掷出的点数是否为偶数”;

(2)任意抽取一瓶标有2500 ml 的某饮料,其实际量与规定量之差在±5ml以内为合格; (3)在某项体能测试中,跑1 km成绩在4 min之内的为优秀;4 min以上5 min以内为合格;某同学体能测试的结果.设计意图:练习能够根据所关心的问题定义一个随机变量。

备用例题:下列随机试验的结果能否用离散型随机变量表示?若能,请写出可能取值,并说出这些值所表示的随机试验的结果。

(1)棱长为1的正方体中,任意两条棱之间的距离(两条棱相交,可认为距离为0);

(2)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,该“立体”的体积为V。

设计意图:巩固并强化定义离散型变量的方法,并能准确写出所求可能取值。

小结:以上我们通过一些具体实例研究了随机试验的结果可以用数字表示,引进了随机变量的概念,并对如何根据实际需要定义一个离散型随机变量,并判断它的所有可能取值进行了系统的研究。实际上随机变量的每一个取值,都表示一个随机事件,每一个随机事件发生的可能性大小的度量就是概念,如掷骰子试验中P(X1)116就表示点数为1的概率为6规律了。我们学习随机变量就是为了研究它的概率,这就是我们下节课要学习的内容。 ,也就是如果我们能够知道每一个随机变量取值的概率,也就把握了这个随机现象的基本 6

推荐第4篇:教案092.1离散型随机变量及其分布续

教学对象 计划学时 2

管理系505-

13、

14、15;经济系205-

1、2 授课时间

2006年3月3日;星期五;1—2节

教学内容

第二章 一维随机变量及其概率分布 第一节 离散型随机变量及其分布律(续)

三、常见离散型随机变量的概率分布

1、二点分布和二项分布

2、泊松分布

通过教学,使学生能够:

1、掌握两点分布

2、掌握贝努利概型和二项分布

3、掌握泊松分布

教学目的

知 识:

1、两点分布

2、贝努利概型和二项分布

3、泊松分布

技能与态度

1、将生活中的随机现象与随机变量的分布相联系

2、会分析计算生产实际中的概率问题

教学重点 常见的分布 教学难点 贝努利概型

教学资源 自编软件(演示贝努利概型)

教学后记

培养方案或教学大纲

修改意见 对授课进度计划 修改意见 对本教案的修改意见 教学资源及学时 调整意见 其他 教研室主任:

系部主任:

《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 1 页

教学活动流程

教学步骤、教学内容、时间分配

一、复习导入新课

复习内容:(5分钟)

1、随机变量的概念

2、分布律的概念 导入新课:(2分钟)

教学目标

教学方法

提问讲解

巩固所学知识,与技能

上一次我们引入了随机变量的概念,已经学会了用含有引出本节要学习随机变量的等式或不等式来表示不同的随机事件。在实际问的主要内容 题中,不同的离散型随机变量拥有各自不同的分布律。但生

产管理和实际生活中,有很多随机变量的分布规律是类似的,常见的分布有三类:两点分布、二项分布、泊松分布

1、掌握两点分布

二、明确学习目标

2、掌握贝努利概型和二项分布

3、掌握泊松分布

三、知识学习(50分钟)

三、常见的离散型随机变量的分布

(一)两点分布(0—1分布) 若随机变量X的分布律为

X01pP1p,则称X服从以p为参数的(0-1)分布。

若某个随机试验的结果只有两个,如产品是否合格,试验是否成功,掷硬币是否出现正面,射击是否中靶,新生儿的性别,等等,它们都可以用(0-1)分布来描述,只不过对不同的问题参数p的值不同而已。可见,(0-1)分布是经常遇到的一种分布。

1、从装有6只白球和4只红球的口袋中任取一球,

1,取到白球以X表示取出球的颜色情况,即X=,求X的

0,取到红球分布律。

解:P{X=1}=1C61C10=0.6,P{X=0}=

1C41C10=0.4

则X的分布律为XP010.40.6

(二)二项分布

二项分布是实际中很常见的一种分布,为了对它进行研究,需要先介绍一种非常重要的概率模型——贝努利概型

我们在实际中经常会遇到这样的情况:所考虑的试验是

掌握两点分布的 概念

讲授法

《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 2 页 由一系列的子试验组成的,而这些子试验的结果是互不影响的,即子试验之间是互相独立的。例如,将一枚硬币连续抛n次,我们可以将每抛一次看成一个子试验,而每次抛硬币出现正面与反面的结果是互不影响的。而且随机现象的统计规律性是在大量的重复试验的条件下才呈现出来的,因此对某个试验独立重复地进行n次,在概率分布的研究中也有重要的作用。

我们只讨论每次只有两个结果的n次独立重复试验。

1、贝努利(Bernoulli)试验

定义:设随机试验E只有两种可能的结果:A或A,在相同的条件下将E重复进行n次,若各次试验的结果是互不影响,则称这n重独立试验。

它是数学家贝努利首先研究的,因此也叫n重贝努利试验,简称贝努利试验,这时讨论的问题叫贝努利概型

说明:贝努利试验应同时满足以下条件: (1)在相同条件下进行n次重复试验;

(2)每次试验只有两种可能结果:A发生或A不发生; (3)在每次试验中,A发生的概率均相同,即P(A)=p; (4)各次试验是相互独立的

对于贝努利概型,我们主要研究在n次贝努利试验中事件A出现k次的概率。

定理:在贝努利概型中,设事件A在每次试验中发生的概率为p,则在n次贝努利试验中,事件A出现k次的概率kk为Pn(k)Cn(k=0,1,2,„,n) p(1p)nk,

理解贝努利概型

例2:将一枚均匀的硬币抛掷3次(与3枚硬币掷一次相当),求正面出现1次的概率

解:n=3,k=1,p=0.5,1-p=0.5,则1P3(1)C3(0.5)1(10.5)31=0.375 用古典概率解释: Ω={正正正,正正反,正反正,正反反,...反正正,反正反,反反正,反反反} ......说明:简单问题用古典概型解决还可以,当试验次数太多时,样本点有2n个,只能用公式求解

软件演示:

例3:从一批由9件正品,3件次品组成的产品中,有放回地抽取5次,每次取一件,求有两次取得次品的概率

解:将每一次抽取当做一次试验,设A={取到次品},有放回地抽取5次,看成是一个5重贝努利试验,n=5,两次取得次品,则有k=2,每次试验中

p = P(A)=1C31C1213,则1-p=, 44

掌握计算公式

讲授法

讲授法 板书

软件演示

《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 3 页 2因此P5(2)C5()2(1)52=1414135 51

22、二项分布

定义:若随机变量X的取值为0,1,2,„,n,,且kkP{X=k}=Cnp(1p)nk,k =0,1,2,„,n

其中0

特例:当n=1时,二项分布即为两点分布 例4(P 21)

说明:二项分布的应用非常广泛,但是当重复试验的次数很多时,计算量又很大,平时解题可以不用计算,当n>5时用式子表示即可。为便于应用,可直接查阅二项分布表(P157附表6),查表结果是X取值从0到x的累计概率。即P{X≤x}。若计算X=m的概率,可用P{X=m}=P{X≤m}—P{X≤m—1}

例如:P{X=5}=P{X≤5}—P{X≤4}

例5(P22)、工厂生产的螺丝次品率为0.05,每个螺丝是否为次品是相互独立的,产品出售时10个螺丝打成一包,并承诺若发现一包内多于一个次品即可退货。用X表示一包内次品的个数。求(1)X的分布律;(2)工厂的退货率

解:对一包内的10个螺丝逐个进行检验,相当于进行10重贝努利试验,因此X~B(10,0.05)

k(1)X的分布律:P{X=k}=C10(k (0.05)k(0.95)10k,=0,1,2,„,10) (2)当X>1时退货,退货率为:P{X>1}= 1—P{X≤1}=1—k01kC10(0.05)k(0.95)10k

泊松定理(Poion):设λ>0是一常数,n是正整数。若npn=λ,则对任一固定的非负整数k,有klim(1pn)e。(证:P23注释) nk!定理的条件npn=λ,意味着n很大时pn必定很小,由定理知,当X~B(n, p),且n很大而p很小时,有kCnkpnnkkP{X=k}=Cnp(1p)knkk e,λ=np ≈k!k e计算在实际计算中,当n≥20且p≤0.05时,用k!kkCnp(1p)nk的近似值效果颇佳;

k 当n≥100且np≤10时,效果更好。e的值有表可

k!

掌握二项分布的计算

理解定理内容

讲授法 板书

《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 4 页

N3k因λ=np =3,由泊松定理P(X≤N ) ≈e3,

k!k0

N3k3故问题转化为求N的最小值,使e≥0.99

k!k0

N3k3k即1e3e30.01

k!k!k0kN1

查书后附表2(P140)可知,当N+1≥9即时N ≥8时, 上式成立。因此,为达到上述要求,至少需配备8名维修工 人。

类似的问题在其他领域也会遇到,如电话交换台接线员 的配备,机场供飞机起降的跑道数的确定等.

(三)泊松分布

定义:若随机变量X所有可能的取值为0,1,2,„,而理解泊松分布的

定义 k 查(见书后附表P139)

6、某车间有同类型的设备300台,各台设备的工作是相互独立的,发生故障的概率都是0.01,设一台设备的故障由一名工人维修,问至少需配备多少名维修工人,才能保证设备发生故障但不能及时维修的概率小于0.01?

解 设需配备N名工人,X为同一时刻发生故障的设备的台数,则X~B(300,0.01)。所需解决的问题是确定N的最小值,使P(X≤N ) ≥0.99 e,其中λ>0是常数,则称X服从参数为λk!的泊松分布,记为X~P(λ)

具有泊松分布的随机变量在实际应用中是很多的。例如,在每个时段内电话交换台收到的电话的呼唤次数、某商店在一天内来到的顾客人数、在某时段内的某放射性物质发出的经过计数器的粒子数、在某时段内在车站候车的人数、单位面积上布匹的疵点数、单位时间内商店销售非紧俏商品的件数、等等,只要试验的结果为两个,且由很多因素共同作用来决定的随机变量,都可认为是服从泊松分布。泊松分布也是一种常见的重要分布。它是二项分布的极限分布,因此可用泊松分布的计算公式计算二项分布。

例15:每分钟经过收费站的汽车流量服从泊松分布:X ~P(5),求每分钟经过该收费站的汽车不足9辆的概率。

解:P{X

例1 某人独立地射击目标,每次射击的命中率为0.02,掌握分布律的性射击200次,求目标被击中的概率。 质

解:把每次射击看成一次试验,这是200重贝努利试验。 设击中的次数为X,则X~B(200,0.02)

四、技能学习(20分钟)

教师提问

引导学生写出答案

《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 5 页

=0,1,2,„,200)

所求概率:P{X≥1}=1—P{X=0}=1—0.98200=0.9824 说明:虽然每次的命中率很小,但当射击次数足够大时, 击中目标的概率很大。这个事实告诉我们,一个事件尽管在 一次实验中发生的概率很小,但在大量的独立重复试验中,

kX的分布律为:P{X=k}=C200(k (0.02)k(0.98)200k,

这个事件的发生几乎是必然的。也就是说,小概率事件在大量独立重复室验中是不可忽视的。

当问题的规模很大时,一般n很大且p很小,无法查表。而直接计算又很麻烦,下面给出一个当n很大而p很小时的近似计算公式.例

2、车间现有90台同类型的设备,各台设备的工作是相互独立的,每台发生故障的概率都是0.01,且一台设备的故障只能由一个人修理。配备维修工人的方法有两种,一种是由三人分开维护,每人负责30台;另一种是由3人共同维护90台。分别求在两种情况下车间的设备发生故障不能及时维修的概率。

解:设X为出现故障的设备台数

(1)每人负责30台设,可认为是30重贝努利试验,因此X~B(30,0.01),当X>1时等待修理。

λ=np =0.3,P{X>1}= P{X≥2}≈(0.3)e0.3≈

k2kk!0.0369 Ai=“第i个人负责的30台设备发生故障而无人修理”。可知P(Ai)=0.0369,而90台设备发生故障无人修理的事件为A1∪A2∪A3,故采用第一种方法,所求概率为

P(A1∪A2∪A3)= 1- P(A1A2A3)=1-(1-0.0369)3=0.1067

(2)三人共同维护90台,认为是90重贝努利试验,因此X~B(90,0.01),当X>3时等待修理。

而所求概率为P{X>3}= P{X≥4}≈(0.9)e0.9≈

k4kk!0.0135 因为0.0135

五、态度养成

六、技能训练(16分钟)

做事认真的态度

通过实际训练,学生练习练习:一大楼有五个同类型的独立供水设备,在任意时使学生理解样本老师巡刻每个设备被使用的概率为0.1,问在同一时刻 的写法与含义 视,解答《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 6 页 (1)恰好有两个设备被使用的概率P1是多少? (2)至少有三个设备被使用的概率P2是多少? (3)至多有三个设备被使用的概率P3是多少? (4)至少有一个设备被使用的概率P4是多少? 解:在同一时刻观察五个设备,它们工作与否是相互独立的,故可视为5重贝努里试验,n=5,p=0.1,

于是可得:

2(1)P1=P5(2) =C5(0.1)2(0.9)53=0.0729

问题

(2)P2=P5(3)+ P5(4)+ P5(5)=0.00856 (3)P3=P5(0)+ P5(1)+ P5(2) + P5(3)=0.99954 (4)P4=1-P5(0)=1-0.95=0.40951 {X=0}={没有取到次品},P{X=0}=

02C3C72C1011C3C72C1020C3C72C107 157 15{X=1}={取到一件次品},P{X=1}={X=2}={取到两件次品},P{X=2}=1 15XX的分布律为:P0715171521 1

5七、课堂小结(3分钟)

在学习时要理解三种分布之间的关系:两点分布讨论的是一次贝努利试验的结果,它只有两个结果,二项分布讨论的是N次贝努利试验的结果,它有N+1个结果。两点分布是二项分布的特例,泊泊松分布是二项分布的极限分布。它对应无穷多次的贝努利试验,因此,贝努利试验是非常重要的一类试验。

概括总结,帮助学生构建知识体系

简要概括本节内容

八、布置作业(1分钟)

复习本节内容

预习连续型随机变量 P36—

5、

6、7

巩固所学的知识 培养自学能力

《概率与数理统计》09—§2-1离散型随机变量及其概率分布(第二次)(共 7 页)

第 7 页

推荐第5篇:“离散型随机变量”的教学设计之我见

“离散型随机变量”的教学设计之我见

人民教育出版社中数室 田载今

随机变量是因随机试验结果的变化而变化的量.由于随机试验的结果是事先无法确定的,所以表示随机试验结果的量要因结果的不同而变化,这样的量当然属于随机变量.随机变量的本质是定义在样本空间Ω上的一个映射,它把试验结果映为实数,即其中,且对任意实数x,由满足

R,

的基本事件所组成的集合也是一个事件.

引入随机变量的概念,其作用不仅是把随机试验的结果数量化从而带来表示方法的简化,更重要的是把对随机现象统计规律的研究数学化,从而可以利用数学方法研究随机现象的规律性,其中对随机变量的概率分布的研究是实现这种转化的关键.

如果样本空间是可数的,即量的取值

,则随机变也可以一一列出,这样的随机变量即离散型随机变量.离散型随机变量比连续型随机变量更容易理解,它是高中数学学习的主要随机变量类型.

一般地,关于离散型随机变量的教学目标大多规定为:

通过具体实例,归纳概括离散型随机变量的特征,得出离散型随机变量的概念;

体会引入随机变量的作用;

渗透将实际问题转化为数学问题进行随机分析的思想方法.

目前的高中数学教材中,离散型随机变量和离散型随机变量的分布列大都先后出现在两个小节中的内容.从教师教学用书中所附的教学设计案例和一般的实际教学过程看,将这两个内容分在两节课中学习是一般的教学安排.在这部分内容的第一课时中,通常只安排关于离散型随机变量概念的内容,而不涉及离散型随机变量的分布列.笔者认为,这样安排是有一定道理的:第一,离散型随机变量是基础概念,离散型随机变量的分布列是针对离散型随机变量而定义的,从逻辑关系上说两者有先后之分;第二,两个概念的第一次出现分在不同课时内,学习内容单一,目标明确,可以将其分别解决,避免认识不清而产生混淆,从而使基本概念学得更扎实牢固;第三,这样处理与现行教材的课文、练习、习题的安排顺序保持基本一致,便于学生自学和做作业.

兵法曰:兵无常态,水无常势.这就是说解决问题的方法不是一成不变的,应根据实际情况权衡利弊相机行事.同样地,教学有法,教无定法.一种教学设计难以方方面面都能兼顾,往往在保证了一些方面有利的同时,也存在另一些方面的不足.如前所述,引入离散型随机变量的概念,体会引入随机变量的作用,渗透将实际问题转化为数学问题进行随机分析的思想方法,是本部分的教学目标,三者是相互联系的一个整体(三位一体).如果只是引入离散型随机变量的概念,而不能较明显地体现为什么要引入它,则会影响对其作用和相关思想方法的体会.要体现引入随机变量的作用,渗透将实际问题转化为数学问题进行随机分析的思想方法,显然离不开对离散型随机变量的概率分布的研究,这是把对随机现象统计规律的研究数学化的关键.从这个角度看,如果能在同一课时中引入离散型随机变量后,紧接着出现分布列,使两者更密切地联系起来,可能更有利于教学目标的实现.

笔者考察实际教学发现,在一节课中仅讨论离散型随机变量,内容上显得比较单薄,时间上显得比较宽余,效果上显得比较拖沓,从提高教学效率考虑似还有潜力可挖.更重要的是,如果只引入随机变量而不涉及概率分布,这节课至多只能使人感到随机变量是对试验结果的一种数量化表示,而无法认识这种表示与随机度量(即可能性大小)的密切联系,这使得体会随机变量作用的效果大打折扣.在高中数学教材的向量部分,曾指出“如果没有运算,向量只是一个‘路标’,因为有了运算,向量的力量无限.”与此类似,如果不涉及概率分布,随机变量只是一种“表示”,因为有了概率分布,随机变量才能在研究随机现象时发挥作用.

笔者认为,将离散型随机变量和其分布列更紧密地联系起来,在实际教学中具有可行性.为说明这一点,笔者不揣冒昧地提出如下一种教学过程的设计草案,敬请读者指正.

离散型随机变量及其分布列第一课时的教学过程草案

一、描述随机变量

试验结果经常可以用表示计数或度量的量来表示,例如出现某种现象的次数,某物理量的长度,等等.即使是定性的试验结果,也可以数量化表示.例如掷硬币时,正面向上记为1,反面向上记为0.表示随机试验结果的量,其取值事先不能确定,它随着试验结果随机确定.一般地,随着试验结果的变化而变化的量叫做随机变量(random variable).随机变量通常用

表示.

二、考虑随机试验案例及相关问题

请看下面的随机试验,并考虑相关问题.

随机试验1 掷一枚质地均匀的骰子.

(1)用X表示掷出的点数,要表示试验的全部可能结果,X应取哪些值?

掷骰子时,掷出的点数可能是1,2,3,4,5,6中的一个,但事先不能确定,结果是随机产生的.用X表示掷出的点数,X的值应随机地取1,2,3,4,5,6中的某个.

(2)X取到每一个值的概率各是多少?

由古典概型可知,X取1,2,3,4,5,6中每一个值的概率都是下:

这可以列表表示如

(3)X

X

(4)如果多次重复掷一枚骰子,那么掷出点数的平均值最可能是多少?

每次掷出的点数无法事先确定,因此多次掷出的点数的平均值也无法事先确定.但是,我们可以依据“大量重复试验时频率稳定于概率”对此进行估计.由于点数1,2,3,4,5,6出现的频率都会稳定于,所以多次重复掷骰子时点数的平均值最可能是

随机试验2 同时掷两枚质地均匀的硬币.

(1)用X表示掷出正面的个数,要表示试验的全部可能结果,X应取哪些值?

掷两枚硬币时,掷出正面的个数可能是0,1,2中的一个,但事先不能确定,结果是随机产生的.用X表示掷出正面的个数,X的值应随机地取0,1,2中的某个.

(2)X取到每一个值的概率各是多少?

由古典概型可知,X取0,1,2中每一个值的概率可以列表表示如下:

(3)X0各表示什么?它们对应的概率各是多少?

X0表示事件“正面个数大于0”,即事件“正面个数为1或2”.它扪的概率分别为和.

(4)如果多次重复这个试验,那么掷出正面个数的平均值最可能是多少?

每次掷出的结果无法事先确定,因此多次掷出的正面个数的平均值也无法事先确定.但是,我们可以依据“大量重复试验时频率稳定于概率”对此进行估计.由于点数0,1,2出现的频率分别会稳定于,和,所以多次重复试验时正面个数的平均值最可能是

三、引出离散型随机变量及其分布列

思考1 上面两个X是随机变量吗?它们的取值形式有什么特点?这些取值与试验结果有什么关系?

在上述试验及相关问题中,两个X分别表示“点数”和“正面个数”,它们都是表示随机试验的结果的量,都随试验结果的变化而变化,因此都是随机变量.这两个随机变量的所有可能取值都可以一一列出,即分别为1,2,3,4,5,6和0,1,2.每一列数都对应着一个试验的所有可能结果.

一般地,所有可能取值能够一一列出的随机变量,叫做离散型随机变量(discrete random variable).

思考2 上面两个表格的形式有什么特点?它们表示了什么内容?

上面问题中的表格,分两行列出随机变量X的可取值,以及各值对应的概率.它不仅表示出离散型随机变量X的变化范围,而且表示出各种变化的可能性大小,即从变化内容及其可能性这两方面全面地刻画了离散型随机变量X.

一般地,表示离散型随机变量X的所有可能值及取各个值的概率的表格

叫做X的分布列(distribution series).X的分布列也可以表示为

容易发现,由于概率的和

思考3 初步体会离散型随机变量及其分布列的作用.

从上面的问题可以看出,对于研究随机试验问题,例如估计多次重复试验结果的平均值,离散型随机变量及其分布列是非常有用的工具.由此可以觉察,引入随机变量给定量地表示和研究随机性问题带来方便;有了离散型随机变量及其分布列,就可以对许多随机试验的结果从变化范围和变化可能性两方面有更清晰的认识.

四、例题

此处例题为巩固与加深对离散型随机变量及其分布列的一般认识而安排,二项分布、超几何分布等内容安排在后续课时.

例 用随机变量X表示掷两枚骰子的试验结果,并写出X的分布列.

解:设X表示两枚骰子的点数之和,则X的分布列为

与随机试验的全部可能结果一一对应,所以它们所对应的

根据X的分布列,可以求出有关事件的概率.例如,

,

五、小结

1.回顾离散型随机变量及其分布列的概念;

2.初步体会离散型随机变量及其分布列在研究随机试验问题时的作用.

前面已经说过,教学有法,教无定法.教材和教学的设计方案具有多样性,不同方案各有长短.选择方案的关键在于从实际出发,在保证重点,突出要实现的主要教学目标的前提下,力求教学效果的最大化.笔者提出上述意见及教学设计,只是一孔之见,意在抛砖引玉,能为改进教材和教学的讨论提供参考.

2010-07-08 人教网

推荐第6篇:离散型随机变量数学期望教学设计

教学设计

熟练理解并掌握离散型随机变量的定义、意义和计算方法; 教学重点:离散型随机变量的定义、意义和计算方法; 教学难点:理解离散型随机变量的定义; 教学方法:启发式教学和案例推理式教学相结合; 教学手段:多媒体教学; 教学内容:

第一:由1653年法国的赌资分配问题引出数学期望概念的由来和产生背景。以动画故事形式讲述赌资分配问题的产生和概率论学科及数学期望概念的诞生背景。

第二:以射手选拔问题为例引出问题——射中环数平均值的稳定值如何确定?由最简单的平均环数计算公式——总环数除以射击次数,逐步分析得出结论——用射中每个环数的可能只与对应概率乘积的和可以表示射中环数平均值。从而抽象出离散型随机变量数学期望的概念。

第三:离散型随机变量数学期望的定义。从三个主要方面分析定义的掌握要点。1.数学期望是一个数,完全由随机变量分布律决定的数。2.定义要求级数绝对收敛。因为XK的取值可正可负,而一般项级数的绝对收敛性则可以保证当级数项的位置发生改变时级数仍然收敛且和不变。而条件收敛就不一定了:比如我们知道调和级数是条件收敛的,但当我把它的项按照这样的次序改变之后,这个级数竟然变成了原级数的1/2,也就是说:它的和变成了原来和的1/2。这个例子就说明:条件收敛的级数它的和不一定是稳定的,所以定义要求这个级数绝对收敛。3.数学期望代表的随机变量的平均取值,确切地说是加权平均值,并举例说明加权平均值与算术平均值的不同。

第四:根据定义解决赌资分配问题中甲乙选手平均水平的高低 分别把甲乙射中环数看作随机变量X,Y,在已知X,Y分布律的条件下,计算X,Y的数学期望,就得到了甲乙的平均射中环数也就比较出了他们平均水平的高低。

第五:分析赌资分配问题与数学期望的关系。分析两种错误的分配方案及其原因,指出帕斯卡和费马提出的分配方案及计算依据,并分析这种分配方案的合理性以及数学期望名字的由来。

第六:通过这堂课的学习我们得到的启示。提出问题的重要性和由具体到一般归纳方法的运用。

推荐第7篇:离散型随机变量及其分布列教学反思

《离散型随机变量及其分布列》教学反思

一、教学内容、要求以及完成情况的再认识

《离散型随机变量的分布列》在近几年高考的推波助澜下愈发突显出其应用性和问题设计的新颖和创造性,如火如荼的新课改时时刻刻在提醒我们“思路决定出路”,们明确教学设计应是为了“学生的学而设计教”,不是为了 “老师的教而设计学”。

1.学的重点应是离散型随机变量的分布列的含义与性质而非如何求概率 看过《离散型随机变量的分布列》的几个视频,大多采用“一个定义、三项注意、变式训练”的传授型数学概念教学模式,定义匆匆过,训练变式多,学生表示随机变量的分布列时错误不断。这些错误集中指向是某些事件的概率求错,从而导致分布列的表示错误,老师又纠错,学生还犯错。整堂课反映出的教学重点是求随机事件的概率。孰不知学生出错的根本原因是在思维的过程中没有有意识的将分布列问题转化为求互斥事件的概率。正所如皮之不存、毛之焉附,历经离散型随机变量的分布列的概念的教学过程并形成解题时将分布列问题转化为求互斥事件的概率的意识理应成为教学的重点。

2.数学概念的教学应是从创设概念的生长点的问题情境切入探究而不是抛给学生

“一个定义、三项注意、变式训练”的“抛式”数学概念教学模式,犹如过眼云烟,未建立在学生已有的认知基础上的数学概念的理解犹如空中楼阁,未建立在思维的最近发展区内进行的类比归纳的正迁移思维犹如断了翅膀的鸟,未历经数学概念的探究而进行的变式训练亦不过是模仿解题。“问题是数学的心脏”,数学活动是由“情景问题”驱动的,“问题解决”是其主要的活动形式,创设可以连续变式的正多面体的问题情境,提出从低纬度向高纬度发展的问题是历经数学概念再创造的好的开始。

引例1:某人抛一颗骰子,出现的点数有几种情况?如何表示?各种结果出现的概率分别是多少?

引例2:100件产品中有10件次品,任取其中的4件,出现次品的情况有几种?如何表示?各种结果出现的概率分别是多少?

引例3:扔一枚硬币,出现的结果有几种?能用数表示吗?如果可以,如何表示?各种结果出现的概率分别是多少?

以上三个问题,集中指向了先是随机变量取不同值时对应概率的表示,更加如何简洁的表示,而离散型随机变量的分布列也是概率的一种表示形式,古典概率就是离散型随机变量的分布列的知识生长点。这就是将数学概念的引入情境化、顺其自然、不强加于人,是要合乎学生的认知规律、不苛求与形式。 3.数学概念的含义和性质是剥洋葱皮式的探究而不是变式训练的强化 学生对数学概念的理解出现偏差,往往是学生站的认识问题的角度不合理、维度不全面,所以我借助于问题串、采用“剥洋葱皮”的方式从数学概念的外延出发探寻概念的内涵。问是深入思考的开始、是质疑探究的延续。

离散型随机变量的分布列的性质是概念的外延,而离散型随机变量的概率分布列的内涵是一个必然事件分解成有限个互斥事件的概率的另一种表示形式,更主要的是应在概念的生成中形成解决问题的思维方法。

问题1.通过以上简单的离散型随机变量的分布列,归纳出离散型随机变量的分布列具有哪些性质?(学生发现性质 ) 性质2的理解是本节课的一个难点,设置如下问题串: 问题2.性质2的含义是什么?

问题3.每一个分布列有多少个随机事件? 问题4.随机事件之间是什么关系?

问题5.这些随机事件构成的复杂事件又表示什么事件?

通过以上问题串的探究,就是要学生历经离散型随机变量分布列的本质的认识过程,从而形成求解离散型随机变量的分布列的方法和步骤:

①明确随机变量的含义、确定随机变量的取值 ②判定随机事件的关系、计算随机事件的概率 ③列表表示分布列、检验是否构成必然事件

这样设计的目的是想避免学生在没有对数学概念和思想方法有基本了解的情况下就盲目进行大运动量的变式解题操练,导致教学缺乏必要的根基,是要培养学生数学用数学思维来解决问题。

在教学设计上要做整体的把握,应该从基本点出发,形成交汇点,进而达到制高点。教学的基本点就是“双基”: 数学基础知识和基本技能。从双基出发,使得基础知识形成网络、基本技能形成规律。教学的交汇点就是数学活动,在数学活动中形成基本思想方法和基本活动经验。

制高点是什么?制高点是重点,是可以达到必要深度的部分,但又不仅仅是重点。重点只是数学的结果,不指向如何应对;而制高点致力于探寻问题解决的基本思路,形成解决问题的方法和规律。站在制高点上进行教学设计,就是首先要准备贯彻什么样的教学理念、采用什么样的教学方法为支撑下的教学设计。所以我在教学设计时重视情境预设、更重视思维的发展历程,关注知识的内化、更关注形成知识的方法的理性建构。 数学思维的培养成长于每一节课堂、成败于每一点基础、影响于每一个细节,让每一节数学课堂都真正在有利于学生发展为本的道路上改革,牢牢把握这个制高点,成功就水到渠成了。

二、值得注意的地方

在教学过程中要充分发挥学生的主体地位。在课堂上,无论是新教师还是老教师,通常会把自己当做课堂上的主人而过多的会忽略学生的主体地位;或者学生会因为长时间的习惯于听老师来讲解而忘记自己是课堂的主人。在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。但由于时间的把握,以及对学生的放手程度上‘实施落实的可能还不到位,有待改进。

总之,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平,做一名真正合格的人民教师。

推荐第8篇:学习离散型随机变量一节的总结反思

学习离散型随机变量一节的总结反思

单守信

1.随机变量就是用来表示事件,表示试验结果的变量。在请随机变量的所有可能值时,一定要全面、细心,做到不重不漏。

2.离散型随机变量是将试验的结果数量化,它作为变量,当然有它取每个值的可能性的大小。

3.学会一一列举随机变量X的取值是重点.

推荐第9篇:离散型随机变量的均值教案 Microsoft Word 文档 (5)

[课题]2-5(1离散型随机变量的均值教案 备课时间:01—30上课时间:02—?主备:贾永亮 班级: 姓名: [学习目标]:(1)理解随机变量均值的含义,会求随机变量的均值。 (2)高考A级要求。 [学习重点]:会计算简单的条件概率。 [学习难点]:条件概率的意义。 [学法指导]:由计算样本的平均值类比得到散型随机变量的数学期望。 [课前预习导学]: 问题1:怎样刻画离散型随机变量取值的平均水平呢? 引例:甲,乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下。 X1 pk0 07 1 2 3 01 3 01 1 01 2 X2 pk 0 05 03 02 0 问题2:如何比较甲,乙两个工人的技术? 问题3:回顾计算样本的平均值的方法? 问题4:类比计算样本平均值的方法,你能给出散型随机变量的数学期望吗?用符号如何表示? 问题5:你能解决引例提出的问题吗? [课堂学习研讨]: 例1:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同。某学生一次从中摸出5个球,其中红球个数为X,求X的数学期望。 例2:从批量较大的成品中随机取出10件进行质量检查,若这批产品的不合格率为005,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X)。 [课内训练巩固]: 1.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为04,则E(X) 2.假设100个产品中有10个次品,从中抽取5个检查,其中废品个数为X,则E(X) [课后拓展延伸]: 例3:证明:若X~B(n,p),则E(X)np [课后练习]: 1.袋中有编号1,2,3,4,5的5个小球,从其中任取3个小球,以X表示取出的3个小球中的最大编号,则E(X) 2.某射手每次射击击中目标的概率都是p,他手中有10发子弹准备对一目标连续射击(每次打一发),一旦击中目标或子弹打完了,就立刻转移到别的地方去。问:他在转移前平均射击几次? 课后反思总结]:

推荐第10篇:“离散型随机变量”的教学反思与再设计

“离散型随机变量”的教学反思与再设计

浙江省绍兴市高级中学 陈柏良

2009年12月2—6日,人民教育出版社A版普通高中数学课程标准实验教材全国经验交流会暨“中学数学核心概念、思想方法及其教学设计的理论与实践”全国第9次课题研讨会在山西省晋中市召开,会上笔者开设了一节“离散型随机变量”的研讨课,引起与会专家和代表的一阵热议.自然地,也促使笔者教学后的深入反思和对本节课教学设计的重新思考.

第一部分 教学反思

1.教学设计的逻辑把握

一个好的教学设计,除了对教学内容的数学理解要到位外,至少还必须具备两个特点:其一,构思简单;其二,逻辑清晰.所谓构思简单,就是整个教学设计有一条主线贯穿,让人一下子能识别和读懂教学内容的“核心”和“精华”;所谓逻辑清晰,就是整个设计从教学起点,到教学过程,再到教学结果,各个环节清清楚楚,自然流畅.

“离散型随机变量”是人教A版数学选修2-3第二章 随机变量及其分布的起始课,是学生在学习《必修3》概率的基础上对随机现象的进一步研究.其教学内容主要是随机变量的概念、离散型随机变量的概念,以及如何通过离散型随机变量展示用实数空间刻画随机现象的方法,体会和领悟随机变量在研究随机现象中的重要作用,渗透将实际问题转化为数学问题的思想方法.由于它的引入,大大简化了各种事件的表示,且使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型.应该说,原教学设计对教学内容的数学理解是到位的,瑕疵是稍多地强调了“随机变量的每一个取值(X)与它所对应的概率值(P)建立了一个函数关系”,与会有专家认为,这个提法虽然没有错误,但对于理解随机变量的概念和以后的应用没有多大意义,可以不提(该提法在第二部分的再设计中已作删减).就该课整个教学设计而言,逻辑清楚,问题自然:先从学生熟知的抛掷一枚骰子(一个熟悉的简单的背景)入手,理解随机变量的概念;接着让学生举例,在学生活动中完成对“随机变量”概念的深刻理解;再在学生的举例中分辨随机变量的取值类型,形成离散型随机变量概念.

2.随机变量的概念教学

教师对随机变量概念的认识和理解,以及教学采取怎样的方式让学生自然“接纳”和“领悟”随机变量概念,是要下番功夫的,因为这会直接影响教学的成败.为此,探讨以下两个问题:

(1)为什么要学习随机变量

众所周知,概率论是从数量上来研究随机现象内在规律性的数学分支.认识随机现象就是指:知道这个随机现象中所有可能出现的结果,知道每一个结果出现的概率.对于给定的随机现象,首先要描述所有可能出现的结果.在数学上处理时,一个常用的、也很自然的做法是用数来表示结果,即把每个结果对应一个数.这样,就建立起了一个统一的刻画不同概率模型中所提及的事件的方法,就可以用数学分析的方法方便有力地研究随机现象了.也就是说,为了便于数学上的推导和计算,就需将任意的随机试验的结果数量化,即将随机试验结果用唯一确定的数字与它对应,建立起随机变量的概念(概言之,随机变量是随机试验可能结果的数量化表示,它是随试验结果而变化的量,其本质是样本空间到实数集之间的一个映射).建立随机变量概念后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来.认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率,即对随机现象统计规律的研究就可以具体转化为对随机变量概率分布的研究.这样就可以借助于有关实数的数学工具来研究所感兴趣的随机现象的本质,从而可以建立起应用到不同领域的概率模型,这就是新概念产生的必要性,也就是为什么要学习随机变量的缘由.

我们再从另外一个角度来认识为什么要学习随机变量: 我们知道概率论是研究随机现象的统计规律性的一门数学学科,也就是从表面上杂乱无章、形式偶然的现象中探索出现象的规律性的一门数学学科(这里的规律性,无非是指各种试验结果以多大概率出现这一问题).正是因为如此,探求这个规律性的工具应该适用于各种形式的随机现象,而且还应该简便、有力.分布函数

就是这样一个工具,但这个函数是在引入随机变量后定义的,

的概率.分布函数可以把各种类型的随机试,即分布函数是事件验的结果的概率分布用一个统一的形式表示出来,它就是一个普通的函数,它有很好的分析性质,便于处理,它的引入使得许多概率论问题得以简化而归结为普通函数的运算,这样就能利用数学分析的结果研究随机现象规律性.

一般地,在学习概率论之前,研究普通变量与函数所采用的思路和方法已为人们所熟悉.自然,人们希望采用熟悉的方法和已有的研究成果研究新的课题,随机变量的引入无疑也有这方面的原因.

(2)用怎样的方式学习和理解“随机变量”

“随机变量”这个概念(或者简单地说随机试验结果与实数的这种对应)实际上早已存在于学生的意识之中,而且在不少场合都已不自觉地“实际使用”(对应思想),如在玩掷骰子时会用“点数”去表示掷出结果,在观看射击比赛时会用“环数”去评价射击成绩,抽奖时会先对奖券“编号”,随机抽取一部分学生时会用“学号”去代替,观看比赛足球比赛时,赢、平、输分别会用“得分”去量化、随意选购商品时会用“价格”去衡量等等,只是没有“明朗化”.因而,对随机变量概念的教学上笔者觉得没有必要创设更多的问题情境,让学生来概括提炼.实际上,把所有试验结果都数字化,要让学生自己想出来也是十分困难的(尽管已经在不自觉地使用).因为,这要求对数学本质有很好的认识才行.故设计中主要考虑如何通过教师有启发地提问,学生有意义地学习来“内化”这个概念.教学中让学生觉得问题的提出,概念的发生、发展过程较为自然,能够从教师的讲授,自己的思考中感受数学是怎样一步步研究现实世界的.故在教学设计中可以从一个简单的学生熟悉的例子(作为新概念引入的背景)入手,循循善诱,使得通过这个例子,就好像通过一道门户,把学生引入一个“建构”新知的领域.原教学设计中对“随机变量”概念的教学是以抛掷一枚骰子为背景的,对“随机变量”的理解,是从函数(随机变量的取值X与随机事件发生的概率P之间的对应)和映射(随机试验的结果与随机变量的取值的对应)的强调中进行的,意在让学生体会随机变量在研究随机现象中的作用.教学实践后有专家认为,让学生明白“随机变量的取值X与随机事件发生的概率P之间的对应(函数关系)”对理解随机变量的概念没有多大好处.反思后,笔者认为,就本节课的教学任务而言,只要学生能认识到:建立随机变量概念后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来,“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,即可“把对随机现象统计规律的研究具体转化为对随机变量概率分布的研究”,这样就可以借用有关实数的数学工具来研究随机现象的本质了.这样就可以了.

因此,反思后的教学设计着意彰显这一主旨.对随机变量概念学习的设计上,分两步走:第一步是认识“用数字表示随机试验的结果”的量是一个变量,第二步是通过建立“一个从试验结果的集合到实数集合的映射” 认识到在这个对应关系下,数字随着试验结果的变化而变化,即这是一个特殊的变量,与随机试验的结果有关,在此基础上学习随机变量概念,并理解随机变量的特征:它的取值依赖于试验结果,具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定,且所有可能取值是明确的.进一步,如何让学生深刻认识和理解“随机变量”这一概念?原教学设计采用让学生举例的方式,在学生的活动中来完成对“随机变量”概念的理解,这一设计思路得到同行肯定.事实上,要使学生真正理解数学知识,必须要有他们身体力行的实践,从自己亲历亲为的探索思考中获得体验,从自己不断深入的概括活动中,获得对数学概念、原理的本质的领悟.此处安排学生举例正是基于这种考虑,其意义在于:其一,可以观察学生是否领会把随机试验结果数学化的思想,以及怎样把随机试验结果数学化(尤其是试验的结果不具有数量性质的随机现象);其二,体会引入随机变量概念后,随机试验中的事件就可以通过随机变量的取值表达出来,“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,(即研究随机现象的统计规律就可以转化为研究随机变量的概率分布).

3.离散型随机变量概念的形成

离散型随机变量是随机变量的下位概念,而下位学习依靠的主要是同化.原教学设计中是这样考虑的:在学生的举例中通过分析数学化之后的随机变量取值的集合的特征来引发离散型随机变量的概念.即通过学生的举例,分辨随机变量取值的不同情况:随机变量的取值有可数的,有不可数的,有有限个数的,有无限个数的,从中来归纳概括离散型随机变量的特征:所有取值可以一一列出的随机变量.如学生列举的都是随机变量取值为整数的例子,则引导学生去发现问题、提出问题:随机变量的取值都是整数吗?你能否举个(些)例子,而随机变量的取值不是整数呢?再让学生举例,以此来学习离散型随机变量的概念.从这个角度来提出问题比较自然,这是因为,了解随机变量的取值的多种情况本身也是对随机变量概念的认识.所以,提出随机变量的取值都是整数吗?这个问题本身也是理解和进一步认识随机变量概念的需要.教学实践表明,这样的设计建立在“学生的最近发展区”,新概念(离散型随机变量)的形成水到渠成、浑然天成.而在原教学设计之前,还有过这样的设计:安排如下一个练习,然后再提出一个问题

练习:下列随机试验的结果能否用随机变量表示?若能,请写出各随机变量可能的取值.

(1)在含有10件次品的100件产品中,任意抽取4件,取到次品的件数;

(2)接连不断地射击,首次命中目标需要的射击次数;

(3)某公园内积雪最厚处达17厘米,则该公园内各处的积雪厚度.

问题:以上随机变量可能的取值有什么不同?

这里设计练习,一方面起到巩固随机变量概念的目的,另一方面通过比较让学生明白随机变量的取值可以有不同的情况,即随机变量取值有可数的,有不可数的,有有限个数的,有无限个数的.从中来“同化”离散性随机变量的概念.

两者设计相比,显然是改进后的设计更为自然、流畅,它意在借助学生所举出的例子,分辨随机变量的类型,即某些随机变量的取值是离散的,从而给出离散型随机变量的概念,而不再单独用问题的方式(另起炉灶)提出来(把问题中的例子也纳入进来).何况分辨随机变量的类型也是对“随机变量”概念(外延)的进一步理解与认识.

第二部分 反思后的教学设计

一、教学内容解析

概率是研究随机现象的数量规律的.认识随机现象就是指:知道这个随机现象中所有可能出现的结果,以及每一个结果出现的概率.而对于给定的随机现象,首先要描述所有可能出现的结果.在数学上处理时,一个常用的、也很自然的做法就是用数来表示结果,即把随机试验的结果数量化,使得每个结果对应一个数,这样就可以通过实数空间(定量的角度)来刻画随机现象,从而就可以利用数学工具,用数学分析的方法来研究所感兴趣的随机现象.简言之,随机变量是连接随机现象和实数空间的一座桥梁,它使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,这便是为什么要引入随机变量的缘由.

随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的,随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.

离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.本节课的重点是认识离散型随机变量的特征,了解其本质属性,体会引入随机变量的作用.

二、教学目标解析

1.在对具体实例的分析中,认识和体会随机变量对刻画随机现象的重要性和建立随机变量概念的必要性,并会恰当地定义随机变量来描述所感兴趣的随机现象,能叙述随机变量可能取的值及其所表示的随机试验的结果;

2.在列举的随机试验中,通过对随机变量取值类型的分辨,归纳和概括离散型随机变量的特征,形成离散型随机变量的概念,并会利用离散型随机变量刻画随机试验的结果;

3.在举例、观察、思考、发现中经历将随机试验结果数量化的过程,渗透将实际问题转化为数学问题的思想方法,进一步形成用随机观念观察和分析问题的意识.

三、教学问题诊断分析

本节课学生学习的难点是对引入随机变量目的与作用的认识,以及随机变量和普通变量的本质区别.随机变量这个概念其实早已存在于学生的意识之中,而且在不少场合都已不自觉的“实际使用”,只是没有明朗化.学生学习这一概念就是把这些“实际使用的”规则、程序、步骤等进一步加以明确.所以,教师的责任就是为学生建立随机变量这个概念修通渠道.可通过学生熟悉的掷骰子的随机试验让学生体会随机变量概念的发生,在师生举例中来体会随机变量概念的发展,特别是诸如抛掷一枚硬币等试验,其结果不具有数量性质,怎么让学生自然地想到用数来表示其试验结果,并且所用的数又尽量简单,便于研究.教学中需多举试验结果本身已具有数值意义的实例,来发挥正迁移作用.通过多举例让学生理解:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.

另外,随机变量和离散型随机变量是上、下位概念的关系,从学习的认知方式看,下位学习依靠的主要是同化,上位学习依靠的主要是顺应,上位学习一般采用的思维方法主要是概括和综合,它主要通过改造(归纳和综合)原有认知结构中的有关内容而建立新的认知结构.因此,从这一角度来分析,学生对随机变量概念的学习和真正理解比离散型随机变量的学习要困难一些.故在随机变量的教学中,要特别重视学生举例,让学生在充分的自主活动中体验数学化的过程,体验将随机试验结果数量化的过程,体会随机变量对刻画随机现象的重要性和研究随机现象的工具性作用,从而来把握随机变量的内核.

四、教学支持条件分析

学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括.

五、教学过程设计

(一)教学基本流程

(二)教学过程

1.理解随机变量概念

问题1:抛掷一枚骰子,可能出现的结果有哪些?概率分别是多少?

[设计意图] 以学生熟悉的随机试验为例,在复习旧知中孕育新知.

[师生活动] 画表一,指出试验结果分别有“1点的面朝上”、“2点的面朝上”、“3点的面朝上”、“4点的面朝上”、“5点的面朝上”、“6点的面朝上”,它们都是基本事件.为了研究这些事件,常常把它们分别与一个数字对应起来.比如,用数字1与“1点的面朝上”这个试验结果(样本点)对应,用数字2与“2点的面朝上”这个试验结果(样本点)对应,等等.师生共同填写数字,形成表二.

引导学生分析,像这样“用数字表示随机试验的结果”的量用X来表示,它可以取集合{1,2,3,4,5,6}的值,说明X是一个变量.

[设计意图] “用数字来表示随机试验的结果”实际上早已存在于学生的意识之中,而且在不少场合都已不自觉地“实际使用”,如射击比赛中会用“环数”去表示射击成绩,掷骰子时会用“点数”去表示掷出结果,抽奖时会先对奖券“编号”,随机抽取一部分学生时会用“学号”去代替等等,只是没有明朗化.因而,“用数字来表示随机试验的结果”可以通过教师有启发地提问,有意义地讲授进行,让学生觉得问题的提出,概念的发生、发展过程较为自然,能够从教师的讲授中感受数学是怎样一步步研究现实世界的.

问题2:在这里(指着表二),每一个试验结果用唯一确定的数字与它对应,这个对应关系是什么?

[设计意图]建立一个从试验结果的集合到实数集合的映射.让学生感悟:一旦给出了随机变量,即把每个结果都用一个数表示后,认识随机现象就变成认识这个随机变量所有可能的取值和取每一个值时的概率,从而感受把随机试验的结果数字化(成为实数)的必要性,体会引入随机变量的必要性.同时让学生感受概念的从无到有、自然形成的过程.

[师生活动] 启发诱导,引导学生发现在这里建立了一个从试验结果的集合到实数集合的映射.形成下表三:抛掷一枚骰子

让学生观察、思考:刚才,用数字表示试验结果的变量X,它根据什么在变化?让学生发现它的取值随试验结果的变化而变化,它的变化是有规律的,这是个特殊的变量,与随机试验的结果有关,在试验之前不知道会出现哪个值(即它的取值依赖于试验结果,因此取值具有随机性,即在试验之前不能肯定它的取值,一旦完成一次试验,它的取值随之确定).同时,教师指出:在这个试验中,我们确定了一个对应关系(也即建立了一个试验结果到实数的映射)使得每一个试验结果(样本点)都用一个确定的数字表示(即所有可能取值是明确的).在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.随机变量常用字母

问题3:随机变量这个概念与我们曾经学过的函数概念有类似的地方吗?

[设计意图]引导学生与曾经学过的函数概念比较,从而加深对随机变量概念的理解.

[师生活动]“类比”函数概念,领悟随机变量和函数概念在本质上都是一种对应关系,都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.随机变量的取值范围我们称为随机变量的值域.如抛掷一枚骰子,随机变量的值域为

引导学生利用随机变量表达一些事件,例如抛掷一枚骰子中,点的面朝上”; “3点的面朝上”可以用朝上”或“6点的面朝上”.

表示;

表示“

1;

表示.

表示“5点的面同时指出:通过映射把随机试验结果与实数进行对应,也就是,把随机试验的结果数量化,用随机变量表示随机试验的结果,这样“随机试验结果的集合到对应概率集合的映射”就可以用“随机变量的取值集合到对应概率集合的映射”来表示,即可把“对随机现象统计规律的研究具体转化为对随机变量概率分布的研究”.这样我们就可以借用有关实数的数学工具来研究随机现象的本质了.

接着,进一步指出:在学习《数学(必修3)》时我们曾经学习过概率、方差等概念,学过简单的概率模型,在今后的学习中,我们将利用随机变量描述和分析某些随机现象,进一步体会概率模型的作用及运用概率思想思考和解决一些实际问题.(体现章引言)

2.对随机变量的深刻认识(对对应思想——映射的体验)

问题4:你能再举些例子吗?(请学生列举随机试验,并将试验结果数量化,不必写出概率)

[设计意图] 让学生参与举例,体验将实际问题数学化(把实际问题数学化是学习数学极其重要的数学方法)和将随机试验结果数量化的过程.其意义在于两个方面:其一,学生通过寻找(寻找本身就是一个甄别随机与非随机的过程),选择自己感兴趣的随机现象,并学会用随机变量表示随机事件;其二,在将试验结果数量化的过程中体会随机变量在研究随机现象中的重要作用.同时进一步深刻理解随机变量的概念,领悟随机变量学习的重要性,进一步形成用随机观念观察和分析问题的意识.

[师生活动]教师关注学生的举例,关注其关键过程:随机试验中所有可能出现的结果有哪些?如何将试验的结果数量化?要求学生画表,体会映射的过程.教师给学生充分展示和交流所举例子的时间.同时,教师也参与举例(教材中有关于抽取产品、射击、浏览某网页等例子可以纳入进来),深刻体会将实际问题(随机现象)数学化(数字化)的过程,感受建立随机变量概念的重要意义.

对学生列举的试验结果没有数量标志的随机事件,诸如投掷一枚硬币的试验等,要引导学生分析比较,让学生体会对于同一个随机试验,可以用不同的随机变量来表示.但用哪两个数字来表示,主要是要尽量简单,合理,便于研究.如表四:抛掷一枚骰子

在学生举例中学习如何用随机变量去定义试验结果没有数量标志的随机事件(中间表示映射的一栏表格可以省略).

问题5:任何随机试验的所有结果都可以用数字表示吗?同一个随机试验的结果,可以用不同的数字表示吗?

[设计意图]让学生领悟任何随机试验的所有结果都可以用数字来表示(试验结果不具有数量性质的可以通过赋值,将其数量化),同一个随机试验的结果,可以用不同的数字表示,表示的原则主要是有实际意义,简单合理,便于研究.

3.形成离散型随机变量概念

问题6:随机变量的取值都是整数吗?你能否举个(些)例子,而随机变量的取值不是整数呢?

[设计意图] 关注学生的举例,借学生举出的例子,引导分析数学化之后的随机变量取值的集合的特征(一个新概念产生之后,我们应该端详它一番),分辨随机变量的类型,即某些随机变量的取值是离散的,而有些不是,从而给出离散型随机变量的概念.如果学生列举的都是离散型随机变量,则教师可启发点拨,启发后引导学生再举例,或给出以下问题7:

问题7:请仿照刚才的例子,分析下列随机现象,随机变量可以取哪些值?你能够一个一个列出来吗?

(1)某公交车站每隔10分钟有1辆汽车到站,某人到达该车站的时刻是随机的,他等车的时间;

(2)检测一批灯泡(相同型号)的使用寿命.

[设计意图]通过与前面列举例子的比较,引导学生发现这两个试验结果中,表示随机事件的随机变量的取值是一个区间,其值无法一一列出,以此形成离散型随机变量的概念.同时明晰在随机现象中随机变量的取值类型是丰富多样的,这也是对随机变量概念(外延)的进一步认识.

问题8:如果我们仅仅关心“某人等车的时间多于5分钟或不多于5分钟”两种情况,那该怎样定义随机变量呢?

[设计意图] 在研究随机现象时,为研究方便,有时需要根据所关心的问题恰当地定义随机变量.让学生明白恰当定义随机变量给我们研究问题带来方便.问(2)让学生选择自己关心的问题来恰当定义随机变量.

[师生活动]通过分析,让学生明白,在研究随机现象时,有时需要根据所关心的问题恰当地定义随机变量.

4.练习反馈(见教科书第45页)

下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.

(1)抛掷两枚骰子,所得点数之和;

(2)某足球队在5次点球中射进的球数;

(3)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差.

[设计意图]在应用中巩固离散型随机变量的概念,并能熟练利用离散型随机变量刻画随机试验的结果.

5.小结回授

问题9:你能用自己的语言描述随机变量和离散型随机变量的定义及它们之间的区别吗?(学生回答后,可以再问:你能简单地说说引入随机变量的好处吗?)

[设计意图] 学生用自己的语言来概括本节课学到的知识,是一种“主动建构”,也真正体现知识学到了手.

[师生活动]引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来.认识随机现象就变成认识这个随机变量所有可能的取值和取每个值时的概率.也即把随机试验的结果数量化,用随机变量表示随机试验的结果,我们就可以借助于有关实数的数学工具来研究所感兴趣的随机现象了.

六、目标检测设计

人教A版教科书第49页习题2.1中A组,第1,2,3题.

2010-07-08 人教网

第11篇:切比雪夫不等式的证明(离散型随机变量)

设随机变量X有数学期望及方差,则对任何正数,下列不等式成立 2

2

PXE(X)2 

证明:设X是离散型随机变量,则事件XE(X)表示随机变量X取得一切满足不等式xiE(X)的可能值xi。设pi表示事件Xxi的概率,按概率加法定理得

PXE(X)

xiE(X)pi

这里和式是对一切满足不等式xiE(X)的xi求和。由于xiE(X),即xiE(X)22xiE(X),所以有221。

2xiE(X)又因为上面和式中的每一项都是正数,如果分别乘以2,则和式的值将增大。

于是得到

PXE(X)

xiE(X)pixiE(X)xiE(X)22pi1

2xiE(X)xiE(X)2pi

因为和式中的每一项都是非负数,所以如果扩大求和范围至随机变量X的一切可能值xi求和,则只能增大和式的值。因此

PXE(X)1

2xE(X)i

i2pi

上式和式是对X的一切可能值xi求和,也就是方差的表达式。所以,

2

PXE(X)2 

第12篇:离散型制造业

离散制造行业特点

离散型制造企业指的是机械加工、电子元器件制造、汽车、服装、家具、五金、医疗设备、玩具

客户个性化需求多,产品品种日趋多样性,市场需求变化快,预测难度增大,难以为企业合理安排生产提供可靠的依据。

产品结构复杂,零部件多且外协自制兼有,工艺过程经常变更,生产计划的计算和安排非常复杂。临时插单现象多,生产计划的灵活性和严肃性难以兼顾,生产计划往往难以起到指导生产的作用,经营者容易陷入救火式的现场管理。而这种管理方式又带来了不稳定的产品品质,无法准时交货等一系列问题。由于生产计划的不确定性及对库存物料的即时情况把握的缺乏,往往造成库存物料呆滞和生产所需物料缺件,不齐套现象同时并存。

由于产品加工要经过不同的工序,各个工序的生产能力通常并不平衡,生产上容易出现木桶效应,生产被关键的瓶颈资源所制约。

外协厂家、外协件多,对外协产品的质量,交货期的跟踪控制困难。数据采集点多,数据收集维护工作量大,而且数据往往分布于不同的部门,数据的更新和保证数据的一致性也是一个令企业头痛的问题,由于每个产品生产过程不一致,无法对每个作业工序进行核算,导致整个成本核算过于粗放,不利于企业加强成本管理和控制。

第13篇:随机变量及其分布

精品课程《高等数学》(概率统计部分) 电子教案

精品课程《高等数学》(概率统计部分) 电子教案

中“1”出现的次数了,从而使这一随机试验的结果与数值发生联系。

一般地,如果A为某个随机事件,则一定可以通过如下示性函数使它与数值发生1联系:1A0A发生A不发生

这就说明了,不管随机试验的结果是否具有数量的性质,我们都可以建立一个样本空间和实数空间的对应关系,使之与数值发生联系。

为了全面的研究随机试验的结果,揭示随机现象的统计规律性,我们将随机试验的结果与实数对应起来,将随机试验的结果数量化,引入随机变量的概念。

引例:随机试验E1:从一个装有编号为0,1,2,…,9的球的袋中任意摸一球。则其样本空间={0,1,…,9},其中i“摸到编号为i的球”,i=0,1,…,9.定义函数 :ii,即(i)=i,i=0,1,…,9。

这就是和整数集{0,1,2,…,9}的一个对应关系,此时表示摸到球的号码。

从上例中,我们不难体会到:

①对应关系的取值是随机的,也就是说,在试验之前,取什么值不能确定,而是由随机试验的可能结果决定的,但的所有可能取值是事先可以预言的。

②是定义在上而取值在R上的函数。

同时在上例中,我们可以用集合{i:(i)5}表示“摸到球的号数不大于5”这一随机事件,因而可以计算其概率。习惯上我们称定义在样本空间上的单值实函数为随机变量。这就有了如下定义:

定义:设随机试验E的样本空间为{},=()是定义在上的单值实函数,若对任意实数x,集合{:()x}是随机事件,则称=()为随机变量。

定义表明随机变量=()是样本点的函数,为方便起见,通常写为,而集合{:()x}简记为{x}。

如在上例中,摸到不大于5号球的事件可表示为{5},则其概率为P{5}=3/5。 随机变量的引入,使概率论的研究由个别随机事件扩大为随机变量所表征的随机

精品课程《高等数学》(概率统计部分) 电子教案

现象的研究。正因为随机变量可以描述各种随机事件,使我们摆脱只是孤立的去研究一个随机事件,而通过随机变量将各个事件联系起来,进而去研究其全部。今后,我们主要研究随机变量和它的分布。

§15.2 随机变量的概率分布

对于随机变量来讲,我们不仅关心它取哪些值,更关心它以多大的概率取那些值,即研究随机变量的统计规律性—分布函数。

一、随机变量的分布函数

由前可知,若是随机变量,则对xR,{x}是随机事件,所以P{x}有意义。当实数a

可见,只要对一切实数x给出概率P{x},则任何事件{a

1.定义:设是上的随机变量,对xR,

称F(x)= P{x}为的分布函数。

2.性质:设F(x)是随机变量的分布函数,则F(x)具有如下性质:

①单调非降性:即对x1x2R,F(x1)F(x2) 证明:对x1x2,有{x1}{x2},则

F(x1)P{x1}P{x2}F(x2)

②规范性:F()limF(x)0,F()limF(x)1,

xx③右连续性:对x0R,有 limF(x)F(x0)

xx0(性质②,③的证明可参考其它有关的资料)

注:反之可证明:对于任意一个函数,若满足上述三条性质的话,则它一定是某随机变量的分布函数。

例1:判断下列函数是否为分布函数

精品课程《高等数学》(概率统计部分) 电子教案

x0x000F1(x)sinx0x/

2(√)

F2(x)coxs0x

(×)

11x/2x由定义可见,要计算取值的概率可以通过其分布函数来实现。为了研究随机变量的概率分布,我们常选择F(x)来代替之。

3.运算:若abR,~F(x) 则有:

P{ab}F(b)F(a)P{a}ˆlimF(x)F(a0)xaP{a}P{a}P{a}F(a)F(a0)P{a}1F(a)P{a}1F(a0)P{ab}F(b)F(a0)P{ab}F(b0)F(a0)P{ab}F(b0)F(a)

例2:已知的分布函数为

x00x/20x1

F(x)2/31x2

11/122x3x31求P{3},P{1},P{1/2},P{24}。

解:

P{3}F(3)1P{1}F(1)F(10)2/31/21/6P{1/2}1P{1/2}1F(1/2)11/43/4P{24}P{4}P{2}F(40)F(2)111/121/12

例3:设某随机变量的分布函数为F(x)ABarctanx,试确定A,B的值。

F()limF(x)lim(ABarctanx)A/2B0

解:由xxxxF()limF(x)lim(ABarctanx)A/2B1

得A1/2,B1/

精品课程《高等数学》(概率统计部分) 电子教案

例4:设的分布函数为

0F(x)Ax21x00x

1确定A并求P{0.30.7} x1x1

解:由右连续性知limF(x)1,而F(1)A12,A1 即F(x)x2,0x1

则P{0.30.7}F(0.70)F(0.3)0.720.320.4

例5:设某随机变量的分布函数为

0xaF(x)ABarcsin(x/2)axa (a>0)

1xa求A,B。

0F(a)limF(x)lim(ABarcsin(x/a)ABarcsin(1)ABxaxa2

解:由

1limF(x)F(a)ABarcsin(x/a)ABxa2

A1/,B1/2

二、随机变量的分类

离散型r.v的取值只有有限个或可数个

r.v数为值连续型r.v.可以取某一区间的任一非离散型r.v.其它

三、离散型随机变量及其分布律(列)

1.定义:设是上的随机变量,若的全部可能取值为有限个或可列无限个(即的全部可能取值可一一列举出来),则称为离散型随机变量。

若的取值为xi,(i1,2,),把事件{xi}的概率记为P{xi}pi,i1,2,,则称x1,x2,,xi,p,p,,p,为的分布列。

i12【注】:由定义可知,若样本空间是离散的,则定义在上的任何单值实函数都是离

精品课程《高等数学》(概率统计部分) 电子教案

散型随机变量。

2.离散型随机变量的分布列满足下列性质: (1)非负性:pi0 (2)规范性:pi1

i1Proof:pi是概率,即piP{xi},故pi0

由于x1,x2,,xn,是的一切可能取值,故有{xi},注意到对任意的

i1ij,有{xi}{xj},

由概率的可列可加性知:1P{}P{{xi}}P{xi}pi

i1i1i1反之,任意一个满足以上二性质的数列{pi},都可以作为某离散型随机变量的分布列。

有了的分布列以后,我们可以通过如下方式求的分布函数:

3.离散型随机变量的分布函数:

F(x)P{x}i:xixp{x},若这样的i不存在,规定F(x)0

i显然,F(x)是一个右连续、单调非降的递阶函数,它在每个xi处有跳跃,其跃度为pi,当然,由F(x)也可以唯一确定xi和pi。因此的分布列也完全刻画了离散型随机变量取值的规律。这样,对于离散型随机变量,只要知道它的一切可能取值和取这些值的概率,也就是说知道了它的分布列,也就掌握了这个离散型随机变量的统计规律。

例1:袋中装有5只同样大小的球,编号为1,2,3,4,5,从中同时取出3只球,求取出的最大号的分布列及其分布函数并画出其图形。

解:先求的分布列:由题知,的可能取值为3,4,5,且

32323P{3}1/C51/10,P{4}C3/C53/10,P{5}C4/C56/10,

精品课程《高等数学》(概率统计部分) 电子教案

453的分布列为:1/103/106/10,由F(x)P{xi}pi得:

xixx301/103x4 F(x)2/54x5x51注:离散型随机变量的分布列与其分布函数是一一对应的。 常见的离散型分布有:

0xa1.退化分布(单点分布): F(x),P{a}1,

1xa01x1x2.贝努里分布(两点分布):或P{Xx}p(1p)qpnknk3.二项分布:B(k;n,p)P{k}k0,1,2,n kpq4.泊松(Poion)分布:P{k}

四、连续性随机变量及概率密度函数

1.定义:设是随机变量,F(x)是它的分布函数,若存在一个非负可积函数p(x) 使得对任意的x(,),有F(x)P{x}p(t)dt,则称为连续性随机变量,称

xx0,1

kk!ek0,1,2,(0)

p(x)为的概率密度函数或分布密度函数。

由定义显然可知,F(x)连续。

2.F(x)的几何意义:p(x)在几何上表示一条曲线称为分 布密度曲线,则F(x)的几何意义是:以分布曲线p(x)为顶, 以X轴为底,从到x的一块变面积。 3.密度函数具有如下性质:

(1) 非负性:p(x)0,xR (2) 规范性:p(x)dx1



精品课程《高等数学》(概率统计部分) 电子教案

Proof:由分布函数的性质有: 1limF(x)p(t)dt

x注:任意一个满足以上二性质的函数,都可以作为某连续型随机变量的密度函数。

(3) 若p(x)在x处是连续的,则F\'(x)p(x) 注:由该性质,在连续点x处有p(x)limF(xx)F(x)P{xxx}lim,

x0x0xx从这里我们看到概率密度的定义与物理学中的线密度的定义相类似,这就是为什么称之为概率密度的缘故。

(4)设a,b为任意实数,且ab,则p{ab}p(x)dx

ab(5)若是连续型随机变量,则aR,P{a}0 事实上,x0,有0P{a}P{axa}而limax0axaaxp(x)dx

p(x)dx0P{a}0

从此可知:概率为0的事件不一定是不可能事件,称为几乎不可能事件;同样概率为1的事件也不一定是必然事件。这样,对连续性随机变量有:

P{ab}P{ab}P{ab}P{ab}p(x)dx,

abP{a}P{a}ap(x)dx

kx(1x)0x1例2:设随机变量的密度函数为p(x) 其中常数k0,试确

其它0定k的值并求概率p{0.3}和的分布函数。

解:由1p(x)dxkx(1x)dxk(xx2)dxk/6

0011k6

P{0.3}0.3p(x)dx6x(1x)dx0.784

0.31由于密度函数为

6x(1x)0x1p(x)其它0

0x0x分布函数F(x)06t(1t)dt0x1

1x1

精品课程《高等数学》(概率统计部分) 电子教案

注:连续型随机变量的密度函数与其分布函数之间是一一对应的。

1常见的连续型分布有:①均匀分布:U[a,b],p(x)ba0axb其它(xa)222;

②正态分布:N(a,2),p(x)12ex;

ex③指数分布:P(),

p(x)0x0x0(.0)。

以后当我们提到一个随机变量X的“概率分布”时指的是它的分布函数;或者,当X是离散型随机变量时指的是它的分布律,当X是连续型随机变量时指的是它的概率密度。

精品课程《高等数学》(概率统计部分) 电子教案

§15.3 随机变量的函数及其分布

设是一随机变量,yg(x)是一个连续的实值函数,按照随机变量的定义,g()也应是一随机变量。下面我们通过的分布来研究随机变量的分布。

关于该问题的一般提法:已知的分布,求g()的分布。

一、离散型随机变量函数的分布

x1,x2,已知的分布列为p,p, 求g()的分布列。

12由于是离散型随机变量,则g()仍是离散型随机变量,所以分布列为

g(x1),g(x2),p,p,,若其中有某些g(xi)相等,则把相等的值分别合并,并相应地将其概21率相加。

12102例1:设~0.20.30.10.4,试求1的分布列。

解:易知的可能取值为1,2,5,且可知

P{1}P{211}P{20}P{0}0.3P{2}P{21}P{1}P{1}0.10.20.3 P{5}P{2}0.4251则~0.30.30.4



二、连续型随机变量函数的分布

引例:已知的密度函数为p(x),求ab (a0)的密度函数q(y)

ybP{(yb)/a}F()a0a因为F(y)P{y}P{aby}

ybP{(yb)/a}1F()a0a从而,其密度函数

yb1yb1F\'()p()aaaaq(y)F\'(y)yb1yb1F\'()p()aaaaa0yb1) p(aaa0

精品课程《高等数学》(概率统计部分) 电子教案

一般地有如下定理:

Th:设连续型随机变量的密度函数为p(x),若yg(x)是处处可导的函数,则g()的密度函数为:

p(g1(y))[g1(y)]\'yq(y)

0其它其中infg(x),supg(x),D为其定义域。

xDxDProof:仅证g(x)g\'(x)0[g1(y)]\'0

g()在(,)内取值,

所以,当y时,F(y)P{y}0,

当y时,F(y)P{y}1 当y时,

F(y)P{y}P{g()y}P{g1(y)}F(g1(y))

p(g1(y))[g1(y)]y从而有q(y)F\'(y)

0其它ex(0)x0例2:设连续型随机变量~p(x),试求e的密度函数q(y)。

0x0解:yexxlny,dx1,由x0yex1,则由上述定理可知 dyy1p(lny)y(1)(0)q(y)y0y1y1

精品课程《高等数学》(概率统计部分) 电子教案

§15.4 随机变量的相互独立性

独立性的概念在概率论中是非常重要也是最基本的概念,它在概率论和数理统计及其应用中占有很重的地位。

一、随机变量的相互独立性

1.定义:设(,)是二维随机变量,若x,yR有

P{x,y}P{x}P{y}即F(x,y)F(x)F(y),

则称与相互独立。

2.设(ξ,η)是二维离散型随机变量,ξ,η相互独立对于(,)的任一可能取值(xi,yj)有p(xi,yi)p(xi)p(yi),即

pijpipj

例1.设二维随机变量(,)的联合分布列为

①求a,b应满足的条件;

②若与相互独立,求a,b的值。

解:①根据非负性和规范性可知:a0,b0且ab②因为与相互独立,则知pijpipj

311p221a124(4a)(8b)故 911bab24241124

3.设(ξ,η)是二维连续型随机变量,则ξ,η相互独立x,yR,有

p(x,y)p(x)p(y)几乎处处成立。

Proof: “F(x,y)”若p(x,y)xyp(x)p(y),则

xp(u,v)dudvyyp(u)p(v)dvdv

xp(u)dup(v)dvF(x)F(y)ξ.η相互独立

“”由独立的定义F(x,y)F(x)F(y)

xp(u)duyp(v)dvxyp(u)p(v)dvdv

精品课程《高等数学》(概率统计部分) 电子教案

由联合密度函数的定义知:P(x)P(y)是(ξ,η)的联合概率密度函数。 即p(x,y)P(x)p(y)

例2.设(,)~F(x,y)A(Barctg)(Carctg);

①求常数A,B,C;

②与是否相互独立; ③求f(x,y),f(x),f(y)。

解:①由规范性知:1F(,)A(B 2)(C2)A0y又0F(,y)limF(x,y)A(B2)(Carctan3)

xx)(C,同理0F(x,)limF(x,y)A(Barctan2B2)C2 2yx2y3从而A12,F(x,y)1xy(arctan)(arctan)

22322②由于

F(x)F(x,)1x1y(arctan),F(x)F(,y)(arctan) 2223而F(x,y)F(x)F(y),所以与相互独立。

③f(x)F(x)23,f(y)F(y) 22(4x)(9y)6

2(4x2)(9y2)因为与相互独立,所以f(x,y)f(x)f(y)【注】:①.若12n两两独立不能得到12n相互独立;

②.随机变量的独立性不具有传递性;

③对于(,)而言,由(,)的分布可以确定关于与的边缘分布,反之一般不成立,只有当与独立时,由边缘分布能确定联合分布;

④随机变量的独立性是随机事件独立性的扩充,我们也常利用问题的实际意义去判断两个随机变量的独立性。

二、随机向量函数的分布

精品课程《高等数学》(概率统计部分) 电子教案

在前面,我们讨论了一维随机变量的函数g()的概率分布,下面我们讨论二维随机变量之间的函数分布:

已知(,)的分布,求,,1.和的分布:

①对离散型随机变量:

已知(,)的分布列为{Pij},求的分布。 这时的所有可能取值为{xiyj} i,j=1,2,3…

的分布 P{Zk}P{Zk}P{xi,Zkxi}P{Zkyj,yj}

i1j1若ξ,η独立,则

P{Zk}P{xi}P{Zkxi}P{Zkyj}P{yj}

ij即找出的所有可能取值,并注意将相同的值进行合并,然后求出相应的概率。

1 思考:设~1211, ~112211,且与独立, 2求:(1)(,)的联合分布列; (2)的分布列; (3)P{}? ②对连续型随机变量:

已知(,)是连续型随机变量,其联合密度函数为p(x,y),求的密度。

F(z)P{z}P{z}[zxxyzP(x,y)dxdy

zztyxP(x,y)dy]dx[P(x,tx)dt]dx[P(x,tx)dx]dt

(若被积函数在积分区域上连续,则可交换积分顺序)

的密度函数为q(z)F(z)P(x,zx)dxP(zy,y)dy



精品课程《高等数学》(概率统计部分) 电子教案

若与相互独立,则

q(z)P(x)P(zx)dxP(zy)P(y)dy(卷积公式)

即相互独立的二随机变量和的密度函数是这两个随机变量密度函数的卷积。 以下仅对连续型随机变量考虑:设(,)~P(x,y) 2.商的分布: F(z)P{z}xzyp(x,y)dxdydy0zyp(x,y)dxdyp(x,y)dx

0zyq(z)F(z)[0zyp(x,y)dx]dy[p(x,y)dx)]dyp(zy,y)ydy

0zy独立情形:q(z)P(zy)P(y)|y|dy

3.最大max{,}与最小min{,}的分布:

当与相互独立时,F(z)F(z)F(z),F(z)1[1F(z)][1F(z)]

10x1例4:已知 ~p1(x)其它0求2的密度函数。

ey~p2(x)0y0 且与相互独立,y00x1解:(法一)要使被积函数非零,则应有y0

2xyzz0zz2x0F(z)P{2z}p1(x)p2(y)dxdy2(eydy)dx0z2

002xyz1z2xy(edy)dxz200从而可得qr(z)Fr(z)。

精品课程《高等数学》(概率统计部分) 电子教案

1/20x2(法二)令\'2~p1\'(x)

其它0易知,与相互独立(但与不一定相互独立),要使p1(x)p2(zx)非零,

zx0则应满足条件:,

0x2

则有

z00121zq(z)p1\'(x)p2(zx)dxp2(zx)dxexzdx0z2

020212exzdxz220注:对于二维连续型随机变量(,)来说,无论是求(,)落在某一区域内的概率,还是求其函数的分布,都是使用公式 P{(,)D}P(x,y)dxdy。

D

第14篇:离散数学试卷

诚信应考,考试作弊将带来严重后果!华南理工大学期末考试 《离散数学》试卷A 注意事项:1.考前请将密封线内填写清楚;2.所有答案请直接答在试卷上;3.考试形式:闭卷;4.本试卷共五大题,满分100分, 考试时间120分钟

一、填空题(本大题共12小题,每小题2分,共24分) 1.求合式公式xP(x)→xQ(x,y)的前束范式________________。 2.设集合A={a, b, {a,b}, }, B = {{a,b}, },求B-A=_____________. 3.设p与q的真值为0,r,s的真值为1则命题(s(q(rp)))(rp)的真值是__________.4.设R是在正整数集合Z上如下定义的二元关系Rx,y(x,yZ)(xy1,0) 则它一共有个有序对,且有自反性、对称性、传递性、反自反性和反对称性各性质中的性质。 5.公式x(P(x)→Q(x,y))→S(x)中的自由变元为________________,约束变元为________________。 6.设有命题T(x): x 是火车,C(x): x是汽车,Q(x, y): x跑得比y快,那么命题“有的汽车比一些火车跑得快”的逻辑表达式是______________________.7.设G是n阶m条边的无向图,若G连通且m=__________则G是无向树.8.设X={1,2,3},f:X→X,g:X→X,f={,,},g={,,},则f-1g=________________,gf=________________。9.不能再分解的命题称为________________,至少包含一个联结词的命题称为《离散数学》试卷A

________________.

10.连通无向图G含有欧拉回路的充分必要条件是 11.设集合A={,{a}},则A的幂集P(A ,|P(A)|=_____________________________。

12.设G = , G’ = 为两个图(同为无向图或有向图), 若E’  E且_______________, 则称G’是G的子图, 若E’  E且_______________, 则称G’是G的生成子图。

二、单选题 (本大题共12小题,每小题2分,共26分)

1.下列命题公式为重言式的是()

A.(p∨┐p)→q.B.p→ (p∨q)C.q∧┐qD.( p→p)→q

2.下列语句中为命题的是( )

A.你好吗?

B.人有6指.C.我所说的是假的.

D.明天是晴天.

3.设D=为有向图,V={a, b, c, d, e, f}, E={, , , ,}是()

A.强连通图

C.弱连通图 B.单向连通图 D.不连通图

4.集合A={a,b,c}上的下列关系矩阵中符合偏序关系条件的是()

10

1011A.

001

11001011011110 B.010C.110D.010 11010010111

5.设A={1,2,3},A上二元关系S={,,,},则S是()

A.自反关系 B.传递关系C.对称关系D. 反自反关系

6.设A={a,b,c,d},A上的等价关系R={, , , }∪IA,则对应于R的A的划分是()

A.{{a},{b, c},{d}}

C.{{a},{b},{c},{d}} B.{{a, b},{c}, {d}} D.{{a, b}, {c,d}}

7.以下非负整数列可简单图化为一个欧拉图的是()

A.{2, 2, 2, 2, 0}B.{4, 2, 6, 2, 2}

C.{2, 2, 3, 4, 1}D.{4, 2, 2, 4, 2}

8.设论域D={a,b },与公式xA(x)等价的命题公式是( )

A.A(a)∧A(b)B.A(a)→A(b)C.A(a)∨A(b)D.A(b)→A(a)

9.一棵树有3个4度顶点,4个2度顶点其余都是树叶,求这棵树有多少个树叶顶点()

A.12B.8C.10D.1

310.有ABC三个人猜测甲乙丙三个球队中的冠军.各人的猜测如下:

A: 冠军不是甲,也不是乙.B: 冠军不是甲,而是丙.C: 冠军不是丙,而是甲.已知其中有一个人说的完全正确.一个人说的都不对,而另外一人恰有一半说对了.据此推算,冠军应该是()

A.甲B.乙C.丙D.不确定

11.如第11题图所示各图,其中存在哈密顿回路的图是 ()

12.设C(x): x是国家级运动员,G(x): x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为 ()

(A)x(C(x)G(x))(B)x(C(x)G(x))

(C)x(C(x)G(x))(D)x(C(x)G(x))

三.计算题(30分)

1.用等值演算法求取求下列公式:(PQ)(P∨Q)的合取范式(5分)

2.图G如下图所示,求图G的最小生成树.(5分)

3.有向图D如图所示,求D的关联矩阵M(D) (5分)

4.化简表达式(((A(BC))

A)(B(BA)))(CA)(7分)

5.设R={,,,,,},求r(R)和s(R),并作出它们及R的关系图(8分)

五.证明题(22分)

1.构造下面推理的证明(5分)

前提:pq,pr,st ,sr,t

结论:q

2.设A={1, 2, 3, 4}, 在AA定义的二元关系R,

u,v,x,yAA, uRxuy +xv

证明R是AA上的等价关系。(5分)

3.已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (6分)

4. 无向图G = ,且|V|=n, |E|=m, 试证明以下两个命题是等价命题

1)G中每对顶点间具有唯一的通路,

2)G连通且n=m+1。(6分)

第15篇:离散数学试题

中央电大离散数学试题

一、单项选择题(每小题3分,本题共15分)

1.若集合A={1,{2},{1,2}},则下列表述正确的是().

A.2AB.{1}A

C.1AD.2  A

2.已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为

().

A.6B.4C.3D.

53.设无向图G的邻接矩阵为

0111110011100001100111010

则G的边数为().

A.1B.7C.6D.14 4.设集合A={a},则A的幂集为().

A.{{a}}B.{a,{a}}

C.{,{a}}D.{,a}

5.下列公式中 ()为永真式.

A.AB  ABB.AB  (AB)

C.AB  ABD.AB  (AB)

二、填空题(每小题3分,本题共15分)

6.命题公式PP的真值是

7.若无向树T有5个结点,则T的边数为.

8.设正则m叉树的树叶数为t,分支数为i,则(m-1)i

9.设集合A={1,2}上的关系R={,},则在R中仅需加一个元素,就可使新得到的关系为对称的.

10.(x)(A(x)→B(x,z)∨C(y))中的自由变元有.

三、逻辑公式翻译(每小题6分,本题共12分)

11.将语句“今天上课.”翻译成命题公式.

12.将语句“他去操场锻炼,仅当他有时间.”翻译成命题公式.

四、判断说明题(每小题7分,本题共14分)

判断下列各题正误,并说明理由.

13.设集合A={1,2},B={3,4},从A到B的关系为f={},则f是A到B的函数.

14.设G是一个有4个结点10条边的连通图,则G为平面图.

五.计算题(每小题12分,本题共36分)

15.试求出(P∨Q)→(R∨Q)的析取范式.

16.设A={{1}, 1, 2},B={ 1, {2}},试计算

(1)(A∩B)(2)(A∪B)(3)A (A∩B).

17.图G=,其中V={ a, b, c, d },E={ (a, b), (a, c) , (a, d), (b, c), (b, d), (c, d)},对应边的权值依次为

1、

2、

3、

1、4及5,试

(1)画出G的图形;

(2)写出G的邻接矩阵;

(3)求出G权最小的生成树及其权值.

六、证明题(本题共8分)

18.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.

中央电大2010年7月离散数学

试题解答

(供参考)

一、单项选择题(每小题3分,本题共15分)

1.B2.D3.B4.C5.B

二、填空题(每小题3分,本题共15分)

6.假(或F,或0)

7.

48.t-

19.

10.z,y

三、逻辑公式翻译(每小题6分,本题共12分)

11.设P:今天上课,(2分)则命题公式为:P.(6分)

12.设 P:他去操场锻炼,Q:他有时间,(2分)则命题公式为:P Q.(6分)

四、判断说明题(每小题7分,本题共14分)

13.错误.(3分) 因为A中元素2没有B中元素与之对应,故f不是A到B的函数.(7分)

14.错误.(3分) 不满足“设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.”(7分)

五.计算题(每小题12分,本题共36分)

15.(P∨Q)→(R∨Q) ┐(P∨Q)∨(R∨Q)(4分)

 (┐P∧┐Q)∨(R∨Q)(8分)

 (┐P∧┐Q)∨R∨Q(析取范式)(12分)

16.(1)(A∩B)={1}(4分)

(2)(A∪B)={1, 2, {1}, {2}}(8分)

(3) A(A∩B)={{1}, 1, 2}(12分)

17.(1)G的图形表示如图一所示:

3 ad1

5b c(3分) 图一

(2)邻接矩阵:

01101111(6分) 1101

1110

(3)最小的生成树如图二中的粗线所示:

a 3d

1 5

b图二1c

权为:1+1+3=5

六、证明题(本题共8分)

18.证明:设xA,因为R自反,所以x R x,即R;

又因为S自反,所以x R x,即S.即R∩S故R∩S自反.

10分) 12分) (4分) (6分) (8分)( (

第16篇:离散 2

集合

一、知识点(建议看书)

1、集合(类、族、搜集)的定义:能作为整体论述的事物的整体。

元素(成员):组成集合的每个事物。

基数(势):有限集合的元素个数,记为A

2、集合的表示方法:①列举法A={1,2,3}、②描述法A={a|aI0a5}、③归纳定义法。

3、区别{A}与A、{空集}与空集。

4、集合间的包含关系。(P55-P56)

5、并、交和差运算的定义及运算律。(P59-P60)

6、补运算定义、性质。德-摩根定律。(P61-P62)

7、并和交运算的扩展。(P63)

8、环和(对称差)与环积的定义、性质。(P64)

9、幂集合:A是一集合,A的幂集合p(A),是A的所有子集的集合。

n个元素的集合A,其幂集的元素个数是2n。

10、集合的归纳定义:(1)基础条款;(2)归纳条款;(3)极小性条款。

归纳证明的步骤:(1)基础步骤;(2)归纳步骤。

数学归纳法第一原理(P74);数学归纳法第二原理(P76)

11、自然数的归纳定义。(P72)

12、二重组(序偶):两个元素a

1、a2组成的序列记作。a

1、a2分别称为二重组的第一分量和第二分量。

=当且仅当a=c,b=d;。

n重组的定义(P84)

13、叉积(笛卡尔乘积)的定义、运算律。(P84)

二、练习题

1、列出下列每一集合的元素和全部子集。(知识点4)

{a,b,c}、{a,{b,c}}、{{a,{b,c}}}

2、证明下列各式。

(a)(AB)BAB

(b)C(AB)(CA)(CB)

(c)A(AB)AB

3、证明如果CA且CB,那么CAB(也就是AB是包含在A和B中的最大集合)

4、设A、B、C和D是任意集合,试证明:

(AB)(CD)(AC)(BD)

5、设A={0,1},构成集合p(A)A。

第17篇:离散心得体会

离散数学心得体会

在学习离散数学之前,就听学过的学长学姐说:“离散数学特别难,老师上课用Ppt,一学期下来感觉会像天书一般被逻辑推理、各种关系公式以及图论彻底弄糊涂,但是这门课有特别重要尤其是对于计算机专业,所以要好好学习。”对于刚刚学过难懂的高数的我,心中很是没有底气学习这门学科,但是在这学期对于离散数学的学习之后,感觉与学长学姐所说的还是有相当大的差异。

离散数学本身对绝大多数学生来说是一门十分困难的课程,这个不可否认,但是通过这一学期的学习,我对这门课程有一些初步的了解,现在的心情和当初也很不相同。对于所有的学科而言都不会是很容易就能够很轻松的学懂并掌握,因此难于不难也是因人而异的。这其中很大一部分决定性原因则是在于对于一门学科的努力程度与投入时间的相对比例,在离散数学中概念绝对性的多,也非常的抽象难以理解,所以不经过多次反复的练习与巩固知识点,想在短时间内有飞速的提高是比非常还困难的。我认为离散数学的学习就应该按照预习听课复习并多次回顾的流程学习的基础上面,掌握一定的学习技巧和认真听取老师讲解时总结的方法,这样脚踏实地,离散数学也一定会学好,这门对记忆力、理解力和能力高度挑战的学科也自然会被更多的人喜爱。

通过这学期的学习,我对于离散数学的几点小总结是,离散数学一定要带着问题进行概念的学习和理解,这就有别于其他学科可以不预习直接听课,也会达到一定的学习效果,但是离散数学其中的概念如果不事先进行预习熟悉,直接上课听讲,一定会被弄的晕头转向,犹如老虎吃天无从下口,自然不会达到认真听讲的作用,所以预习是必不可少的对于离散数学;就像数理逻辑这部分的抽象知识一样,如果仅仅是上课听一下老师的讲解,然后置之不理,所学的知识点没有几天就会全部还给课本,这主要在于我们没有掌握离散数学中一些概念定理的实质,因此我们应该在听课的同时反复斟酌课本中的例子,再结合概念定理进行理解,这样才会做到知识的深入理解和较长期的记忆;离散数学学习中也一定要积极思考问题,尤其是在老师停下课程,让大家进行思考或者做练习时,这不仅说明这个知识点需要做更进一步的理解或者这个知识点的重要性,而更重要的是要锻炼培养我们的课堂思维能力,因此我们一定要认真仔细的跟着老师的引导积极思考;温故而知新,最后一定要有条理的进行定期总结回顾,这样不仅可以复习前面学习过可能忘记的知识点,还可以做到新旧知识点的融合,能够加深对于前面遗留问题的解决且为新知识的理解铺路;另一方面,我觉的我们学生必须掌握离散数学这门课程的重点和难点,一门课程肯定有其重难点,只有明确了重难点,我们才能更好的掌握该门课程。这仅仅是我一学期以来学习离散数学的几个属于自己的小总结,但是我认为在业精于勤荒于嬉是永远的真谛的同时,我们更应该加强现在学科方法的总结与思考里的锻炼。

我认为对于离散数学的学时确实有点少,高数课程一周要学习三节课,然而学习难度更胜一筹的离散数学却一周仅有两节课,大量的新知识点在有限的时间内全部抛出,让本来就对离散数学感觉恐慌的同学更加无法接受,自然学习的效果会有所降低,教学的目的在一定程度上面也不会达到。总之,这样相对较少的学时安排繁重的教与学的任务,不仅使老师增加授课压力,也使大多数同学们感觉学习离散数学的挑战性更大,也更加害怕学习,但是离散数学作为一门很重要的学科,如果学习不好,会对以后其他学科的学习造成一些隐性的阻碍。

对于我们的教材选用,我认为还是非常的好,但有点小问题就是例题太少,这也可能会减少授课时的学时,但对于部分难理解的章节,还是希望有更多的例题作为大家学习的引导,这样对于大家的课前预习与下课后的自主学习可能会好点,然后结合后面的作业题,大家反复练习可能会更容易理解与学习。

张老师手写板书为主、电子教案为辅的教学方式非常适用于离散数学这门课。在上了这学期的课之后,再重新与学长学姐的话进行对比,我认为像离散数学这门概念既多又抽象的学科,采取这种的教学方式,大家都更加容易理解知识点,能够更的上老师的讲课节奏、有思考的时间,更容易让大家产生学习兴趣。离散数学是我们计算机学科的一门很重要的专业基础课程,它在计算机科学中有着广泛的应用。面对学习离散数学概念较多,理论性强,定义、定理比较多,一时难以理解和记忆,不过张老师总能用容易能使学生接受的定义方式,对不同的定义、定理找出它们之间的相互联系,便于我们理解。兴趣是学习之母,学习任何一门科学,都需要有兴趣。有了兴趣,自然也就有了动力。张老师的教学,让我们在学习的同时也培养了我们的学习兴趣,有利于我们更好的理解概念定理。另外,离散数学概念繁杂,学起来难免有些枯燥,张老师也适当穿插介绍一些知识点在计算机学科专业中的应用,具有非常大的启发性。可以让我们了解离散数学的实际应用,增加学习兴趣。学习好一门课要老师和学生的配合,老师可以多多了解我们的学习状况,多多互动,活跃课堂气氛,有利于我们更好的相关知识定理。总之,学好离散数学课要双方的努力,更要双方的配合。张老师这次让全班同学都写建议,就是一个很好的互动,相信以后学习离散数学课的同学们会感觉到更加精彩的离散数学教学方式。

在这学期学习了离散数学这门课程,对于一个爱好数学的我来说,我是非常受益的。同时,离散数学作为一门与计算机学科相关的专业基础课,对我学专业知识也有很大的帮助。学习离散数学,可以培养我们的逻辑思维方式,对于我们学习计算机方向的学生来说是非常有用的。尤其是在计算机编程方面对逻辑思维就有一定的要求。离散数学这门课程,是一门比较难学的课程,它有太多的概念、定义,需要我们有很好的记忆力,但是要完全记住这么多的概念、定义是非常困难的。所以说我们在有好的记忆力之外,还要运用理解记忆的方法来解决,这样我们就不必花费过多的时间和精力去记忆这么多的概念和定义了。离散数学作为一门理科学科,在我看来最好的学习方法就是多动手、多做题,在做题得过程中,慢慢积累做题得经验,同时也可以对概念和定义有一个更深层次的理解。学习各个学科都有其各自的学习方法与思维方式,只有运用对了学习方法才能更好的学习这门课程。学习一门课程都是为了解决实际问题,学习离散数学也不例外。学通了一门课程才能在解决问题的时候不会走弯路。离散数学是一门比较难学的课程,在学习的过程中,也肯定会遇到许多的问题,但是通过反复的理解概念及做练习题和与其他同学的交流,最后还是会解决这些问题。学习离散数学的过程中,也有许多的乐趣。但在轻松学习的过程中,还得从中学到东西,学到道理。我在学习这门课程之后,对我的专业知识方面有了很大的帮助,让我的思维有了进一步的发散,使我在其他的学科中受益匪浅。

总之,通过这学期张老师讲解的离散数学课程,使我思考抽象问题的思维方式又得到了锻炼,能力有所提高,而且为以后专业课程的学习打下了良好的基础,最后非常感谢张老师这一学期的辛勤教学。

第18篇:离散数学论文

首先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既 然如此,在学习《离散数学》时,大家最应该牢记的是唐诗“熟读唐诗三百首,不会做诗也会吟。”学习过程是一个扎扎实实积累的过程,不能打马虎眼。离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。

《离散数学》的特点是:

1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结,

在学习《离 散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),初学者往往不能在脑海中建立起它们与现实世界中客观事物的联系。这往往是《离散数学》学习过程中初学者要面临的第一个困难,他们觉得不容易进入学习的状态。因此一开始必须准确、全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。

学数学就要做数学,《离散数学》的学习也不例外。学习数学不仅限于学习数学知识,更重要的还在于学习数学思维方法。要做到这一点,学习者将要面临的第二个困难是需要花费大量的时间做课后习题。但是切记离散数学的题目数量自然是无穷无尽的,但题目的种类却很有限。尤其是在命题证明的过程中,最重要的是要掌握证明的思路和方法。解离散数学的题,方法是非常重要的,如果拿到一道题,立即能够看出它所属的类型及关联的知 识点,就不难选用正确的方法将其解决,反之则事倍功半。例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化(包括化为主合取范式与主析取范式),以给出的若干命题为前提进行推理和证明。相应的对策也马上就可以提出来。以推理题为例,主要是利用P、T规则,加上蕴涵和等价公式表,由给定的前提出发进行推演,或根据题目特点采用真值表法、CP规则和反证法。由此可见,在平常学习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题套路。如此多作练习,则即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。

因此,只要肯下功夫,人人都能有扎实的基础,拥有足够的数学知识,特别是能大大提高本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。

如何学好离散数学

离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。离散数学以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。由于离散数学在计算机科学中的重要性,因此,许多大学都把它作为研究生入学考试的专业课程中的一门,或者是一门中的一部分。

作为计算机系的一门课程,离散数学有与其它课程相通相似的部分,当然也有它自身的特点,现在我们就它作为考试内容时具有的特点作一个简要的分析。

1、定义和定理多。

离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。

在考试中的一部分内容就是考察大家对定义和定理的识记、理解和运用。如2002年上海交通大学的试题,问什么是相容关系。如果知道的话,很容易得分;如果不清楚,那么无论如何也得不到分数的。这类型题目往往因其难度低而在复习中被忽视。实际上这是一种相当错误的认识,在研究生入学考试的专业课试题中,经常出现直接考查对某知识点的识记的题目。对于这种题目,考生应该能够准确、全面、完整地再现此知识点。任何的模糊和遗漏,都会造成极为可惜的失分。我们建议读者,在复习的时候,对重要知识的记忆,务必以上面提到的“准确、全面、完整”为标准来要求自己,不能达到,就说明还不过关,还要下工夫。关于这一点,在后续章节中我们仍然会强调,使之贯穿于整个离散数学的复习过程中。

离散数学的定义主要分布在集合论的关系和函数部分,还有代数系统的群、环、域、格和布尔代数中。一定要很好地识记和理解。

2、方法性强。

离散数学的证明题中,方法性是非常强的,如果知道一道题用怎样的方法证明,很轻易就可以证出来,反之则事倍功半。所以在平常复习中,要善于总结,那么遇到比较陌生的题也可以游刃有余了。在本书中,我们为读者总结了不少解题方法。读者首先应该熟悉并且会用这些方法。同时我们还鼓励读者勤于思考,对于一道题,尽可能地多探讨几种解法。

3、有穷性。

由于离散数学较为“呆板”,出新题比较困难,不管什么考试,许多题目是陈题,或者稍作变化的来的。“熟读唐诗三百首,不会做诗也会吟。”如果拿到一本习题集,从头到尾做过,甚至背会的话。那么,在考场上就会发现绝大多数题见过或似曾相识。这时,要取得较好的成绩也就不是太难的事情了。

本书是专门针对研究生入学考试而编写的,适合于读者对研究生入学考试的复习。如果还有时间的话,我们可以推荐两本习题集。一本是左孝凌老师等编写的《离散数学理论、分析、题解》,另一套有三本,是耿素云老师等编写的《离散数学习题集》。这两套书大多数题都是相同的,只是由于某些符号和定义的不同,使得题目的设定和解法有些不同而已。

现在我们就分析一下研究生入学考试有哪些题型,以及我们应如何应付。

1、基础题

基础题就是考察对定义的识记,以及简单的证明和推理。题目主要集中在数理逻辑部分和集合论部分。这些题目不需要思考,很容易上手。

这一部分的题目主要问题是要防止粗心大意和对定义记忆似是而非而丢的分数。不重视这一点的人将会在考试中吃大亏。如在主合取范式中,极大项编码对应的指派与真值表对应的指派相反,这一点在许多的参考书里也会犯错误;还有是要防止没有按照一定的方法而引起的错误,如我们在数理逻辑或者集合论里作等价推演,可以省略若干不重要的步骤,只要老师和考生都清楚就可以了,而在推理理论里则不能省略任何步骤,否则被认为是逻辑错误。

我们在学习中,还要注意融会贯通,例如,数理逻辑和集合论是相通的,因此记忆或者总结方法的时候可以综合起来,这样便于比较和理解。

2、定理应用题

本部分是最“死”的一部分,它主要体现了离散数学的方法性强的特点。并且这一部分占了考试内容的大部分,我们必须在这一部分下功夫,记住了各种方法,也就拿到了离散数学的大部分分数。

下面我们就列出常用的几种应用:

●证明等价关系:即要证明关系有自反、对称、传递的性质。

●证明偏序关系:即要证明关系有自反、反对称、传递的性质。(特殊关系的证明就列出来两种,要证明剩下的几种只需要结合定义来进行)。

X,使得f(x)=y。Y,都有xY,即要证明对于任意的y●证明满射:函数f:X X,且x1≠x2,则f(x1)Y,即要证明对于任意的x

1、x2●证明入射:函数f:X ≠f(x2);或者对于任意的f(x1)=f(x2),则有x1=x2。

●证明集合等势:即证明两个集合中存在双射。有三种情况:第

一、证明两个具体的集合等势,用构造法,或者直接构造一个双射,或者构造两个集合相互间的入射;第

二、已知某个集合的基数,如果为א,就设它和R之间存在双射f,然后通过f的性质推出另外的双射,因此等势;如果为א0,则设和N之间存在双射;第

三、已知两个集合等势,然后再证明另外的两个集合等势,这时,先设已知的两个集合存在双射,然后根据剩下题设条件证明要证的两个集合存在双射。 ●证明群:即要证明代数系统封闭、可结合、有幺元和逆元。(同样,这一部分能够作为证明题的概念更多,要结合定义把它们全部搞透彻)。

●证明子群:虽然子群的证明定理有两个,但如果考证明子群的话,通常是第二个定理,即设S,则是群,S是G的非空子集,如果对于S中的任意元素a和b有a*b-1是的子群。对于有限子群,则可考虑第一个定理。

●证明正规子群:若H,有a-1G,有aH=Ha,或者对于任意的h是一个子群,H是G的一个子集,即要证明对于任意的a H。这是最常见的题目中所使用的方法。*h*a

●证明格和子格:子格没有条件,因此和证明格一样,证明集合中任意两个元素的最大元和最小元都在集合中。

图论虽然方法性没有前几部分的强,但是也有一定的方法,如最长路径法、构造法等等。

3、难题

难题就是考试中比较难以下手,大多考生作不出来,用来拉开分数档次的题。那么,遇到难题我们怎么下手分析呢?

难题主要有以下四种,我们来逐一进行分析:

①综合题

综合题就是内容涵盖若干章的问题,这样的题大多数是在群论里面的陪集、拉格朗日定理、正规子群、商群这一部分中。这一部分结合的内容很多,而且既复杂又难理解,是整个离散数学中的难点。

首先拉格朗日定理把群和等价关系、划分结合在一起,又与群的阶数相挂钩(在子群中有一部分阶方面的题是比较难的题,它的解法依据就在此处);然后商群将两个群结合在一起,因为两个群的元素是不同的,因此必须时刻概念清楚才不至于混乱;接着同余关系把群和关系相结合,定义了一种新的关系;自然同态把正规子群和商群相联系,也成为某些证明题的着眼处;核的定义和群同态定理给出了正规子群的另一种证明方法,因为核就是正规子群……

当然,综合题不仅此一处,离散数学是一个融会贯通的学科,像集合论,图论等都可能成为综合题的命题点。

对于综合题,我们可以从两方面下手,首先不管题设如何,看所要证明的问题,按照定理应用的题型着眼,设出所需要的格式,然后进行进一步推演;其次可以先看题设,应用已知条件的性质定理向前推几步,看看哪一个性质更能够接近所问,题目也就迎刃而解了。

②例外题

例外题有两个含义,首先是对于定理应用题而言的,对于一个概念的判定定理和性质定理不是唯一的,而定理应用题是给出的是最常出题的定理,因此有的考题可能考出一个不常用的定理。

其次例外题还有一种题型是与我们平常思维相悖的问题,如:有一些题目给出一个结论,说如果它正确的话请指出来,错误的话则请证明,凭做题经验通常是要选择证明的那条思路。其实也不妨用一些时间看看能不能指出来,从而不用证明。请看下面的例子:

③ 偏题

常常有的参考书会说某某章是非重点,不会考到之类的话,这是非常错误和有害的。其结果是令这些章成为读者复习中的盲点,成为难题的又一种。这些章通常概念少,定理不多,因此题目本身不难。但由于没有好好复习或者根本没有复习,考试中又出了题目,故此拿不到分数则是非常令人懊丧的。所以我们建议读者进行全面复习,除非是所报考院校明确说明不考的部分,其余内容一律要认真复习。即使是复习时间比较少,也必须做到至少是了解了基本概念和定义。对于离散数学而言,函数一章中的基数部分和格和布尔代数一章是人们容易忽略的问题。

我们平时复习的时候,不管是什么课程,一定不能留死角,而这些地方出的题目由于它的本身内容的局限性,又往往是非常简单的。丢了十分可惜。

④ 错题

专业课的题目是由较少老师出的,并不像基础课那样经过多方面的论证,因此出错题也不奇怪(虽然非常非常之少),如果我们遇到了一道题目,经过我们判断和推演得到相悖的答案,不要过分迷信题目的权威性,因为它可能是错题。

下面讲一下离散证明题的证明方法:

1、直接证明法

直接证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有相同的性质,或者符合某一些性质必定是某一类东西。

直接证明法有两种思路,第一种是从已知的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,则可以先从已知条件按照定理推出一些中间的条件(这一步可能是没有目的的,要看看从已知的条件中能够推出些什么),接着,选择可以推出结论的那个条件继续往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推一直到已知的条件。通常这两种思路是同时进行的。

2、反证法

反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在唯一”等的题目。

它的方法是首先假设出所求命题的否命题,接着根据这个否命题和已知条件进行推演,直至推出与已知条件或定理相矛盾,则认为假设是不成立的,因此,命题得证。

3、构造法

证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出矛盾,也可以直接构造出这么一个例子就可以了。这就是构造法,通常这样的题目在图论中多见。值得注意的是,有一些题目其实也是本类型的题目,只不过比较隐蔽罢了,像证明两个集合等势,实际上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以直接构造出这个双射。

4、数学归纳法

数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。作这一类型题目的时候,要注意一点就是所要归纳内容的选择。

第19篇:离散数学试题A卷

离散数学试题A卷

一、单项选择题(本大题共10小题,每小题2分,共20分)

1.下列命题公式中不是重言式的是() .

A.p→(q→r)

C.p→(p→p) B.p→(q→p) D.(p→(q→r))(q→(p→r))

2.设个体域是整数集,则下列命题的真值为真的是()

A.yx(x·y=1)

C.xy (x·y=y2) B.xy (x·y≠0) D.yx(x·y=x2)

3.关于谓词公式(x)(y)(P(x,y)∧Q(y,z))∧

(x)p(x,y),下面的描述中错误的是() ..

A.(x)的辖域是(y)(P(x,y)∧Q(y,z))

B.z是该谓词公式的约束变元

C.(x)的辖域是P(x,y) D.x是该谓词公式的约束变元

4.设有代数系统G=〈A,*〉,其中A是所有命题公式的集合,*为命题公式的合取运算,则G的幺元是()

A.矛盾式

C.可满足式 B.重言式 D.公式p∧q

5.设A={Ø},B=P(P(A)),以下不正确的式子是() .

A.{{Ø },{{Ø }},{Ø ,{Ø }}}包含于B

C.{{Ø ,{Ø }}}包括于B B.{{{Ø }}}包含于B D.{{Ø },{{Ø ,{Ø }}}}包含于B

6.设Z是整数集,E={…,-4,-2,0,2,4,…},f:Z→E,f(x)=2x,则f()

A.仅是满射

C.是双射 B.仅是入射 D.无逆函数

7.设A={1,2,3,4,5},A上二元关系R={〈1,2〉,〈3,4〉,〈2,2〉},S={〈2,4〉,〈3,1〉,〈4,2〉},则S-1R-1的运算结果是()

A.{〈4,1〉,〈2,3〉,〈4,2〉} C.{〈4,1〉,〈2,3〉,〈2,4〉}

B.{〈2,4〉,〈2,3〉,〈4,2〉} D.{〈2,2〉,〈3,1〉,〈4,4〉}

8.在实数集合R上,下列定义的运算中不可结合的是() .A.a*b=a+b+2ab C.a*b=a+b+ab

B.a*b=a+b D.a*b=a-b

9.设无向图中有6条边,有一个3度顶点和一个5度顶点,其余顶点度为2,则该图的顶点数是() A.3 C.

5B.4 D.6

10.设无向图G的边数为m,结点数为n,则G是树等价于() A.G连通且m=n+1 C.G连通且m=2n

B.G连通且n=m+

1D.每对结点之间至少有一条通路

二、填空题(本大题共10小题,每小题2分,共20分)

11.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。

12.在命题演算中,五个联结词的含义是由其____________表唯一确定的,而不是由其类似的____________

语言的含义确定。

13.使公式(x)(y)(A(x)→B(y))((x)A(x)→(y)B(y))成立的条件是____________

不含有y,____________不含有x。

14.设A为任意集合,请填入适当的运算符,使式子A____________A=Ø;A____________~A=Ø成立。 15.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则domR=____________,

ranR=____________。

16.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,Sn},其中SiA,Si≠Ø,i=1,2,…,n,

且____________;进一步若____________,则S是集合A的划分。

17.对实数的普通加法和乘法,____________是加法的幂等元,____________是乘法的幂等元。 18.在代数系统〈A,*〉中,A={a},*是A上二元运算,则该代数系统的单位元是____________,零元

是____________。

19.设〈A,≢〉是偏序集,若A中____________都有最小上界和____________则称A关于偏序≢构成格。 20.若一条路中,所有边均不相同,则此路称作____________;若一条路中所有的结点均不相同,则称此

路为____________。

三、计算题(本大题共5小题,每小题6分,共30分) 21.求命题公式(PQ)(PQ)的真值表。

22.试求谓词公式x(P(x)xQ(x,y)yR(x,y))A(x,y)中,x,x,y的辖域,试问R(x,y)和A(x,y)

中x,y是自由变元,还是约束变元?

23.求命题公式(p→q)→(q∨p)的主析取范式。

24.设代数系统(Z,*),其中Z是整数集,二元运算定义为a,bZ,a*bab2,aZ,求a的逆元。

25.已知图D(如下图)的邻接矩阵为

v1v2v3v

40

110

01

求从v2到v4长度为2和从v3到v3长度为2的通路条数,并将它们具体写出。

v10

A(D)=v21

v30v41

10 10

四、证明题(本大题共2小题,每小题6分,共12分)

26.设〈{a,b},*〉是半群,其中a*a=b,证明:(1)a*b=b*a;(2)b*b=b。

27.若一棵树恰有2个结点的度数为1,则它必是一条欧拉路。

五、应用题(本大题共3小题,每小题6分,共18分)

28.设I是整数集,,=,≢,≣,≠是I上的二元关系,分别表示小于,大于、等于、小于等于,

大于等于,不等于,那么这些关系会满足什么性质?试填写下表。

29.完成下列推理:只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好。

30.75个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20人这

三种东西都乘过,其中55人至少乘坐过其中的两种。若每样乘坐一次的费用是0.5元,公园游乐场 总共收入70元,求有多少儿童没有乘坐过其中任何一种。

第20篇:离散数学考试范围

第一部分 简单命题符号化,

求主析取范式,判断公式类型(重言式,矛盾式,可满足式) 量词消去规则。 命题逻辑推理规则

带全称量词和存在量词的命题逻辑推理的构造和证明 第二部分

集合基本运算,文氏图 有序对的基本知识, 笛卡儿积, 特征函数

函数的性质(单射,满射,双射)

集合的基本概念(交集,并集,幂集,定义域,值域)

给出关系图,画出r(R),s(R),t(R) 等价关系及等价划分 集合相等证明

从A到B的函数的性质

关系的性质(自反,对称,传递) 偏序关系和哈斯图

A卷

1、选择10题(2*10=20分)

2、填空8题(1*15=15分)

3、综合题(6题,39分) (1)前束范式

(2)偏序关系和哈斯图 (3)文氏图 (4)关系的闭包

(5)用真值表判断公式的成真赋值 (6)量词消去

4、证明题(3题,共26分) 自然推理系统证明(第三章) 集合相等证明

命题逻辑推理证明(第五章)B卷

1、填空10题(2*10=20分)

2、选择10题(1*10=10分)

3、综合题(6题,44分) (1)主析取范式判断公式类型 (2)量词消去,求公式真值 (3)集合计算 (4)量词消去 (5)前束范式

(6)偏序关系和哈斯图

4、推理填空题(8分)

5、证明题(18分) 集合相等证明 命题逻辑推理证明

离散型随机变量教案模板
《离散型随机变量教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档