人人范文网 证明

费马大定理证明(精选多篇)

发布时间:2020-11-08 08:32:30 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:费马大定理

费马大定理

300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=没有非零整数解”。费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最著名的定理—费马大定理。

费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。

费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=z只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。

推荐第2篇:费马大定理

费马大定理: 当整数n >2时,关于x, y, z的不定方程 x^n + y^n = z^n.无正整数解。

费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: \"Cuius rei demonstrationem mirabilem sane detexi.Hanc marginis exiguitas non caperet.\")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。

对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍对费马大定理一筹莫展。

1983年,联邦德国数学家伐尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇章.获得1982年菲尔兹奖

莫德尔猜想

1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德尔猜想.按其最初形式,这个猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2时,最多只有有限个解.记这个多项式为f(x,y),猜想便表示:最多存在有限对数偶xi,yi∈Q,使得f(xi,yi)=0.后来,人们把猜想扩充到定义在任意数域上的多项式,并且随着抽象代数几何的出现,又重新用代数曲线来叙述这个猜想了.因此,伐尔廷斯实际上证明的是:任意定义在数域K上,亏格大于或等于2的代数曲线最多只有有限个K一点.

数学家对这个猜想给出各种评论,总的看来是消极的. 1979年利奔波姆说:“可以有充分理由认为,莫德尔猜想的获证似乎还是遥远的事.”

然而,时隔不久,1983年伐尔廷斯证明了莫德尔猜想,人们对它有了全新的看法.在伐尔廷斯的文章里,还同时解决了另外两个重要猜想,即台特和沙伐尔维奇猜想,它们同莫德尔猜想具有同等重大意义.

谷山——志村猜想

1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。

谷山——志村猜想和费马大定理之间的关系

1985年,德国数学家弗雷指出了谷山——志村猜想”和费马大定理之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。

弗雷命题

1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。

“谷山——志村猜想”成立

1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理” 。

推荐第3篇:费马大定理的简单证明

费马大定理的简单证明

李联忠

(营山中学四川营山 637700)

费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程znxnyn当n≥3时无正整数解。

证明:当n=2时,有z2x2y2

∴x2z2y2(zy)(zy)(1)

令 (zy)2m2 则 zy2m2代入(1)得

x2z2y22m2(2y2m2)22m2(ym2)22m2l2

22∴x2mlyl2m2zlm

当n=3时,有z3x3y3

∴x3z3y3(zy)(z2zyy2)(2)

令 (zy)32m3 则 zy32m3代入(2)得

3x3z3y332m[ (y32m3)2(y32m3)yy2]

32m3(3y2332m3y34m6)33m3(y232m3y33m6)

若方程z3x3y3有正整数解,则(y232m3y33m6)为某正整数的三次幂,即

(y232m3y33m6)l3

∴ y(y32m3)l333m6(l3m2)(l23m2l32m4)

则必有 y(l3m)和y3m(l3ml3m),而y,m,l都取正整数时,这两等式是不可能同时成立的。所以(y3my3m)l不成立。即x不可能取得正整数。所以,当n=3时,方程zxy无正整数解。

当n>3时,同理可证方程zxy无正整数解。

定理得证。

nnn3332233632232224

推荐第4篇:证明费马大定理的故事

解答数学“大问题”——证明费马大定理的故事

为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用130页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。

费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。费马制造了一个数学史上最深奥的谜。

大问题 在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最值得为之奋斗的事。

安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答,怀尔斯被吸引住了。

这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永远不会放弃它。我必须解决它。”

怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coates)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。”

科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的一个转折点,椭圆方程的研究是他实现梦想的工具。

孤独的战士

1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学的教授。在科茨的指导下,怀尔斯或许比 世界上其他人都更懂得椭圆方程,他已经成为一个著名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马大定理的任务也是极为艰巨的。

在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想„„我十分清楚我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。

20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。

怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。

这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。

欢呼与等待

经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了费马大定理。现在是向世界公布的时候了。1993年6月底,有一个重要的会议要在剑桥大学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。 1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。两百名数学家聆听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声。” 《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最著名的数学家,也是唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。最有创意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模特。

当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发现了。

我的心灵归于平静

由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。

怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作。

泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历„„它的美是如此地难以形容;它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”

这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”

声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,1996年,他获得沃尔夫奖,并当选为美国科学院外籍院士。

怀尔斯说:“„„再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如此少有的特权,在我的成年时期实现我童年的梦想„„那段特殊漫长的探索已经结束了,我的心已归于平静。”

推荐第5篇:费马大定理的初等巧妙证明

费马大定理的初等巧妙证明

李联忠

(营山中学四川营山 637700)

费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程znxnyn当n≥3时无正整数解。

证明:当n=2时,有z2x2y2

∴x2z2y2(zy)(zy)(1)

设 (zy)2m2 则 zy2m2代入(1)得

x2z2y22m2(2y2m2)22m2(ym2)22m2l2

22∴x2mlyl2m2zlm

当n=3时,有z3x3y3

∴x3z3y3(zy)(z2zyy2)(2)

设 (zy)32m3 则 zy32m3代入(1)得

3x3z3y332m[ (y32m3)2(y32m3)yy2]

32m3(3y2332m3y34m6)33m3(y232m3y33m6)

设 (y232m3y33m6)l3(3)

则x3ml(4)

zy32m3(5)

若z,y的公约数为k,即 (z,y)=k ,k>1时,方程x3z3y3两边可以除以k,下面分析k=1 即(z,y)=1 , 方程xzy的正整数解

因为(z,y)=1,分析(2),(3),(4),(5)式,只有m,l为正整数时,x,y,z有正整数解,由(3)得 3333

y(y32m3)l333m6(l3m2)(l23m2l32m4)

∵ y,m,l都取正整数

∴y(l3m)和y3m(l3ml3m)不能同时成立 2232224

∴ y没有形如y(l3m2)或y(l23m2l32m4)32m3的正整数解 若 (l3m2)=ab , (l23m2l32m4)=cd可得相应方程组

222yal3mycl3myacl3m或或这些方程组里的m,l没有正整232323y3mbcdy3mabdy3mbd

数解,因为若有正整数解,则与y没有形如y(l3m2)和y(l23m2l32m4)32m3的正整数解矛盾。

又 ∵ y(l3m2)在m,l取正整数的条件下,y可取到任意正整数 ∴y没有正整数解。

∴当n=3时,方程z3x3y3无正整数解。

当n>3时,同理可证方程znxnyn无正整数解。

定理得证。

推荐第6篇:费马大定理的启示

“费马大定理”的启示

“设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖

作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。

当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。

这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。

222xyz

首先,我们来看一个公式:。

有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?”

没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。

但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍注1,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。

我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》注2序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。

言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说我们讲究的是说走就走的旅行,神经病才研究这个,有这功夫,走两遍不就观光了吗?这就是实用主义和智力竞赛之间的区别。从一开始就分道扬镳了。

毕达哥拉斯就是前文那个公式的发现者。毕达哥拉斯(约公元前580~约前500)古希腊数学家、哲学家。他的信徒们组成了一个唯心主义学派——毕达哥拉斯学派。这个政治和宗教团体旨在用“数”去描述世间一切,他们从数学中感受到了整个世间那种美妙,他们认为数就是世界的规律。这也难怪,没有手机食物单调,娱乐空乏的年代,人们尤其是那些高智商圣贤智力充裕的人们找到了这个世界上让他兴奋的事情——从事“数”的研究,他的门徒们发现原来世间一切,上帝就是通过“数”来统治世界的。比如:音乐,和音好听,是因为一根弦是另一根弦的整数倍。凡此种种,这不就是天神的暗示么,我们就应该在数中生活啊,我们的一切包括生命就应该奉献、祭祀给这些数。公正的说这个学派早期它推动了数学研究发扬了这种精神,但后期也阻碍了数学的发展,著名的数学史上“第一次数学危机”就是又这个学派成员西帕索斯发现了2,从而颠覆了毕达哥拉斯学派的数学信仰,因为毕达哥拉斯终生的信仰就是,世间一切都是由整数构成,小数是两个整数的比,而西帕索斯发现一个问题:当x=y=1时,z等于什么?现在的初中生都知道是2。,而根据那个时候的数系,这推翻了毕达哥拉斯的世界理论依据。因为根号2是一个无限不循环小数,无法被两个整数表示。我们来证明根号2永远不能化成分数即可。这里又要用到反证法(高中数学课本有证明过程我复制了一下),我们先假设√2=a/b(a,b都是正整数不用说了吧)。现在,我们平方一次,a^2/b^2=2,于是,a^2=2*(b^2),这样一看,a^2就是偶数了,那么,a必然也是偶数。那就设a=2m吧,(2m)^2=2*(b^2),4*(m^2)=2*(b^2),b^2=2*(m^2),再一看,b也成偶数了,好吧,设为2n。现在问题来了,根号2不仅可以化成a/b,还可以化成m/n,而且,后者更简洁。按照同样的方法,可以一直化简下去,而分数必然存在最简形式,不可能无限化简,于是得出矛盾。所以,根号2永远不能化成分数。毕达哥拉斯最后没有办法解决,就像坚持日心说的布鲁诺一样西帕索斯本人也就被同门扔到河里杀害。此后30年数系才进一步扩充到了实数领域。

考虑到希腊文明的数学挺牛的,而这个毕达哥拉斯还不够牛,只是名气比较大而已,所以,我们得让古希腊人多出场几位。接下来,我可以推荐两个与费马大定理有关的重量级人物。

一个是欧几里得,欧几里得最大的贡献体现在几何学,最牛的著作叫《几何原本》。不过,他也有很多数论成就,所以,在费马大定理的故事中,他的名字会反复出现,根号2是无理数是他第一个证的,有无穷多个素数是他第一个证的,算术基本定理也是他第一个证的。罗胖不是提到“比如说我们学平面几何都知道,由那么简单的几个公理,居然可以推出如此缤纷的一个定理的世界”,第一个系统性(这个系统太牛逼了)地干这个事情的人就是欧几里得。至于那么简单的公理到底是几个?这个是有数字的,23个定义,5条公理,5条公设,这是所有推导的基础。当然,《几何原本》也有一些不严谨的地方,却仍然笑傲江湖两千年,直到希尔伯特写出《几何基础》,才算彻底完善了欧几里得几何。不过,欧几里得还是给后人挖了一个坑,就是他的第五公设比较啰嗦,怎么看都不像一个公理而像一个定理。于是,无所牛人前赴后继去证明这个东西,却发现,所有宣称证明了第五公设的人,其证明都陷入了循环论证的陷阱中,换句话说,证来证去只是它自己不同的变形而已。这个第五公设真正的问题在哪里呢?很简单,欧几里得几何叫平面几何,这个第五公设只在平面几何中成立,而别的公理或公设却都是具有普遍适用性的。修改一下第五公设,别的公理不变,非欧几何就诞生了。事实上,非欧几何遇到的最大障碍不是数学家解决这个问题的水平不够,而是来自传统观念的压力。高斯早就研究过非欧几何,但迟迟不敢发表,因为担心遭受各种攻击。还有一个波尔约,研究非欧几何成就斐然,可惜被高斯一盆凉水浇灭了激情。再一个就是罗巴切夫斯基,名气最大的非欧几何创始人,生前遭受各种打击,仍不屈不挠传播罗氏几何,死后多年才被承认,被赞誉为“几何学中的哥白尼”。这三个人不约而同地研究了非欧几何中的双曲几何情形,却留下一种椭圆几何情形,让黎曼捡了个漏。不过,黎曼搞定这种情形可不是凭运气,他从思路上就领先其他人了,其他人都是从公理系统出发研究,黎曼手握微分几何之武器直接玩起了曲率,不仅补充了椭圆几何的情形,还一举统一了欧氏平面几何、罗氏双曲几何和他的椭圆几何。这种牛逼人的牛逼事儿讲起来还是蛮有意思的。

好啦,下一个古希腊人,丢番图。欧几里得写了本《几何原本》,成了几何学的一代宗师,丢番图写了本《算术》,也是数论中的经典之作,他本人也荣登“代数学之父”的宝座。他提出的丢番图方程让无数后人为之奋斗,至今仍有大量问题未能解决。《算术》是本好书,费马有空就抱着读,费马大定理就是读《算术》的心得。

按照时间顺序,下一个该费马出场了。费马这辈子活得可是够值了。官场得意、婚姻美满、家庭幸福、子女争气,更牛逼的是,一个业余爱好让他名垂青史。读读别的数学家的故事,贫困、疾病、家庭不幸,还是来自同行的打击,各种问题层出不穷,简直就是“天才多磨难”,而费马的小日子,滋润得让人嫉妒。而且,费马这人不像同行那么玩命死磕,不就一业余爱好嘛,玩票心态就好了。结果,很多灵感嗖嗖地冒出来,挡都挡不住。后来人们一总结,这家伙比很多职业数学家成就还大:解析几何的发明者之一,对于微积分诞生的贡献仅次于牛顿和莱布尼茨,概率论的主要创始人之一,以及17世纪数论界第一人。不过,费马还是干了一件不厚道的事儿,就是在费马大定理的问题上,他宣称自己有了一个美妙的证法,就是不说,害得数学家们为之死磕了三百多年。

接下来,该欧拉上场了。欧拉是有史以来最多产的数学家,虽然眼睛不好使,但心算能力却是一流,简直是一台人体计算机。成就太多太多,就只好省略了。我们知道几件事就够了。欧拉无比牛逼,却仅仅证明了费马大定理n=3的情形,说明费马大定理真的很难。此外,罗胖提到哥德堡七桥问题,想说明西方人这种琢磨精神和中国人不同,其实,这个论据不充分,论点也不对,中国人也搞出了很多孤立的趣题和难题,这一点,东西方人是相似的。区别在哪儿呢?区别在于西方有欧拉这种数学家,他不是搞明白一个孤立问题就完事儿啦,而是由此出发,上升到理论高度,圆满地解决一类问题,更牛逼的是,一群数学家马上跟进,搞出更多东西,直到形成系统仍在推进,这就是我一直强调的数理系统的可怕之处。其实,这个哥德堡七桥问题本质上就是一笔画问题,中国人恰好也研究过,但中国人只是把它当成一种游戏,从来没想过要搞出一个数学分支。而到了西方人那里,“七桥问题”的研究是图论研究的开端,同时也为拓扑学的起源。顺便说下,“四色问题”和“七桥问题”是同类问题,属于图论,也可以看成拓扑学问题。别看“七桥问题”被欧拉轻松搞定,这个“四色问题”看似简单,却是一道难度绝不亚于费马大定理的难题。爱因斯坦的老师闵可夫斯基就曾经在学生面前夸下海口要证明之,结果失败只好放弃。最后,这个证明是依靠计算机完成的,虽然计算机的证明无法核对,这让很多数学家很不爽,但是,这提供了证明问题的新思路,也标志着计算机将在数学世界中发挥更大的作用,你能说,这种问题的研究没有意义吗?更何况,在证明的过程中,虽然多次失败,数学家们得到的东西可比问题本身多得多,这正是证明难题的意义,它会催生出很多宝贝,从而进一步完善数理体系。

下一个,该讲高斯了。高斯的贡献就不说了,这种神级人物,有多大贡献都是正常的,我讲讲他的两个毛病吧。第一个,就是研究问题时,只发表成熟而完善的证明,却不让别人捕捉到他的证明思路的蛛丝马迹。这非常不好,他的思路会给别人很多启发,反而是证明步骤,可利用价值低多了。另一个就是,高斯本人很牛逼,可是,却没干过什么提携后生的事情,反而不利于别人成长。也不是说他故意打击人家,就是别人觉得他牛逼,想请他指点一二时,他要么压根儿不理睬,要么冷冰冰的。前文提到的阿贝尔,其成果寄给高斯看,让高斯给扔了,伽罗华临死前写的东西也没忘给高斯寄一份儿,估计高斯也没看,波尔约(这次可是他朋友的儿子)研究非欧几何的成果,想得到他的支持,他说自己早就研究过了,波尔约于是心灰意冷。当然,高斯虽然有缺点,但他由于过于牛逼,世人赞扬崇拜唯恐不及,缺点也就没人计较了。

伽罗华肯定也是要谈的,但是,前面讲的伽罗华的故事太多了,这里不再赘述。就说一点,有人认为伽罗华是一个好色之徒,这是不公平的。一来,他是法国人,他只是做了一个正常法国男人会做的事情;二来,他也没有到处沾花惹草;三来,这件事本身就可能是一个圈套,作为一个激进的共和派青年,政府早就想把他弄死。说到底,伽罗华是一个数学天才,但运气不好,他之所以政治上这么激进,也是数学方面处处碰壁郁闷无处发泄造成的。当然了,伽罗华的悲剧也有自身缺点,就是写东西太简洁,年轻人容易浮躁,天才更是年少轻狂,思想本来就已经非常超前了,又不表述清楚,那些前辈们怎么会认真看呢?

前面提到的这些人都是大神,年轻时就很牛逼,然后牛逼了一辈子(虽然有的人一辈子也很短)。事实上,数学这个东西,最牛逼的思想往往是年轻人创立的,年长者只能为数学大厦添个砖加个瓦,却很少再有开山之举。一个数学家,如果到三十岁还没搞出什么成就,这辈子基本上就这样了。所以,数学界的最高奖菲尔兹奖只发给40岁以下的人,放宽到40岁,已经把各种意外都考虑进去了,可是,怀尔斯却是意外中的意外。他年轻时实在不够牛逼,三十多岁还在埋头苦干,到了四十岁却一举成名。我想,与其把怀尔斯的故事看成一个牛逼数学家的创奇,不如看成一个老屌丝逆袭的励志故事。都说数学家成名要趁早,比如他的同行陶哲轩同学,人家7岁进高中,9岁进大学,10岁、11岁、12岁参加国际数学奥林匹克竞赛分别拿下铜奖、银奖、金奖,20岁获得博士学位,24岁当教授,31岁时拿下菲尔兹奖。而31岁的怀尔斯在干嘛,默默无闻。混到33岁时,怀尔斯终于决定要干点什么了,命运也正好给了他一个机会。1985年,德国数学家格哈德·弗赖指出了谷山-志村猜想和费马大定理之间的关系,1986年,美国数学家里贝特证明了这一命题。怀尔斯意识到自己的机会来啦,费马大定理绕了一大圈,竟然和自己现在最擅长的领域椭圆曲线有关,必须赌一把了。于是,怀尔斯开始了长达七年的闭关修炼,当然了,修炼的时候还得偶尔放放风,因为之前不够牛,教授的位置不牢固,不发表论文会下岗的。修炼的过程前面讲过,就不说了,总之,博采众家之长,功力大大加深,七年之后出山,一举震动江湖。但是,数学家对待证明的态度是非常严谨的,数学证明一旦通过就永远正确,他们必须对后人负责,所以,怀尔斯的论文需要经过严格审查。六个顶级数学家开始对怀尔斯天书般的论文进行漫长的死磕,终于有一天,一个叫尼克·凯兹的发现了漏洞。说来也巧,当初怀尔斯论文发表前,想找个人内测一下,找的就是尼克·凯兹,那个时候,这哥们儿没发现问题,这都公开了,却揪出问题了,这让怀尔斯情何以堪:你丫是不是在逗我?事实上,这是个大问题,足以破坏怀尔斯的证明。至此,怀尔斯逆袭受挫,如果漏洞不能修复,不会有人为费马大定理的证明道路上多一个失败者而惋惜。好在这时怀尔斯已经混成了终身教授,不用担心下岗的风险了,宅在家里好好研究就行了。这次,他还找了一个助手,叫泰勒,这人是他之前的学生,一个牛逼而又值得信任的人,又经过将近一年的奋斗,终于填补了漏洞且简化了证明。怀尔斯一跃成为武林泰斗,这一次,地位无人撼动。接下来,我们要给怀尔斯几句颁奖词:他不一定是最聪明的,也不一定有着耀眼头衔,但一定以科学为生命,一定坚韧、谦和并一步一个脚印向前走。 在这里,我还要提一下两个人:谷山丰和志村五郎。志村五郎是一个勤奋的人,很多地方和怀尔斯气质很像,而谷山丰,是一个真正的天才。谷山-志村猜想是费马大定理证明过程中最重要的一环,可是,在怀尔斯享受各种荣誉的时候,却很少有人愿意提及他们(虽然谷山丰在30多年前就自杀了,但志村五郎还在)。数学的世界,有时候,也是只认成功者。讲这件事,也是提醒大家:在费马大定理的故事中,怀尔斯不是唯一的主角,无数人为之奋斗过,他们甘为基石,他们也是英雄。

费马大定理的故事,至此终于可以结束了。

回顾人类解开宇宙奥秘的各个节点,探得进化论,主要靠达尔文;揭示力学原理,主要靠牛顿;艰深的相对论,可能有许多天才不懂,但创建它,也全凭一个爱因斯坦。发现元素周期律,创建精神分析理论,还有宇宙大爆炸、DNA分子结构模型……都只有一个两个人。唯独这个中学生都能看懂的费马大定理,各路英雄好汉,有的退避三舍,有的自愧无力,有的倾尽其力也只抓上一鳞半爪,连万能的计算机也无可奈何。但是,我们不仅仅要看到它的困难,更要看到困难背后的意义,费马大定理是一只“会下金蛋的鹅”(希尔伯特语):因为它,扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究……费马大定理催生出一批又一批重量级数学家,这是货真价实的事实,也是真正的厉害之处。“一个民族有一些关注天空的人,他们才有希望;一个民族只是关心脚下的事情,那是没有未来的。”

注1我国古代就有丰富的数学典籍,如:前文中的《周脾算经》、东汉末年比美《几何原本》的《九章算术》、公元400年的数学入门读物《孙子算经》,而盛唐时的李淳风,就是那个有名的“推背图”的道学家,他在算学馆整理编注了著名的《算学十书》虽然水平很次,没能培养出什么像样的数学家,但不可否认对盛唐的商业和天文历法有积极推动作用,此后各种不提,直到共济会的利玛窦和我国的徐光启共同翻译了《几何原本》等海外著作。但奇怪的是中国的数学新著往往都出现在乱世和盛世。数学家也星光璀璨,如:祖冲之,秦九韶,刘徽、杨辉,等。

注2《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。

推荐第7篇:《费马大定理谜题的破解》

《费马大定理-谜题的破解》这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯

(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。

怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃

过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊之上。

在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。” 数学家就是这样缓慢而执着地向前迈进

推荐第8篇:费马大定理是如何被证明的(科普)

上世纪后半页,理论数学家们陷入了十分尴尬的境地,一方面他们已经很久没做出突破性工作,一方面借助计算机的机器证明开始兴起,著名的四色猜想就是机器证明的。数学家们不喜欢使用蛮力的穷举法机器证明,也诟病机器证明的程序没法完全保证没有bug,以及没法验证,但心里也是颇为酸楚的。这个时候救星出现了,他叫安德鲁怀尔斯,是普林斯顿大学的教授,美籍英裔,剑桥大学出身,椭圆曲线顶级专家。他躲在阁楼成一统,7年孤独磨一剑,又经过一年的审稿炼狱,最终证明了费马大定理!那么何为费马大定理呢?

总所周知,x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。但x^3+y^3=z^3却始终没找到整数解,最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。也就是:

x^n+y^n=z^n,当n大于2时没有整数解。

这是一个描述起来非常简单的猜想,但358年来困扰了包括欧拉和柯西在内的一代代大数学家,他们得到了一些进展,比如当n等于3和4时猜想成立,但x、y、z和n的取值范围是无限的,要证明整个猜想谈何容易!更气人的是费马在一本书的页边处写下这个猜想后还加了一个评注:我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。这不是一种赤裸裸的挑战嘛。

1984年事情有了转机,一个叫弗莱的德国数学家提出,如果费马猜想不成立,那个就可以找到三个整数使方程成立,表示为:

A^N+B^N=C^N,接着他通过复杂的变换,这个等式转换成了一个椭圆方程:

y^2=x^3+(A^N-B^N)*x^2-A^N*B^N

而这个椭圆曲线太过古怪,他断定由于这个由假设费马猜想不成立引出的椭圆方程是如此古怪,所以它不可能模形式化。后来一个叫里贝特的数学家严格证明了这个椭圆方程确实不能模形式化。

现在必须要说明啥叫椭圆方程的模形式化了,而说明这个问题以前还得介绍啥叫椭圆方程和模形式。

椭圆方程是形如y^2=x^3+a*x^2+b*x+c方程(a,b,c是任何整数),对这种方程的一个重要研究领域就是研究每一类椭圆方程的整数解个数,但当x和y的取值是无限时研究起来就很困难。于是科学家就发明了在时钟算术中研究每类椭圆方程的整数解。何为时钟算术呢,就是把正常数轴延伸到正负无穷的两端接起来,这个圈有几格就算几格时钟算术,比如我们的手表就是在实践12格时钟算术。它有如下性质:

3+11=2

3*4=0

5+6=11

等等。这样求椭圆方程的整数解就方便了。如果一个椭圆方程在1格时钟算术中有1个解,2格时钟算术中有4个解,3格时钟算术中有4个解,4格时钟算术中有8个解,5格时钟算术中有4个解,6格时钟算术中有16个解等等,我们就可以记录为:

E1=1

E2=4

E3=4

E4=8

E5=4

E6=16

.

.

.

这成为这个椭圆方程的 E-序列。每个椭圆方程的E-序列就像它的DNA一样浓缩这它的特征信息。

模形式是在由两根实轴和两根虚周组成的四维复空间里的超对称结构,而每一个模形式都可以拆成各种基本要素的组合组成的,比如一个模形式是由1个1号要素,3个2号要素,2个3号要素组成,那么这个模形式的M-序列就可以写成:

M-序列:

M1=1

M2=3

M3=2

.

.

.

正如E-序列包含了椭圆方程的特征信息一样,模形式的M-序列也包含了各个模形式的特征信息,是模形式的DNA。

1955年在东京举行的一个学术会议上日本青年数学家谷山丰和志村五郎提出了一个猜想:一个椭圆方程的E-序列一定和一个模形式的M-序列完全对应。这就叫椭圆方程的模形式化。这是一个惊天的猜想,在它被证明以前就得到了广泛应用,几百篇论文是这样开头的:如果谷山-志村猜想成立。

现在的问题清楚了,如果谷山-志村猜想成立,那个每一个椭圆方程都可以模形式化,而由假设费马猜想不成立引出的椭圆方程却被证明不可以模形式化,这样就引出了矛盾。于是谷山-志村猜想成立和费马猜想不成立这两个假设不可能同时成立。所以只要证明了谷山-志村猜想,那费马猜想不成立的假设就被推翻,于是费马猜想也被证明了。

于是真正的英雄出场了。安德鲁怀尔斯在知道假设费马猜想不成立引出的椭圆方程被证明不能模形式化后受到震撼,也备受鼓舞,于是重拾童年时的梦想于1986年开始了7年的秘密研究,目标就是证明谷山-志村猜想,也即等价证明费马猜想。他先用一年时间思考用什么方法来证明,最后选定数学归纳法。他用群论的方法顺利证明每个椭圆方程的E-序列第一项都和某个模形式M-序列的第一项相等,第二步是个假设每个椭圆方程的E-序列第n项都和某个模形式M-序列的第n项相等,第三步是艰辛的,要证明如果第二步假设成立就每个椭圆方程的E-序列第n+1项都和某个模形式M-序列的第n+1项相等。开始他采用了经过自己加强的伊娃沙娃理论来证明第三步,但到了第5年他感到伊娃沙娃理论没法得到他想要的结论。怀尔斯暂时结束半隐居状态,回到学术圈,想看看别的数学家有没有新的可利用的理论,他确实在老师的无意谈论中找到了科利瓦金-弗莱切方法,这个方法正对怀尔斯的需要,他在强化这个方法后取得了突破进展,到1993年1月他第一次向一个他认为可靠的同事透露他的研究,并请他审阅自己的手稿。他们采用了一种狡黠的方式开展这项工作,由怀尔斯开了一门研究生课程“椭圆曲线的计算”,专门讲他的手稿。这个叫凯兹的同事也坐在研究生们中间,很快枯燥艰深的演算把不明就里的研究生们都吓跑了,凯兹成了唯一的听众,正好开展审阅手稿工作。1993年5月末,怀尔斯借助一个19世纪的数学构造完成了最后一簇椭圆方程的证明。93年6月23日怀尔斯在剑桥举行的学术会议上公布了证明。会后200多页的证明手稿被分成6部分由6名审稿人审稿。审稿采用审稿人在世界各地审稿,针对存在的问题用电子邮件向怀尔斯提问,开始进展顺利,审稿人的问题被怀尔斯半天到3天就给以解答。但9月份还是那个凯兹同事提的一个问题彻底难住了怀尔斯,这个问题是“在半稳定情况下,塞尔默群的精确上界的计算还不完全”。在将近一年的弥补这个漏洞的挣扎

中,数学界很焦急,也很骚动,大家要求怀尔斯公开手稿,大家来帮他,可怀尔斯拒绝了,最后有些数学家开始恶搞怀尔斯了,编他的愚人节笑话。第二年9月19日的清晨,怀尔斯又坐在书桌前检查科利瓦金-弗莱切方法,这次他不是相信这个方法还能完成证明,而只是想看看它为啥行不通。突然灵光闪现,他突然发现科利瓦金-弗莱切方法本身行不通但却可以使他抛弃的伊娃沙娃方法生效!有些事情就是这样的,长期的努力本来就接近突破,但过份的执着和焦虑阻碍你的心智,所以没法实现飞跃,但当你认为没办法了准备放弃,放松心态冷静下来时反而灵感突发取得突破。当年阿难尊者被邀请在第一次佛经结集时口颂佛经,可他当时还没有证阿罗汉果,没有资格参加结集,所以他抓紧时间努力修行,争取马上证果,可越是紧越没法达成心愿。到了结集这一天,尊者一看天都亮了,自己还没证阿罗汉果,就想没指望了,于是连日修行的疲惫身心放松下来,准备睡一下觉,当他往下躺,头还没碰到枕头的空中夙世的因缘成熟,尊者一下子证得阿罗汉果!他得以参加结集,说了他的万古名言“如是我闻”。

接下来事情就顺利了,200页的手稿被双剑合璧地缩减成了130页,最后发表在《数学年刊》1995年5月刊上。因为这个成果怀尔斯获得了沃尔夫奖和菲尔兹特别奖(超龄,破格)。正义战胜了邪恶,王子公主从此过上了幸福的生活。

注:本帖子取材于《费马大定理》 上海译文出版社

上世纪后半页,理论数学家们陷入了十分尴尬的境地,一方面他们已经很久没做出突破性工作,一方面借助计算机的机器证明开始兴起,著名的四色猜想就是机器证明的。数学家们不喜欢使用蛮力的穷举法机器证明,也诟病机器证明的程序没法完全保证没有bug,以及没法验证,但心里也是颇为酸楚的。这个时候救星出现了,他叫安德鲁怀尔斯,是普林斯顿大学的教授,美籍英裔,剑桥大学出身,椭圆曲线顶级专家。他躲在阁楼成一统,7年孤独磨一剑,又经过一年的审稿炼狱,最终证明了费马大定理!那么何为费马大定理呢?

总所周知,x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。但x^3+y^3=z^3却始终没找到整数解,最接近的是:6^3+8^3=9^3-1,还是差了

1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。也就是:

x^n+y^n=z^n,当n大于2时没有整数解。

这是一个描述起来非常简单的猜想,但358年来困扰了包括欧拉和柯西在内的一代代大数学家,他们得到了一些进展,比如当n等于3和4时猜想成立,但x、y、z和n的取值范围是无限的,要证明整个猜想谈何容易!更气人的是费马在一本书的页边处写下这个猜想后还加了一个评注:我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。这不是一种赤裸裸的挑战嘛。

1984年事情有了转机,一个叫弗莱的德国数学家提出,如果费马猜想不成立,那个就可以找到三个整数使方程成立,表示为:

A^N+B^N=C^N,接着他通过复杂的变换,这个等式转换成了一个椭圆方程:

y^2=x^3+(A^N-B^N)*x^2-A^N*B^N

而这个椭圆曲线太过古怪,他断定由于这个由假设费马猜想不成立引出的椭圆方程是如此古怪,所以它不可能模形式化。后来一个叫里贝特的数学家严格证明了这个椭圆方程确实不能模形式化。

现在必须要说明啥叫椭圆方程的模形式化了,而说明这个问题以前还得介绍啥叫椭圆方程和模形式。

椭圆方程是形如y^2=x^3+a*x^2+b*x+c方程(a,b,c是任何整数),对这种方程的一个重要研究领域就是研究每一类椭圆方程的整数解个数,但当x和y的取值是无限时研究起来就

很困难。于是科学家就发明了在时钟算术中研究每类椭圆方程的整数解。何为时钟算术呢,就是把正常数轴延伸到正负无穷的两端接起来,这个圈有几格就算几格时钟算术,比如我们的手表就是在实践12格时钟算术。它有如下性质:

3+11=2

3*4=0

5+6=11

等等。这样求椭圆方程的整数解就方便了。如果一个椭圆方程在1格时钟算术中有1个解,2格时钟算术中有4个解,3格时钟算术中有4个解,4格时钟算术中有8个解,5格时钟算术中有4个解,6格时钟算术中有16个解等等,我们就可以记录为:

E1=1

E2=4

E3=4

E4=8

E5=4

E6=16

.

.

.

这成为这个椭圆方程的 E-序列。每个椭圆方程的E-序列就像它的DNA一样浓缩这它的特征信息。

模形式是在由两根实轴和两根虚轴组成的四维复空间里的超对称结构,而每一个模形式都可以拆成各种基本要素的组合组成的,比如一个模形式是由1个1号要素,3个2号要素,2个3号要素组成,那么这个模形式的M-序列就可以写成:

M-序列:

M1=1

M2=3

M3=2

.

.

.

正如E-序列包含了椭圆方程的特征信息一样,模形式的M-序列也包含了各个模形式的特征信息,是模形式的DNA。

1955年在东京举行的一个学术会议上日本青年数学家谷山丰和志村五郎提出了一个猜想:一个椭圆方程的E-序列一定和一个模形式的M-序列完全对应。这就叫椭圆方程的模形式化。这是一个惊天的猜想,在它被证明以前就得到了广泛应用,几百篇论文是这样开头的:如果谷山-志村猜想成立。

现在的问题清楚了,如果谷山-志村猜想成立,那个每一个椭圆方程都可以模形式化,而由假设费马猜想不成立引出的椭圆方程却被证明不可以模形式化,这样就引出了矛盾。于是谷山-志村猜想成立和费马猜想不成立这两个假设不可能同时成立。所以只要证明了谷山-志村猜想,那费马猜想不成立的假设就被推翻,于是费马猜想也被证明了。

于是真正的英雄出场了。安德鲁怀尔斯在知道假设费马猜想不成立引出的椭圆方程被证明不能模形式化后受到震撼,也备受鼓舞,于是重拾童年时的梦想于1986年开始了7年的秘密研究,目标就是证明谷山-志村猜想,也即等价证明费马猜想。他先用一年时间思考用什么方法来证明,最后选定数学归纳法。他用群论的方法顺利证明每个椭圆方程的E-序列第

一项都和某个模形式M-序列的第一项相等,第二步是个假设每个椭圆方程的E-序列第n项都和某个模形式M-序列的第n项相等,第三步是艰辛的,要证明如果第二步假设成立就每个椭圆方程的E-序列第n+1项都和某个模形式M-序列的第n+1项相等。开始他采用了经过自己加强的伊娃沙娃理论来证明第三步,但到了第5年他感到伊娃沙娃理论没法得到他想要的结论。怀尔斯暂时结束半隐居状态,回到学术圈,想看看别的数学家有没有新的可利用的理论,他确实在老师的无意谈论中找到了科利瓦金-弗莱切方法,这个方法正对怀尔斯的需要,他在强化这个方法后取得了突破进展,到1993年1月他第一次向一个他认为可靠的同事透露他的研究,并请他审阅自己的手稿。他们采用了一种狡黠的方式开展这项工作,由怀尔斯开了一门研究生课程“椭圆曲线的计算”,专门讲他的手稿。这个叫凯兹的同事也坐在研究生们中间,很快枯燥艰深的演算把不明就里的研究生们都吓跑了,凯兹成了唯一的听众,正好开展审阅手稿工作。1993年5月末,怀尔斯借助一个19世纪的数学构造完成了最后一簇椭圆方程的证明。93年6月23日怀尔斯在剑桥举行的学术会议上公布了证明。会后200多页的证明手稿被分成6部分由6名审稿人审稿。审稿采用审稿人在世界各地审稿,针对存在的问题用电子邮件向怀尔斯提问,开始进展顺利,审稿人的问题被怀尔斯半天到3天就给以解答。但9月份还是那个凯兹同事提的一个问题彻底难住了怀尔斯,这个问题是“在半稳定情况下,塞尔默群的精确上界的计算还不完全”。在将近一年的弥补这个漏洞的挣扎中,数学界很焦急,也很骚动,大家要求怀尔斯公开手稿,大家来帮他,可怀尔斯拒绝了,最后有些数学家开始恶搞怀尔斯了,编他的愚人节笑话。第二年9月19日的清晨,怀尔斯又坐在书桌前检查科利瓦金-弗莱切方法,这次他不是相信这个方法还能完成证明,而只是想看看它为啥行不通。突然灵光闪现,他突然发现科利瓦金-弗莱切方法本身行不通但却可以使他抛弃的伊娃沙娃方法生效!有些事情就是这样的,长期的努力本来就接近突破,但过份的执着和焦虑阻碍你的心智,所以没法实现飞跃,但当你认为没办法了准备放弃,放松心态冷静下来时反而灵感突发取得突破。当年阿难尊者被邀请在第一次佛经结集时口颂佛经,可他当时还没有证阿罗汉果,没有资格参加结集,所以他抓紧时间努力修行,争取马上证果,可越是紧越没法达成心愿。到了结集这一天,尊者一看天都亮了,自己还没证阿罗汉果,就想没指望了,于是连日修行的疲惫身心放松下来,准备睡一下觉,当他往下躺,头还没碰到枕头的空中夙世的因缘成熟,尊者一下子证得阿罗汉果!他得以参加结集,说了他的万古名言“如是我闻”。

接下来事情就顺利了,200页的手稿被双剑合璧地缩减成了130页,最后发表在《数学年刊》1995年5月刊上。因为这个成果怀尔斯获得了沃尔夫奖和菲尔兹特别奖(超龄,破格)。正义战胜了邪恶,王子公主从此过上了幸福的生活。

注:本帖子取材于《费马大定理》 上海译文出版社

baryon定理的证明如下:

引理:大于3的素数加1或者减1就一定可以被6整除。

证明:素数加1或者减1就变成偶数,可以被2整除。素数不能被3整除,可表示为3n±1,那么它加1或者减1就一定能被3整除。这样大于3的素数加1或者减1后同时有了因子2和3,所以一定可以被6整除。

定理:大于7的连续三个素数不可能呈公差为2的等差数列。

证明:设p、q和r为大于7的连续三个素数,根据引理他们可以分别表示为6l±1,6m±1和6n±1,其中n≥m≥l,且都≥1。p和q的差(6m±1)-(6l±1)可以表示为6(m-l)±2或者6(m-l)。同理q和r的差可以表示为6(n-m)±2或者6(n-m)。6(m-l)和6(n-m)是6的倍数(不含0),所以不可能等于2。如果要形成公差为2的等差数列需要6(m-l)±2和6(n-m)±2同时为2。如果l≠m则,6(m-l)±2最小的取值是4,只有当l=m时,6(m-l)±2为2。同理6(n-m)±2也只有当n=m时可以等于2。这样如果要6(m-l)和6(n-m)同时等于2必须l=m=n。假设存在一个大于

7的连续三个素数呈公差为2的等差数列,根据上边的推理一定存在一个数L,使这三个素数可以表示为6L±1,但6L±1只有两个取值不可能表示3个素数,引出矛盾。所以存在大于7的连续三个素数呈公差为2的等差数列的假设不成立。证毕。

推荐第9篇:考研数学 费马定理

考研交流学习群【198233974】

对于中值定理这部分的学习,很多同学都感到很困惑。然而中值定理又是我们考研数学中的难点,这部分的试题灵活性,综合性比较强,对考生的思维要求比较高,同时这一部分在考试中经常是出证明题,学生的得分率比较低,这里我帮助同学们一起学习中值定理。首先是要理解并记忆定理的内容;二是记住定理的证明过程,并掌握这一部分试题主题的证明思想。费马定理是三大中值定理的引理,很多同学在复习的时候经常忽略,下面中公考研数学辅导老师就带大家来看费马定理。

对于费马定理这个内容主要是说明,如果要证函数发f(x)在一点的导数为零,只要证明在这点取极值(极大值或极小),则存在导数等于零。

中公考研

http://www.daodoc.com 考研交流学习群【198233974】

罗尔定理的证明是会用到费马定理的,对于费马定理一定要掌握。

中公考研

http://www.daodoc.com

推荐第10篇:从商高定理到费马大定理

从商高定理到费马大定理

勾股定理在初中平面几何课本中就学习过,其内容如下:“在直角三角形中,斜边(弦)的平方等于两直角边(短者叫勾,长者叫股)平方的和”。

对这一定理的研究,我国古代数学家作出了巨大的贡献。约在公元前100年成书的我国现存最古的一部数学典籍《周髀算经》中记载,在公元前1100多年我国数学家商高与周公谈话中就明确提出了“勾广三,股修四,弦隅五”,且在同一书中记载的荣方与陈子的问答中,更谈到由勾股求弦的一般方法是“勾股各自乘,并而开方除之”,可见已给出了普遍的勾股定理。正因为商高首先提出了勾股定理,不少人把该定理称之为商高定理。在商高定理的研究方面作出贡献的除中国古代数学家外,还有许多别的国家和民族的数学家,特别是古希腊、埃及、印度的数学家。公元前六世纪,古希腊数学家毕达哥拉斯(公元前582年一前497年)是西方第一个证明勾股定理的人,国外常称其为毕达哥拉斯定理,相传当毕氏找到证明商高定理的方法后,欣喜若狂,杀了100头牛祭奉庆贺,故西方人亦称之为“百牛定理”,而毕氏的证明早已失传。古今中外有许多人探索商高定理的证明方法,不但有数学家,还有物理学家,甚至画家、政治家。如赵爽(中)、梅文鼎(中)、欧几里德(希腊)、辛卜松(英)、加菲尔德(美第二十届总统)等等。其证明方法达数百种之多,这在数学史上是十分罕见的。

我国古代数学家商高发现了直角三角形勾、股、弦有

3、

4、5的关系,故人们称满足勾股弦的各组正整数为商高数。若以方程的观点来看,方程的正整数解称为商高数。商高数除

3、

4、5外,还有5,12,13;7,24,25;8,15,17;12,35,37;20,21,29等无穷多组。是在什么地方弄错了。

直接证明费马大定理的艰巨困境促使人们按数学解决问题的传统,就是要作变换,把问题转化为已知的或易于解决的领域的新问题去解决。近三个多世纪来,经过包括黎曼、莫德尔等许多数学家艰苦卓绝、前赴后续的工作,把费马大定理与代数曲线上的有理点(坐标都是有理数的点)联系起来。种种转化推动了数学相关领域的发展,也推动了费马大定理的证明进程。英国年轻的数学家维尔斯(A·WIles.1953一)利用19世纪以来研究并发展起来的椭圆函数理论及其研究成果,最终证明了费马大定理。1993年6月维尔斯长达200页的论文评审时,被发现其证明有漏洞,1993年7月他开始修改论文,补正漏洞,1994年9月维尔斯终于克服困难,重写了一篇108页的证明论文,10月寄往美国《数学年刊》,顺利通过审查,1995年5月《数学年刊》的41卷第3期上只登载了他的这一篇论文。维尔斯因此获得了国际上颇有影响的科学奖──1995/1996年度沃尔夫数学奖,这一成果被认为是“20世纪最重大的数学成就”。

历时几千年的两个定理,牵动着世界上不知多少代亿万人们的心,前人以坚韧

的毅力,开拓创新的精神谱写了科学知识宝库中探宝的光辉篇章,还有许多宝藏等待后人开采。自然无限,创造永恒。同学们要努力学习,提高自身素质,不辜负时代重托,将来为人类作出更大贡献。

第11篇:费马大定理终结者安德鲁·怀尔斯

费马大定理终结者安德鲁·怀尔斯

安德鲁.怀尔斯(Andrew Wiles)是当代著名的英国数学家。因证明了历时350多年的、著名的费马定理名闻天下。

怀尔斯生平简介

怀尔斯1953年4月11日生于英国剑桥(所以他1993年6月宣布证明时,刚过四十岁生日两个多月)。 1971年入牛津大学莫顿(Merton)学院学习, 1974年获该校学士学位.。同年入剑桥大学柯雷尔(Clare)学院学习, 1980年获该校博士学位。1977至1980年,是柯雷尔学院的“青年研究会员”和哈佛大学的“本杰明·裴尔斯助教授”。1981年是波恩的“理论数学专门研究院”访问教授,此年稍后,为美国普林斯顿的“高等研究所”研究员。1982年成为普林斯顿大学教授,该年春是奥赛的巴黎大学访问教授。作为古根海姆特别研究员,他1985--86年是科学高级研究所(IHES)和高级师范学校(ENS)的访问教授。1988至90年,是牛津大学皇家学会研究教授。1994年,他取得现在的普林斯顿大学欧根·黑金斯数学教授职位。怀尔斯于1989年被选为在伦敦的皇家学会研究员。1995年获瑞典皇家科学院的数学韶克奖。同年获费尔马奖,由保罗萨巴提尔大学和马特拉马克尼空间颁发。1996年获沃尔夫奖,和[美国]国家科学院奖.

怀尓斯证明费马定理的过程

费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉

的数学定理——毕达哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。费马制造了一个数学史上最深奥的谜。

1977年,怀尓斯与科茨(Coates)共同证明了椭圆曲线中最重要的猜想──伯奇─斯温耐顿─代尔(Birch-Swinnerton-Dyer)猜想的特殊情形(即对于具有复数乘法的椭圆曲线)。

1984年,他和马祖尔(Mazur)一起证明了岩泽理论中的主猜想。

1993年, 怀尔斯宣布他经过七年完成了费马大定理的证明而成为整个数学界关注的焦点。他的长达200页的论文大量地依赖于环论和群论地结果。由于他的良好声誉, 更由于他的论文是建立在对此问题有深入刻画的结果基础上,同行专家相信怀尔斯已经打开了许多人无法打开的成功之门。怀尔斯的事迹随之通过报刊杂志被新闻界广为宣传,《纽约时报》甚至还将他的故事搬到了报纸的头版。

但好景不长,专家们在经过仔细审阅怀尔斯的手稿之后,发现了一些问题。 到1993年12月,怀尔斯向外界发布了一份声明,表示他正在修补证明中的一些缺陷。

终于到1994年9月,他与他以前的学生泰勒(R.Taylor)合作完成了一篇论文,文中修补了原来论文中的一些漏洞。 之后,许多专家审查了论文,再没有发现错误。

随后这两篇文章于1995年在《数学年刊》杂志上发表,(Andrew Wiles.Modular elliptic curves and Fermat\'s Last Theorem.Annals of Mathematics, 1995(142):443-551; Richard Taylor, Andrew Wiles.Ring-theoretic properties of certain Hecke algebras.Annals of Mathematics, 1995(142), 553-572.) 同时向世人宣告:一个困惑了世间智者358年的谜终于解开了。

怀尓斯所获奖项

1996年:当选为美国国家科学院外籍院士并获该科学院数学奖;获欧洲的奥斯特洛夫斯基奖和瑞典科学院舍克奖;获法国的费马奖;获沃尔夫奖;

1997年:获美国数学会科尔奖;获得1908年沃尔夫斯科尔(Wolfskehl)为解决费马猜想而设置的10万马克奖金;

1998年:获国际数学家大会颁发的特别贡献奖。

第12篇:《费马大定理》读后感:一个浪漫严谨的世界

一个浪漫严谨的世界

——《费马大定理》读后感

罗雪

花了4天时间认真咀嚼了《费马大定理》,去挑战一个困惑了世间智者358年的顶尖数学谜题,这是我一个数学白痴以前想都不敢想的事情。但是,人生如白驹过隙,把握当下,勇敢向那些陌生领域挑战和进发,从而延展生命的深度和广度,尽管有些不自量力,不过应该不失为一种对抗虚无命运的尝试?下面简单分享一个数学门外汉的几点感受吧,不妥之处望见谅。

一、数学是严谨浪漫的世界

《费马大定理》这本书是以费马大定理为核心,追溯到它的起源、诞生与发展,描述了在漫长岁月中为寻求它的证明发生在数学界中发生的可歌可泣的动人故事。

什么是费马大定理呢?这得追溯到古希腊的毕达哥拉斯以及毕达哥拉斯定理(类似于勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,即x?+y?=z?),而费马大定理是\"业余数学家之王\"费马在法官全职工作之余突发奇想提出来的:将上述次幂数改为3及以上,则不能解出整数解,即方程xn+yn=zn在n≥3时没有非零整数解。这个初中生也能看懂的问题,它的证明竟然让358年中一代代数学家前仆后继,却都壮志未酬;满怀热情,却都铩羽而归:导致人们不禁怀疑费马大定理的正确性,怀疑费马的那句千古名句:\"我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。\"

从小我就深知自己数学思维先天不足,后天又没能得到有效训练,因此求学期间深受数学的困扰,高一分科时果断选了文科,大学和工作后也为不用再碰数学而欢呼雀跃。以前一直在困惑一个问题:数学到底有什么用呢?那些数学公式、解题技巧除了成为重点中学、大学的敲门砖外,对不直接从事数学工作的我来说实在感受不到它的具体用处,当然不能否定学习数学过程中帮助我们塑造了一种系统化、理性化、条理化的思维方式以及教给我们足以应付日常生活中简单运算的能力。以我浅薄的数学认知,我至今还是认为很多数学家现在做的工作是无用的,尤其是纯粹数学,但这也是我不禁困惑和敬佩的原因。

读了《费马大定理》这本书,我才知道,原来数学是如此严谨,却又如此浪漫,这是一个兼具理性与感性的国度。

数学应该是全世界最严格的一种科学。证明是数学的核心,也是它区别于别的科学之处,别的科学有各种假设,它们为实验证据所验证直到它们被推翻,被新的假设替代。如物理学上牛顿的力学定律,即使不说他被推翻但我们能够发现它使用的局限;再如对物质基本粒子的探索,由原子到质子电子中子,再到反物质、夸克,最后到现在被称作弦的粒子……可是数学不一样,在数学中,绝对的证明是其目标,如果我们从一个正确的陈述或者公理开始,然后严谨地按照逻辑,一步一步去推论,得出最后结果的时候,这个东西就定下来了,就再也推翻不了了。毕达哥拉斯定理,后人能够推翻吗?不可能,任你有多大的反对的力量跟意志,你都没办法毁灭数学所取得的成就。数学家所做的就是用他们的心灵去思考那些数学的柏拉图理念,追求天衣无缝的逻辑推理。

数学因它的严谨让世间绝大多数凡人都望而却步,只可远观而不可亵玩,但它又是如此有魅力,吸引一代代智力卓绝的精英,把自己的生命献祭上去,这是一件多么浪漫的事情!尤其是他们干这些外人看来完全没用的事的时候,这么投入,这么专注,哪怕生命威胁就在眼前,都浑然不觉。()比如说在罗马军队入侵的时候,古希腊数学家阿基米德浑然不觉,还在沙地上做算术,一个罗马士兵喊他他不理,其实很可能是他太专注于沙地上他写的那些算式了。于是罗马士兵很生气,一剑刺进了他的胸膛,就结束了这一代大数学家的性命。可以说,整个数学史,就是一曲波澜壮阔的浪漫史诗。

严谨而浪漫的数学是人类无法抗拒的智力游戏,就像造物主在实物世界之外留下的线索,看不见却实实在在。

二、兴趣和执着点亮人的生命

三百多年来,费马大定理见证着一代代数学精英的雄心壮志和折戟,终于在1993年英国剑桥大学的一个演讲上,这本书的男主角安德鲁·怀尔斯实现了自己童年时的梦想——证明了费马大定理,虽然后来因为一个小缺陷推迟了证明的最终公布,但这并不影响怀尔斯解决了费马大定理这一卓越成就。

10岁那年,怀尔斯在图书馆遇见了这道百年谜题,自此与数学结下了不解之缘,成为职业数学家后,开始研究看似与费马大定理完全没关系的椭圆曲线,后来他通过学习伽罗尔的\"群论\"和谷山、志村对于椭圆曲线和模型式一一对应的猜想(千万不要问我椭圆曲线、群论、模型式是什么?我也不懂),突然眼前一亮:原来困扰人类几百年的费马大定理,是有可能通过模型式这个数学的独立领域,作为桥梁过渡到他自己熟悉椭圆曲线的领域,从而反过来间接地证明费马大定理。紧接着就是长达7年一个人孤独地躲进自家小楼,从此目不窥园,潜心研究费马大定理的证明,除了他的妻子外没有人知道他在研究什么。尽管这一证明过程我无法理解,但这肯定是极其漫长与艰难的。

后来,他回想这一段研究时光的时候,怀尔斯打了个比方,他说:解决费马大定理就像穿过一个一个的黑屋子,首先我来到一个黑屋子,什么都看不见,我先得去摸,摸这个屋子里的所有家具,所有摆设,等摸得烂熟,对这个房间的每一个纹理都清楚的时候,我才能找到它的电灯开关,我打开电灯开关,才能知道下一个屋子的门在哪儿,打开那个门,然后进入下一个屋子,然后又开始这个过程,而且不知道什么时候是一个头。

当然,最后这些负担都变成了礼物,这些受的苦照亮了前行的路。这是少年时代的梦想和7年潜心努力的终极,怀尔斯终于向世界证明了他的才能。正如马克思所说:\"在科学的道路上没有平坦的大路可走,只有在崎岖小路的攀登上不畏劳苦的人,才有希望到达光辉的顶点。\"

其实,人类知识领域智力领域的任何丰碑,每一块砖,每一块瓦,都是必须由两个基本元素——兴趣和执着堆积出来的,兴趣开启了事业的大门,而执着成就了最后的成功,两者共同点亮了其中的每一块砖,每一块瓦,每一个人的生命。

当然,在费马大定理的动人故事中,怀尔斯不是唯一的主角,无数数学家为之奋斗过,他们甘为基石,他们也是英雄:失明却多产的欧拉,罕见的女数学家热尔曼,众所周知的数学天才高斯,充满悲壮色彩的伽罗尔,日本数学家谷山和志村……他们高瞻远瞩,耐住寂寞,矢志不渝,执着于追求科学真理,哪怕付出自己的全部也在所不惜。

三、生活赋予学术源泉和灵魂

生活与学术是什么关系呢?我之前一篇随感里面提到的:两者不是完全对立的,而是相互交融、相互促进的。怀尔斯用自己的学术人生告诉我们:生活并不是学术的绊脚石,()相反,生活不仅赋予了学术源泉,也为学术注入了灵魂,提供了更多的支持。

怀尔斯在长达7年秘密、孤独的求证之旅中,也曾经压力大到想放弃。当压力变得很大时,他会转向他的家庭,他放松的唯一方式就是和\"和孩子们在一起,年幼的他们对费马好唔想去,他们只需要听故事,他们不想让你做任何别的事情\".同时,他对妻子许诺:要把这份研究成果作为给她的生日礼物,尽管迟了2年,但他最后还是成功地将这份数学史上最伟大的证明敬献给了他的妻子。

除了家庭给予了怀尔斯精神动力之外,他的\"朋友圈\"也在他最终证明关键一步雪中送炭。当1993年那场演讲后,审核证明原稿时发现的一个小错误让怀尔斯压力大到几度崩溃,想要放弃。但他此时不再关起门来自己搞,而是找到了在求证工具领域有很深造诣的约翰泰勒来合作探究,彼此分享思想,弥补那一个小缺陷,最终实现了童年的梦想,完成了数学史上最伟大的证明。

学术如果还待在书斋,不能融入火热的社会和沸腾的生活,这样的学术必死无疑。当然,孤芳自赏式钻研学术,没有生活的气息,可能人生的幸福感会降低很多,会留下些许遗憾。

最后,借用费马的那句俏皮话结束我一个文科生对于这本数学著作的分享吧,我有很多未竟之言,但这里空白太小,写不下。

第13篇:费马最后定理的历史过程

数学与统计学院1007班廖亚平

被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是“在陈年数学困局中,终於有人呼叫„我找到了‟”。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn + yn =zn的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=

3、y=

4、z=5;x=

6、y=

8、z=10;x=

5、y=

12、z=13...等等。

费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最後定理也就成了数

学界的心头大患,极欲解之而後快。

十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫斯克尔(P.Wolfskehl)在1908年提供十万马克,给能够证明费马最後定理是正确的人,有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍然吸引不少的“数学痴”。

二十世纪电脑发展以後,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的(注286243-1为一天文数字,大约为25960位数)。

虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

五○年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,後来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八○年代德国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最後定理也是正确的。这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众

也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。

要证明费马最後定理是正确的

(即xn + yn = zn 对n≥3 均无正整数解)

只需证 x4+ y4 = z4 和xp+ yp = zp(p为奇质数),都没有整数解。附录:费马小传

费马(Pierre de Fermat)是十七世纪最伟大的数学家之一,1601年8月20日生於法国南部土鲁士(Toulous)附近的一个小镇,父亲是一个皮革商,1665年1月12日逝世。

费马在大学时专攻法律,学成後成为专业的律师,也曾经当过土鲁士议会议员。

费马是一位博览群书见广多闻的谆谆学者,精通数国语言,对於数学及物理也有浓厚的兴趣,是一位多采多艺的人。虽然他在近三十岁才开始认真专研数学,但是他对数学的贡献使他赢得业余王子(the prince of amateurs)之美称。这个头衔正足以表彰他在数学领域的一级成就,他在笛卡儿(Descartes)之前引进解析几何,而且在微积分的发展上有重大的贡献,尤其为人称道的是费马和巴斯卡(Pascal)被公认是机率论的先驱。然而人们所津津乐道的则是他在数论上的一些杰作,例如费马定

理(又称费马小定理,以别於费马最後定理):apº a(modp),对任意整数a及质数p均成立。这个定理第一次出现於1640年的一封信中,此定理的证明後来由欧拉(Euler)发表。费马为人非常谦虚、不尚名利,生前很少发表论文,他大部分的作品都见诸於与友人之间的信件和私人的札记,但通常都未附证明。最有名的就是俗称的费马最后定理,费马天生的直觉实在是异常敏锐,他所断言的其他定理,後来都陆续被人证出来。有先见之明的费马实在是数学史上的一大奇葩

第14篇:费马点简洁证明

費馬點(Fermat Point)

一、前言

費馬(Pierre de Fermat,1601-1665)是一位律師和法國政府的公務員,他利用閒暇的時間研究數學,他從未發表他的研究發現,但是他幾乎與同時代的所有歐洲的大數學家保持通信。曾經,費馬是歐洲所有數學研究進展之交換中心。有一天,他要回答一個收到的問題,『要找出三角形裡最小點的位置,這個最小點是指這點到三個頂點的距離總和為最短』。

「在平面上找一個點,使此點到已知三角形三個頂點的距離和為最小」,這個點就是所謂的費馬點(Fermat Point),這個問題可以應用在,例如有三個城市,然後要蓋一個交通中心到這三個城市的距離最短這一類的問題。

二、找費馬點

在平面上一三角形ABC,試找出內部一點P,使得PAPBPC為最小。首先,讓我們先找到P點的性質,再來研究怎麼做出P點。

P點有什麼性質呢?它的位置是否有什麼特殊意義呢?在中學裡,我們學過三角形的內心、外心、重心以及垂心,P點和這些心之間有關聯嗎?還是和有些線段長、角度大小有關係呢?

APB、BPC和CPA很接近,這三個角度有何關聯?

【解法1】

1如右圖,以B點為中心,將APB旋轉60到C\'BP\' ○

因為旋轉60,且PBP\'B,所以P\'PB為一個正三角形PBP\'P

因此,PAPBPCP\'C\'P\'PPC

由此可知當C\'、P\'、P、C四點共線時,PAPBPCP\'C\'P\'PPC為最小

2若C\'P\'P共線時,則 ○

BP\'P60C\'P\'BAPB120

同理,若P\'PC共線時,則BPP\'60BPC120

所以P點為滿足APBBPCCPA120的點

但是,該用什麼方法找出P點呢?

A\'

以ABC三邊為邊,分別向外作正三角形ABC\'、A\'BC、AB\'C

連接AA\'、BB\'、CC\'

AA\'、BB\'、CC\'三線共點,設交點為P,即為所求

【證明1】

(在解法1曾提到若PAPBPCP\'C\'P\'PPC,即C\'P\'PC四點共線時,小值,所以P要在CC\'上。)

A\'

ABB\'AC\'C1

2則DPB~DAC\',得3460 在PC\'上取點P\',使得BPBP\'BPP\'為正三角形

則ABPC\'BP\',得APC\'P\'

所以PAPBPCP\'C\'P\'PPCC\'C

【證明2】 PAPBPCC\'C有最

所以CPA\'60 A\' APBBPCCPA120,又A\'BPC四點共圓(BPCBA\'C180)

故APCCPA\'180,因此P在AA\'上 同理可證P在BB\'、CC\'上,

故P為AA\'、BB\'、CC\'三線交點

三、畫出費馬點

經過上面的討論,可以知道,在平面上ABC,想找出一點P,使PAPBPC為最小,方法為:分別以AB、BC為邊長做出正三角形ABC\'及A\'BC,連接AA\'、CC\',兩線交於一點P,P點即為費馬點。

使用上述方法需要注意到一點,ABC的每一個內角均小於120,如果其中有一內角大於120,那麼P點就是ABC最大內角的頂點。

第15篇:费尔马大定理的证明李新福

关于弯国強的费尔马大定理证明的否定

费尔马大定理成立的条件是:X∧n+Y∧n=Z∧n; 其中(X, Y, Z, n)=1;

而弯国強老师即由:

X∧n =(Z-Y)(Z∧n-1+ Z∧n-2Y+…..+ ZY∧n-2+ Y∧n-1) 令: Z-Y=n∧n-1*m∧n; 使得(X, n)=n≠1;

所以最多只能认为弯国強老师仅证明了费尔马大定理的一个特例而已。

上海松江北翠路125号李新福

2013.2.12.

第16篇:费马大定律读后感

费马大定律读后感

真是难以想象,很多现在看起来高深的学科,最开始都不是什么专家型的人物奠定了深厚的基础。而数字是如此有趣,那些书本中学习过的公式和定理原来后面都有那么多深藏的故事和曲折的经历。

阅读本书是一种享受,因为对数学还挺有好感,尤其喜欢中学和大学的证明题。那种感觉就好像现在喜欢的一个人自助游,两者存在相似性,某种程度上都是一种探索。

偶然看到一个喜欢的地方,然后兴奋地看相关的资料,然后想象着那里可能的环境和场景,那里的街道和人们,于是做了很多功课,制定计划,有一天迫不及待地去了,一一验证网络上或者书籍中说的是否都是那么回事。通过自己的行走验证了资料的信就和对错,通过证明过程,找到一条通向最后结论的通道,有种畅快淋漓的快乐。

只是本书阅读了一半就去借周末之便香港徒步了四天,根据网络的资料DIY了一个4天4条经典徒步径体验加4所着名大学的山水文化之旅,也是一次对既熟悉又陌生的探索之旅。网络的攻略就好像一道证明题的结论,我就是去寻找怎样达到这个路径的方式,最后只是一个感叹词:哦,原来如此啊!带着徒步的体验回来继续阅读本书,迫不及待记录我的一点感受和体验。

我想,不管是费马,安德鲁。怀尔斯,还是其他数学家,以及科学家,都是真正意义上的探险家,他们探索的不是一个地球上可以看得见的三维空间,而是一个领域空间。有的人孤独地走着,前无古人,后无来者,仰苍天而啸;有的人与同行者一路热闹地走到终点。数字之间隐匿着千丝万缕的联系,我们都从中体验过它的神奇,当了个小小的探险者。

第17篇:定理与证明

定理与证明(一)

教学建议

(一)教材分析

1、知识结构

2、重点、难点分析

重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性.

难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.

(二) 教学建议

1、四个注意

(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.

(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.

(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.

(4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.

2、逐步渗透数学证明的思想:

(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为„„,所以„„”句式,“如果„„,那么„„”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.

(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法.

(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至

三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题.

教学目标:

1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.

2、能用符号语言写出一个命题的题设和结论.

3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.

教学难点:将文字语言转化为几何符号语言.

教学过程:

一、复习提问

1、命题“两直线平行,内错角相等”的题设和结论各是什么?

2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)

3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)

二、例题分析

1、证明:两直线平行,内错角相等.

已知:a∥b,c是截线.

求证:∠1=∠2.

分析:要证∠1=∠2,

只要证∠3=∠2即可,因为

∠3与∠1是对顶角,根据平行线的性质,

易得出∠3=∠2.

证明:∵a∥b(已知),

∴∠3=∠2(两直线平行,同位角相等).

∵∠1=∠3(对顶角相等),

∴∠1=∠2(等量代换).

2、证明:邻补角的平分线互相垂直.

已知:如图,∠AOB+∠BOC=180°,

OE平分∠AOB,OF平分∠BOC.

求证:OE⊥OF.

分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.

证明:∵OE平分∠AOB,

∴∠1= ∠AOB,同理 ∠2= ∠BOC,

∴∠1+∠2= (∠AOB+∠BOC)= ∠AOC=90° ,∴OE⊥OF(垂直定义).

三、课堂练习:

1、平行于同一条直线的两条直线平行.

2、两条平行线被第三条直线所截,同位角的平分线互相平行.

四、归纳小结

主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.

五、布置作业

课本P143

5、(2),7.六、课后思考:

1、垂直于同一条直线的两条直线的位置关系怎样?

2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?

3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?

第18篇:定理与证明

《定理与证明》学案

【学习目标】

1.了解定理,证明的定义。

2.知定理必须证明是正确的命题后才可运用。 (重点)

3.会用几何语言证明一个命题。 (难点)

【问题导学】

1.阅读课本55页,写下并记忆五个基本事实。

1)两点确定一条直线;2)两点之间,线段最短;3)过一点有且只有一条直线与已知直线垂直;4)过直线外一点有且只有一条直线与这条直线平行;

5)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。

2.认真阅读课本56页后回答:

① 什么是定理?定理的作用是什么?

数学中,有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断他们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理。

作用:揭示客观事实的本质属性,作为进一步确认其他命题真假的依据。

② 认真完成“思考”的问题,参照云图中的提示,判断结论的正确与否:可知第一个结论不正确.23571113159509 第二个结论不正确.钝角三角形 第三个结论正确.

对上面不正确的结论举反例说明。

③什么是证明?哪些可以作为证明的依据呢?

根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明。

3.阅读“直角三角形的两锐角互余”的证明后回答:

③ 写出这个命题的条件和结论,总结证明命题的步骤。

④ 仿照例题步骤证明定理“有一个角等于60°的等腰三角形是等边三角形”

4.阅读课本57页读一读,写出证明的依据有哪些?

定义、基本事实、已经学过的定理,等式的性质、等量代换

【课堂检测】

课本练习的第一题和第二题【学习小结】

第19篇:定理与证明

定理与证明(二)

一、教学目标

1.了解“证明”的必要性和推理过程中要步步有据.

2.了解综合法证明的格式和步骤.

3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.

4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.

5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.

二、学法引导

1.教师教法:尝试指导,引导发现与讨论相结合.

2.学生学法:在教师的指导下,积极思维,主动发现.

三、重点·难点及解决办法

(-)重点

证明的步骤和格式是本节重点.

(二)难点

理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.

(三)解决办法

通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.

四、课时安排

l课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

1.通过引例创设情境,点题,引入新课.

2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.

3.通过提问的形式完成小结.

七、教学步骤

(-)明确目标

使学生严密推理过程,掌握推理格式,提高推理能力。

(二)整体感知

以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.

(三)教学过程

创设情境,引出课题

师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).

例1已知:如图1, , 是截线,求证: .

证明:∵ (已知),∴ (两直线平行,同位角相等).

∵ (对项角相等),∴ (等量代换).

这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.

[板书]2.9定理与证明

探究新知

1.命题证明步骤

学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.

【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.

根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):第一步,画出命题的图形.

先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步,结合图形写出已知、求证.

把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.

第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.

学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).

【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.

反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.

(2)课本第112页A组第5题.

【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第

一、二步.

2.命题的证明

例2证明:邻补角的平分线互相垂直.

【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.

(1)分析命题的题设与结论,画出命题证明所需要的图形.

邻补角用图2表示:

图2

添画邻补角的平分线,见图3:

图3

(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示: ,角平分线用几何符号语言表示: , ,求证邻补角平分钱互相垂直,用符号语言表示: .

(3)分析由已知谁出求证途径,写出证明过程.

有什么结论后可得 ( ),由已知可以推导 吗?学生讨论思考.

【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.

已知:如图, , , .

求证:

证明:∵ (已知),又∵ , (已知),∴ .

∴ (垂直定义).

证明完成后提醒学生注意以下几点:

①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.

②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如: 与 互为邻补角,在已知中写为 ,角平分线有几种表示方法,如 是 的平分线, , ,根据此题写成 较好,方便于下面的推理计算.

③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.

反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”

【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.

3.判定一个命题是假命题的方法

师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?

【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.

根据学生说明,教师小结:

判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图, 与 是同位角但不相等就说明“同位角相等是假命题”.

反馈练习:课本第111页习题2.3A组第4题.

【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.

反馈练习

投影出示以下练习:

1.指出下列命题的题设和结论

(1)两条平行线被第三条直线所截,同旁内角互补.

(2)两个角的和等于直角,这两个角互为余角.

(3)对项角相等.

(4)同角或等角的余角相等.

2.画图,写出已知,求证(不证明)

(1)同垂直于一条直线的两条直线平行.

(2)两条平行直线被第三条直线所截,同位角的平分线互相平行.

3.抄写下题并填空

已知:如图, .

求证: .

证明:∵ (),

∴ ().

∴ ().

【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.

总结、扩展

以提问的形式归纳出本节课的知识结构:

八、布置作业

(-)必做题

课本第110页习题2.3A组第3(2)、(3)、(4)题.

(二)思考题

课本第112页B组第l、2题.

作业答案

A组(略)

B组1.已知两直线平行,同旁内角互补。

(两直线平行,同旁内角互补) (同角的补角相等).

2.已知:如图, ,、分别平分 与 .求证: .

第20篇:数学定理证明

一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理) 2.局部有界性定理. 3.拉格朗日中值定理.

4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛顿——莱布尼茨公式.

7.多元函数可微的必要条件(连续,可导). 8.可微的二元函数取得极值的必要条件. 9.格林定理.

10.正项级数收敛的充要条件:其部分和数列有界. 11.幂级数绝对收敛性的阿贝尔定理. 12.(数学

三、四)利润取得最大值的必要条件是边际成本与边际收入相等. 二.基本方法:

1.等价无穷小替换:若xa时,有(x)~(x),试证明lim(x)f(x)lim(x)f(x) 。

xa

xa

2.微元法:若f(x)是区间[a,b](a0)上非负连续函数,试证明曲边梯形D(x,y)axb,0yf(x) 绕 轴旋转,所得的体积为V2

ba

xf(x)dx。

3.常数变易法:若P(x)和Q(x)是连续函数,试证明微分方程yP(x)yQ(x)的通解为

P(x)dxyeC



Q(x)e

P(x)dx

dx。 

三.一些反例也是很重要的:

1.函数的导函数不一定是连续函数。反例是:函数点不连续。

2.f(a)0,但不一定存在xa点某个邻域使函数f(x)在该邻域内单调增加。反例是:函数

1

x100x2sin,

f(x)x

0,

x0, x0,

12

xsin,

f(x)x

0,

x0,在x0点可导,但f(x)x0,

在x0

3.多元函数可(偏)导点处不一定连续。反例是:函数

xy

,2

f(x,y)xy2

0,

(x,y)(0,0),(x,y)(0,0),

4.多元函数在不可(偏)导点处,方向导数不一定不存在。反例是:函数 f(x,y)处两个一阶偏导数都不存在,但是函数在在(0,0)点处沿任一方向的方向导数都存在。

an1an

xy

22

在(0,0)点

5.

1,既不是正项级数an收敛的充分条件,也不是它收敛的必要条件。反例一,正项级数

n1

n1

n

1n

an1an

1但不收敛。反例二,正项级数

n1

53(1)

n

不满足

an1an

a2n

,但是它是收敛的。211 a

2n1

费马大定理证明
《费马大定理证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档