人人范文网 证明

高数极限证明(精选多篇)

发布时间:2021-02-21 08:32:53 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:高数极限

1.代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1) lim[x-->√3](x^2-3)/(x^4+x^2+1) =(3-3)/(9+3+1)=0 【例2】lim[x-->0](lg(1+x)+e^x)/arccosx lim[x-->0](lg(1+x)+e^x)/arccosx =(lg1+e^0)/arccos0 =(0+1)/1 =1 2.倒数法,分母极限为零,分子极限为不等于零的常数时使用.【例3】 lim[x-->1]x/(1-x) ∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞ 以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.3.消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.【例4】 lim[x-->1](x^2-2x+1)/(x^3-x) lim[x-->1](x^2-2x+1)/(x^3-x) =lim[x-->1](x-1)^2/[x(x^2-1) =lim[x-->1](x-1)/x =0 【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6) lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6) = lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)] = lim[x-->-2]x(x+1) / (x-3) =-2/5 【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4) lim[x-->1](x^2-6x+8)/(x^2-5x+4) = lim[x-->1](x-2)(x-4)/[(x-1)(x-4)] = lim[x-->1](x-2) /[(x-1) =∞

【例7】lim[h-->0][(x+k)^3-x^3]/h lim[h-->0][(x+h)^3-x^3]/h = lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h = lim[h-->0] [(x+h)^2+x(x+h)+h^2] =2x^2 这实际上是为将来的求导数做准备.4.消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.【例8】lim[x-->0][√1+x^2]-1]/x lim[x-->0][√1+x^2]-1]/x = lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]} = lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]} = lim[x-->0] x / [√1+x^2]+1] =0 【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3)) lim[x-->-8][√(1-x)-3]/(2+x^(1/3)) =lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)] ÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]} =lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]} =lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3] =-2 5.零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.【例10】lim[x-->0]sinax/sinbx lim[x-->0]sinax/sinbx = lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx) =1*1*a/b=a/b 【例11】lim[x-->0]sinax/tanbx lim[x-->0]sinax/tanbx = lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx =a/b 6.无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.【例12】lim[x-->∞]sinx/x ∵x-->∞ ∴1/x是无穷小量 ∵|sinx|∞]sinx/x=0 【例13】lim[x-->∞](x^2-1)/(2x^2-x-1) lim[x-->∞](x^2-1)/(2x^2-x-1) = lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2) =1/2 【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1) lim[n-->∞](1+2+……+n)/(2n^2-n-1) =lim[n-->∞][n( n+1)/2]/(2n^2-n-1) =lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2) =1/4 【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50 lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50 = lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30 = lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30 =(2/5)^20(3/5)^30=2^20*3^30/5^50

推荐第2篇:高数_极限[1]

求函

摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。

关键词:函数极限

引言

在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。

主要内容

一、求函数极限的方法

1、运用极限的定义 例: 用极限定义证明: limx3x2x22x21

证: 由 x23x2x21x24x4x2

x22x2x2

0 取 则当0x2 时,就有

x23x2x21

由函数极限定义有: 2limx3x2x2x21

2、利用极限的四则运算性质

若 limf(x)A limg(x)B

xx0xx0(I)limf(x)g(x) limf(x)xxlimg(x)AB

0xx0xx0(II)limf(x)g(x)limf(x)limg(x)AB

xx0xx0xx0(III)若 B≠0 则:

limlimf(x)xf(x)0Axxg(x)x0limxxg(x)B

0IV)limcf(x)climf(x)cA (c为常数)

xx0xx0上述性质对于x,x,x时也同样成立

2

例:求 limx3x5x422 2x2解: limx3x523255x2x4=

242

3、约去零因式(此法适用于xx0时,00型例: 求32limxx16x20x37x216x12

x2解:原式=limx33x210x(2x26x20)x2x35x26x(2x210x12)

lim(x2)(x23x10)(x2)(x x225x6)=(x2lim3x10)5)(x2)x2(x25x6)=

xlim(x2(x2)(x3)=x5x37

xlim

24、通分法(适用于型) 例: 求 lim(41x24x22x)

解: 原式=lim4(2x)(2x)(2x)

x2=lim(2x)(2x)(2x)

x23

=

=lim12xx214

5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)

设函数f(x)、g(x) 满足: (I)limf(x)0

xx0(II) g(x)M (M为正整数) 则:limg(x)f(x)0

xx0例: 求 limxsin1x

x0 解: 由 lim0 而 sin1x1

x0x故 原式 =limxsin1x0x0

6、利用无穷小量与无穷大量的关系。

(I)若:limf(x) 则 lim1f(x)0

(II) 若: limf(x)0

f(x)≠0 lim1f(x)

例: 求下列极限 ① lim1lim1xx5 ②x1x1

则4

解: 由 lim(x5) 故 limx1x5x0

由 lim(x1)0

x1lim1x1x1=

7、等价无穷小代换法

设,\',,\' 都是同一极限过程中的无穷小量,且有:

\'\' 则 lim~,~,

lim\'\' 存在, = lim\'\' 也存在,且有lim1cosxxsinx222

例:求极限lim 解: sinx22x0

2~x, 1cosx~(x)222

(x) lim221cosxxsinx222x0=

12222xx

注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”

8、利用两个重要的极限。

(A)limsinx1 (B)lim(11x0xx)xex

但我们经常使用的是它们的变形:

(A\')limsin(x)(x)1,((x)0)

(B\')lim(11x))(x)(e,((x))例:求下列函数极限

x(1)、lima1 (2)、limlncosaxx0xlncosbx

x0x1u,则 xln(1u)ax 解:(1)令a1alna 于是xulnln(1u) 又当x0时,u0x故有:lima1lnax0xlimulnau0ln(1u)limlnau0ln(1u)limu01lnauln(1u)u(2)、原式limln[(1(cosax1)]ln[1(cosbx1)]

x0limln[(1(cosax1)]cosbxx0cosax11cosax1 ln[1(cosbx1)]cosbx1limcosbx1x0cosax1

2sin2sinlimx02a2x)2x(bx)222b2xlimxx0(a222sin2sin(b222ba2ax(x)222b

x)

9、利用函数的连续性(适用于求函数在连续点处的极限)。

(i)若f(x)在xx0处连续,则(ii)若f[(x)]是复合函数,又f(u)在ua处连续,则xx0xx0limf(x)f(x0)xx0lim(x)a且xx0

limf((x))f[lim(x)]f(a)例:求下列函数的极限

(1)、limecosx51xln(1x)2xx0

(2)

f(x)ecosx5xln1(x)limx0x

解:由于x0属于初等函数故由函数的连续性定义limecosx51xln(1x)ln(1x)x12x1xln(1x)2的定义域之内。有:f(0)61x0

(2)、由ln(1x)x令x(1x)x故有:limln(1x)x11x0limln(1x)xln(lim(1x)x)lne1x0x0

10、变量替换法(适用于分子、分母的根指数不相同

的极限类型)特别地有:

llimxkn1x1mlnk m、n、k、l 为正整数。

xm1例:求下列函数极限 ① lim11nmxxx1(m、n N) ②lim(2x3)

x1x2x1 解: ①令 t=原式=limt1mnx 则当x1 时 t1,于是

mn1t1tlim(1t)(1ttt(1t)(1ttt22x12)x12m1n1))t12mn

②由于lim(2x3)=lim(1x1x2x1x

令:2x11 则 x111

2ttlim(x2x32x1)x1=lim(1x22x11t)x1=lim(1t)t0111t2

=lim(1t)t0lim(1t)2e1e

t0

11、

利用函数极限的存在性定理

定理: 设在x的某空心邻域内恒有 g(x)≤f(x)≤0h(x) 且有: limxx0g(x)limh(x)A

xx0 则极限 lim

xx0f(x)

存在, 且有

xx0limf(x)A

xanx例: 求 limx (a>1,n>0) 解: 当 x≥1 时,存在唯一的正整数k,使 k ≤x≤k+1 于是当 n>0 时有:

xanx(k1)akakn

kank及

xanxnk11a

又 当x时,k 有 lim(k1)akaknklim(k1)akankk1nka0a0

及 lim nkk1 lim=0 k1a01a0

xlimxanx

12、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。定理:函数极限lim左极限lim xx0xx0f(x)存在且等于A的充分必要条件是

A。即有:

9 f(x)及右极限limf(x)都存在且都等于

xx0

limf(x)Alimx)=A xxxxf(x)=limf(00xx012ex,x0例:设f(x)=xx,0x1 求limf(x)及limf(x) xx0x1x2,x1解:limxf(x)lim(12e)1x0x0limx)limxx

)limx1)1x0f(x0(xx0(由limx)limx)1x0f(x0f(

limf(x)1

x0又limxxf(x)limlim(x1)0x1x1xx1 lim(x)lim21x1fxx1

由f(10)f(10)lim1f(x)不存在x

13、罗比塔法则(适用于未定式极限) 定理:若

(i)limxxf(x)0,limg(x)00xx0(ii)f与g在xu0(x\'0的某空心邻域0)内可导,且g(x)0(iii)limf\'(x)xxg\'(x)A(A可为实数,也可为或),则

0limf(x)limf\'(x)xx0g(x)xxg\'(x)A0此定理是对00型而言,对于函数极限的其它类型,均有类似的法则。

注:运用罗比塔法则求极限应注意以下几点:

1、要注意条件,也就是说,在没有化为0,时不可

0求导。

2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。

3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。

4、当limf(x)g(x)\'\'xa 不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。

例: 求下列函数的极限 ①lime(12x)ln(1x)2x12x0 ②lime(12x)12x12lnxxax(a0,x0)

解:①令f(x)=

f(x)e(12x)\'x, g(x)= ln(1x)

2, g\"\'(x)2x1x2

2f(x)e(12x)\"x32,g(x)2(1x)(1x)\'22

由于但f \"f(0)f(0)0,g(0)g(0)0\"\'

(0)2,g(0)2

从而运用罗比塔法则两次后得到

lime(12x)ln(1x)2x12x0lime(12x)2x1x2x12x0lime(12x)2(1x)(1x)222x32x0221

② 由lim法则有: xlnx,limxxa 故此例属于型,由罗比塔1xlimlnxxalimxaxa1xlim1axax0(a0,x0)

14、利用泰勒公式

对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的展开式:

1、ex1xx22!x3xnn!o(x)

n

2、sinxx3!x2x55!x4(1)n1x2n1(2n1)!no(x2n)

3、cosx12!4!2(1)x2n(2n)!o(x2n1)

4、ln(1x)x

5、(1x)

6、11xx2(1)n1xnno(x)n

n!xo(x)nn1x2(1)2!xnn2(1)(n1)

 1xxxo(x)n

上述展开式中的符号o(x)都有:

nlimo(x)x0xn0

例:求lima2xaxx(a0)

x0解:利用泰勒公式,当x0 有

1x1x2o(x)

于是 lima2xax0x

x=a(12xlima1xa)0x

xa1(2x)o(x)11x=1lim2a2ao(x)0x

x(x)=ax(x)1lim2aoxlim2axox0x1

x02a

15、利用拉格朗日中值定理 定理:若函数f满足如下条件: (I) f 在闭区间上连续 (II)f 在(a ,b)内可导 则在(a ,b)内至少存在一点,使得f\'()f(b)f(a)ba

此式变形可为: f(b)f(a)baf(a(ba)) (01)\'

例: 求 limxeexsinxx0xsinx

解:令f(x)e 对它应用中值定理得

eexsinxf(x)f(sinx)(xsinx)f(sinx(xsinx)) (01)\'\'即: eexsinxxsinx\'f(sinx(xsinx)) (01)

f(x)e\'x连续

\'limf(sinx(xsinx))f(0)1

x0从而有: limeexsinxx0xsinx1

16、求代数函数的极限方法 (1)有理式的情况,即若: R(x)P(x)Q(x)a0xmna1xm1n1ambnb0xb1x (a00,b00)

(I)当x时,有

mnm1n1limP(x)Q(x)xlima0xa1xambnxb0xb1xa0 mnb00 mn mn

(II)当x0 时有:

①若Q(x②若Q(x③若Q(x0)0 则 lim0P(x)Q(x)x0P(x0)Q(x0)

P(x)Q(x))0 而 P(x0)0 则lim0

x0)0,P(x0)0,则分别考虑若x0)P1(x)s为P(x)0的s重根,即:P(x)(xx0 也为Q(x)0的r重根,即: Q(x)(xx0)Q1(x)r 可得结论如下:

0 , srsr(xx0)P1(x)P1(x0)P(x)limlim , sr xx0Q(x)xx0Q1(x)Q1(x0) ,sr例:求下列函数的极限

①lim(2x3)20(3x2)5030x(2x1) ②limx3x2x4x343x1

解: ①分子,分母的最高次方相同,故

lim(2x3)20(3x2)5030x(2x1)3=

220350302330()2

②P(x)x43x2,P(1)0

Q(x)x4x3,Q(1)0

P(x),Q(x)必含有(x-1)之因子,即有1的重根 故有: limx3x2x4x343x1lim(x1)(x2)(x1)(x2x3)222x1limx2x2x32x112

15

(2)无理式的情况。虽然无理式情况不同于有理式,但求极限方法完全类同,这里就不再一一详述.在这里我主要举例说明有理化的方法求极限。

例:求lim解: limxx(xxxxx)

(xxxxx)

limxxxxxxxx1x1x3xxlim

xxxx1limx11211x

二、多种方法的综合运用

上述介绍了求解极限的基本方法,然而,每一道题目并非只有一种方法。因此我们在解题中要注意各种方法的综合运用的技巧,使得计算大为简化。 例:求 lim1cosxxsinx222x0

[解法一]: lim1cosxxsinx222x0

16

lim2xsinx2222x02xxcosx2xsinxsinx2

limsinx2222x0xcosxsinx

limx22x0cosxsinxx22=1

2注:此法采用罗比塔法则配合使用两个重要极限法。

[解法二]: lim1cosxxsinx222x0=lim2sin2x2x02lim22x0xsinxsinxx2221sinxx22sin2x22122x2

2注:此解法利用“三角和差化积法”配合使用两个重要

极限法。

[解法三]: lim1cosxxsinx222x0lim1cosxxx222x0lim2xsinx4x32x02xsinxlim2x04xx212

注:此解法利用了两个重要极限法配合使用无穷小代换

法以及罗比塔法则

[解法四]:

(x)lim1cosxxsinx222x022lim1cosxx42x0x22sinxlimx024xx22sinx12

注:此解法利用了无穷小代换法配合使用两个重要极限的方法。

[解法五]: 1cosxxsinx2222sinlimx02x2limx02lim2lim242222x0x(x)x0xsinxx2(x2)21x412

注:此解法利用“三角和差化积法”配合使用无穷小代换法。

[解法六]: 令ux 2lim1cosxxsinx222x0limcosu1cosuusinuu0lim12sinusinuucosuu0

limu0cosucosuusinu注:此解法利用变量代换法配合使用罗比塔法则。

[解法七]: lim1cosxxsinx222x0limsinx2222x0xcosxsinxlim11x22x012

tgx注:此解法利用了罗比塔法则配合使用两个重要极限。

(作者: 黄文羊)

推荐第3篇:高数极限习题

第二章 导数与微分

典型例题分析

客观题

例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0(

)

f(x0) Aabf(x0)

B(ab)f(x0)

C(ab)f(x0)

D

答案 C

f(x0ax)f(x0bx)limx0x[f(x0ax)f(x0)][f(x0bx)f(x0)]lim x0x

f(x0bx)f(x0)f(x0ax)f(x0)blim

alim

x0x0bxax

(ab)f(x0)

例2(89303)设f(x)在xa的某个邻域内有定义,则f(x)在xa处可导的一个充分条件是(

) 1f(a2h)f(ah) (A)limhfaf(a)存在

(B)lim存在

h0hhh (C)limf(ah)f(ah)2hh0存在

(D)limf(a)f(ah)h存在

h0答案 D

解题思路

(1) 对于答案(A),不妨设

1hx,当h时,x0,则有

1f(ax)f(a)limhfaf(a)lim存在,这只表明f(x)在xa处hx0hx右导数存在,它并不是可导的充分条件,故(A)不对.

(2) 对于答案(B)与(C),因所给极限式子中不含点a处的函数值f(a),因此与导数概念不相符和.例如,若取

1,xaf(x)

0,xa则(B)与(C)两个极限均存在,其值为零,但limf(x)0f(a)1,从而f(x)在

xaxa处不连续,因而不可导,这就说明(B)与(C)成立并不能保证f(a)存在,从而(B)与(C)也不对. (3) 记xh,则x0与h0是等价的,于是 limf(a)f(ah)hh0limf(ah)f(a)hh0limf(ah)f(a)h

h0x所以条件D是f(a)存在的一个充分必要条件.

例3(00103)设f(0)0,则f(x)在点x0可导的充要条件为( ) x0limf(ax)f(a)f(a) (A)lim1h1h2h0f(1cosh)存在 (B)lim1h1hh0f(1e)存在

h (C)limh02f(hsinh)存在 (D)limh0f(2h)f(h)存在

答案 B

解题思路

(1) 当h0时, 1coshhh02limf(1cosh)h2h0lim2f(1cosh)f(0)h21.所以如果f(0)存在,则必有

limf(1cosh)f(0)1coshh0lim1coshh2h0若记u1cosh,当h0时,u0,所以

f(1cosh)f(0)f(u)f(0)limlimf(0) h0h01coshu于是

limf(1cosh)h2h012f(0)

1h2这就是说由f(0)存在能推出limh0f(1cosh)存在.

h0,而不是u0,因此 但是由于当h0时,恒有u1cos1f(x)f(0)f(0)limlim2f(1cosh)存在只能推出存在,而不能推出f(0)h0hx0x存在.

(2) 当h0时, 1eho(h),于是

hlimf(1e)hhh0limf(ho(h))f(0)hh0limf(ho(h))f(0)ho(h)

h0 由于当h0时, ho(h)既能取正值,又能取负值,所以极限limf(ho(h))f(0)ho(h)h0存在与limf(h)f(0)hh0f(0)存在是互相等价的.因而

极限lim1hh0hf(1e)存在与f(0)存在互相等价.(3) 当h0时, 用洛比塔法则可以证明limlimf(hsinh)h2h0,所以 6hf(hsinh)f(0)hsinhlimlimh 3h0h0hsinhhh03hsinh1由于h0,于是由极限limf(hsinh)f(0)hsinhh0limhsinhh3h0h存在未必推出hsinh(4)f(x)在点x0可导一定有(D)存在,但(D)存在不一定f(x)在点x0可导. h0limf(hsinh)f(0)也存在,因而f(0)未必存在. 例 4 (98203) 函数f(x)(xx2)|xx|有( )个不可导点

(A)0 (B)1 (C)2 (D)3

答案 C

解题思路 当函数中出现绝对值号时,不可导的点就有可能出现在函数的零点,因为函数零点是分段函数的分界点.因此需要分别考察函数在点x00,x11,x21考察导数的存在性. 解 将f(x)写成分段函数:

23(x22(xf(x)2(x(x2x2)x(1x),x2)x(x1),x2)x(1x),x2)x(x1),2222x1,1x0,0x1,1x.

(1) 在x00附近,f(x)写成分段函数:

22x(xx2)(x1),x023 f(x)(xx2)|xx|22x(xx2)(1x),x0容易得到

f(x)f(0)22f(0)limlim(xx2)(x1)2

x0x0xf(x)f(0)22f(0)limlim(xx2)(1x)2

x0x0x由于f(0)f(0),所以f(0)不存在.(2) 在x11附近,f(x)写成分段函数:

2x(1x)(xx2)(1x),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1由于f(1)f(1),所以f(1)不存在.(3) 在x21附近,f(x)写成分段函数:

2x(1x)(xx2)(x1),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(1)limf(x)f(1)x1x0x1由于f(1)f(1)0,所以f(1)存在.x1f(1)limx1f(x)f(1)limx1x(x1)(x22x2)0

limx(x1)(xx2)0

综合上述分析,f(x)有两个不可导的点.

例5 (95103) 设f(x)具有一阶连续导数,F(x)f(x)(1|sinx|),则f(0)0是F(x)在x0处可导的(

)

(A)必要但非充分条件

(B)充分但非必要条件

(C)充分且必要条件

(D)既非充分也非必要条件

答案 C

分析 从F(x)在x0的导数定义着手.将F(x)f(x)(1|sinx|)f(x)f(x)|sinx| 解

F(x)F(0)f(x)f(0)f(x)|sinx|f(0)|sin0|limlimF(0)lim

x0x0x0x0x0x0

f(0)f(0)

f(x)f(0)f(x)|sinx|f(0)|sin0|F(x)F(0)limlimF(0)lim

x0x0x0x0x0x0f(0)f(0)

于是推知F(0)F(0)的充分必要条件是f(0)0. 例6 (92103) 设函数f(x)3xx|x|,则使f32(n)(0)存在的最高阶数n().(A)0

(B)1 (C)

2(D)3

答案 C

解题思路 应先去掉f(x)中的绝对值,将f(x)改写为分段函数

2x3 f(x)3xx|x|34x32x0x0x0x0

2x3 解 由f(x)3xx|x|34x32

6x2得f(x)212xx0x0

12x且f(x)24x又f(0)limx012 f(x)x024x0x0x0

f(x)f(0)x0limx02x03x00,f(0)limf(x)f(0)x0x0limx04x03x020

所以f(0)存在.f(0)limf(x)f(0)x0x0limx06x0x012x0 00 f(0)limf(x)f(0)x02limx0x0x0所以f(0)存在.f(0)limf(x)f(0)x0x0limx012x0x012

x0即f(0)f(0).因而使fx0f(0)limf(x)f(0)24

x0(n)(0)存在的最高阶数是2.

x0lim24x0

例7 f(x)cos|x|x2|x|存在的最高阶导数的阶数等于(

)

A

0

B 1

C 2

D 3 答案 C

2 解题思路 注意cos|x|cosx,所以只需考察x|x|在点x0的情况.

例8(96203)设0,f(x)在区间(,)内有定义,若当x(,)时,恒有f(x)x,则x0必是f(x)的(

)

(A)间断点,

(B)连续而不可导的点,,

(C)可导的点,且2f\'(0)0

(D)可导的点,且f\'(0)0

答案

C

解 由题目条件易知f(0)0,因为

|所以由夹逼定理

f(x)f(0)x||f(x)xf(x)x||x2x|

2lim|x0f(x)f(0)x|lim|x0|lim|x0xx|0

于是f(0)0.

1ex,x0,

则f(0)为(

)

例9 (87103)设f(x)x0,x0.

1(A)0

(B)

(C)1

(D)1

2答案

(C)

解题思路

因f(x)为分段函数,故它在分段点处的导数应按导数的定义, 又由于是未定式,可用洛必达法则求极限.

200型解

1e f(0)limx2f(x)f(0)x0ulimx0x0xx00lim1exx2x02x

2当u0时,e 1与u是等价无穷小,所以当x0时,1e与x是等价无穷小.因而

2lim1exx2x021

12,则x0时,f(x)在x0处的微分dy与

例10 (88103) 设f(x)可导且f(x0)x比较是( )的无穷小.

(A)等价 (B)同阶 (C)低阶 (D)高阶

答案 B

解题思路

根据yf(x)在xx0处的微分的定义:dyf(x0)x.

x12 解 limlim,可知dy与x是同阶的无穷小.x0xx0x21xsin,x0

例11 (87304) 函数f(x)在x0处(

) xx00,dy

(A)连续,且可导

(B)连续,不可导

(C)不连续

(D)不仅可导,导数也连续

答案 B

解题思路

一般来说,研究分段函数在分段点处的连续性时,应当分别考察函数的左右极限;在具备连续性的条件下,为了研究分段函数在分界点处可导性,应当按照导数定义,或者分别考察左右导数来判定分段函数在分段点处的导数是否存在.因此,本题应分两步: (1) 讨论连续性; (2) 讨论可导性.

解 (1) 讨论函数在点x0处的连续性

10f(0),可知函数f(x)在点x0处是连续的.

由于limf(x)limxsinx0x0x

(2) 讨论函数在点x0处的可导性

1xsin0f(x)f(0)1xlimlimsin

由于lim不存在,所以,函数f(x)在点

x0x0x0x0xxx0处不可导.

x

例12 设f(x)p必须满足(

) p1sin01x,x0,x0 在点x0可导,但是f(x)导数在点x0不连续,则

A0p1

B1p2

C0p2

D1p

3 答案 B

解题思路

(1) 当p1时,下述极限不存在: x因此f(0)不存在.当p1时, x0limf(x)f(0)xsinlimx0p1xlimxp1sin1

x0xxx所以f(0)0.x0limf(x)f(0)xsinlimx0p1xlimxp1sin10

x0xx这就是说,只有当p1时, f(0)才存在,所以选项A,C可以被排除.

(2) 当p1时

0,x0 f(x)11p1p2sinxcos,x0pxxx当且仅当p20,即p2时,limf(x)0f(0),所以当且仅当1p2时,

x0f(x)在点x0可导,但是f(x)在点x0不连续.例13 (95403)设f(x)可导,且满足条件limf(1)f(1x)2x12x01,则曲线yf(x)在(1,f(1))处的切线斜率为(

) (A)2,

(B)2,

(C),

(D)1

答案 B

解 记ux,则有

f(1)f(1x)1f(1u)f(1)1limlimf(1) x02x2u0u2

例1

4设yln(12x),则y

(A)(10)(

)

9!(12x)10

(B)9!(12x)10

(C)10!2910(12x)

(D)9!21010(12x)

答案 D

解题思路

求高阶导数的一般方法是: 先求出一阶、二阶、三阶导数;找出规律,即可写出高阶导数.2y, 12x21y(2)(1)(2)(1)(2)

22(12x)(12x)y(2)(1)(2)(2)2(12x)3

y(10)9!21010(12x).

2 例17

(90103) 设函数f(x)有任意阶导数,且f(x)f(x),则f(n)(x)(n1),(n2).

n1(A)n!f(x) (B)nf(x) (C)f2n(x) (D)n!f2n(x)

答案 A

解题思路 这是一个求高阶导数的问题,涉及到求抽象函数的导数.

2 解

由f(x)有任意阶导数且f(x)f(x),可知

2f(x)f(x)32f(x)f(x)2f(x)ff(x)2f(x)32f(x)f(x)3!f2(n)n12(x)2f(x), (x)

34依此由归纳法可知 f(x)n!f(x)

注意 (1) 当n1,n2时虽然(B)也正确,但当n2就不正确了,所以将(B)排除之;

222 (2) 在求导数f(x)时,可将函数f(x)看成是由yt与tf(x)复合而成的,(t)f(x)2tf(x)2f(x)f(x).(初学者可能会这样做:f(x)2f(x),后面丢掉一个因子f(x).则根据复合函数的求导法则,故f(x)222

例18 (91303) 若曲线yxaxb和2y1xy在点(1,1)处相切,其中

23a,b是常数,则(

) (A)a0,b

2(B)a1,b3

(C)a3,b

1(D)a1,b1

答案 D

解题思路

两曲线在某点相切就是指两曲线在此公共点处共一条切线,从而两曲线的斜率也应相等.

曲线yxaxb在点(1,1)处的斜率是

2k1(xaxb)2x1(2xa)x132a

另一条曲线是由隐函数2y1xy确定,该曲线在点(1,1)处的斜率可以由隐函数求导数得到: 对于方程2y1xy两边求导得到2y3xyyy,解出y得到此曲线在点(1,1)处的斜率为

k2yx1y1323y3223xy1

x1y12令k1k2,立即得到a1.再将a1,x1,y1代入yxaxb中得出b1.

例19设f(x),g(x)定义在(1,1),且都在x0处连续,若g(x)x0f(x)x,则(

) x02(A)limg(x)0且g\'(0)0,

(B)limg(x)0且g\'(0)1

x0x0(C)limg(x)1且g\'(0)0

(D)limg(x)0且g\'(0)2

x0x0 答案 D

解题思路 分析函数f(x)的表达式,并运用f(x)在x0处连续这一关键条件.

解 既然f(x)在x0处连续,于是必有limf(x)limx0g(x)xx02,于是必有limg(x)0.于是又有g(0)limx0g(x)g(0)xx0limg(x)xx02.

1cosx 例 20 (99103) 设f(x)x2xg(x)x0x0 其中g(x)是有界函数,则f(x)在x0处( ) (A) 极限不存在 (B) 极限存在,但不连续

(C) 连续,但不可导 (D) 可导

答案 D

解题思路

若能首先判定f(x)在x0处可导,则(A)、(B)、(C)均可被排除. 解

x f(0)lim21f(x)f(0)x0x0x2limx01cosx3limx023limx0x2x)

2x220

(x0时1cosx~ f(0)lim2f(x)f(0)x0xx0由于f(x)在x0点的左导数等于右导数,因而 f(x)在x0处可导.x0x0limxg(x)2limxg(x)0(g(x)是有界函数)

 例21 设f(x)sinx,则(f(f(x)))( ) A.cos(sinx)cosx B.sin(sinx)cosx C.cos(cosx)sinx D.sin(cosx)sinx

答案 A

例 22 设f(x)是可导函数,则( ) A.若f(x)为奇函数,则f(x)为偶函数B.若f(x)为单调函数C.若f(x)为奇函数,则f(x)为奇函数D.若f(x)为非负函数 答案 A

解题思路 根据导数定义,利用函数的奇性. 解 由于f(u)f(u),所以

,则f(x)为单调函数

,则f(x)为非负函数

f(x)limlimf(xx)f(x)xf[x(x)]f(x)x0limf(xx)f(x)x

x0x因此f(x)为偶函数. x0f(x) 例23 设yesinsin22x,则dy( ) sin2 B.2eA.esinx C.2e 答案 D

解题思路 运用复合函数微分法

例 24 设f(0)存在,lim(1x0xxsin2xsincosx D.e2xsin2x

1cosf(x)sinx1)xe,则f(0)( ) A.0 B.1 C.答案 C

解 由

2 C.e

lim(1x01cosf(x)sinx1)xe

可以知道当x0时,有

lim(参阅第一章1.5的例2)

x011cosf(x)1 xsinxf2当x0时,sinx与x是等价无穷小,1cosf(x)与

(x)2是等价无穷小.于是

f(x)11cosf(x)1limlim1 2x0xx0sinx2x又因为f(0)存在,所以此式又推出 f(0)limf(x)xx022.

1,x0arctan 例 25 设f(x) 在点x0可导,则( ) xaxb,x0A.a1,b2 B.a1,b0 C.a1,b2 D.a1,b2

答案D

解题思路 先考察函数在点x0左右极限,确定连续性,再考察左右导数.由可微性最终确定a,b. 解

1,所以b.(1) limf(x)lim(axb)b,limf(x)limarctanx0x0x22x0x0于是f(0)2.(2) f(0)a,f(0)limx0f(x)f(0)arctanlimx01xx2

xarctan1xx2: 以下需要用洛比塔法则求极限limx0

arctanlimx01x2lim(arctan1xx2)limx01x2xx0于是由f(0)f(0)推出a1

11

例26.(93303) 若f(x)f(x),且在(0,)内f(x)0,f(x)0,则f(x)在(,0)内必有

(A)f(x)0,f(x)0 (B)f(x)0,f(x)0

(C)f(x)0,f(x)0 (D)f(x)0,f(x)0 答案 C

解体思路 所给函数显然是奇函数,因此f(x)是偶函数,f(x)是奇函数.解 由f(x)0,x(0,) 知f(x)0,x(,0); 由f(x)0,x(0,) 知f(x)0,x(,0).

推荐第4篇:高数极限算法

极限计算方法总结

靳一东

《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。

一、极限定义、运算法则和一些结果

1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的

blim0(a,b为常数且a0);极限严格定义证明,例如:nan|q|1时0,当nlim(3x1)5;limq;等等 nx2不存在,当|q|1时(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需

再用极限严格定义证明。

2.极限运算法则

定理1 已知 limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在,且有(1)lim[f(x)g(x)]AB

(2)limf(x)g(x)AB

f(x)

g(x)AB(3)lim,(此时需B0成立)

说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,

不能用。

3.两个重要极限

(1) limsinx

xx01

11xxlim(1)elim(1x)e(2);xxx0

说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,

作者简介:靳一东,男,(1964—),副教授。 1

例如:limsin3x

3xx01,lim(12x)x02xe,lim(1x)3e;等等。 xx

4.等价无穷小

定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

定理3 当x0时,下列函数都是无穷小(即极限是0),且相互等价,即有:1

x~sin

x~tanx~arcsinx~arctanx~ln(1x)~ex1 。

说明:当上面每个函数中的自变量x换成g(x)时(g(x)0),仍有上面的等价

关系成立,例如:当x0时,

e

3x

1 ~ 3x ;ln(1x2) ~ x

定理4 如果函数f(x),g(x),f1(x),g1(x)都是xx0时的无穷小,且f(x)~f1(x),g(x)~g1(x),则当lim

f1(x)g1(x)f1(x)g1(x)

xx0

存在时,lim

f(x)g(x)

也存在且等于

xx0

f(x)lim

f1(x)g1(x)

xx0

,即lim

f(x)g(x)

xx0

=lim

xx0

5.洛比达法则

定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数f(x)和g(x)满足:

(1)f(x)和g(x)的极限都是0或都是无穷大;

(2)f(x)和g(x)都可导,且g(x)的导数不为0;

(3)lim

f(x)g(x)

存在(或是无穷大);

则极限lim

f(x)g(x)

也一定存在,且等于lim

f(x)g(x)

,即lim

f(x)g(x)

=lim

f(x)g(x)

说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不

满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“

00

”型或“



”型;条件(2)一般都满足,而条件(3)则在求导完毕

后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注

意条件。

6.连续性

定理6 一切连续函数在其定义去间内的点处都连续,即如果x0是函数f(x)的定义去间

内的一点,则有limf(x)f(x0) 。

xx0

7.极限存在准则

定理7(准则1) 单调有界数列必有极限。

定理8(准则2) 已知{xn},{yn},{zn}为三个数列,且满足:

(1) ynxnzn,(n1,2,3,)

(2) limyna,limzna

n

n

则极限limxn

n一定存在,且极限值也是a ,即limxn

na。

二、求极限方法举例

1. 用初等方法变形后,再利用极限运算法则求极限 例1lim

3x12x1

x

13x1)2

2解:原式=lim

(lim

3x3

3x1

(x1)(3x12)

x1

(x1)(3x12)

注:本题也可以用洛比达法则。 例2lim

n(n2

n1)n

n[(n2)(n1)]分子分母同除以

n

解:原式=lim

3n

n2

n1

lim

3n

1

22

n

1n

n例3 lim

(1)3n

n

2n

3

n

上下同除以3

n

(1n

解:原式

lim3

)11n 。 (2n

)12. 利用函数的连续性(定理6)求极限

例4 limx2

ex

x2

解:因为xx2

ex

02是函数f(x)的一个连续点,

所以原式=22

e24e 。 3. 利用两个重要极限求极限 例5 lim

1cosxx0

3x

2sin

x2sin

x

解:原式=limx0

3x

lim

1

x0 。

12(x26

)

注:本题也可以用洛比达法则。

例6 lim(13sinx)x

x0

16sinx

6sinx

解:原式=lim(13sinx)

3sinx

x

lim[(13sinx)3sinx]

x0

x0

例7 lim(

n2n

n

n1

)

3n13n

n1

3n解:原式=lim(1

3

n1

33

]n1

e

3

n

n1

)lim[(1n

n1

)

4. 利用定理2求极限 例8 limx2

sin

1x0

x

解:原式=0 (定理2的结果)。 5. 利用等价无穷小代换(定理4)求极限例9 lim

xln(13x)x0

arctan(

x2

)

解:x0时,ln(13x)~3x,arctan(x2)~x2

 原式=lim

x3xx

3 。

x0

例10 lim

exe

sinx

x0

xsinx

e

sinx

(exsinx

1)

sinx

解:原式=lim

(xsinx)

x0

xsinx

lim

ex0

xsinx

1 。

注:下面的解法是错误的: xsinx

原式=lim

(e1)(e

1)

xsinxx0

xsinx

lim

1x0

xsinx

正如下面例题解法错误一样:lim

tanxsinx

x

lim

xx0x0

x0

x

tan(x2

sin

1例11 lim

x

)

x0

sinx

e

6

解:当x0时,x2sin

1x

是无穷小,tan(xsin

1x

)与xsin

1x

等价,

xsin

所以,原式=lim

x0

xlimxsin10

。(最后一步用到定理2)

x0xx

6. 利用洛比达法则求极限

说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。 例12 lim

1cosx3x

x0

(例4)

解:原式=lim

sinx6x

x0

16

。(最后一步用到了重要极限)

cos

例13 lim

x1

x

x1

sin

1x



。 2

解:原式=lim

x1

例14 lim

xsinxx

x0

解:原式=lim

1cosx3x

x0

=lim

sinx6x

x0

16

。(连续用洛比达法则,最后用重要极限)

例15 lim解:

sinxxcosx

xsinx

x0

原式lim

lim

sinxxcosx

xxxsinx3x

22

x0

lim

cosx(cosxxsinx)

3x

x0

x0

1

3例18 lim[

x0

1x

1ln(1x)

]

1x

1x

解:错误解法:原式=lim[

x0

]0 。

正确解法:

原式lim

ln(1x)xxln(1x)11x2x

1

x0

lim

x0

ln(1x)x

xx

lim

x0

lim

x2x(1x)

x0

12

应该注意,洛比达法则并不是总可以用,如下例。 例19 lim

x2sinx3xcosx

x

解:易见:该极限是“

00

”型,但用洛比达法则后得到:lim

12cosx3sinx

x

,此极限

不存在,而原来极限却是存在的。正确做法如下:

1

原式=lim

x

2sinx

x

(分子、分母同时除以x) cosxx

3

=

13

(利用定理1和定理2)

7. 利用极限存在准则求极限

例20 已知x1

2,xn1

2xn,(n1,2,),求limxn

n

解:易证:数列{xn}单调递增,且有界(0

xn

n

limxna。对已知的递推公式 xn1

n

2xn两边求极限,得:

a所以

2a,解得:a2或a1(不合题意,舍去)

limxn2。 n

1n1nnn

22

n

例21 lim(

1n2



1nn

)

1nn

解: 易见:

n1

1n2



nn1

因为 limn

nnn

1,lim

nn1

n

1

1nn

所以由准则2得:lim(

n

n1

n2



)1 。

上面对求极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。另外,求极限还有其它一些方法,如用定积分求极限等,由于不常用,这里不作介绍。

推荐第5篇:高数极限和连续

第二章 极限和连续 【字体:大 中 小】【打印】

2.1 数列极限

一、概念的引入(割圆术)

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽

正六边形的面积A

1 正十二边形的面积A2

n-1

正6×2形的面积An

A1,A2,A3,„,An,„→„S

二、数列的定义

定义:按自然数1,2,3„编号依次排列的一列数x1,x2,„,xn,„ (1)

称为无穷数列,简称数列。其中的每个数称为数列的项,xn称为通项(一般项)。数列(1)记为{ xn }。

例如

nn

2,4,8,„,2,„;{ 2}

注意:

(1)数列对应着数轴上一个点列,可看作一动点在数轴上依次取

(2)数列是整标函数xn=f(n)

三、数列的极限

1.定义 设{xn}是一数列,如果存在常数a,当n无限增大时,xn无限接近于常数a,则称数列{ xn }收敛,a是数列{ xn }的极限,或者称数列xn收敛于a,记为

如果数列没有极限,就说数列是发散的。

例如

nn

2,4,8,„,2,„;{ 2},发散

,发散

收敛于0

2.数列极限的性质 (1)唯一性

定理 每个收敛的数列只有一个极限。 (2)有界性

定义: 对数列xn, 若存在正数M,使得一切自然数n, 恒有|xn|≤M成立, 则称数列xn有界,否则,称为无界。

例如,数列有界,数列无界

数轴上对应于有界数列的点xn都落在闭区间[-M,M]上。

定理 收敛的数列必定有界。

注意:有界性是数列收敛的必要条件。 推论 无界数列必定发散。 (3)保号性

收敛数列的保号性:假设数列{αn}收敛,其极限为α,

1)若有正整数N,n>N时,αn>0(或<0),则α≥0(或α≤0) 2)若α>0(或<0,则有正整数N,使得当n>N时,αn>0(或<0)

2.2 级数

1.级数的定义:

称为数项无穷级数(或简称数项级数),un为一般项。

2.级数的部分和

3.部分和数列

4.级数的收敛与发散

当n无限增大时,如果级数的部分和数列Sn有极限S, 即则称无穷级数收敛,这时极限S叫做级数的和,并写成。

如果Sn没有极限,则称无穷级数

数项级数收敛

存在

发散。

例1.讨论等比级数(几何级数)

(a≠0)的收敛性。

【答疑编号11020101:针对该题提问】

解:如果q≠1时,

当|q|<1时,

当|q|>1时

如果|q|=1时

当|q|=1时,

,级数发散

收敛 发散

当q=-1时,级数变为α-α+α-α+„

不存在,级数发散

综上

例2.(56页1(3))判断下列级数的敛散性,并在收敛时求出其和:

【答疑编号11020102:针对该题提问】

解:

得级数收敛,其和为。

例3.判断级数的敛散性

【答疑编号11020103:针对该题提问】

例4.判断级数的敛散性,并在收敛时求出其和

【答疑编号11020104:针对该题提问】

例5.判别无穷级数

的收敛性。

【答疑编号11020105:针对该题提问】

∴级数收敛,和为。

2.3 函数极限

两种情形:

(1)x→∞情形:

(2)x→x0情形:

一、自变量趋于无穷大时函数的极限

定义:设M是任意一个正数,函数f(x)在

上有定义,如果存在常数A,当|x|无限增大(即|x|→∞)时,f(x)无限接近于A,则称A为函数f(x)当x→∞时的极限,或简称为f(x)在无穷大处的极限,记为

或f(x)→A,当x→∞时。

定理:

例1.(60页例

5、例6)求下列函数的极限

(1)

【答疑编号11020201:针对该题提问】

(2)

【答疑编号11020202:针对该题提问】

解:对于函数

对于函数f(x)=arctanx,由反正切曲线y=arctanx的图形,易见

所以,极限

例2.

不存在。

【答疑编号11020203:针对该题提问】

例3.

【答疑编号11020204:针对该题提问】

例4.

【答疑编号11020205:针对该题提问】

二、函数在有限点处的极限(自变量趋于有限值时函数的极限)

1.定义:给定函数y=f(x)在(x∈D)上有定义,假设点x0的某一去心邻域,如果存在常数A,使得当x→x0时,函数值f(x)无限接近于A,则称A为函数f(x)当x→x0时的极限,记为

或 f(x)→A,当x→x0时。

2.单侧极限

定义:设 f(x)在x0的一个左邻域中有定义,如果存在常数A,使得当相应的函数值(fx)无限接近于A,则称A为函数f(x)当 时的左极限,记为

定理:

时,或(fx0-0)。

例5.62页2:(5)(6)(7)

求函数在指定点的左右极限,判定该点极限是否存在。

(5) x=2

【答疑编号11020206:针对该题提问】

(6) x=0

【答疑编号11020207:针对该题提问】

(7),x=0

【答疑编号11020208:针对该题提问】

问题:函数y=f(x)在x→x0的过程中,对应函数值f(x)无限趋近于确定值A。

例6.求

【答疑编号11020209:针对该题提问】

注意:函数极限与f(x)在点x0是否有定义无关

三、函数极限的性质 1.唯一性

定理 若limf(x)存在,则极限唯一。 2.有界性

定理 (有极限函数的局部有界性)假设中有界,即有常数M>0,使得在x0的某个去心邻域

3.保号性

推论

存在,则f(x)在x0点的某个邻域

中,有

,且A>0(或A<0)

若时

f(x)≥0(或f(x)≤0),则A≥0(或A≤0)

四、小结

函数极限的统一定义

2.4 极限的运算法则

一、极限运算法则

定理

(1)

(2)

,则

(3)

例7.【答疑编号11020210:针对该题提问】

推论1

如果lim f(x)存在,而c为常数,则

常数因子可以提到极限记号外面。

推论2

如果lim f(x)存在,而n是正整数,则

二、求极限方法举例

例8.求

【答疑编号11020211:针对该题提问】

(直接代入法)

例9.求。

【答疑编号11020212:针对该题提问】

解:x→1时,分子,分母的极限都是零。(型)

(消去零因子法或因式分解法)

例10.求

【答疑编号11020213:针对该题提问】

解:先变形再求极限。

例11.求

【答疑编号11020214:针对该题提问】

三、小结

1.极限的四则运算法则及其推论;2.极限求法

a.多项式与分式函数代入法求极限; b.因式分解法消去零因子求极限; c.通分法

d.利用左右极限求分段函数极限。

2.5 无穷小和无穷大

一、无穷小

1.定义:极限为零的变量称为无穷小。

函数f(x)当x→x0 (或x→∞)时为无穷小,记作

例如,

,∴函数sinx是当x→0时的无穷小。

,∴函数是当x→∞时的无穷小。

,∴数列是当n→∞时的无穷小。

注意:

(1)无穷小是变量,不能与很小的数混淆; (2)零是可以作为无穷小的唯一的数。 2.无穷小与函数极限的关系:

其中α(x)是当x→x0时的无穷小。

定理

3.无穷小的运算性质:

(1)在同一过程中,有限个无穷小的代数和仍是无穷小。 (2)有限个无穷小的乘积也是无穷小。 (3)有界变量与无穷小的乘积是无穷小。

例如,当x→0时,

二、无穷大

1.定义:绝对值无限增大的变量称为无穷大。

函数f(x)当x→x0 (或x→∞)时为无穷大,记作

2.特殊情形:正无穷大,负无穷大。

注意:

(1)无穷大是变量,不能与很大的数混淆; (2)切勿将 认为极限存在。

(3)无穷大是一种特殊的无界变量,但是无界变量未必是无穷大。

例如,

三、无穷小与无穷大的关系

是无界变量不是无穷大。

1.定理 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大。

2.意义:关于无穷大的讨论,都可归结为关于无穷小的讨论。

例1.求。

【答疑编号11020301:针对该题提问】

解:

商的法则不能用

由无穷小与无穷大的关系,得

例2.求。

【答疑编号11020302:针对该题提问】

解:x→∞时,分子,分母的极限都是无穷大。(

先用x3去除分子分母,分出无穷小,再求极限。

型)

(无穷小因子分出法)

例3.求

【答疑编号11020303:针对该题提问】

例4.求

【答疑编号11020304:针对该题提问】

小结:当

,m和n为非负整数时有

无穷小分出法:以分子、分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限。

例5.

【答疑编号11020305:针对该题提问】

例6.求

【答疑编号11020306:针对该题提问】

例7.求

【答疑编号11020307:针对该题提问】

例8(2007年10月)

【答疑编号11020308:针对该题提问】

例9(2007年10月)、下面A、B、C、D四个极限中,哪一个极限存在()

A.

B.C.

D.

【答疑编号11020309:针对该题提问】

答案:D

例10(2007年4月)

( )

A.0

B.1 C.-1

D.不存在

【答疑编号11020310:针对该题提问】 答案:B

例11(2007年7月)

【答疑编号11020311:针对该题提问】

计算

例12(2005年)计算

【答疑编号11020312:针对该题提问】

2.6 两个重要极限

2.6.1 关于

1、计算

【答疑编号11020401:针对该题提问】

解:

2、

【答疑编号11020402:针对该题提问】

解:

3、80页第1题(5)

【答疑编号11020403:针对该题提问】

解:

4、

【答疑编号11020404:针对该题提问】

解:

5、

【答疑编号11020405:针对该题提问】

解:

6、判断四个极限分别属于哪一种类型:

(1)

【答疑编号11020406:针对该题提问】

(2)

【答疑编号11020407:针对该题提问】

(3)

【答疑编号11020408:针对该题提问】

(4)

【答疑编号11020409:针对该题提问】

解:

解:

7、求

【答疑编号11020410:针对该题提问】

2.6.2 关于

1、求

【答疑编号11020501:针对该题提问】

解:

2、

【答疑编号11020502:针对该题提问】

解:

3、

【答疑编号11020503:针对该题提问】

解:

4、

【答疑编号11020504:针对该题提问】

解:

方法一:

方法二:

5、

【答疑编号11020505:针对该题提问】

解:

6、

【答疑编号11020506:针对该题提问】

解:

7、

【答疑编号11020507:针对该题提问】

解:

8、

【答疑编号11020508:针对该题提问】 解: 方法一:

方法二:

9、81页4题(8)

【答疑编号11020509:针对该题提问】

解:

小结:

第一类重要极限:

第二类重要极限:

2.5.4 无穷小的比较

例如,当x→0时,

观察各极限

都是无穷小。

,x比3x要快得多; 2 ,sinx与x大致相同;

不存在,不可比。

极限不同,反映了趋向于零的“快慢”程度不同。

定义:

设α,β是同一过程中的两个无穷小,且α≠0.

(1)如果,就说β是比α高阶的无穷小,记作β=o(α);

(2)如果,就说β与α是同阶的无穷小;

特殊地如果

等价无穷小:

,则称β与α是等价的无穷小;记作α~β;

例:

【答疑编号11020601:针对该题提问】

例:

【答疑编号11020602:针对该题提问】

得:当x→0时,

例:

(1)73页8题:

当x→∝时,a,b,c应满足什么条件可使下式成立?

(1)

(2)

等价无穷小代换

等价代换原理:在同一极限过程中的三个变量u,v,w,如果u,v是无穷小量,且等价,则有

得:当x→0时,

常用等价无穷小:

当x→0时,

牢记常用的等价无穷小:

当x→0时,

例:

【答疑编号11020603:针对该题提问】

例:

【答疑编号11020604:针对该题提问】

【答疑编号11020605:针对该题提问】

错解

当x→0时,

当x→0时,

(1)80页1题(7)

【答疑编号11020606:针对该题提问】

(2)80页1题(9)

【答疑编号11020607:针对该题提问】

(3)80页1题(10)

【答疑编号11020608:针对该题提问】

(4)80页2题:设

【答疑编号11020609:针对该题提问】

,求a,b

例:94页3题(4):

【答疑编号11020610:针对该题提问】

例:94页4题(1):证明当时,sin(2cosx)与是同阶无穷小。

【答疑编号11020611:针对该题提问】

例:81页8题:设

【答疑编号11020612:针对该题提问】

,求k。

小结

1.两个重要极限

2.无穷小的比较: 反映了同一过程中,两无穷小趋于零的速度快慢,但并不是所有的无穷小都可进行比较.高(低)阶无穷小;等价无穷小; 3.等价无穷小的替换:

求极限的又一种方法,注意适用条件.

2.7 函数的连续性和连续函数

一、函数的连续性

1.函数的增量

设函数f(x)在

内有定义,

称为自变量在点

的增量。

2.连续的定义

定义1 设函数f(x)在的函数的增量f(x)在点

定义2 设函数f(x)在也趋向于零,即连续,

称为

内有定义,如果当自变量的增量

的连续点.

趋向于零时,对应,那么就称函数

内有定义,如果函数

时的极限存在,且

推荐第6篇:高数极限求法总结

首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致

1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!!!!

必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)

必须是 0比0 无穷大比无穷大!!!!!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况

1 0比0 无穷比无穷 时候 直接用

2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!!!!!! 看上去复杂处理很简单 !!!!!!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限) 可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化

10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式 (地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 还有个方法 ,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!! 当x趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!!!!

16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!)

(从网上发现,谢谢总结者)

推荐第7篇:高数极限习题及答案

练习题

1.极限

(1)lim1xx3x32x(2)limx5x6x8x15x1x222x3(3)limx1x12x1(4)limx

x10limaxbxx1(5) 已知, 求常数a, b.xsin(6) 2limx0x1xlimxx21sinx

(7)

12x2

(8) limxx012x

(9)

limln(13x)sinx

x0(10) xlimxe1x

12.函数的连续性

(1) 确定b的值, 使函数

2xbyf(x)x1e在x=0点连续.(2) 确定a, b的值, 使函数

x0x0

yf(x)lim在整个实数轴上连续.

x2n1axx2n2bx

n1(3) 讨论下列函数的连续性, 并判断其间断点的类型.① f(x)sixnx x211f(x)x21②

01x0x0

3.连续函数的性质 (1) 设f(x)x(2) 若

nxn1x1, 证明:

f(x)A, f(x)有一个不大于1的正根.f(x)C(,),

且limx证明:

f(x)在(,)内有界.提高 1ºf(x)在(,)内至少有一个最值存在.2º 对于最值与A间的任意值C, 存在1,2, 使得

f(1)f(2)C.2.函数的连续性

(1) 确定b的值, 使函数

2xbyf(x)x1ex0x0 在x=0点连续.解:f(0)limf(x)blimf(x)ex01x0

(2) 确定a, b的值, 使函数

yf(x)lim在整个实数轴上连续.1x1x2axbxx1解:yf(x)1abx121abx12f(1)x2n1axx2n2bx

n1

1ablimf(x)1limf(x)ab x1x121ablimf(x)1lim_f(x)ab x1x12b1f(1)a0,

(3) 讨论下列函数的连续性, 并判断其间断点的类型.① f(x)sixnx

解: x=0为可去间断点.x211f(x)x21②

0x01x0x0

解:limf(x)1limf(x)1, x=0为跳跃间断点.x0

3.连续函数的性质 (1) 设f(x)x解: 若n=1, 则显然有解x=1.若n>1, 则f(0)10,nxn1x1, 证明:

证明: f(x)有一个不大于1的正根.f(1)n10, 由零点定理可知在(0, 1)内至少有一个根..(2) 若f(x)C(,), 且limxf(x)A, f(x)在(,)内有界.解: 由limf(x)A可知: X0, 当xX时, f(x)A1, 故f(x)A1

x由f(x)C(,)可知f(x)C[X1,X1], 故M10,当xX1时, f(x)M1 取Mmax{M1,A1}即可.提高 1ºf(x)在(,)内至少有一个最值存在.2º 对于最值与A间的任意值C, 存在1,2, 使得

f(1)f(2)C.证明: 若f(x)A, 则显然结论成立. 设存在f(x0)A, 则存在X>0, 当

f(x0)A2xX时, 有

f(x)A

于是:

f(x)f(x0)A2f(x0)由f(x)C[X,X], 可知存在[X,X]

f()maxf(x):x[X,X]f().

f(x0)

从而f(x)在(,)内有最大值对于任意的C, xX1时,

ACf(), 存在X1>0, 当

C有

f(x)CA2C于是有

f(X1)1CA2.分别在闭区间[X结论2º.

,],[,X1]上使用介值定理即可得

推荐第8篇:极限连续高数竞赛超好

高数竞赛例题

第一讲 函数、极限、连续

例1. 例2. 例3. 例4. 例5. 例6. 例7. 例8. 例9. lim1nn(1n2nn).lim135(2n1)246(2n)n

limx0x35x,其中[]为取整函数

lim1cosxx2x0

lim(cosnn)n2

lim(xxaxa)2x1e,求常数a.lim(sinx2xcos1x)x

lim[(nnn32n21)en1n]

6limln(13x)(e2x3x01)sinx2 例10. 例11. 例12. lim1tanx1sinx2x0xln(1x)x

limln(12)ln(1xx3x)

limsinxxcosxsinx3x0

例13.已知f(x)在x0的某邻域内有连续导数,且lim(sin2xx0f(x)xx)2,求 f(0),f(0).例14. 例15. 例16. lim(nnn12nn222nnn22)

2nsinsinsinnnnlimn11n1nn2n

xlim[xx1(axb)]0,求常数a,b.2例17.设f(x)nlim

x2n1axbxx2n21为连续函数,求a,b.例18.设f(x)在(,)上连续,且f(f(x))x,证明至少,使得f().....................................................................................................................

极 限

例1. 例2.nlim(n1nn122nn22nnnn2)

limnk1knk122

先两边夹,再用定积分定义 例3. 例4.

例5.设limx0 例6. 例7.

1x2lim(n1)nnn1nsin1n

limee2xsinx2x0x[ln(1xx)ln(1xx)]

ln(1)f(x)tanx5,求limx2x021xf(x).

12(3sinttcos)dt0tlimxx0(1cosx)ln(1t)dtx0

xlimln(2e2xx1)xxsinx1

例8. 例9.limexx0100

xlim(xxxx)

1例10.xxxlima1a2anx,其中,ax0.n1,a2,an均为正数

例11.已知2nf(x)limxe(1x)nxene(1x)nx2n1,求0f(x)dx.

例12.设10ab,求limanbnnn

例13.设f(x)在(,)内可导,且limf(x)ex,xlim的值.xclim[f(x)f(x1)],求cxxcx

例14.设f(x)在x0的某邻域内二阶可导,且f(0)0,x又已知)dtlim0f(tx0xsinx0,求,.

例15.当x1时,lim(1x)(1x2)(1x4)n(1x2)n

例16.当x0时,求limxncosx2cosx4cos2n

例17.lim(11(11n22)(1132)n2)

例18.lim1nnnn(n1)(2n1)

limf(x)x0x0,

连 续

例1.求f(x)lim

例2.设g(x)在x0的某邻域内连续,且lim1g(x2t)dt102x1f(x)2abcosx2xx0x0x01x1x2n的间断点,并判断其类型

ng(x)1xn0a,已知

在x0处连续,求a,b的值.

例3.证方程ln实根. 例4.f(x)在[a,b]上连续,且acdb,证:在(a,b)内至少存在xxe01cos2xdx在区间(0,)内有且仅有两个不同

,使得pf(c)qf(d)(pq)f(),其中p,q为任意正常数.

例5.设f(x)在(a,b)内连续,且x1,x2,,xn(a,b),试证:(a,b),使

例6.试证方程xasin且它不超过ba.例7.设f(x),g(x)在(,)上连续,且g(x)0,利用闭区间上连续函数的性质,证明存在一点[a,b],使abf()1n[f(x1)f(x2)f(xn)].

xb,其中a0,b0,至少存在一个正根,并

f(x)g(x)dxf()g(x)dx

ab

推荐第9篇:高数导数和极限的关系

导函数简称导数,极限是导数前提.首先导数产求曲线切线问题产利用导数求曲线任意点切线斜率 其利用导数解决某些定式极限(指0/0、穷/穷等等类型式)种叫作洛比达则 我利用导数函数近似转化另项式函数即函数转化a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n种项式叫作泰勒项式用于近似计算、误差估计用于求函数极限 另外利用函数导数、二阶导数求函数形态例函数单调性、凸性、极值、拐点等 利用导数解决某些物理问题例瞬速度v(t)路程关于间函数导数加加速度速度关于间导数且经济导数着特殊意义简言:导数研究函数变化率极限研究导数

导数定义:自变量增量趋于零变量增量与自变量增量商极限函数存导数称函数导或者微导函数定连续连续函数定导导数种极限

推荐第10篇:高数复习方案(函数和极限)

计算机科学与技术09级学生工作委员会—学习部

函数与极限

1.集合:具有某种特性定性质的事物的总体成为集合

组成集合的事物叫做元素设元素为a集合为M那么aM

交集,子集,属于,不属于 包含于,并集,

空集

2.设X,y是两个变量,D是数集,按照一定的对应关系,总有唯一的y和x相对应,则说

y是x的函数,记做y=f(x),y是因变量,x是自变量。(简单一点说:x在一个对应法则的机器搅和搅和就出来一个y)

F(D)为值域xD是定义域

函数的三要素:定义域 值域 对应法则

注意: 强烈建议只要写函数就写定义域

eg:求下列函数的自然定义域

(1)yarcsin(2)ytan

(3)y(x3)(x+1)

3.函数的特性

(1) 单调性:增函数和 减函数

如果对于arctan1 xI 上任意两点x1及x2 ,当

x1x2时,恒有f(x1)f(x2)成立,则称在I上f(x)是增函数,反之则是减函数注意:增减性在解间断点时候有重要性 (下文解释)

eg:设f(x)为定义在(-a,a)内的奇函数,若f(x)在(o,a)上单点增加,证明f(x)在(-a,0)上也单点增加

(2)有界性: xD, M0,f( x)M,则称f(x)为有界函数

f(x)M, xD, M0,则函数在D上面有界

注意:上界大于等上界下界小于等于最小值千万不要搞错了

(3) 奇偶性:奇函数特性

注意:奇偶性的定义与一定是对称的不对称就没有这个性质而言

(4) 周期性:正弦余弦就是明显的特点f(x+T)=f(x)

注意:如果一个函数关于两个直线对称,那么两个直线之间的距离是函

数周期大小的一半。

4.反函数和复合函数:反函数的定义域和值域和原函数相反但是奇和

偶函数的反函数奇偶性质不变 。 复合函数的定于与要明确,增减为减增增 减减为增

5.数列的极限:如果给定的数列{},当变量n趋近于无穷大时,数列

趋近于一个常数a,则称a是数列的极限当然如果a不存在,说明这个函数是发散的注意:课本P34 例题5 有证明函数极限,这个很重要

Eg

:证明:当x00时,limxx06.极限的性质:(1)唯一性,如果这个a存在,那么一定是唯一的假设不存在,那么不就和定义说函数是发散的吗

(2)有界性:若limf(x)a存在,则函数f(x)有界x

(3)保号性:若limxna(a0或a0),则N,当nN时,xn(00),n

反之,若xn(00),则limxn(00)n

7.

n数列的存在准则:(1)夹逼准则(2)单调有界函数必有界 eg:证明limn(

8.

(1) (2) 111.......)=1n2n22n2n我主要讲讲极限的一些重要求的方法: 1xsinx)eli(有兴趣可以证明)1 xx0xx7个重要的等价无穷小且都x0 (1两个重要极限lim

(1x1(1)1

n1x(2)tanxx(3)arctanxx n

1-cosx(4)arcsinxx(5)

(3)

(4) 12(1x)x x(6)ex1x(7)ln2两个准则:夹逼 还有单调有界

(5)

(6)

(7)

(8)

(9) 有限个无穷小的乘积也是无穷小有限个无穷小量的代数和仍是无穷小 有界函数与无穷小的乘积也是无穷小常数与无穷小的乘积仍是无穷小利用极限的四则运算和指数预算 利用泰勒公式 洛比达法则 利用导数极限求极限 函数的性质求因为数列是特殊的函数

注意:这里就有一些小方法了,有换元等价代换拆项求和三角的和差化积 数列求和的公式…

(10) 间断点和连续性

间断点:除去不成立的点,一般都是间断点

连续性:区间上每一点都连续的函数,就是在该区间连续,一定是不间断的

注意:可导的函数一定连续连续的函数不一定可导

闭区间上连续函数一定有界

第一类间断点:可去和跳跃间断点

eg:yx(x1) 且x=1 y=0.5可去间断点

第二类间断点:无穷间断点和震荡间断点

y=tanxx=1为无穷间断点y=sinx=0为振荡间断点 2x

(11) 渐近线:当变量无穷大时利用函数求极限一般都有a值 (水平渐近线)

还有一些点怎么看这些点呢,一般都是间断点的地方有渐近(铅直渐近线)0这点很重要

还有一个斜渐近线说明图像到达一个点变化的斜率很小这样的话 一般是图像上面有部分是直线

eg求e的渐近线

xo1xcos)x课后练习求下列极限(1

)limx(2)lim(sinx2x1x

3x)(3)lim(1x02sin(x)

(4

)x0(5

) x03x4x1

)x(6)lim(x02

第11篇:高数课件函数极限和连续

一、函数极限和连续自测题

1,是非题

(1)无界变量不一定是无穷大量

) (2)若limf(x)a,则f(x)在x0处必有定义

xx012x(3)极限lim2sinxlimx0

xx33x2,选择题

(1)当x0时,无穷小量1x1x是x的

) A.等价无穷小

B.同阶但不等价

C.高阶无穷小

D.低价无穷小

x11x0(2)设函数f(x),则x0是f(x)的

(

) x0x0A.可去间断点 B.无穷间断点

C 连续点

D 跳跃间断点

exx0(3)设函数f(x),要使f(x)在x0处连续,则a

(

) axx0A.2

B 1

C 0

D 1

3n25n1

) (4)lim2n6n3n2A 151

B 

C 

D  2321xsinx0x(5)设f(x),则在x0处f(x)

1sinx1x0xA 有定义

B 有极限

C 连续

D左连续

3(6)x1是函数yx1的

) x1A 可去间断点

B 无穷间断点

C 连续

D跳跃间断点

3.求下列极限

(1)limxxsinxsin(2x)x23

(2)lim

(3)lim

x0x12xln(12x)x1e2x1(4)lim

(5)limn[ln(1n)lnn]

(6)lim(sinn1sinn)

nnx0x2x3x2(sinx3)tanx2lim() (7) lim

(8)

(9)limx(x1x)x2x1x01cosx2xcosxcosaarctanxexex0(10)lim

(11) lim

(12)lim

xaxxx0xxxax0x232x21sin(x1))(13)lim

(14)lim(2

xx1x1x24,求满足下列条件的a,b的值

1x2xab

(2)lim(3xax2x1) (1)limxx26x2tanaxx0axb2

(4)已知f(x)x(3)lim且limf(x)存在

x0x1x2x2x0x122(5)已知f(x)xaxb1x1在(,)内连续

2x1sin2xe2ax1x0(6)函数f(x)在x0点连续 xax05.求下列函数的间断点并判断其类型

x1x11cosxx21(1)y2

(2)y

(3)f(x)

sinxx3x23xx11x0x(4)f(x)ex1

(5)y

tanxln(1x)1x026.已知x1时,xax5x1是同阶无穷小,求a

7.证明方程x4x20在区间(1,2)内至少有一个根 8.当x0时,eln(1x)1与x是同阶无穷小,求n 9.设函数f(x)a,(a0,a1),求limxxn41ln[f(1)f(2)f(n)]

nn2

第12篇:高数_第1章_极限计算方法总结

极限计算方法总结

一、极限定义、运算法则和一些结果 1.定义:

数列极限、函数极限,课本42页的表格必须认真填写并掌握。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:lim10;lim(3x1)5;limqn0,当q1等。 2x2n(n1)n定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则

定理1 已知 limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在, 且(1)lim[f(x)g(x)]AB(2)limf(x)g(x)AB

(3)limf(x)A,(此时需B0成立)

说明:极限号下面的极限过程是一致的;同g(x)B时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限

sinx(11)xe

1 (2) lim(1x)xe ; lim(1) limxxx0x0x说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。

(2)一定注意两个重要极限成立的条件。

例如:lim1sin3x1,lim(12x)x0x03x12xe,lim(13)e;等等。

xxx34.等价无穷小

定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当x0时,下列函数都是无穷小(即极限是0),且相互等价,即有:

x~sinx~tanx~arcsinx~arctanx~ln(1x)~ex1 。

说明:当上面每个函数中的自变量x换成g(x)时(g(x)0),仍有上面的等价 关系成立,例如:当x0时,

定理4 如果函数

e3x1 ~ 3x ;ln(1x2) ~ x2。

f(x),g(x),f1(x),g1(x)都是xx0时的无穷小,且f(x)~f1(x),

f1(x)f1(x)f(x)g(x)~g1(x),则当lim存在时,lim也存在且等于lim。

xx0g(x)xx0g(x)xx0g(x)115.连续性

定理5 一切连续函数在其定义去间内的点处都连续,即如果x0是函数f(x)的定义去间内

的一点,则有limxxf(x)f(x0) 。求极限的一个方法。

06.极限存在准则

定理6(准则1) 单调有界数列必有极限。

定理7(准则2) 已知{xn},{yn},{zn}为三个数列,且满足:

(1) ynxnzn,(n1,2,3,)(2) limyna,limznnan

则极限limxn一定存在,且极限值也是a ,即limxannn。

二、求极限方法举例

1. 用初等方法变形后,再利用极限运算法则求极限

例1 lim3x12x1x1

解:原式=lim(3x1)222x1(x1)(3x12)lim3x3x1(x1)(3x12)34 。 注:本题也可以用洛比达法则。 例2 limnn(n2n1)

n解:原式=limn[(n2)(n1)]分子分母同除以nn2n1lim3n312112nn例3 lim(1)n3nn2n3n

上下同除以3n(1)n1解:原式lim3n1 (2。 3)n12. 利用函数的连续性(定理6)求极限 1例4 limx2exx2

1解:因为x是函数f(x)x2ex02的一个连续点,

1 所以

原式=22e24e 。

3. 利用两个重要极限求极限 例5 lim1cosxx03x2

xx2sin22lim21lim解:原式=x0x0x26 。 3x212()22sin2注:本题也可以用洛比达法则(第三章) 例6

2xlim(13sinx)

x016sinx3sinxx13sinx6sinxx解:原式=lim(13sinx)x0lim[(13sinx)x0]e6 。

例7 lim(nn2n) n1解:原式=lim(1n3)n1n13n3n1lim[(1n3)n1n13]3nn1e3 。

4. 利用定理2求极限

2例8 limxsinx01 x解:原式=0 (定理2的结果)。

5. 利用等价无穷小代换(定理4)求极限

例9 limx0xln(13x)2

arctan(x)22x0

解:x0时,ln(13x)~3x,arctan(x)~x, 原式=limx3x3 。 2xexesinx例10 lim

x0xsinxesinx(exsinx1)esinx(xsinx)lim1 。 解:原式=limx0x0xsinxxsinx注:下面的解法是错误的:

(ex1)(esinx1)xsinxlim1 。

原式=limx0x0xsinxxsinx

正如下面例题解法错误一样:

tanxsinxxxlimlim0 。

33x0x0xx 3

例11

1tan(x2sin)x limx0sinx2xsin解:当x0时,111是无穷小,tan(x2sin)与x2sin等价, xxxx2sin

所以,

原式=limx01xlimxsin10 。

(最后一步用到定理2)

x0xx5. 利用极限存在准则求极限

例20 已知x1xn 2,xn12xn,(n1,2,),求limnn解:易证:数列{xn}单调递增,且有界(0

xn存在,limxna。对已知的递推公式 xn12xnn两边求极限,得:

a2a,解得:a2或a1(不合题意,舍去)

所以 limxn2。

n例21 lim(n1n1n21n21211nn2)

1nn2解: 易见:nn2n12n22nn12

因为 limnnnn21,limnnn11221

1nn2所以由准则2得:lim(n1n12n2)1 。

上面对求第一章极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。另外,求极限还有其它一些方法,如用洛必达、定积分求极限等,后面再作介绍。

第13篇:高数证明1+1=2

1+1为什么等于2?这个问题看似简单却又奇妙无比。 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。什么叫公理法呢?从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。 1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。 至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2。 1+1=2看似简单,却对于人类认识世界有非同寻常的意义。 人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识。第二步,小孩把手里的雪捏紧,成为一个小雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念。于是就有了1。第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识。雪可以粘雪,相当于1+1=2。第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了。相当于2+1=3。1,2,3可以排成一个最简单的数列,但是可以演绎至无穷。 有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化。 物理学与1+1=2的关系 人类认识世界的过程是一个由感性到理性,有已知到未知的过程。 在数学当中已知

1、

2、3,则可以至于无穷,什么是物理学当中的

1、

2、3呢?我认为:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用。在经典物理学中一切都是确定无疑的,有了已知条件,我们就可以推出未知。 等到相对论的出现,一切都变了。现在相对论已经深入人心,即便是那些反对相对论的人,也基本上是认可相对论的结论的,什么时间可变、长度可变、质量可变、时空弯曲„„经典物理学认为光速对于不同的观测者是不同的(虽然牛顿是个唯心主义者)。相对论则认为光速对于不同的观测者是不变的(虽然我们是唯物主义者)。我们丢掉了经典物理学所有不变的东西,换来的是相对论唯一不变的东西----光速。我觉得就象是用许多西瓜换来了一个芝麻一样,而且这个芝麻是很抽象的,它在真空中,速度最快,让你根本捉不到、摸不到。 我认为牛顿三条运动定律是真理,是完美的,是不容置疑的。质疑牛顿运动定律的人开口闭口说不存在绝对静止的物体,也不存在绝对不受外力的物体,却忘了上学时用的物理教材,开头都有绪论,绪论中都说:一切物质都在永恒不息地运动着,自然界一切现象就是物质运动的表现。运动是物质的存在形式、物质的固有属性„„还提到:抽象方法是根据问题的内容和性质,抓住主要因素,撇开次要的、局部的和偶然的因素,建立一个与实际情况差距不大的理想模型来研究。例如,“质点”和“刚体”都是物体的理想模型。把物体看作质点时,质量和点是主要因素,物体的形状和大小时可以忽略不计的次要因素。把物体看作刚体——形状和大小保持不变的物体时,物体的形状、大小和质量分布时主要因素,物体的变形是可以忽略不计的次要因素。在物理学研究中,这种理想模型是十分必要的。研究机械

运动的规律时,就是从质点运动的规律入手,再研究刚体运动的规律而逐步深入的。有人在故意混淆视听,有人在人云亦云,但听的人自己要想一想,牛顿用抽象的方法来分析问题,是符合马克思主义分析问题抓主要矛盾的指导思想的,否定了牛顿运动定律,我们拿什么来分析相对静止状态、匀速直线运动、自由落体运动„„? 看来相对论不但搞乱了我们的基本概念,还搞乱了我们的分析方法,这才是最危险的,长此以往,物理学将不再是物理学,而是一锅粥,一锅发霉的粥! 我认为物理学发展的正确思路是先要从质量、长度、时间、能量、速度等基本物理概念的理解上着手,在物理学界开展一场正名运动,然后讨论牛顿运动定律是否错了,错的话错在哪里,最后相对论的对错也就不言自明了,也容易接受了。

第14篇:高数:总结求极限的常用方法

总结求极限的常用方法,详细列举,至少4种

极限定义法 泰勒展开法。 洛必达法则。

等价无穷小和等价无穷大。

极限的求法 1.直接代入法

适用于分子、分母的极限不同时为零或不同时为

例 1.求

1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的,

是一般极限的一种)

2解决极限的方法如下

1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。

(x趋近无穷的时候还原成无穷小)

2落笔他 法则

首先他的使用有严格的使用前提!!!!!!

必须是 X趋近而不是N趋近!!!!! 必须是 函数的导数要存在!!!!!!!! 必须是 0比0 无穷大比无穷大!!!!!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况

1 0比0 无穷比无穷 时候 直接用

2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了

3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)

E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!!!!!!

看上去复杂处理很简单 !!!!!!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化

10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 还有个方法 ,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!!!!

16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式。)

第15篇:河南专升本高数极限常用方法汇总

耶鲁专升本 www.daodoc.com 河南专升本高数极限常用方法汇总

极限是河南专升本高数的常考题型,因此在复习这个知识点的时候一定把这个知识点概念和相关的解题方法都能掌握住。下面耶鲁小编把求解极限最常用的几种方法整理汇总分项给大家,希望大家认真的学一下,做好记录。

(1)利用四则运算法则求极限;

(2)利用两个重要极限求极限;

(3)利用等价无穷小替换求极限;

(4)分解因式,约去使分母极限为零的公因式;

(5)乘以共轭根式,约去使分母极限为零的公因式;

(6)通分法(适用于00-00 型);(00表无穷)

(7)利用分子,分母同除以自变量的最高次幂,求00/00 形式的极限;

(8)利用函数的连续性求极限;

(9)利用无穷小量的性质求极限;

(10)利用两边夹逼法则求极限;

(11)利用洛必达法则求极限

求极限是专升本考试中的热点,不管是填空选择,还是解答题。然而考试中多以考查综合方法为主。做好这些题目的前提就是掌握最基本的方法及其适用的题目类型。希望以上耶鲁小编整理的方法能帮助大家都能顺利的解决极限难题!

第16篇:高数竞赛练习题答案(函数、极限、连续)

函数、极限、连续

1.f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(1)(a,b),使f()g()

(2)(a,b),使f()g() 证明:设f(x),g(x)分别在xc,xd处取得最大值M,不妨设cd(此时acdb),作辅助函数F(x)f(x)g(x),往证(a,b),使F()0

令F(x)f(x)g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)F(b)0,

① 当cd,由于 F(c)f(c)g(c)Mg(c)0F(d)f(d)g(d)f(d)M0由“闭.连.”零点定理, [c,d](a,b),使f()g() ② 当cd,由于F(c)f(c)g(c)f(c)g(d)MM0即(a,b),使f()g()

对F(x)分别在[a,],[,b]上用罗尔定理,1(a,),2(,b),使

在[1,2]上对F(x)在用罗尔定理,F(1)F(2)0,(1,2)(a,b),

使F()0,(a,b),使f()g().2.设数列{xn}满足0x1,xn1sinxn,n1,2,

xn存在,并求该极限(1) 证明limn

xn1x1n(2) 计算lim() nxn

分析:(1) 确定{xn}为单调减少有下界即可

1xn,用洛必达法则.(2) 利用(1)确定的limn

解:易得0xn1(n2,3,),所以xn1sinxnxn,n(2,3,),即{xn}为

xn存在,并记为limxna,则a[0,1],单调减少有下界的数列,所以 lim nn

对等式xn1sinxnxn,两边令n取极限,得asina,a[0,1],所以

a0,即limxn0.

n

lim((2) n



xn1sinxn

)lim()

nxnxn

2xn

2xn

令txn

lim(

t0

sint

)et0t

tlim

ln()t

t

2由于

lim

t0

t

ln(sin)ttsint

ln[1(sin1)]1-1t2sintt洛cost11tt2

limlimlimlimlim t0t0t0t0t03t2t2t2t33t26

xn1xn1

所以lim()e.nxn

3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)0,f(1)1,证明: (1) (0,1),使f()1,

(2) 存在两个不同点,(0,1),使f()f()1

证:(1) 令F(x)f(x)x1,则F(x)在[0,1]上连续,且

F(0)10,F(1)10,由“闭.连.”零点定理,

(0,1),使F()0,即f()1

(2) f(x)在[0,],[,1]上都满足拉格朗日中值定理,所以

(0,),(,1),使

f()f(0)f()(0),f(1)f()f()(1),即

f()f()

f()

1

1f()1(1)

111

f()f()

1

1

1

4.设方程xnnx10,其中n为正整数,证明此方程存在唯一的正

实根xn,并证明当1时,级数xn收敛.

n1

证:令f(x)xnnx1,则f(x)在(0,)上连续,且

11

f(0)10,f()()n0

nn

所以由连续函数的零点定理,所给方程在(0,)内有根,

又由f(x)n(xn11)0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,)上无根,即所给方程存在唯一的正实根xn.

由上述知,对n1,2,,有0xn,有0xn

1n

1n1n

1n

1n1

, n

此外,由1知,级数

收敛,所以由正项级数比较审敛法,知

n1n

x收敛.

nn1

5.求lim(cosx)

x0

1ln(1x)

x0ln(1x)

解:lim(cosx)

x0

1ln(1x)

=e

lim

lncosx

,其中limln(1x

x0

lncosx

)

lim

x0

ln[1(cosx1)]ln(1x)

lim

x0

x22x



(cosx)所以,limx0

ln(1x)

e

12

6.f(x)在x0的某邻域内具有一阶连续导数,且f(0)0,f(0)0,若

af(h)bf(2h)f(0)在h0时是比h高阶的无穷小,试确定a,b的值.

解1:(利用导数定义)

0lim

af(h)bf(2h)f(0)af(h)af(0)af(0)bf(2h)bf(0)bf(0)f(0)

lim

h0h0hhaf(h)af(0)bf(2h)bf(0)[(ab)1]f(0)[(ab)1]f(0)limlimlim(ab)f(0)limh0h0h0h0hhhh

ab1

由f(0)0,f(0)0,得,即a2,b1

a2b0

解2:按解1,只要假定f(x)在x0处可导即可,但在题中“f(x)在x0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim

h0

h0

af(h)bf(2h)f(0)

0得 limaf(h)bf(2h)f(0)=0

h0h

即0limaf(h)bf(2h)f(0)(ab1)f(0), 由f(0)0,得ab1(1)

af(h)bf(2h)f(0)洛

limaf(h)2bf(2h)(a2b)f(0)且f(0)0,又由0lim

h0h0h

所以 a2b0(2)

由(1)、(2)得a2,b1.

2esinx

.7.求lim4x0x1e

解:

2eesinx2esinx

1 limlim44x0x0xx1ee12esinx2esinx

1 limlim44x0xx01ex1e

所以 原式 = 1

8.求lim

x0

143

xx2

.2

x

解1:(泰勒公式)因

xx2[1

1111

xx2o(x2)][1xx2o(x2)]22828(x0)

11

x2o(x2)~x2

44

所以

1x2

xx21limlimx0x0x2x24

解2:(洛必达法则)

11

xx2洛必达limlimx0x0x22x1xx1

limlim x0xx4x0x

12x1lim.4x0x(xx)4

第17篇:高数中求极限的十六种方法

高数中求极限的十六种方法 假如高等数学是棵树木的话,那么极限就是它的根,函数就是他的皮。树没有根,活不下去,没有皮,只能枯萎。由此可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。 极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致。解决极限的方法如下:

1、等价无穷小的转化

e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等,全部熟记(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)(x趋近无穷的时候还原成无穷小)

2、LHopital 法则(大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提。 必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 。还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷。必须是函数的导数要存在!假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死! 必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0 。 LHopital 法则分为3中情况: ①0比0

无穷比无穷 时候直接用

② 0乘以无穷

无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后,这样就能变成1中的形式了

③ 0的0次方

1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

第18篇:高数极限与函数等价代换公式

高数极限与函数等价代换公式(考试必备) 当x0时,有下列公式成立: sinx~xarcsinx~x tanx~xarctanx~x

1cosx~12x~secx1 2ax1~xlnaex1~x

a(1Bx)1~aBx

loga(1x)~ x lna

第19篇:高数中求极限的16种方法

高数中求极限的16种方法——好东西

假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致

1 极限分为一般极限还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)

1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)

e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小)

2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)

首先他的使用有严格的使用前提!!!!!!

必须是X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,

直接用无疑于找死!!必须是 0比0 ,无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 LHopital法则分为3中情况 1, 0比0 ,无穷比无穷时候直接用

2,0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3, 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程

方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近0 ) 3, 泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!)E的x展开sina 展开 cos 展开ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则最大项除分子分母!!!!!!!!!!! 看上去复杂处理很简单!!!!!!!!!!

5,无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7,等比等差数列公式应用(对付数列极限)

(q绝对值符号要小于1) 8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数 9求左右求极限的方式(对付数列极限)

例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化 10, 2 个重要极限的应用。

11 ,还有个方法,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)!!!!!! 当x趋近无穷的时候他们的比值的极限一眼就能看出来了

12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13,假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的 14,还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑转化为定积分。一般是从0到1的形式.15单调有界的性质对付递推数列时候使用证明单调性!!!!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你 F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!)

第20篇:高数复习笔记之极限与函数

1,隐含的分段函数与建立函数关系

2,如何判断微积分的有界性

3,极限定义做了解,性质:唯一性、保号性、四则运算,若一个极限存在另一个不存在则相加减的极限必不存在、乘除的极限可能存在也可能不存在;若两个极限都不存在那么加减乘除的极限可能存在也可能不存在。举反例:(参考书籍:数学分析中的反例);相除时,分母为0分子不为0则极限为无穷大,若分子分母全为0,极限怎么算?

4,极限的复合运算:若此函数连续则函数符号跟极限符号可以调换位置。

极限存在准则:单调有界数列必有极限;夹逼定理

两类重要极限:书上找

5:无穷大量与无穷小量(即把任何函数的极限为A的问题转化为极限为零的问题)

无穷小量的比较(视频001 2第16分钟):高阶l=0(两个趋近于0的速度前者比后者快)、同阶l不=0(两者趋近于0的速度一样快)、等价l=1(五个等价无穷小的特例:把指数、三角、对数函数转化为求解简单的幂函数)

无穷大量:即极限不存在的情况无界变量:在一个绝对值范围内要多大有多大的值 注意:无穷大量一定是无界变量,但无界变量不一定是无穷大量(视频25分讲述) 6,四类未定式(洛必塔法则解决)

高数极限证明
《高数极限证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档