人人范文网 范文大全

考研高数 多元函数(版)

发布时间:2020-03-02 17:51:44 来源:范文大全 收藏本文 下载本文 手机版

一维到高维空间也是质变

多元微分学主要研究多元初等函数。基本工具还是极限。比如,多元函数在定义域上一点M连续的定义为

—— 若在函数f(M)的定义域D内,总有M → M0 时,

l i m f(M)= f(M0),就称函数f(M)在点M0连续。

体会一维到高微空间是质变,自然就得从体验极限开始。(多元函数以二元函数为例。)

在数轴上,动点x趋于定点x0时,只有左,右两个连续的变动方向,因而一元函数有简明的极限存在性判断定理 ——

“x → x0时,极限 l i m f(x)存在的充分必要条件是左、右极限存在且相等。”

(潜台词:学好一元微分学的起点,就是学会分左右讨论极限及相关问题。管它什么左连续,右连续,左导数,导数的左极限,右导数,导数的右极限,„„,概念全都清清楚楚,计算通通滚瓜烂熟。) 简单地说,一元函数在每一个极限过程中仅有两个“道路极限”。

在日常生活中,我们感觉大地是一张平面,人们在行动时谈“方位”十分自然。倒是直线显得较为特殊。

二元函数的(有序)自变量组(x,y)与平面成一一对应。讨论二元函数,任意选定中心点M0,动点M可以在它的四周任意一个方位处。我们只能用向量方式(Δx,Δy)来表式相应自变量增量。相对偏离为微距离Δ r =√((Δx)平方+(Δy)平方)。进而自然地称函数z = f(M)相应的增量Δz为全增量。“全”,就是强调增量可以在任意方位出现。

当动点M → M0时, M可以有无穷多个连续变动方式趋向M0,既可以沿直线道路,也可以沿曲线路径逼近M0 ,这就大大提高了讨论极限的难度。

与一元函数对比,由两个“道路极限”到无穷多个(还是不可列无穷多)“道路极限”,量变引起质变。

鉴于这个困难,《高等数学》不开展关于多元函数极限的讨论。学习多元微分学,首先要学会利用海涅定理,选择两个道路极限不相等,来判断某些极限不存在。体验多元函数求极限的困难。 例1试证明,(x,y)→( 0,0)时,极限lim(y ∕ (x+y)) 不存在

分析分别取直线道路 y = x ,y = 2 x ,就得到不相等的“道路极限”1/2与1/3,因而所求极限不存在。

实际上,只要 k ≠ −1,沿直线道路 y = k x ,(x,y)→( 0,0)时,显然,所算得的道路极限值随k变而变,你可以由此而窥见问题之复杂。

例2试证明极限(x,y)→( 0,0)时,极限lim(xy ∕ (x+y))不存在

分析先取道路y = k x ,k ≠ −1,令(x,y)→( 0,0)实施观察,所有的道路极限都为0,但是你还不能就此以为所求极限为0,因为(x,y)还可以沿弯曲的道路趋于0

选取弯曲的路径,抛物线 y = −x +(x平方),道路极限为 −1 ,故所求极限不存在。

实际上,选抛物线道路 y = −x + a(x平方),常数 a ≠ 0,则将得到随a值不同而互不相等的无穷多个道路极限。

(画外音:你是否感觉到大开眼界。)

进一步的讨论中,“方位”成为前提。我们从中心点M0(x0,y0)出发,选定一个方向,就可以计算函数沿这个方向的平均变化率 Δz /Δ r ,令 Δ r → 0 求极限,得到沿这个方向的 “瞬时变化率”。 这个瞬时变化率称为方向导数。

(画外音:你见过用竹杆探路行进的盲人吗?)

令人难忘的自然是直角坐标系的两个坐标方向。在中心点M0(x0,y0)处,一元函数 z = f(x ,y0)的导数称为二元函数 z = f(x ,y)在点M0关于x的偏导数。它就是函数沿x轴正向的方向导数。 同理有二元函数 z = f(x ,y)在点M0关于y的偏导数。它就是函数沿y轴正向的方向导数。 (潜台词:偏导数的特点是“偏”。仅仅是函数在一个特殊方向的变化率。)

与一元函数一样,更深入的问题是,在中心点M0邻近,二(多)元函数的全增量“能否微局部线性化”,即,二(多)元函数在M0是否可微(存在全微分)。

定义 —— 若在点M0的适当小的(园)邻域内,函数增量△z恒可以表示为

Δz = A Δx + BΔy + о(Δ r)=“线性主部 + 高阶无穷小о(Δ r)”

则称二元函数 z = f(x ,y)在点M0可微(存在全微分)。

(画外音:要检验函数是否可微,先写出о(Δ r) = Δz − A Δx + BΔy ,再令Δ r → 0讨论极限,看能否证明,这个尾项的确是较Δr高阶的无穷小。(数学一))

矛盾自然出现了。矛盾集中于“全(微分)”与“偏(导数)”。就算二(多)元函数的偏导数都存在,几个特殊方向的变化率,又怎能确定函数全方位的变化??仅仅是“偏导数(都)存在”显然不能保证“全微分存在”。这与一元函数“可微与可导等价”是截然不同的。

如果二元函数 z = f(x ,y)在点M0可微(存在全微分)。则容易证明两个偏导数都存在,且关于x的偏导数 = A,关于y的偏导数 = B

“偏导数都存在”是可微分的必要条件。

历史上的深入讨论,找到了二(多)元函数在一点可微的一个充分条件是,函数的偏导数都存在且连续。

一维到高微空间是质变。一元微分学最讲究条件。讨论前沿问题时,总是想能否把条件削弱一点来得到同样的结论。而多元微分学只能以假设为前提,要什么条件就得给什么条件。比如,要是二阶偏导数不连续,二阶混合偏导数就可能与求偏导顺序有关。给应用带来巨大障碍。

在讨论多元函数时,条件“(一阶)偏导数存在且连续”是一个基本条件。没有这个条件,仅仅知道偏导数存在是什么事情也做不成的。有了这个条件,则

(1)偏导数存在且连续,则函数的全微分存在。

(2)全微分存在函数必定连续。故偏导数存在且连续,函数必定连续。

*(3)偏导数存在且连续时,全体偏导数按坐标顺序排成“梯度向量”,函数沿任意方向的方向导数,就是“梯度向量”在该方向的投影。且“梯度向量”是方向导数最大的方向。

(潜台词:理解时要落实(站立)在中心点。)

记住主关系链, 偏导数连续 —→ 全微分存在 —→ 函数连续

相关选择题就迎刃而解了。

例3设函数 z=f (x, y)有定义式:

f (0, 0) = 0,其它点处f (x, y) = xy∕ (x平方+y平方)

试证明,在原点(0,0)函数的两个偏导数都存在但函数却不连续。

分析类似例1,取直线道路 y = k x ,即知(x,y)→( 0,0)时,函数不存在极限,当然在原点不连续。

但是,f (x ,0) = 0,f (0 ,y) = 0,在原点处,两个偏导数都为0

例4考虑二元函数 f (x, y) 的 4 条性质

(1)f (x, y) 在点(x0,y0)处连续。(2)f (x, y) 的偏导数都在(x0,y0)连续。

(3)f (x, y) 在点(x0,y0)处可微。(4)f (x, y) 在点(x0,y0)的偏导数都存在。 如果用表达式“P → Q”说明可以由性质P推出性质Q,则有(? )

(A)(2)→(3)→(1)(B)(3)→(2)→(1)

(C)(3)→(4)→(1)(D)(3)→(1)→(4)

分析 (A)对。这就是主关系链。(3)不能推出(2) ,(B)错。

(3)可以推出(4),但(4)不能推出(1),(C)错。

(3)可以推出(1),但(1)不能推出(4)。比如二元函数z = | x |,(

D)错。

高数8多元函数的极限与连续

多元函数

考研高数大纲

考研高数大纲

多元函数微分学

考研:多元函数微分学大纲解析解读

考研高数复习大纲

考研高数八大题型

考研高数知识点总结

第五章多元函数微积分

考研高数 多元函数(版)
《考研高数 多元函数(版).doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档