人人范文网 证明

证明平行(精选多篇)

发布时间:2021-02-16 08:32:58 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:平行证明

北师版 八上7单元测试

一、填空题

1、如图1,直线AB、CD被直线EF所截①量得∠3=100°,∠4=100°,则AB与CD的关系是_______,根据是_____________

②量得∠1=80°,∠3=100°,则AB与CD的关系是_______,根据是________________

2、如图2,BE是AB的延长线,量得∠CBE=∠A=∠C ①从∠CBE=∠A,可以判定直线_______与直线_______平行,它的根据是___________

②从∠CBE=∠C,可以判定直线_______和直线_______平行,它的根据是___________

1图

2图3图

43、如图3,∠α=125°,∠1=50°,则∠β的度数是_______.4、如图4,AD、BE、CF为△ABC的三条角平分线,则:∠1+∠2+∠3=________.

5、已知,如图5,AB∥CD,BC∥DE,那么∠B+∠

D=__________.6、已知,如图6,AB∥CD,若∠ABE=130°,∠CDE=152°,

则∠BED

=__________.图

5图6

7、在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则∠A=____,

∠B=____, ∠C=____.8、在△ABC中,若∠A=65°,∠B=∠C,则∠B=_______.

9、命题“任意两个直角都相等”的条件是_____,结论是

_____,它是____(真或假)命题.10、如图7,根据图形及上下文的含义推理并填空:

(1)∵∠A=_______(已知)∴AC∥ED()

(2)∵∠2=_______(已知)

∴AC∥ED()

(3)∵∠A+_______=180°(已知)∴AB∥FD()

图7图8

二、选择题

1.下列语言是命题的是 ()

A.画两条相等的线段 B.等于同一个角的两个角相等吗?

C.延长线段AO到C使OC=OA D.两直线平行,内错角相等.2.如图8,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC

等于A.63°B.62°C.55°D.118°

3.下列语句错误的是()

A.同角的补角相等B.同位角相等C.同垂直于一条直线的

两直线平行D.两条直线相交只有一个交点

4、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,

则∠BOC等于()A.65°B.115°C.80° D.50

5、两条平行线被第三条直线所截,那么一组同旁内角的平分线

A.相互重合B.互相平行C.相互垂直D.无法确定相互关系

6、如图9,AB∥CD,∠A=35°,∠C=80°,那么∠E等于()

A.35B.45°C.55°D.75°

三、判断下列命题是真命题还是假命题.()(1)若|a|=|b|,则a=b;()(2)若a=b,则a3=b3;

()(3)若x=a,则x2-(a+b)x+ab=0; (4)如果a2=ab,则a=b; ()(5) 若x>3,则x>2.

四、把下列命题写成“如果„„,那么„„”的形式,并指出条件和结论.

(1) 全等三角形的对应角相等; (2)等角的补角相等;

(3)同圆或等圆的半径相等;(4)自然数必为有理数;

(5)同角的余角相等;(6)两直线平行,同位角相等;

五、解答下列问题

1、如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD对吗?为什么?

2、如图 ,已知∠1与∠2互补,问∠3和∠4互补吗?为什么?

六、在横线或括号中填上适当的符号和理由,完成下面的证明过

(1)如图10 ,已知EF∥AB,∠A+∠AEC+∠C=360°求证:AB∥CD

证明:∵EF∥AB(已知)∴∠A+_______=180°又∵∠A+∠AEC+∠C=360°()∴∠C+∠CEF=_______()

∴_______∥CD()∴AB∥CD()

(2)如图11,已知∠ADE=∠B,∠1=∠2,FG⊥AB,

求证:CD⊥AB

证明:∠ADE=∠B()

∴DE∥_______()

∠1=_______()

∵∠1=∠2(

∴∠2=∠3(

CD∥_______(

∠BGF=_______(

又∵FG⊥AB(

∴∠BGF=_______(

∴∠BDC=_______(

∴CD⊥AB(

图10图11 ))))))))

七、证明题

1.已知,如图 ,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.

2、已知,如图 ,∠ACE是△ABC的外角,∠ABC与∠ACE的角平分线BP、CP交于点P.。求证:∠P=1∠A.2

推荐第2篇:平行的证明

高中立体几何证明平行的专题训练

立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:

1通过平移;

2利用三角形中位线的性质;

3利用平行四边形的性质;

4利用对应线段成比例;

5利用面面平行,等等

一.通过“平移”再利用平行四边形的性质

1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD的中点.求证:AF平面PCE

第1题图

2、如图,已知直角梯形ABCD中,ABCD,ABBC,AB=1,BC=2,CD=1A作AECD,垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.Ⅰ求证:BC面CDE;

Ⅱ求证:FG面BCD;

3.已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE

的中点,ACBE.求证:

ⅠC1DBC;

ⅡC1D平面B1FM.

4、如图所示,四棱锥PABCD底面是直角梯形,CD2AB,E为PC的中点,

证明:EB面PAD

二.利用三角形中位线的性质

5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。

6.如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证:PA平面BDE

7.如图,三棱柱ABC—A1BC中,D为AC的中点.求证:AB1//面BDC1;1

18.如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB90,

11BCAD,BEAF,G,H分别为FA,FD的中点

2

2Ⅰ证明:四边形是平行四边形;

Ⅱ四点是否共面?为什么?

E

三.利用平行四边形的性质

9.正方体ABCD A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点, 求证:D1O//平面A1BC1;

A

10.在四棱锥PABCD中,ABCD,ABDC,为.EPD的中点,求证:AE平面PBC;

11.在如图所示的几何体中,四边形ABCD为平行四边形,ACB90EA平面ABCDEF//AB,FG//BC,EG//AC,AB2EF

1若M是线段AD的中点,求证:GM//平面ABFE;

2若ACBC2AE,求二面角A-BF-C的大小。

四.利用对应线段成比例

12.如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且AMBN=,求证:MN//平面SDC SMND

13.如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AMFN求证:MN平面BEC

五。利用面面平行

14.如图,三棱锥PABC中,PB底面ABC,BCA90,PBBCCA,E为PC的中点,M为AB的中点,点F在PA上,且AF2FP.

(1)求证:BE平面PAC;

(2)求证:CM

//平面BEF; 

C

推荐第3篇:证明线面平行

证明线面平行

一,面外一条线与面内一条线平行,或两面有交线强调面外与面内

二,面外一直线上不同两点到面的距离相等,强调面外

三,证明线面无交点

四,反证法(线与面相交,再推翻)

五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)

2

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面

3

线面平行

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。

【平面与直线平行的性质】

定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。

注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。

3

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,

因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,

因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

推荐第4篇:证明直线平行

证明直线平行

证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c,所以b‖c(平行公理的推论)

2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.

3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.

5、若一直线上有两点在另一直线的同旁).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选C\\认六一值!小人﹃夕叱的一试勺洲洲川JLZE一B\\/(

一、图月一飞/匕\\一|求且它们到该直线的距离相等,则两直线平行.例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B).例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF.(l)求证:EF//Bc

(1)根据定义。证明两个平面没有公共点。

由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。

(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。

(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面

与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。

3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。

因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。

1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:

(1)平行—没有公共点;

(2)相交—有无数个公共点,且这些公共点的集合是一条直线。

注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。

2.两个平面平行的判定定理表述为:

4.两个平面平行具有如下性质:

(1)两个平行平面中,一个平面内的直线必平行于另一个平面。

简述为:“若面面平行,则线面平行”。

(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

简述为:“若面面平行,则线线平行”。

(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。

(4)夹在两个平行平面间的平行线段相等

2

用反证法

A平面垂直与一条直线,

设平面和直线的交点为p

B平面垂直与一条直线,

设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形pQR

pR垂直pQQR垂直pQ

没有这样的三角形。因为三角形的内角和为180

所以A一定平行于B

推荐第5篇:线面平行证明

线面平行证明“三板斧”

第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面

内找到与已知直线的平行线。

例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。

练习:

如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD

第二斧:以平面外的直线作平行四边形

D

例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC

1练习:

如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:

A1E//平面B1CF

第三斧:选证明面面平行,再由线平行的定义过度到线面平行。

例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG

练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:

AC1//平面AB1D

B

C

总结:线面平行证明的三种方法中,多数题目其实都可以用第

一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式

一、

二、三的顺序依次去思考。

1.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.

P

E

C

A

B

3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;

AA

D

C

B1

C1

4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.

5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是

①②③④

6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.

A

7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是

A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,b

C.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在

8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.

9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB

,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()

A.不存在B.有1条C.有2条D.有无数条

10.如图所示:设P

上的点,

AMDN且MBNP

11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,

P,Q分别是BC,C1D1,AD1,BD的中点.

(1) 求证:PQ//平面DCC1D1(2) 求PQ的长.

(3) 求证:EF//平面BB1D1D.

推荐第6篇:两直线平行证明

两直线平行相关证明题目

1、如图,已知∠ABC=30,∠ADC=60,DE为ADC的平分线,请你判断哪两条直线平行,并说明理由。

2、如图,在△ABC中,∠B=90,D在AC边上,DF⊥BC于点F,DE⊥AB于点E,那么AB与DF平行吗?CB与DE平行吗?为什么?

3、如图,根据下列条件:∠A=∠AOD,∠ACB=∠F,∠BED+∠B=180,分别可以判定哪两条直线平行?并说明判定的依据。

4、如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2 ,那么直线AB与CD的位置关系如何?

5、如图,EF平分∠BEG,GF平分∠DGE,若∠1+∠2=90,猜测AB、CD的位置关系,并说明理由。

6、如图,AE∥BC,∠

B=

∠C

,试说明∠

1=∠2。

7、如图,AD∥BC,∠A = ∠C,试说明AB∥CD

8、如图,AB∥CD,∠B=∠D,试说明BF∥DE.9、如图,AB∥CD,∠1=∠2,∠3=∠4,求∠EMF的度数

10、1.已知∠BED=∠B+∠D,试判断AB与CD的位置关系。

2.如图,AB∥CD,猜想∠E与∠B、∠D之间有何关系,试说明你的结论。

11、如图,AB∥CD, ∠1: ∠2:

,求证:

BA平分

EBF

推荐第7篇:直线平行证明分析

关于平行线证明

(1)条件中出现平行,则有三种写法

1.Z形:a//b,12(内错角形式) 2.F形:c//d,35(同位角形式)

3.U形:c//d,24180(同旁内角形式) (2)条件中出现角平分线,有两种形式

AE平分DAC,则

c

db

4a

DA

DAC 2

2.DAC2122

1.12

E

BC

(3)注意隐含条件:1.对顶角:12(如此题中,∠A=∠1,∠D=∠2,则AB//CD此题中,加上隐含条件有三个等式,因此一般会有等量变换。

2.互补:此图中,隐含条件FAC180,即FABBAC180(∠BAF=46°∠ACE=136°CE⊥CD证:CD∥AB)

(4)如上图,出现CECD, 则有DCE90(5) 条件中出现1和2互余,3和4互补,则1290,34180

(6)当图中出现三角形时,注意隐含条件245180

B



A 5

条件中出现两角相等,要注意分析:这两个角是什么关系?是内错角还是同位角,若都不是,必为等量代换的一个式子。此时要分析这两个角在图中各自的内错角或同位角,便于下一步等量代换使用。

同样,条件中出现两角互补,要注意分析:这两个角是什么关系?是不是同旁内角,若不是,必为等量代换的一个式子。此时要分析这两个角在图中各自的同旁内角,便于下一步等量代换使用。

推荐第8篇:怎么证明两条线平行

怎么证明两条线平行

假如不平行,就会有一个焦点,那么这个焦点和两个垂足会构成一个三角形,这个三角形的内角有2个90度,那么内角和就比180度大了,所以是错的,所以……

设线段为AB,垂直于AB的两条线为CD,EF,分别交AB于G,H点

假设CD,EF不平行,则他们会有交点,设为O点,

则图中有三角形OGH出现,又OG和OH都垂直于AB,所以〈OGH=90度,〈OHG=90度,〈OGH+〈OHG+〈GOH必定大于180度,而三角形内角和却是180度,于事实矛盾,所以垂直于同一条线段的两条线相互平行.假设,垂直于直线l的两条直线a,b相交于直线l外一点A。

直线a在直线l上的垂足为M,直线b在直线l上的垂足为N,则点A,M,N组成三角形。

因为直线a,b垂直于直线l,所以,角AMN与角ANM为90度,

这与三角形定义相矛盾

所以,垂直于同一条线段的两条线相互平行.

不妨设:垂直于同一条线段的两条线不平行,那么,这两条直线必定有一个交点O,所以,这三条直线必定会组成一个三角形,那么角O必定是一个存在的角(即角O有实际度数)那么根据在三角形中一个外角等于不相邻的两内角的和,(因为两条直线垂直于同一条直线,所以)外角=90°,其中不相邻的一个内角也为90°,那么90°+角O(存在的角度)=90°,是不成立的,因此:垂直于同一条线段的两条线相互平行

假设是AB和CD,不妨令AB

把他们放在平行的位置

连接AC和BD并延长交于E

则在AB上任取1点F,连接EF和CD都有唯一的交点

反之,在CD上任取1点G,连接EG和AB都有唯一的交点

即两线段上的点可以建立一一对应的关系

所以点数相同

用两条直线将一个平行四边形分成面积相等的4份有无数种分法。

最常用的两种用尺规法分割的方法是:

(1)、连接两条对角线。两条对角线分割成的4部分就是面积相等的4部分。

(2)、找出四条边的中点,分别连接相对两边的中点。这两条相交直线分割成的4部分就是面积相等的4部分。

以上两种方法是用尺规法可以完成的,还有无数种分割法比较复杂,原理是这样的:

连接两条对角线后找到它们的交点O,过O作任意直线分平行四边形为两份。

不难发现这两部分是面积、形状完全相等的两个梯形。

过O作其中一个梯形的中位线,那么梯形被分成面积不相等的两份(注意,是不相等的两份)。

假设中位线与梯形另一边(即原平行四边形的一边)的交点是动点,那么当这个动点在向梯形较长底边运动的过程中,原本面积较大的部分面积逐渐减小,而原本面积较小的部分面积逐渐变大。当运动到某一点的时候,存在两部分面积相等的情况。

根据对称性,这个平行四边形被分成了面积相等的4份。

但是,第二条直线的位置的确定,需要根据平行四边形的实际情况和先作出的那条任意直线的情况不同而定,所以我还没找出一个通用的公式。

推荐第9篇:证明平行的方法

证明平行的方法

高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

2

方法1:

两组对边分别平行方法2:对角线互相平分方法3:一组对边平行且相等楼上的:试问

两组对边相等

3

证明两直线平行1.垂直于同一直线的各直线平行。2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。3.在一个三角形中,若有两个角互余,则第三个角是直角。4.邻补角的平分线互相垂直。5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。*10.在圆中平分弦(或弧)的直径垂直于弦。*11.利用半圆上的圆周角是直角。

在空间中一定是平行四边形吗?

4

证明两直线平行1.垂直于同一直线的各直线平行。2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。3.在一个三角形中,若有两个角互余,则第三个角是直角。4.邻补角的平分线互相垂直。5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。*10.在圆中平分弦(或弧)的直径垂直于弦。

推荐第10篇:证明平行的方法

空间的平行关系

1. 证明线线平行的方法:

(1)面面平行的判定:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。

(3)平行线的定义:在同一平面内不相交的两条直线。

(4)基本性质四:平行于同一直线的两直线互相平行。

(5)线面垂直的性质:垂直同一平面都两条直线平行

2.证明线面平行的方法:

①面面平行的性质:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

②线面平行的性质:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

③定义:直线a与平面a没有公共点,则直线与平面平行。

3.证明面面平行的方法:

(1)定义:如果两个平面没有公共点,则这两个平面互相平行。

(2)面面平行的判定:如果一个平面内有两条相交直线平行于另一个平面,

那么这两个平面平行。

(3)面面平行的性质:如果一个平面内有两条直线分别平行于另一个平面的

两条直线,则这两个平面平行。

(4)线面垂直的性质:垂直通一条直线的两个平面平行

(5)面面平行的判定定理:同时与第三个平面平行的两平面平行

第11篇:证明两个平面平行

证明两个平面平行

证明两个平面平行的方法有:

(1)根据定义。证明两个平面没有公共点。

由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。

(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。

(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面

与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。

3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。

因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。

1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:

(1)平行—没有公共点;

(2)相交—有无数个公共点,且这些公共点的集合是一条直线。

注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。

2.两个平面平行的判定定理表述为:

4.两个平面平行具有如下性质:

(1)两个平行平面中,一个平面内的直线必平行于另一个平面。

简述为:“若面面平行,则线面平行”。

(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

简述为:“若面面平行,则线线平行”。

(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。

(4)夹在两个平行平面间的平行线段相等

2

用反证法

A平面垂直与一条直线,

设平面和直线的交点为p

B平面垂直与一条直线,

设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形pQR

pR垂直pQQR垂直pQ

没有这样的三角形。因为三角形的内角和为180

所以A一定平行于B

第12篇:面面平行的证明

面面平行的证明

判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

反证:记其中一个平面内的两条相交直线为a,b。假设这两个平面不平行,设交线为l,则a∥l(过平面外一条与平面平行的直线的平面与该平面的交线平行于该直线),b∥l,则a∥b,与a,b相交矛盾,故假设不成立,所以这两个平面平行。

2证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a在平面α上,b在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面γ上,b在平面γ上

∴a∥b.3用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

4【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个

5用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

6证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a在平面α上,b在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面γ上,b在平面γ上

∴a∥b.证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a在平面α上,b在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面γ上,b在平面γ上

∴a∥b.【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个

5用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

第13篇:怎么证明面面平行

怎么证明面面平行

线面垂直:1.一条线与平面内两条相交直线垂直

2.一条线在一个平面内,而这个平面与另外一个平面垂直,那么这条线与另外一个平面垂直

面面垂直:一条线与平面内两条相交直线垂直,且有一个平面经过这条线

2证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a在平面α上,b在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面γ上,b在平面γ上

∴a∥b.3用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

4【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个

5用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

6

线线平行→线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

线面平行→线线平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线线垂直→线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

三垂线定理如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

第14篇:证明平行与垂直

§9.8 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,

2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,

A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.15401533,-,4B.,-,4 77774040,-2,4D.4,,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,

A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题6分,共24分

6.设a=1,2,0,b=1,0,1,则“c=(

的条件.7.若|a|

b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,

8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

212,,)”是“c⊥a,c⊥b且c为单位向量”33

39.设A是空间任一点,n为空间内任一非零向量,则适合条件AM·n=0的点M的轨迹

是.三、解答题共41分

10.(13分)已知正方体ABCD-A1B1C1D1中,M、N分别为BB

1、C1D1的中点,建立适当的

坐标系,求平面AMN的一个法向量.

11.(14分)如图,已知ABCD—A1B1C1D1是棱长为3的正

方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,

3垂足为H,求证:EM⊥面BCC1B1.

12.(14分)如图所示,已知正方形ABCD和矩形ACEF所在的平

面互相垂直,AB2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.

答案

1.C2.A3.B4.B5.D

6.充分不必要7.118118,2,或,2,8.1 555

5.9.过A点且以n为法向量的平面

10.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,

设正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M (1,1,11),N (0,,1)).2211∴AM1,0,,AN0,,1设平面AMN的一个法向量为n=x,y,z, 22

1nAMyz02 1nANxyz0

2令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

11.证明 建立如图所示的坐标系,则BE=(3,0,1),

→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,

所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),

2→0,-z,而BF=(0,3,2), GM=3

得z=1.→2由题设得GMBF=3z20,

3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),

→→→→所以ME·BB1=0,ME·BC=0,

从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,

故ME⊥平面BCC1B1.

12 证明 (1)建立如图所示的空间直角坐标系,

设AC∩BD=N,连接NE.

则点N、E的坐标分别为 

,0、(0,0,1).

22

∴NE=-1.22

又点A、M的坐标分别是2,2,0)、2222→,AM=-,1.,,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.

又∵NE⊂平面BDE,AM⊄平面BDE,

∴AM∥平面BDE.

22→(2)由(1)知AM=1,∵D(2,0,0),F2,2,1), 22

DF=(0,2,1).

→→→→AM·DF=0.∴AM⊥DF.

→→同理AM⊥BF,又DF∩BF=F,∴AM⊥平面BDF.

第15篇:线面平行证明“三板斧”

线面平行证明“三板斧”

线面平行是高考的重点,也是平行关系中的核心。在证明线面平行的过程中,如何快速的找到证明的思路,此文的目的就在于此。将证明的过程程序化,可以帮助学生形成良好的思维习惯,也可以引导学生学会去总结。

第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面内找到与已知直线的平行线。

例1:如图正方体ABCDA1BCE为11D1中,DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。

招式讲解:三点确定一个平面,已知直线只需再有一点即可确定一个BD1已有二点,

平面。为了更直观的找到两平面的交线,

选择第三点时有技巧可寻。平面AEC将空间分为两个部分,第三点可选在与线段BD1的另一侧,本题中即D点。三点组成的三角形,除BD1的另两边BD,则两交点形成的直线与BD1平DD1必然与平面AEC相交,

行。在实际证明过程中,两交点在题中的位置越特殊,越有可能为正确的辅助线。

证明展示 证明:连结BD与AC交于点O,连结OE

E、O分别为DD

1、BD中点

OE//BD

1又OE平面AEC,BD1平面AEC

BD1//平面AEC

招式点评

优点:招式简洁,证明过程简易。

缺点:与平面的交点若不是特殊点,会出现能找出平行线,但难于证明的情况。再有就是平面的另一面可能在题目中难以找到第三点。 实战试招1:

如图,已知四棱锥PABCD的底面ABCD的

底面ABCD是菱形,点F为PC中点,求证:

PA//平面BFD

D

第二斧:以平面外的直线作平行四边形

例2:如图,正方体ABCDA1BCE为A1B111D1,上任意一点,求证:AE//平面DC1

招式讲解:通过平行四边行找平行线是高中

立体几何中的常见手段。若能够找到平行四

边行的相邻两边,则就能作出平行四边形。

本题中AE可做为平行四边形的一边,则另一

边可以是A1E,EB1,AB,AD,AA1,若考虑到可在题目中较为容易的画平形

四边形则只有EB1和AD。这时,可以发现以AE,AD两边所作的平行四边形为本题所要的。

证明展示

证明:过E点作AD的平行线,交C1D1与F点,连结DF

EF//A1D1,A1E//D1F

四边形A1EFD1为平行四边形 EFA1D1

EF//AD且EFAD

四边形ADFE为平行四边行

AE//DF又AE平面DC1,DF平面DC1

AE//平面DC1

招式点评

优点:招式本身的关键在于平行四边行,同学们比较熟悉,因此接受起来比较快。

缺点:找平行四边形的思维过程中可能的情况比较多,要一个一个去排除,需要一定的逻辑思维能力。再有,招式本身不能解决所有题目要注意变招。

实战试招

2如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:A1E//平面BCF 1

第三斧:选证明面面平行,再由线平行的定义过度到线面平行。

例3:如图,四棱锥PABCD,底面ABCD

为正方形,E,F,G分别为PC,PD,BC的

中点,求证:PA//平面EFG 招式讲解: 面面平行到线面平行的方法中,寻找与平面EFG平行的平面是解题的关键,而寻找平行平面遵循一定的方法其实是很容易找到的。两条相交直线可以确定一个平面,已知直线PA可以看作是一条,我们只需要找EF,EG,FG中三条边中任何一条线的平行线即可。但所找的平行线还需满足一个条件,与已知直线PA相交。题目中,EF与FG的平行线都很容易找到,比如我们找到满足要求的EF的平行线AB,则PA与AB所组成的平面PAB就是我们所要找到平面。接下来我们的任务就是证明平面PAB//平面EFG。

证明展示

证明:E,F分别为PC与PD中点

EF//DC,又DC//AB

EF//AB,又EF平面EFG,AB平面EFG

AB//平面EFG

E,G分别为PC,BC中点

PB//EG,又EG平面EFG,PB平面EFG

PB//平面EFG

又ABPBB

平面PAB//平面EFG PA平面PAB

PA//平面EFG

招式点评

优点:与前二斧而言使用范围最广的招式,套路式的方法很容易找到证明的思路。大部分的题目都可以使用这招得到解决,只不过是证明过程的长度有所不同而已。

缺点:由于证明面面平行,必须先证两个线面平行,所以不论题目难易过程都较长。步骤多,要写好要下一番功夫。

实战试招

3如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:AC1//平面AB1D

总结:线面平行证明的三种方法中,多数题目其实都可以用第

一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式

一、

二、三的顺序依次去思考。

另:对于考试中的另一重点,垂直关系就很难总结为平行中一样固定的模式,但解题时也有一定规律可寻,详情在另一文中讲述。

地址:广东省中山市小榄镇小榄中学 姓名:刘晓聪

邮箱:stephenlao@163.com QQ:148049846

第16篇:线线平行的证明

线与线平行的证明

一。定义:同在一个平面内,不相交的两条直线平行。

二。利用几何图形:三角形中中位线、边成比例,平行四边形等

三。公理四,平行于同一条直线的两条直线。

四。线面平行的性质

五。面面平行的性质。

一例1.设平面α、β、γ,α∩β=a,β∩γ=b,γ∩α=c,且a//b.求证:a∥b∥c.二例2.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EABF∶FD,求证:EF//平面PBC.

答案:证明:连结AF并延长交

于.连结,

BFMFPEBFPEMF,又由已知,∴. FDFAEAFDEAFA

由平面几何知识可得EF//PM,又EFPBC,PM平面PBC,

∴EF//平面PBC

. ∵AD//BC,∴

E,F分别是棱BC,C1D1的中点,求二。例3.如图,在正方体ABCDA1BC11D1中,

证:EF//平面BB1D1D.

答案:证明:如图,取D1B1的中点O,连接OF,OB,

11∵OF平行且等于B1C1,BE平行且等于B1C1, 2

2∴OF平行且等于BE,则OFEB为平行四边形,

∴EF//BO.

∵EF平面BB1D1D,BO平面BB1D1D, ∴EF//平面BB1D1D.

三、四第1题.已知a,m,b,且m//,求证:a//b. 答案:证明:

m



m//m//aa//b.

a同理m//b

第9题.如图,在正方体ABCDA1BC11D1中,试作出过AC且与直线D1B平行的截面,并说明理由.

答案:解:如图,连接DB交AC于点O,取D1D的中点M,连接MA,MC,则截面MAC即为所求作的截面.

∵MO为△D1DB的中位线,∴D1B//MO.

∵D1B平面MAC,MO平面MAC,

∴D1B//平面MAC,则截面MAC为过AC且与直线D1B平行的截面.

第20题.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

答案:证明:如图,取CD的中点E,连接NE,ME ∵M,N分别是AB,PC的中点,

∴NE//PD,ME//AD,

可证明NE//平面PAD,ME//平面PAD. 又NEMEE,

∴平面MNE//平面PAD,

又MN平面MNE,∴MN//平面PAD.

第7题.如图,已知P为平行四边形ABCD所在平面外一点,M为PB的中点, 求证:PD//平面MAC.

答案:证明:连接AC、BD交点为O,连接MO,则MO为△BDP的中位线,

∴PD//MO.

∵PD平面MAC,MO平面MAC,∴PD//

平面MAC.

第17篇:线面平行证明经典练习题

1、在底面为平行四边形的四棱锥P—ABCD中,点E是 PD的中点。 求证:PB//平面 AEC

E

B

D C

2、在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点。求证:MN//平面PAD

D

B

3、在三棱柱ABC—A1B1C1中, D是 AC的中点。

求证:AB1//平面DBC1 C\'A\'

A

4、在正方体ABCD—A1B1C1D1中,O是底面ABCD对角线的交点。

求证:C1O//平面AD1B

15、已知ABC-A1B1C1是底面为正三角形的棱柱,D是

AC的中点。 求证:AB1//平面DBC

1C

B1

6、正四棱锥SABCD中,E是侧棱SC的中点。

求证:直线SA//平面BDE

C

A

7、已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是AB、PD的中点. 求证:AF//平面PEC

P

C

A

8、ABCD-A1B1C1D1是正四棱柱,E是棱BC的中点。

求证:BD1//平面C1DE

9.在三棱柱ABCA1B1C1中, D为BC中点.求证:A1B//平面ADC1;

C1 B1 A

B

第18篇:证明线面平行的方法

证明线面平行的方法

线面平行重点难点剖析

线面平行关系的判断和证明是空间线面位置关系的研究重点之一,它包括直线与直线的平行,直线与平面的平行以及平面与平面的平行.本节复习包括首先要系统梳理有关判断、证明线面平行关系的各种依据,其中既包括有关定义、公理,还包括相应的判定定理或性质定理.梳理中不仅要明确有关判断、证明各有哪些依据,还要体会不同的依据在思维策略上给我们的指导.

例如判断线面平行可有三种思维策略:

(1)从概念考虑,即依据线面平行的定义作思考,这就需要证明直线和平面没有公共点.证明方法通常选择反证法.(2)从降级角度考虑,即通过证明线线平行来证明线面平行.其依据为:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.证明方法通常是把平面外的这条直线经过平移,移到这个平面中去.

(3)从升级角度考虑,即通过证明面面平行来证明线面平行.其依据为:两个平面平行,其中一个平面内的直线必平行于另一个平面.证明方法是找出一个与这个平面平行的平面,并且使这条直线正好在所找的平面内.

其中思维策略的选择不仅要注意建立这种意识,还要根据不同问题的不同条件,才能作出恰当的选择.在复习中应注意积累这种思考、选择的经验.

2题目如图1,已知四边形ABCD,ABEF为两个正方形,MN分别在其对角线BF和AC上,且FM=AN,求证:MN∥平面EBC.一、找“线线平行”思考1如图2,过M作MH∥EF交BE于H,则MHEF=BBMF.过N作NG∥AB交BC于G,则NGAB=CANC.由于四边形ABCD,ABEF为两个全等正方形,则BF=AC,EF=AB,又因为FM=AN,所以MH∥NG且MH=NG,故四边形MHGN为平行四边形,所以MN∥平面EBC.思考2如图3,连结AM并延长交BE于K,则CK在平面EBC内.由题意,知△AFM∽△BKM,则AMMK=BFMM,因为FM=AN,BF=AC,则FMBM=ANNC,所以在△ACK中,有AMMK=ANNC,则MN∥CK,所以MN∥平面EBC.注在平面内找一条直线与平面外直线平行,通常有两种方法可找:①构造平行四边形;②构造三角形,利用对应边成比例.

二、找“面面平行”思考3如图4,过M作MH∥BE,交AB于H,连结NH,则BMBF=BBHA.由于四边形ABCD,ABEF为全等的的正方形,又因为FM=AN,则有BMBF=CCNA,所以在

3

线面的我已经给你了

我来补充线线的

1.垂直于同一平面的两条直线平行

2.平行于同一直线的两条直线平行

3.一个平面与另外两个平行平面相交,那么2条交线也平行

4.两条直线的方向向量共线,则两条直线平行

第19篇:证明面面平行的方法

证明面面平行的方法

利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,pQ→=xMA→+yMB→(x,y∈R),则①p∈平面MABpQ平面MAB;②p平面MABpQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行

这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直于同一平面是错的

2

1,线面垂直到面面垂直,直线a垂直于平面1,直线a平行与或包含于平面2,所以平面1垂直于平面2

2,(最白痴的一个)平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面2

3,通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的

这些方法前面都要通过其他方法证明,一步步才能证到这儿,譬如方法1,要先证明线面垂直,所以你也得知道线面垂直的证法有哪些。学立体几何,重要的是空间感,没事多揣摩揣摩比划比划,把每个定理的内容用图形表示出来,并记在脑子中,这样考试的时候才能看到图和题就会知道用什么定理了,熟记并熟练掌握哪些定理的运用才行。还有像这样比较好,证明每个东西都有哪些方法,有几种途径,那么做题的时候想不起来用哪个就可以根据题目条件一步步排除,并选择对的方法,一般老师上课都会总结的。还是好好听课吧~~

3

判定:

平面平行的判定一如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

平面平行的判定二垂直于同一条直线的两个平面平行。

性质:

平面平行的性质一如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

平面平行的性质二如果一条直线在一个平面内,那么与此平面平行的平面与该直线平行。

这五个条件?哪五个?

判定一中:两条相交的直线是可以确定一个平面的,所以“两条相交直线都平行于另一个平面,那么这两个平面平行。”

判定二中。如果一个直线垂直与一个平面,那么直线垂直于平面内的所有直线,则有垂直于同一条直线的两个平面平行。

4

线线平行证2条线成倍数就行,倍数属于R线面平行找面的法向量,它的法向量与线平行就OK面面平行先找两个面的法向量,只要2个法向量成成倍数就行

第20篇:怎样证明面面平行(材料)

怎样证明面面平行

线线平行→线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

线面平行→线线平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线线垂直→线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

三垂线定理如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

2证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a在平面α上,b在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面γ上,b在平面γ上

∴a∥b.3用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

4【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个

5用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点p,点p∈β

又因为p∈AB,所以p∈α

α、β有公共点p,与命题α∥β不符,所以AB∥β。

证明平行
《证明平行.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档