人人范文网 范文大全

高等数学积分总结[推荐]

发布时间:2020-03-03 02:55:11 来源:范文大全 收藏本文 下载本文 手机版

问题引例:曲边梯形的面积、变速直线运动的路程n积分定义:bfxdxlimfxiia0i1b计算方法:fxdxFbFaa一元定积分几何意义:连续曲线与x轴所围曲边梯形面积的代数和物理意义:变力沿直线做功应用几何:平面图形的面积直角坐标、极坐标、体积已知平行截面、旋转体体积平面曲线的弧长直角坐标、极坐标、参数方程、旋转曲面的面积应用物理:水压力、质量与引力、边际成本

一元不定积分:解决定积分的计算问题,将积分问题与求导问题联系起来

问题引例:曲顶柱体的体积、平面薄片的质量n积分定义:fx,ydlimf,iii0i1D计算方法:关键问题是定限,在直角坐标下d=dxdy,在极坐标下d=rdrd二重积分几何意义:以D为底,fx,y为曲顶柱体的体积的代数和物理意义:应用几何:求平面图形的面积dD应用物理问题引例:四维空间中曲顶柱体的体积问题n积分定义:fx,y,zdvlimf,,viiii0i1计算方法:直角坐标 dv=dxdydz柱面坐标xrcos,yrsin,zz,dv=rdrddz三重积分球面坐标xrsincos,yrsinsin,zrcos,dv=r2sindrdd定限的方法参考二重积分 几何意义、物理意义应用几何应用物理

问题引例:曲线形构件的质量nn积分定义:fx,ydslimf,s,fx,y,zdslimf,,siiiiiii00i1i1LL计算方法:用路径函数L化简fx,y,化为一元定积分弧长元素ds=dx2dy22ds=1+y\'xdx对弧长的曲线积分2ds=1+x\'ydy第一型曲线积分22ds=t+\'tdt22ds=r+r\'d几何意义、物理意义应用几何应用物理n问题引例:曲面不均匀薄片的质量n积分定义:fx,y,zdSlimf,,Siiii0i1对面积的曲面积分计算方法:

1、投影,

2、代入,

3、转换22第一型曲面积分fx,y,zdSfx,y,zx,y1zxzydxdyDxy应用几何:计算曲面面积应用物理

Pi,ixiQi,iyi问题引例:变力沿曲线作功Wlim0i1nn

1、定义:如果一阶微分方程Px,ydxQx,ydy0的左端恰好是某一个二元积分定义:Px,ydxlimP,x,Qx,ydylimQi,iyiiiiLL00i1i1函数u的全微分,此时方程的通解为u=C,因此全微分方程的关键就是求u积分的定义可推广到空间的情况,并可简写成Px,ydxQx,ydy

2、求解方法:L对坐标的曲线积分计算方法:本质是将其化为一元定积分用参数方程、将y化为x\'全微分方程uu第二型曲线积分①不定积分法:P,uPdxy,PdxyQxy两种曲线积分的关系:②凑微分法PdxQdyPcosQcosds③积分因子法:见笔记PdxQdyRdzPcosQcosRcosds 其中cos,cos,cos是曲线在一点的与有向曲线同向的切向量的方向余弦 问题引例:曲面的侧的定义指明了曲面是有方向的曲面的投影,流体力学中流量问题=vdSn积分定义:limPi,i,iSzyQi,i,iSxzRi,i,iSxyPcosQcosRcosdS0i1对坐标的曲面积分nlimPi,i,iSzyQi,i,iSxzRi,i,iSxyPdydzQdxdzRdxdy第二型曲面积分0i1第一式将定义以第一型曲面积分的形式给出;第二式是我们普遍用的第二型曲面积分两个式子反应的是一个东西,也就阐明了两类曲面积分的联系计算方法:投影、代入、转换应用:流量的计算

QP 格林定理:①曲线正向的定义;②dxdy,L为D的取正向的边界曲线LPdxQdyxyD QP应用格林公式应注意:1曲线L必须封闭;2、在D内每点具有一阶连续偏导;3L为正向曲线 xy

A格林公式曲线积分的路径无关性:概念,积分值只与初始点的坐标有关PdxQdy B 四个等价命题:在一个单连通区域内,函数Px,y、Qx,y在G内有一阶连续偏导 则下面四个命题等价:QP ①=;②PdxQdy0;③PdxQdy与路径无关;④存在函数ux,y,使duPdxQdyLL xy 高斯公式:是闭曲面围成的区域,函数P、Q、R在上具有一阶连续偏导,则PQRPdydzQdzdxRdxdy++dVxyzPQRPcosQcosRcosdS++dV高斯公式通量散度xyz其中是的外侧,cos、cos、cos是点出法向量的方向余弦PQR通量与散度:=AdS,divA++xyz

斯托克斯公式:设是以为边界的有向曲面,的正向与的侧符合右手规则,P,Q,R具有一阶连续偏导  RQQPPRPdxQdyRdzdydzdzdxdxdyL yzzxxy斯托克斯公式环流量与旋度

环流量与旋度:向量场A沿有向闭曲线的曲线积分Ads称为A沿的环流量 RQPRQP旋度:rotA= ikjyzzxxy

积分应用归纳几何应用:

1、求曲边梯形的面积:用一元定积分可做

2、求曲顶柱体的体积:用二重积分可做,用三重积分可做

3、曲面的面积:1dSdS 柱面面积=fx,yds——牟合方盖的表面积Lfy,zds,fx,zdsLL该柱面以L为准线,母线平行于z轴,介于z0与曲面zfx,y之间的部分

4、平面的面积:其实就是曲面面积的特殊情况,用一元定积分可做,用二重积分可做

物理应用:

1、质量平面直线杆一元定积分线状质量线密度长度平面曲线杆对弧长的曲线积分这也就解释了为什么对弧长的积分化为定积分空间曲线杆被积函数为三元函数的对弧长的曲线积分平面面片二重积分面状质量面密度面积空间面片对曲面的面积积分立体快质量体密度体积三重积分解释了为什么对曲面的面积积分化为二重积分=fP;MfPd

2、质心物理重心——质心——几何中心——形心概念解释:物理重心——是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。规则而密度均匀物体的重心就是它的几何中心。质心——质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。与重心不同的是,质心不一定要在有重力场的系统中。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心不通常在同一假想点上。形心——面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。 质心的计算:引入了静力矩的概念xx,ydyx,y薄片:xDx,yd,ydDx,yd平面DDxx,ydsyx,曲线杆:xLydsx,yds,yLx,ydsLL

3、转动惯量:定义:IMr2Ixy2x,ydDIyx2x,ydDI0x2y2x,yd D



块:xxdv,yydvdvdv空间面片:xxd,yyddd曲杆:xxds,yydsdsds

高等数学三重积分计算方法总结

高等数学第九章重积分教案

高等数学总结

大一高等数学总结

高等数学难点总结

高等数学极限总结

高等数学难点总结

高等数学上册总结

高等数学教学总结

重积分总结

高等数学积分总结[推荐]
《高等数学积分总结[推荐].doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档