人人范文网 证明

圆证明(精选多篇)

发布时间:2020-08-10 08:36:01 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:圆票证明

圆 票 证 明

地税局:

兹有 公司在我单位承接消防安装工程,需圆票金额 ,现由该公司 前来办理圆票手续,请贵局给予办理为谢!

业主单位名称 年 月 日

推荐第2篇:圆票证明1

圆票证明

*****税务局:

兹有******为我公司提供仓库防火墙改建工程,施工地址为*****************。本次工程总价款叁万陆仟元整(¥36000元)。

请贵局予以圆票。

单位名称:************* 税号:******************** 开户行:************************* 账号:************************ 地址:************************ 电话:****************

*********************

******年****月****日

推荐第3篇:圆的证明竞赛题

如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF.求证: tanPAD

EF. BC

推荐第4篇:圆的证明歌

圆的证明歌:

圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法

推荐第5篇:圆幂定理及其证明

圆幂定理

圆幂的定义:一点P对半径R的圆O的幂定义如下:OPR

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

(1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

DA22PC

如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B, ∠A=∠C。所以△APD∽△BPC。所以 BAPPDAPBPPCPD PCBP(2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。

TPAB

如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以

PTPAPT2PAPB PBPT(3) 割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有

PA·PB=PC·PD。

DCPAB

这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。 存在:PAPBPCPD 进一步升华(推论):

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则

PCPD(POR)(POR)PO2R2|PO2R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)

若点P在圆内,类似可得定值为R2PO2|PO2R2|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

推荐第6篇:圆的定理及其证明

圆周角定理

内容:圆周角的度数等于它所对弧上的圆心角度数的一半。 证明:

情况1:

如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:

图1

∵OA、OC是半径 解:∴OA=OC ∴∠BAC=∠ACO(等腰三角形底角相等) ∵∠BOC是△AOC的外角

∴∠BOC=∠BAC+∠ACO=2∠BAC 情况2:

如图2,,当圆心O在∠BAC的内部时: 连接AO,并延长AO交⊙O于D

图2

∵OA、OB、OC是半径 解:∴OA=OB=OC ∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角) ∵∠BOD、∠COD分别是△AOB、△AOC的外角

∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和) ∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和) ∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 情况3:

如图3,当圆心O在∠BAC的外部时:

图3

连接AO,并延长AO交⊙O于D连接OC,OB。 解:∵OA、OB、OC、是半径 ∴OA=OB=OC ∴∠BAD=∠ABO(等腰三角形底角相等),∠CAD=∠ACO(OA=OC) ∵∠DOB、∠DOC分别是△AOB、△AOC的外角

∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和) ∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和) ∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC 圆心角等于180度的情况呢?

看情况1的图,圆心角∠AOB=180度,圆周角是∠ACB, 显然因为∠OCA=∠OAC=∠BOC/2 ∠OCB=∠OBC=∠AOC/2 所以∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度 所以2∠ACB=∠AOC 圆心角大于180度的情况呢?

看情况3的图,圆心角是(360度-∠AOB),圆周角是∠ACB,

只要延长CO交园于点D,由圆心角等于180度的情况可知∠ACD=∠ABD=90度 根据情况3同理可证:∠BOC=2∠BAC=2∠BDC 根据情况1和情况3同理可证:∠AOC=2∠ADC=2∠ABC 所以∠ACB+∠ADB=∠ACB+∠ADC+∠BDC=∠ACB+∠ABC+∠BAC=180度 即∠ACB=180度-∠ADB 由情况2可知:∠AOB=2∠ADB 所以360度-∠AOB=2(180度-∠ADB)=2∠ACB

切线长定理

内容:切线长定理,是初等平面几何的一个定理。在圆中,在经过圆外一点的切线,这一点和切点之间的线段叫做这点到圆的切线长。它指出,从圆外一点引圆的两条切线,它们的切线长相等。 证明:

欲证AC = AB,只需证△ABO≌ △ACO。

如图,OC、OB为圆的两条半径,又∠ABO = ∠ACO=90° 在Rt△ABO和Rt△ACO中

∴Rt△ABO ≌ Rt△ACO(H.L)

∴AB=AC,且∠AOB=∠AOC,且∠OAB=∠OAC。 [3]

弦切角定理

内容:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。 证明:

分三种情况

(1)圆心O在∠BAC的一边AC上 ∵AC为直径 ∴弧CmA=弧CA ∵弧CA为半圆, ∴弧CmA的度数为180° ∵AB为圆的切线 ∴∠CAB=90°

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半 (2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,在优弧m所对的劣弧上取一点

E,

连接EC、ED、EA。则 ∵弧CD=弧CD ∴∠CED=∠CAD ∵AD是圆O的直径 ∴∠DEA=90° ∵AB为圆的切线 ∴∠BAD=90° ∴∠DEA=∠BAD ∴ ∠CEA=∠CED+∠DEA=∠CAD+∠BAD=∠BAC 又∠CEA的度数等于弧CmA的度数的一半

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半

(3)圆心O在∠BAC的外部 过A作直径AD交⊙O于D,连接CD ∵AD是圆的直径 ∴∠ACD=90° ∴∠CDA+∠CAD=90° ∵AB是圆O的切线 ∴∠DAB=90° ∴∠BAC+∠CAD=90° ∴∠BAC=∠CDA ∵∠CDA的度数等于弧CmA的度数的一半。

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半。

切割线定理

内容:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。与圆相交的直线是圆的割线。切割线定理揭示了从圆外一点引圆的切线和割线时,切线与割线之间的关系。这是一个重要的定理,在解题中经常用到。

推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。 证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB。

图1

证明:连接AT, BT。

∵ ∠PTB=∠PAT(弦切角定理);∠APT=∠TPB(公共角); ∴ △PBT∽△PTA(两角对应相等,两三角形相似); ∴PB:PT=PT:AP; 即:PT²=PB·PA。

垂径定理

内容:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 证明:

如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,

弧AC=弧BC,弧AD= 弧BD 连接OA、OB分别交⊙O于点A、点B ∵OA、OB是⊙O的半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)

∴弧AD=弧BD,∠AOC=∠BOC ∴弧AC=弧BC

推荐第7篇:4个圆幂定理及其证明

相交弦定理

如图,⊙P中,弦AB,CD相交于点P,则AP·BP=CP·PD

证明:

连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD注:其逆定理可作为证明圆的内接三角形的方法.切割线定理

如图,ABT是⊙O的一条割线,TC是⊙O的一条切线,切点为则TC²=TA·TB

证明:连接AC、BC

∵弦切角∠TCB对弧BC,圆周角∠A对弧BC

∴由弦切角定理,得 ∠TCB=∠A

又∠ATC=∠BTC

∴△ACT∽△CBT

∴AT:CT=CT:BT, 也就是CT²=AT·BT

弦切角定义:

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角C,

弦切角定理:

弦切角等于它所夹的弧所对的圆周角.定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.(弦切角就是切线与弦所夹的角)弦切角定理证明

证明:设圆心为O,连接OC,OB,OA。过点A作TP的平行线交BC于D,则∠TCB=∠CDA

∵∠TCB=90-∠OCD

∵∠BOC=180-2∠OCD

∴,∠BOC=2∠TCB

切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。

如图中,切线长AC=AB。

∵∠ABO=∠ACO=90°

BO=CO=半径

AO=AO公共边

∴RtΔABO≌RtΔACO(HL)

∴AB=AC

∠AOB=∠AOC

∠OAB=∠OAC

割线定理

如图,直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD 证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得 ∠A=∠C

又∵∠APD=∠CPB

∴△ADP∽△CBP

∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

圆幂定理

圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有 PA·PB=PC·PD。

统一归纳:过任意不在圆上的一点P引两条直线L

1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

推荐第8篇:怎样证明直线与圆相切?

怎样证明直线与圆相切?

在直线与圆的各种位置关系中,相切是一种重要的位置关系.

现介绍以下三种判别直线与圆相切的基本方法:

(1)利用切线的定义——在已知条件中有“半径与一条直线交于半径的外端”,于是只需直接证明这条直线垂直于半径的外端.

例1:已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.

求证:PA是⊙O的切线.

证明:连接EC.

∵AE是⊙O的直径,

∴∠ACE=90°,

∴∠E+∠EAC=90°.

∵∠E=∠B,又∠B=∠CAP,

∴∠E=∠CAP,

∴∠EAC+∠CAP=∠EAC+∠E=90°,

∴∠EAP=90°,

∴PA⊥OA,且过A点,

则PA是⊙O的切线.

(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一公共点(即为切点),但没有半径”,于是先连接圆心与这个公共点成为半径,然后再证明这条直线和这条半径垂直.

例2:以Rt△ABC的直角边BC为直径作⊙O交斜边AB于P,Q为AC的中点. 求证:PQ必为⊙O的切线.

证明 连接OP,CP.

∵BC为直径,

∴∠BPC=90°,

即∠APC=90°.

又∵Q为AC中点,

∴QP=QC,

∴∠1=∠2.

又OP=OC,

∴∠3=∠4.

又∠ACB=90°,

∴∠2+∠4=∠1+∠3=∠ACB=90°,

∴∠OPQ=90°.

∵P点在⊙O上,且P为半径OP的端点,

则QP为⊙O的切线.

说明:要证PQ与半径垂直,即连接OP.这是判别相切中添辅助线的常用方法.

(3)证明“d=R”——在已知条件中“没有半径,也没有与圆有公共交点的直线”,于是过圆心作直线的垂线,然后再证明这条垂线的长(d)等于圆的半径(R).

例3:已知:在△ABC中,AD⊥BC与D,且AD=BC,E、F为AB、AC的中点,O为EF2

的中点。

求证:以EF为直径的圆与BC相切.

证明:作OH⊥BC于H,设AD与EF交于M,

又AD⊥BC,∴OH∥MD,

则OHDM是矩形.

∴OH是⊙O的半径,

则EF为直径的圆与BC相切.

思考题:

1.AB是⊙O的直径,AC是弦,AC=CD,EF过点C,EF⊥BD于G.

求证:EF是⊙O的切线.

提示:连接CO,则OC是⊙O的半径,再证OC⊥EF.

2.DB是圆的直径,点A在DB的延长线上,AB=OB,∠CAD=30°.求证:AC是⊙O的切线.

提示:∵AC与⊙O没有公共点,

∴作OE⊥AC于E,

再证OE是⊙O的半径.

推荐第9篇:圆的有关证明相关定理

平面几何证明相关定理、题型及条件的联想

一、平面几何证明相关定理

1、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段相等.推论1: 经过三角形一边的中点与另一边平行的直线必平分第三边。

推论2: 经过梯形一腰的中点,且与底边平行的直线平分另一腰。

2、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3、相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;

相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于相似比; 相似三角形面积的比、外接圆的面积比都等于相似比的平方;

4、直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上的射影的比例中项;

两直角边分别是它们在斜边上射影与斜边的比例中项。

5、圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半。

圆心角定理:圆心角的度数等于它所对的弧的度数。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

o推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。

弦切角定理:弦切角等于它所夹的弧所对的圆周角。

6、圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角互补;圆内接四边形的外角等于它的内角的对角。 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆;

如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。

7、切线的性质定理:圆的切线垂直于经过切点的半径。

推论:经过圆心且垂直于切线的直线必经过圆心;经过切点且垂直于切线的直线必经过切点。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

8、相交弦定理:圆内两条相交弦,被交点分成两条线段长的积相等。

割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆的交点的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这点的连线平分两条切线的夹角。

重要结论:经过不共线三点的圆有且只有一个

二、平面几何证明问题形式及处理方向

1、线段等比式的证明——利用三角形相似证明

2、线段的等积式证明——转化成等比式,利用三角形相似证明,或者等比中项式进行等量代换证明

3、等比中项式证明——可以通过三角形相似,切割线定理,直角三角形射影定理证明

4、线段相等证明——如果它们在一个三角形中,则证明它们所对的角相等,如果不在同一个三角形中,则通过等量代换证明即可

5、四点共圆的证明——证明四点形成的三角形对角互补或是证明该四边形中同一条边对应的两个角相等

6、直线与圆相切的证明——连接圆心与直线与圆的交点,证明半径与该直线垂直即可

7、角相等的证明——通过三角形相似证明或是等量代换证明

8、三角形相似的证明——通过证明两个三角形中有两组角对应相等或是一组角相等,且夹这个的两边对应成比例

三、平面几何证明条件的发散思维

1、条件中有直径——联想——直径所对的圆周角是直角,

2、条件中的切线——联想——切割线定理,弦切角定理,连接圆心与与切点,半径与切线垂直

3、直角三角形斜边上的高——联想——直角三角形射影定理

4、条件中圆内接四边形——联想——圆内角四边形对角互补,圆内接四边形外角等于内对角

5、条件中弧相等——联想——它们所对的圆周角相等

6、条件中线段相等——联想——如果在同一个三角形中,则它们所对的角相等

推荐第10篇:圆的切线方程公式证明

已知:圆的方程为:(xb)² = r², 圆上一点P(x0, y0) 解:圆心C(a, b)

直线CP的斜率:k1 = (y0a)

因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 =a) / (y0y0 = k2 (xy0 = [- (x0b)] (xx0)(x0y0)(y0ax + ax0 + y0yx0²a)² + (y02ax0 + a² + y1²x0²2by0 + a² + b²ax + ax0 + y0y2by0 + a² + b²axyba)(xb)(y(x0 + D/2) / (y0 + E/2)

根据点斜式, 求得切线方程:

yx0)

yx0)

整理得:x0x + y0y + Dx/2 + Ey/2Ey0/2 -x0²x0²Dx0/2a)² + (yMC²)

(根据勾股定理)

= √ [(x0b)²MC²)

(根据勾股定理)

= √ [ (x0 + D/2)² + (y0 + E/2)² - ((√(D²+E²-4F))/2)² ]

(半径:r=(√(D²+E²-4F)) / 2)

= √ (x0² + y0² + Dx0 + Ey0 + F)

第11篇:圆的证明与计算(弧中点)

《弧中点的运用》教学案

张店中学

桂应祥 教学目标:

1、知道过弧中点作圆的切线得到的基本图形以及相关基本结论;

2、会利用该基本图形中的结论(性质)进行计算;

3、通过变式寻求基本图形的性质,从而探求一般解法,培养学生分析问题、解决问题的能力;

4、在变式过程中养成探究的习惯,增强学习数学的信心 教学重点:利用基本图形、基本结论进行计算 教学难点:结合基本图形归纳基本方法 教学过程:

一、探究性质

活动1 (1) 如图1,AB是⊙O的直径,AC是⊙O的弦,D为弧BC的中点,过点D作⊙O的切线交AC的延长线于点E.① DE与AE有何位置关系?证明你的结论.② 连接BC,DE与BC有何关系?证明你的结论.③ 求证:2AE=AC+AB.④ 连接AD、BD,求证;AD2=AEAB.

(2) 如图2,设切线DE交AB的延长线于F,连接BD并延长交AE的延长线于M,连OD.① AB与AM有何数量关系?为什么?DM与DB呢?CE与ME呢? ② 由OD∥AE,可得△ODF~△AEF吗? ③ △MDC与△MAB相似吗?为什么?

【设计思路】涉及弧的中点一般有三种用法:一是等弧对等弦;二是构造弧所对的圆周角的平分线;三是由垂径定理构造矩形。

二、寻求解法 活动2

在图1中,(1)已知DE=3,CE=1,求AB 的长.分析:连 OD交BC于G,则四边形 DECG为矩形,在Rt△OBG中由勾股定理可求出⊙O的半径.(2)已知:AD=310,BC=6,求S△ABD.分析:DE1BC3,可求AE=9,再由△ADE~△ABD,求得AB=10,所以BD=10, 2得到S△ABD=15.归纳:

1、在图中选择适当的直角三角形运用勾股定理是解决圆中计算的常用方法;

2、相似三角形的证明与运用解决圆中计算问题的又一常用方法。

活动3 在图2中,(1)已知AE=9,EF=12, 求 BC的长.分析:先求AF=15,由△ODF~△AEF,得出

ODAE3,设OD=3x,DF=4x,则OF=5x,于是DFEF415275x153xx,所以BC9..再由2AEACAB,得AC84 (2)设AD交BC于N,已知AB=15,DF=10, 求 CN的长.25,则AF20.由△ODF~△AEF,求EF=16,得出DE=6.2CNANAB9CN. 由BC∥EF,得DEADAF2 分析:先求OF归纳:

1、在Rt△ODF中运用勾股定理;

2、发现并充分利用△ODF~△AEF;

3、利用BC∥EF, 得到比例式.

三、拓展训练

1、在图1中,已知⊙O的半径为5,AD=310,求CE的长.

2、在图2中,已知DF=5,DE=3,求S△DEM.

3、在图2中,已知sinF3,CE1.求⊙O的半径以及EF的长.4

第12篇:中考数学与圆有关的证明问题

与圆有关的证明问题

一、选择题

1.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()

A.等腰梯形B.正方形C.菱形D.矩形

2.如图1,DE是⊙O的直径,弦AB⊥ED于C,连结AE、BE、AO、BO,则图中全等三角形有()

A.3对B.2对C.1对D.0对

(1)(2)(3)(4)

3.垂径定理及推论中的四条性质:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的弧.由上述四条性质组成的命题中,假命题是()

A.①②③④B.①③②④

C.①④②③D.②③①④

4.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心,•2.3cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;•③以点C为圆心,2.5cm长为半径的圆与AB相交,则上述结论正确的有()

A.0个B.1个C.2个D.3个

5.在⊙O中,C是AB的中点,D是AC上的任意一点(与A、C不重合),则()

A.AC+CB=AD+DBB.AC+CB

C.AC+CB>AD+DBD.AC+CB与AD+DB的大小关系不确定

6.如图2,梯形ABCD内接于⊙O,AD∥BC,EF切⊙O于点C,则图中与∠ACB相等的角(不包括∠ACB)共有().

A.1个B.2个C.3个D.4个

7.如图3,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()

A.1个B.2个C.3个D.4个

8.如图4,AB是⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F,交⊙O于G.•下面的结论:①EC=DF;②AE+BF=AB;③AE=GF;④FG·FB=EC·ED.其中正确的有()

A.①②③B.①③④C.②③④D.①②④

9.如图5,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,•垂足是P,DH⊥

;③AP=BH;④DH为圆的切线,其中ADBDBH,垂足是H,下列结论:①CH=CP;②

一定成立的是()

A.①②④B.①③④C.②③④D.①②③

(5)(6)(7)(8) 10.如图6,在⊙O中,AB=2CD,那么()

;B.; A.AB2CDAB2CD

;D.AD与2CD的大小关系可能不确定C.AB2CD

二、填空题

11.在⊙O中,若AB⊥MN于C,AB为直径,MN•为弦,•试写出一个你认为正确的结论:_________.

12.已知⊙O1和⊙O2的半径分别为10cm,6cm,OO的长为3cm,则⊙O1与⊙O2的位置关系是_________.

13.如图7,C是⊙O的直径AB延长线上一点,过点C作⊙O的切线CD,D为切点,连结AD、OD、BD,请你根据图中所给的条件(不再标字母或添辅助线),写出一个你认为正确的结论____________. 14.已知⊙O的直径为10,P为直线L上一点,OP=5,那么直线L与⊙O•的位置关系是_______. 15.在△ABC中,∠C=90°,AC=3,BC=4,点O是△ABC的外心,现以O为圆心,•分别以2,2.5,3为半径作⊙O,则点C与⊙O的位置关系分别是________.

16.以等腰△ABC的一腰AB为直径作圆,交底边BC于D,则∠BAD与∠CAD•的大小关系是∠BAD________∠CAD. 17.在△ABC中,AB=5,AC=4,BC=3,以C为圆心,以

AB•的位置关系是____________.

18.如图8所示,A、B、C是⊙O上的三点,当BC平分∠ABO时得结论_________.

三、解答题19.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.

20.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.

21.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

22.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,ABAF,BF和AD交于E, 求证:AE=BE.

23.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.

(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.

24.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.

(1)求∠ACM的度数.(2)在MN上是否存在一点D,使AB·CD=AC·BC,说明理由.

25.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)若圆心O与C重合时,⊙O与AB有怎样的位置关系?(2)若点O沿CA移动,当OC等于多少时,⊙O与AB相切?

答案:

一、选择题

1.D2.A3.B4.D5.C6.D7.B8.B9.D10.A

二、填空题

11.BM=BN等12.内含13.∠ADO=∠BDC等14.相交或相切15.在圆外、•在圆上、在圆内16.=17.相交18.OC∥AB等

三、解答题

19.证明:过点O作OE∥AB于E,则AE=BE.在△OCD中,OE⊥CD,OC=OD,

∴CE=•DE.•∴AC=BD.

20.证明:∵四边形ABDE是圆内接四边形,∴∠DEC=∠B.又∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴DE=CD.∴△DEC为等腰三角形.

21.证明:连结BC,由AB是直径可知,

ACB90∠ABC=60°.

A30

CD是切线∠BCD=∠A=30°∠D=30°=∠AAC=CD. 22.证明:连结AB,AC,

BC是直径BAC90ABCACB90

ADBCADB90ABCBAD90

ACBBAD

∠BAD=∠ABFAE=BE. ABAFACBABF

23.证明:(1)连结OD,AO是直径(2)连结O1D,

ADO90

AD=DC.

AOCO

O1DO1AAADO1

OAOCACCADO1

DECECCDE90

ADO1CDE90O1DE90

DE是切线.

D在O1上

24.解:(1)连结BC,

AB是直径ACB90

∠B=62°.

A28

MN是切线∠ACM=∠B=62°.

(2)过点B作BD⊥MN,则

BDC190ACB

△ACB∽△CNB

MN是切线BCNA

ACAB

AB·CD1=AC·BC. CD1BC

过点A作AD2⊥MN,则

AD1C90ACB

△ABC∽△ACD2

MN是切线MCACBA

ACCD2

CD2·AB=AC·CB ABCB

25.解:(1)过点C作CH⊥AB于H,由三角形的面积公式得AB·CH=AC·BC,

ACBC6060

=,即圆心到直线的距离d=. AB131360

∵d=>3,∴⊙O与AB相离.

13

∴CH=

(2)过点O作OE⊥AB于E,则OE=3.

∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,

OEAB31313

 =

BC124

137

∴OC=AC-OA=5-=. 447

∴当OC=时,⊙O与AB相切.

∵OA=

第13篇:关于圆的几何证明计算题的解题方法

关于圆的几何证明计算题的解题方法

经过圆心的弦是直径;

圆上任意两点间的部分叫做圆弧,简称弧;

圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;

大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;

由弦及其所对的弧组成的图形叫做弓形。

(1)当两圆外离时,d>R_+r;

(2)当两圆相外切时,d=R_+r;

(3)当两圆相交时,R_-r

(4)当两圆内切时,d=R_-r(R>r);

(4)当两圆内含时,d

其中,d为圆心距,R、r分别是两圆的半径。

如何判定四点共圆,我们主要有以下几种方法:

(1)到一定点的距离相等的n个点在同一个圆上;

(2)同斜边的直角三角形的各顶点共圆;

(3)同底同侧相等角的三角形的各顶点共圆;

(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;

(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;

(6)四边形ABCD的对角线相交于点P,若PA_*PC=PB_*PD,则它的四个顶点共圆;

(7)四边形ABCD的一组对边AB、DC的延长线相交于点P,若

PA_*PB=PC_*PD,则它的四个顶点共圆。

1、作直径上的圆周角

当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一

条件来证明问题.2、作弦心距

当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.3、过切点作半径

当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性

质来证明问题.4、作直径

当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这

一性质来证明问题.5、作公切线

当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切

线找到两圆之间的关系.6、作公共弦

当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找

出两圆的角之间的关系.7、作两圆的连心线

若已知中告诉两圆相交或相切,一般通过作两圆的连心线,利用两相交圆的连心线垂直

平分公共弦或;两相切圆的连心线必过切点来证明问题.8、作圆的切线

若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利

用弦切角定理来证明问题.9、一圆过另一圆的圆心时则作半径

题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,

还可以通过作圆的半径,利用同圆的半径相等来证明问题.10、作辅助圆

当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。一般地,

有以下几种添加辅助线的作法:

(1)已知一直线是圆的切线时,通常连结圆心和切点,使这条半径垂直于切线.

(2)若已知直线经过圆上的某一点,需要证明某条直线是圆的切线时,往往需要作出经

过这一点的半径,证明直线垂直于这条半径,简记为“连半径,证垂直”;若直线与圆的公

共点没有确定,则需要过圆心作直线的垂线,得到垂线段,再通过证明这条垂线段的长等

于半径,来证明某条直线是圆的切线.简记为“作垂直,证半径”.

第14篇:圆的简单证明和计算练习(无答案)

圆的简单证明和计算练习

AB=CD,

求证:AD=BC

2、CD是直径,弦CE

∥AB,求证:∠EOA=∠

DOA⌒⌒ 3O中,AB、CD是直径,AE∥CD,求证: BE=2ACE ⌒ ⌒ ,BF=DE⌒ ⌒ ,求证:

4、如图,已知AF=CF(1)ΔABF≌ΔCDE(2)∠B=∠D

4、如图,已知,半径OC⊥AB于D,求证:AC=CB

C ⌒ ⌒ ,

5、已知:OA、OB、OC是⊙O的半径,点M、N在OA、OB上,且AM=BN, AC=BC求证:∠OMC=∠ONC

⌒ ⌒ ,求证:PO平分∠BPD

7、已知:如图,∠EPF的两边交O于A、B和C、D,且AB=CD

8、已知:如图,在⊙O中,弦AB=CD,延长后使DF=BE,

求证:O在EF的垂直平分线

9、已知:如图,在ΔABC中,∠ACB=90,∠B=35,以C为圆心,CA为半径的圆交AB

的度数

求: ⌒BD

A

10、如图,在⊙O中,CD=EF,

求证:CA=FB

⌒ ⌒ 1

1、如图,在⊙O中,OE⊥AB,OF⊥CD,∠OEF=∠OFE,求证: AD=BC

C

12AC∥OD,求证:BD=DC

Bοο

第15篇:中考复习专题——如何证明圆的切线(推荐)

如何证明圆的切线

证明直线是圆的切线,通常有的两种方法:

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.

【例1】如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30º.求证:DC是⊙O的切线.

思路:要想证明DC是⊙O的切线,只要我们连接OC,证明∠OCD

=90º即可.

证明:连接OC,BC.

∵AB为⊙O的直径,∴∠ACB=90º. ∵∠CAB=30º,∴BC=∵BD=OB,∴BC=

1AB=OB.

2OD.∴∠OCD=90º. 2

∴DC是⊙O的切线.

【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.本题在证明∠OCD=90º时,运用了“在一个三角形中,如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形”,当然也可以从角度计算的角度来求∠OCD=90º.

二、如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径.

【例2】如图2,已知OC平分∠AOB,D是OC上任意一点,⊙D与OA相切于点E.求证:OB与⊙D相切.

思路:连接DE,过点D作DF⊥OB于点F,证明DE=DF即可,这可由角平分线上的点到角两边的距离相等证得.

请同学们写出证明过程.

2【评析】一定要防止出现错将圆上的一点当作公共点而连接出半径.同学们一定要认真体会证明切线时常用的这两种方法,作辅助线时一定要注意表述的正确性.

【例3】如图3,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点

3的切线互相垂直,垂足为D.求证:AC平分∠DAB.

思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.

证明:连接OC.

∵CD是⊙O的切线,∴OC⊥CD.

∵AD⊥CD,∴OC∥AD.∴∠1=∠2.

∵OC=OA,∴∠1=∠3.∴∠2=∠3.

∴AC平分∠DAB.

【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.

【例4】如图4,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接

OC,弦AD∥OC.求证:CD是⊙O的切线.

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也

就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明

CD是⊙O的切线,只要证明∠ODC=90º即可.

证明:连接OD.

∵OC∥AD,∴∠1=∠3,∠2=∠4.

∵OA=OD,∴∠1=∠2.∴∠3=∠4.

又∵OB=OD,OC=OC,

∴△OBC≌△ODC.∴∠OBC=∠ODC.

∵BC是⊙O的切线,∴∠OBC=90º.∴∠ODC=90º.

∴DC是⊙O的切线.

【评析】本题综合运用了圆的切线的性质与判定定理.一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理.希望同学们通过本题对这两个定理有进一步的认识.本题若作OD⊥CD,就判断出了CD与⊙O相切,这是错误的.这样做相当于还未探究、判断,就以经得出了结论,显然是错误的.

图42

第16篇:证明直线与圆相切的常见方法(定稿)

证明直线与圆相切的常见方法

学习了直线与圆的位置关系,常会遇到证明一条直线是圆的切线的题目,如何证明一条直线是圆的切线,一般会出现以下三种情况.一、若证明是圆的切线的直线与圆有公共点,且存在连接公共点的半径,此时可根据“经过半径的外端并且垂直于这条半径的直线是圆的切线”来证明.简记为“见半径,证垂直”.例1如图1,已知AB为⊙O的直径,直线PA过点A,

且∠PAC=∠B.求证:PA是⊙O的切线.

图 1分析:要证明PA是⊙O的切线,因为AB是⊙O的直径,所以只要证明AB⊥AP.可结合直径所对的圆周为直角进行推理.

证明:因为AB为⊙O的直径,

所以∠ACB=90°,所以∠CAB+∠B=90°,

因为∠PAC=∠B,

所以∠CAB+∠PAC=90°,即∠BAP=90°,所以PA是⊙O的切线.

二、若给出了直线与圆的公共点,但未给出过这点的半径,则连结公共点和圆心,然后根据“经过半径外端且垂直这条半径的直线是圆的切线”来证明.简记为“作半径,证垂直”.例2如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.

求证:DE是⊙O的切线.

证明:连接OC,则OA=OC,

所以∠CAO=∠ACO,

因为AC平分∠EAB,

所以∠EAC=∠CAO=∠ACO,

所以AE∥CO,

又AE⊥DE,

所以CO⊥DE,

所以DE是⊙O的切线.

三、若直线与圆的公共点不明确时,则过圆心作该直线的垂线段,然后根据“圆心到直线的距离等于圆的半径,该直线是圆的切线”来证明.简记为“作垂直,证相等”.例3如图3,已知,O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F.

求证:CD与⊙O相切.

图3

分析:要识别“CD与⊙O相切”,由于不知道CD经过圆上哪一点,所以先过点O作:ON⊥CD于N,再证明ON是⊙O半径。易知OM是⊙O的半径,只要证明:OM=ON即可.

证明:连结OM,作ON⊥CD于N,

因为 ⊙O与BC相切,

所以 OM⊥BC.

因为四边形ABCD是正方形,

所以 AC平分∠BCD.

所以OM=ON.图 4

所以CD与⊙O相切.

总结: 切线判断并不难,认真审题是重点;直线与圆有交点,连接半径是关键,推得垂直是切线;若没明确是切点,作过圆心垂线段,半径相等得切线.

第17篇:你能证明地球是圆的吗(推荐)

你能证明地球是圆的吗?来试试看吧!你将依靠你自己的智力还是不得不引用专家的观点呢?

我们为什么相信地球是圆的?乔治·奥韦尔记得在什么地方——我想是在《圣女贞德》序言中——肖伯纳评论说,今天我们比在中世纪时更加轻信,更加迷信。而作为现代轻信的例证,他举出地圆说这一广为传播的信念。肖伯纳说,普通人举不出一条理由来说明为什么相信地球是圆的。他全盘接受这一理论,只是因为这一理论中有一种迎合20世纪心态的东西。

当然,肖伯纳是夸大其词了,但他说的也确实有些道理,这一问题值得进一步探讨,因为它会帮助人们看清现代知识的真实情况。我们究竟为什么会相信地球是圆的呢?我说的不是数千位天文学家、地理学家之类的人,他们可以用观察到的事实或用理论上的根据来证实这一点,我指的是如同你我之辈的报纸的普通读者。

至于“地平说”,我相信我能够加以驳斥。如果你在天气晴朗的日子站立海边,你可以看到船桅和烟囱沿着地平线移动而不见船体本身。只有假设地球表面呈曲线状,这一现象才能得到解释。但不能由此推断地球是球形的。设想另一个称做“地球卵形说”的理论吧,这一学说声称地球形如蛋状。对此,我能说什么加以反驳呢?

面对“地球卵形说”者,我能打的第一张牌是,可以根据太阳和月亮来类推。“地球卵形说”者立即回敬道,我无法根据自己的观察得知那些天体是球形的。我只能得知他们是圆的,而它们完全可能呈扁平的圆盘状。我对此无言以答。此外,他还会说,我凭什么理由认为地球一定与太阳和月亮的形状相同?对此,我同样无法解答。

我的第二张牌是地球的影子: 月食期间,地球投在月亮上的影子看上去呈圆形物体状。但“地球卵形说”者马上要问,我怎么知道月食是由地球的影子造成的呢?回答是,我并不知道,我只是照搬报刊文章和科普小册子上的说法而已。

小小交锋受挫,于是我打出一张王牌“Q”: 专家的看法。英国格林威治皇家天文台台长总该是权威了,他告诉我说地球是圆的。“地球卵形说”者用他的“K”牌压倒我的“Q”牌。天文台台长的话我检验过没有?再说,我知道怎么个检验法吗?这时候,我打出我的“爱司”。是的,我确实知道一个检验方法。天文学家能预报月食,这一点表明他们关于太阳系的看法是非常可信的。因此,令我高兴的是,我接受他们关于地球形状的论断是有道理的。

如果“地球卵形说”者反驳道——我以为他反驳得有理——认为太阳绕地球转的古代埃及人也能预言月食,那我的“爱司”牌便立刻化为乌有。我只剩下一张牌: 航海。人们可以扬帆绕地球航行而到达他们的目的地,其航程的计算,就是以地球是球形的假定为依据的。我相信这一下可以彻底击败“地球卵形说”者了。不过即便如此,他还可能有某种回击的办法。

由此可见,我认为地球是圆的,其根据是相当不牢靠的。然而这却是一点极其基本的知识。在别的大多数问题上,我只得更早地依赖专家的理论,且更少有办法检验他的结论了。我们的知识,其绝大部分都停留在这一水平上。它不是依靠推理或实验,而是依赖权威。可是,不这样,又有什么别的法子呢?知识的范围如此广博,一旦越出其专业范围,专家也会变成一无所知。对大多数人来说,如果要他们证明地球是圆的话,就连我上面概述的这些相当无力的论据,他们也不愿提供出来。他们一开始就会说: 谁都知道地球是圆的。要是再加追问,就会生气了。在某种程度上讲,肖伯纳是说对了,如今是一个轻信的时代。究其缘由,部分在于,我们现今必须掌握的知识实在太多了。

第18篇:圆——教案

圆的定义

目标:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别

1、想想生活中的圆:摩天轮、呼啦圈、自行车、圆月、硬币、瓶盖、钟面、圆桌、钮扣、圆形饼干、铁饼

2、动手画圆:在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.

3、第一定义:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;

圆心:固定的端点O叫作圆心;

半径:线段OA的长度叫作这个圆的半径.

圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”. (1)圆上各点到定点(圆心)的距离都等于定长(半径); (2)到定点的距离等于定长的点都在同一个圆上.

第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.

4、弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;

弧:圆上任意两点间的部分叫作圆弧,简称弧;

弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;

半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.

优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC; 劣弧:小于半圆的弧叫作劣弧,如图3中的BC.

5、思考:车轮为什么做成圆形?如果做成正方形会有什么结果?

把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.

6、如何在操场上画一个半径是5 m的圆?

7、从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?

垂直于弦的直径

目标:探索圆的对称性,进而得到垂直于弦的直径所具有的性质; 能够利用垂直于弦的直径的性质解决相关实际问题.

1、动手活动:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?

沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.

2、动手活动:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;

第二步,得到一条折痕CD;

第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足; 第四步,将纸打开,新的折痕与圆交于另一点B垂直于弦的直径的性质:

(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;

(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

例1:AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.

弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.

例2:已知AB,请你利用尺规作图的方法作出AB的中点,说出你的作法.

3、某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7.2米,桥的最高处点C离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.

GCFMAHEDOB

连接AO、GO、CO,由于弧的最高点C是弧AB的中点,所以得到 OC⊥AB,OC⊥GF, 根据勾股定理容易计算 OE=1.5米, OM=3.6米.

所以ME=2.1米,因此可以通过这座拱桥.

4、银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?

连接OA,过O作OE⊥AB,垂足为E,交圆于F,

1则AE=2AB = 30 cm.令⊙O的半径为R, 则OA=R,OE=OF-EF=R-10.

在Rt△AEO中,OA=AE+OE,即R=30+(R-10). 解得R =50 cm.

修理人员应准备内径为100 cm的管道.

222

2

2

2

弧、弦、圆心角

目标:(1)圆的旋转不变性;

(2)圆心角、弧、弦之间相等关系定理;

动手活动:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下; (2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.

注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.

(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合. 在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;

(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.

ABAC,∠ACB=60°,求证∠AOB=∠AOC=∠BOC. 例

1、在⊙O中,AOBC

2、AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.

思考:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?

圆周角

目标:1.了解圆周角与圆心角的关系.

2.探索圆周角的性质和直径所对圆周角的特征. 3.能运用圆周角的性质解决问题.

问题1:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB和ACB)有什么关系?

问题2:如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB和AEB)和同学乙的视角相同吗?

同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半. 问题3:半圆(或直径)所对的圆周角是多少度?90°的圆周角所对的弦是什么? 例:如图, ⊙O的直径 AB 为10 cm,弦 AC 为6 cm,∠ACB 的平分线交⊙O于 D,求BC、AD、BD的长.

AD=BD

ACOBD

(一)圆的有关概念

1、圆(两种定义)、圆心、半径;

2、圆的确定条件:

①圆心确定圆的位置,半径确定圆的大小; ②不在同一直线上的三个点确定一个圆。

3、弦、直径;

4、圆弧(弧)、半圆、优弧、劣弧;

5、等圆、等弧,同心圆;

6、圆心角、圆周角;

(二)圆的基本性质

1、圆的对称性

①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 *②圆是中心对称图形,圆心是对称中心。

2、圆的弦、弧、直径的关系

①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)

3、弧、弦、圆心角的关系

①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。 ③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。

4、圆周角的性质

①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。 ②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

第19篇:圆练习

二、加强学生常规管理

加强日常管理,保证班级稳定。学生和班级的日常管理工作是基础,稳定是大事,九年级全体教师密切注意学生的思想动态,注重教学反馈,及时主动与班主任交流沟通。班主任是班级的核心,老师们能够更加科学地利用学校常规考核来规范行为习惯、促进良好的班风形成。任课教师更加积极参与班级管理,与班主任随时沟通,及时发现学生的问题苗头,把学生的思想工作做在平时、落在实处。

加强自主管理,发挥班级骨干的作用。班主任在日常管理中,充分发挥班干部的作用,利用学生管理学生,每位骨干职责分明、有事来管,处理效果良好,既锻炼了学生的能力,又减轻了教师的压力。

重视家庭教育,加强家校联系。班主任都意识到家庭教育的重要性,在第一时间内做好家校联系,利于了解学生在家状况及通报学生在校表现。

班主任与任课教师更加注重学科平衡,包括班级内各门学科的平衡和具体到每个学生的学科平衡,工作更加细致,具有针对性。

三、教学工作

本学期班主任工作防微杜渐,精细化管理,任课教师也加强了班级管理的力度,课堂纪律良好,课堂效率明显提高,总体班风学风呈现良性循环。

年级内教师教学常规工作更加精细,讨论交流更有深度宽度,作业批改、反馈及时,积极主动利用自习时间下班辅导,临界生辅导成为一道亮丽的风景线。同时充分发挥备课组力量,集体备课,组内教师利用一切机会交流教学方法,讨论教学得失,商议变化策略。本学期先后组织了三次大型测试,在全体九年级教师的支持配合和努力下,都取得了较大成功。教师工作热情高、工作气氛好,依靠备课组的力量,积极讨论,积极主动下班辅导,重视每次考试后的质量分析,真诚务实,及时总结,整体提高。

四、团体合作意识浓厚,教学成绩稳定提高

班主任早来晚回,经常找学生谈心,了解学生的思想动态和学习困难,抓学科平衡,做任课教师和学生的协调员。同学科教师经常讨论教法学法、考试得失,研究考试导向;同班级教师经常讨论每位学生的思想状态与行为习惯以及学科优势与劣势。

所有教师目标明确、工作细致,能够拧成一股绳,劲往一处使,充分发扬团队精神,协调好个人与集体的关系,主动积极的干好工作,但离学校的期望还有一定距离,学生还要走一段艰辛的路,我们老师深知肩上责任重大,意义深远。我们会永往直前、脚踏实地,尽我们所能,为明年6月做出最大努力!

第20篇:飞天梦圆

飞天梦圆

夏夜,每当我坐在树荫下,仰望着满天的繁星时,我总会想起一件让我难以忘怀的事。

“嗖”一声巨响,一枚枚“火箭”飞向了蓝天,原来是学校“心向太空”开幕式上精彩的航模表演。只见火箭飞向天空,然后又展开降落伞,从天而降。接着,一架似风筝如三角的“飞机”也飞上天空,在天空中上下飞行,我们都拍手叫好。然后,两台精美的“飞行器”也升空了,犹如在进行一场飞行比赛。最后,一架金黄透明、在阳光中闪光的飞机直冲云霄,像是在空中跳舞,华丽多姿„„这时,我觉得天空比以往更蓝,白云比以往更美。从那时起,我想当一名航天员,漫游浩瀚无际的太空;从那时起,我又想做一位飞船设计师,设计出能超光速的火箭。让我们大家热爱科学,将来为祖国的航天事业出一份力。从敦煌壁画到今天的“神六”飞天,我们中国人终于实现了梦寐以求的飞天梦,成为继俄罗斯、美国后第三个能独立完成载人航天工程的国家。从汉末发明的火箭,到今日人类遨游太空,载人飞船到太空中去已不再被人类称为神话,但在我的脑海中始终有许多的问题在萦绕:世上有没有外星人?宇宙有没有尽头?宇宙„„

是啊,只要我们勇于攀登,宇宙一定会被人类攻破的,让我们再园航天梦,迎接“神七”飞天的喜讯吧!

圆证明
《圆证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档