人人范文网 教学心得体会

小学数学数形结合教学心得体会(精选多篇)

发布时间:2020-04-18 22:19:37 来源:教学心得体会 收藏本文 下载本文 手机版

推荐第1篇:小学数学数形结合教学思想

小学数学数形结合教学思想

一、数形结合教学思想在小学数学教学中的运用

数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。下面介绍这两个方面的内容在小学数学教学中的运用。

(一)以形助数

所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。而不变量就是这两个路程汽车行驶的速度都是始终不变的。那么在解决问题的时候,就可以直观地展现出来。先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。

(二)以数解形

虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。比如老师在讲解“平行四边形的特征”一课时,很多学生通过学习,对概念性的东西已经非常了解,但是在具体的情况下又不能真正把握清楚,老师在教学过程中就可以通过对四边形进行赋值,让学生更深刻地理解和把握。比如给出三组数字:(1)6,5,3,7(2)7,5,5,7(3)8,6,4,6在这三组数字中,让学生选择平行四边形。那么学生理解了平行四边形的概念,即两组对边要平行且相等,通过比较分析,知道只有第二组数字符合平行四边形的概念。因此,在这样的教学中应该充分运用“数”与“形”的特点,帮助学生更快地掌握知识要点。

二、在小学数学教学中运用数形结合教学思想需要注意的问题

(一)注意培养学生运用数形结合方法的习惯

老师在小学数学中运用数形结合的方法进行教学,帮助学生更好地理解知识点,同时要注意培养学生运用数形结合方法解决数学题的习惯。小学生在平时的做题过程中,常常会忘了使用“数形结合”方法,有的还不会。因此,老师在平时的教学中,一定要培养学生养成运用数形结合方法的好习惯。针对不同的年龄段学生,采用不同的方法,比如低年级学生,引导学生在生活中找实物,高年级的学生则学会简单的画图等,让学生建立数形结合的思想。

(二)数形结合要注意利用多媒体技术 多媒体的发展已经迅速蔓延到教学领域,对于比较难懂的知识点,老师要借助多媒体技术实施教学。因为多媒体技术可以移动图像,当碰到需要运用想象思维的时候,可以在多媒体中进行展示。

三、结语

在小学数学中运用数形结合教学思想,可以有效提高课堂教学效率,帮助学生更快地理解知识点。教师应根据不同情况,综合运用“以形助数”和“以数解形”这两种不同方式,取得更好的教学效果。

作者:季利明 工作单位:赤峰市元宝山区元宝山镇马林小学

推荐第2篇:数形结合

如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有(

(1)若通话时间少于120分,则A方案比B方案便宜20元; (2)若通话时间超过200分,则B方案比A方案便宜12元; (3)若通讯费用为60元,则B方案比A方案的通话时间多;

(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.

某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点进行机组试运行,且该水池的蓄水量与时间(时间单位:小时)的关系如图丙所示:

给出以下三个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水,④单位时间内每个进水口进水量是每个出水口出水量的两倍.则上述判断中一定正确的是

如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4√2,∠C=45°,点P是BC边上一动点,设PB的长为x.

(1)当x的值为 时,以点P、A、D、E为顶点的四边形为直角梯形; (2)当x的值为

时,以点P、A、D、E为顶点的四边形为平行四边形;

(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.

推荐第3篇:小学数学数形结合教学思想探析论文

摘要:小学是我国教育系统的重要组成部分,同时也是我国教育系统的基础,小学教育的质量将会影响到学生学习能力的培养,进而影响到学生以后的学习。数学是一门比较重要的学科。在小学阶段,大部分的学生都是刚开始正式接触数学学科,而数学知识的逻辑性又比较强,比较抽象,从而会使得一部分学生感觉到比较吃力。鉴于此,在小学数学教学过程中应结合小学生的生理特点和心理特点采用数形结合的教学思想,提高学生数学学习的效果。

关键词:小学;数学教学;数形结合

数形结合思想是数学思想的一种,在教学过程中采用数形结合的教学思想不仅可以降低知识点的难度,同时还可以提高学生学习的兴趣。因此,应将数形结合的教学思想应用于小学数学教学中。本文将结合小学数学教学的实际情况,分析和研究数形结合思想在小学数学教学中应用的方法,并提出在小学数学教学中运用数形结合思想应注意的问题,希望可以为以后的小学数学教学工作提供一些借鉴。

1数形结合思想在小学数学教学中的具体应用

数形结合思想就是指在数学学习过程中,可以通过数和形之间的变换来解决一些数学问题,采用这样的方式可以大大降低数学问题的难度。下文将具体介绍一下数形结合思想应用的方法。首先,在小学数学教学过程中应采用数形结合的思想可以将一些抽象的概念直观化,从而使得学生可以更好地理解概念。概念是数学学习的重要内容之一,但在数学中有一些概念是比较抽象的,对于小学生来说理解这样的概念是存在一定难度的。以往,教师为了让学生理解这些概念往往会采用死记硬背的方式,按照教师的观点,先记住概念,随着使用次数的增多自然就会理解了。但是,对于学生而言,光记住概念却不理解概念是难以将其应用于解题过程中的。因此,在教学过程中,教师可以采用数形结合的思想,通过“数”、“形”变换将这些抽象的概念以较为直观的方式表达出来,这样学生才能更好地理解概念,并将其应用于解题过程中。其次,在小学数学教学过程中教师应采用数形结合的思想将一些隐性的数学规律以形象化的方式表达出来,从而培养学生找规律的能力。数学知识的逻辑性比较强,同时也存在很大的规律性。有一些数学规律已经被视为公式,出现在数学教材中。但有一些数学规律则因各种因素的影响没有出现在教材中,而这些隐性的规律是学生难以发现的,但对于理解数学知识和解题来说是比较有用的。

因此,教师应将这些隐性的数学规律告知学生。但在告知学生的过程中应掌握一定的方法技巧,培养学生独立寻找数学规律的能力。采用数形结合的思想,一方面可以更加清晰地展示数学规律,另一方面也更加容易让学生掌握这种寻找数学规律的方法。最后,在小学数学教学过程中教师应采用数形结合的思想来简化问题,从而降低问题的难度。在数学学习过程中,有很多数学问题都存在比较复杂的数量关系,对于处于小学阶段的学生来说他们难以理解这样复杂的数量关系,进而也就不知道该如何解题。在这种情况下,教师应教授学生利用数形结合思想解决问题的方法。采用数形结合思想一方面可以将一些复杂的问题简单化,另一方面也可以使得问题中的数量关系清晰化,更加有利于学生理解题目的含义。在小学数学教学中运用数形结合思想不仅可以提高学生数学学习的效果,同时还可以让学生养成用数形结合思想解决问题的习惯,从而使得学生的空间思维能力得到提升,这对学生以后的数学学习也会有很大的帮助。

2小学数学教学中运用数形结合思想应注意的问题

在小学数学教学中运用数形结合思想对于培养学生的数学思维能力具有重要的作用,但为了充分发挥数形结合教学思想的作用,在运用数形结合教学思想的过程中还应注意下述几方面的问题。首先,教师在小学数学教学的过程中不仅要采用数形结合思想,同时还应让学生养成用数形结合思想解决问题的习惯。准确地说,数形结合是一种数学思想,而不是教学思想。因此,为了提高学生的数学学习能力,在数学教学的过程中教师应有意识地培养学生运用数形结合思想解决数学问题的习惯,这样就会让学生养成一种思维习惯,遇到数学问题时就会想到这种解决问题的方法,这对学生以后的学习和生活都是具有积极作用的。其次,教师在运用数形结合教学思想的过程中应充分利用多媒体技术。正如上文所述,数形结合思想简单来说就是“数”、“形”变换的一种思想。利用多媒体技术可以更好地向学生展示“形”,还可以利用视频、动画、图片等多种方式来展示“数”“形”变换的具体过程,这样更加有助于学生理解数学知识。最后,在小学数学教学中运用数形结合的教学思想时应加强数学知识和现实生活之间的联系,最好用一些学生平时比较熟悉的事物来表现数形变换的过程,这样不仅可以加深学生对相关知识点的印象,同时还可以提高学生数学学习的兴趣。

3总结

总之,相比于传统的教学思想来说,数形结合的教学思想更加符合数学教学的实际情况。在小学数学教学的过程中采用数形结合的教学思想不仅可以将一些抽象的知识具象化,使得学生可以更好地理解数学知识,同时还可以提高学生的数学思维能力,使其更好地掌握数学知识。

参考文献

[1]袁婷.小学数学教学中数形结合思想的渗透研究[J].学周刊,2015,06:60-61.

[2]曹红涛.数形结合思想在小学数学教学中的渗透研究[J].中国校外教育,2015,28:129.

[3]张晓明.浅谈数形结合思想在小学数学中的应用[J].学周刊,2014,33:208.

推荐第4篇:数形结合教学片断

一、在理解算理过程中渗透数形结合思想。

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。

(一)“分数乘分数”教学片段

课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几?

在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来表示出1/5×1/4这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。后进生受到启发后修改自己的图形,更好地理解1/5×1/4这个算式所表示的意义。第三,全班点评,请一些画得好的同学去展示、交流。也请一些画得不对的同学谈谈自己的问题以及注意事项。

这样让学生亲身经历、体验“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。

(二)“有余数除法”教学片段

课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。

生:9÷4

师:结合图我们能说出这题除法算式的商吗? 生:2,可是两个搭完以后还有1根小棒多出来。 师反馈板书:9÷4=2……1,讲解算理。

师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒? ……

通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。学生学得很轻松,理解得也比较透彻。

二、在教学新知中渗透数形结合思想。

在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。

(一)“植树问题”教学片段

模拟植树,得出线上植树的三种情况。

师:“ ”代表一段路,用“/”代表一棵树,画“/”就表示种了一棵树。请在这段路上种上四棵树,想想、做做,你能有几种种法?

学生操作,独立完成后,在小组里交流说说你是怎么种的?

师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板:

①\\___\\___\\___\\两端都种

②\\___\\___\\___\\___或___\\___\\___\\___\\一端栽种 ③___\\___\\___\\___\\___两端都不种

师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。

以上片段教师利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础融合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

(二)连除应用题教学片段

课一开始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。

30÷2÷3,学生画了右图:先平均分成2份,再将获得一份平均分成3份。 30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。 30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。 以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

三、在数学练习题中挖掘数形结合思想。运用数形结合是帮助学生分析数量关系,正确解答应用题的有效途径。它不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。

(一)三角形面积计算练习

人民医院包扎用的三角巾是底和高各为9分米的等腰三角形。现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块?

有些学生列出了算式:72×18÷(9×9÷2),但有些学生根据题意画出了示意图,列出72÷9×(18÷9)×

2、72×18÷(9×9)×2和72÷9×2×(18÷9)等几种算式。

在上面这个片段中,数形结合很好地促进学生联系实际,灵活解决数学问题,而且还有效地防止了学生的生搬硬套,打开了学生的解题思路,由不会解答到用多种方法解答,学生变聪明了。

(二)百分数分数应用题练习

参加乒乓球兴趣小组的共有80人,其中男生占60%,后又有一批男生加入,这时男生占总人数的2/3。问后来又加入男生多少人?

先把题中的数量关系译成图形,再从图形的观察分析可译成:若把原来的总人数80人看作5份,则男生占3份,女生占2份,因而推知现在的总人数为6份,加入的男生为6—5=1份,得加入的男生为80÷5=16(人)。

从这题不难看出:“数”、“形”互译的过程。既是解题过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要而巧妙。

推荐第5篇:学习心得数形结合

数形结合学习心得

低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过多媒体教学,既充分展现数与形之间的内在关系,又激发了学生的好奇心和求知欲,为培养学生数形结合的兴趣提供了可靠的保证。

又例如:在教学有余数的除法时,我是利用7根小棒来完成的教学的。首先出示7根小棒,问能拼成几个三角形?要求学生用除法算式表示拼三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。

再如:教学连除应用题时,课一始,呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。

30÷2÷3,学生画了右图:平均分成2份,再将获得一份平均分成3份。

30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。

30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。

在教学中我要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。 在教学实践中,这样的例子多不胜数。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。

推荐第6篇:“数形结合”在小学数学教学中的应用

“数形结合”在小学数学教学中的应用

数学课程标准提出了“通过数学学习,掌握数学的基础知识、基本技能和思想方法。”其实在上海二期课改时关于数学基础知识的内容的界定上,也指出数学基础知识不仅指有关的数学概念、性质、公式等,还包括其中隐含的数学思想方法,以及学习数学和运用数学知识解决问题等。所以在教材编写上注重把数学思想方法贯穿在知识领域中,使每部分的数学知识不再孤立、零碎,组成一个有机的整体。

数学思想方法有许多,我们小学一般用到的如符号化、化归、数形结合、极限、模型、推理、几何变化、方程和函数、分类讨论、统计概率等思想。在小学数学教学过程中,有意识地对学生进行数学思想方法的渗透,可以让学生不再感觉数学是一门枯燥的学科,而初步了解数学的价值,从而感受数学思考的条理性、数学结论的明确性以及数学的美。下面就“数形结合”思想在小学数学教学中的应用谈些粗浅的想法。

一、数形结合思想的概念

数与形是数学中的两个最古老,也是最基本的研究对象,我们中小学数学研究的对象就分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:

1、借助于数的精确性来阐明形的某些属性,即“以数解形”;

2、借助形的几何直观性来阐明数之间某种关系,即“以形助数”。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法,具体地说就是将抽象的数学语言与直观图形对应起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

二、数形结合的三种应用方式

一般来说,数形结合的应用方式主要有三种类型:以数化形、以形变数和数形结合。

(1)以数化形

由于“数”和“形”是一种对应的关系,“数”比较抽象,而“形”具有形象,直观的优点,能表达较多具体的思维。在低年级教学中,我们常常会把数的认识与计算通过形(学具)的演示,让学生初步建立起数的概念,认识数、学习数的加减乘除法;而高年级有些数量也较复杂,我们难以把握,于是就可以把“数”的对应——“形”找出来,利用图形来解决问题。画线段图的方法是每一个数学老师都把它当作学生学习数学的一项基本技能加以训练的,大家都知道,在教学应用题时,常可以借助形象的画线段图的方法,将问题迎刃而解。特别是行程问题的应用题,老师们总是不忘借助线段图进行讲解;还如我们在教五年级“时间的计算”这一课,虽然很多同学通过计算就能解决问题,但知其然还要知其所然,我们就可以把时间点、时间段通过线段图来表示,学生就更容易理解,这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。

(2)以形变数

虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算,最典型的就是二年级教材中的“点图与数”,那正方形点图所表示的就是每行与每列的圆点个数都相同,写成算式是两个相同的因数,于是它们的乘积就是平方数;由此在高年级拓展三角形数时有这么个小故事:古希腊毕达哥拉斯学派认为“万物皆数”,他们常把数描绘成沙滩上的点子或小石子,根据点子或小石子排列的形状把整数进行分类,如:

1、

3、

6、

10、„„这些数叫做三角形数(如下图)。

·

· · ·

· · · · · ·

· · · · · · · · · · 那么,判断一下

45、4

56、1830、5050这四个数中,哪一个不是三角形数。中高年级学生通过观察,可以利用等差数列求和的方法可以找出这个数;也可以发现如果把一个三角形数去乘2,就可以写成两个相邻自然数的积,那么高年级的同学就可以利用分解素因数的方法来判断一个数是否是三角形数了。如此以形变数,提高了学生的思维能力。

(3)形数互变

形数互变是指在有些数学问题中不仅仅是简单的以数变形或以形变数,而是需要形数互相变换,不但要想到由“形”的直观变为“数”的严密,还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的形数互变。一般方法是看形思数、见数想形。实质就是以数化形、以形变数的结合。例如,“近似数”一课中,让学生掌握用“四舍五入法”求一个数的近似数是本节课的教学重点。通常我们会直接告诉学生“四舍五入法”这一概念,然后通过大量的练习强化求近似数的方法。那么我们不妨反思:学生做对了是否表明学生已经很好地理解了“四舍五入法”的含义呢?是否有部分学生的解题活动完全建立在对概念的机械模仿上呢?事实上,这种机械模仿的情况是客观存在的。如何帮助学生从本质上理解“四要舍、五要入”的意义呢?我们可以想到把直观的数轴引进这节课,在数轴上找最近的路,把四舍五入放到数轴上展开学习,利用数形结合帮助学生建立一个形象的数学模型,从而加深了学生对“四舍五入法”的理解。

又如在解决问题过程中,经常要用到“数”与“形”互译的数形结合思想,即把问题中的数量关系转译成图形,把抽象的数量关系形象化,再根据对图形的观察、分析、联想,逐步译成算式,以达到问题的解决。最常用的如“鸡兔同笼”一课:鸡兔同笼,有10个头、28条腿,鸡、兔各几只?本课的解决问题教学策略书上采用列表尝试法。如果采用数形互译的画图法解,二年级的学生都能解答,并且可以从画图法引出数量关系,列式解答。有几个头就画几个圆(表示动物的头),然后每个头下加两条腿(表示鸡有两条腿),剩余几条腿就再添在小动物身上,每个添2条(原来的鸡就变成了兔)。这样从图上可知兔有4只,鸡有6只。引导学生理解数量关系:首先假设10只全是鸡,每只鸡身上长2条腿,共10×2=20(条)腿,还剩余28-20=8(条)腿,鸡身上再长2条腿变成兔子,直到8条腿长完为止。这样就得到兔子有8÷(4-2)=4(只),鸡有10-4=6(只)。而对高年级学生借助于画示意图来分析数量之间的关系,是我们经常使用的办法。由此不难看出:“数”“形”互译的过程,既是问题解决的过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要且巧妙。

所以,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效的学好数学知识,更有利于学生学习兴趣的培养、数学思维的发展、知识应用能力的增强,使教学收到事半功倍之效。

三、发挥数形结合思想方法对知识获得的引领作用

1、要善于挖掘教材中含有数形结合思想的内容

教师在教学中要有渗透数形结合思想的意识,引导学生主动有效地利用课本中的图形,从图中读懂重要信息并整理信息,提出问题、分析问题、解决问题,即让学生通过“形”找出“数”。在小学“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”这四个学习领域中,都能应用数形结合思想进行教学,我们通过对教材的分析,初步整理了小学数形结合思想方法在各教学领域的渗透点:(1)“数与代数”:数的认识及计算,都能借助小棒图、计数图来理解算理、法则和方法;(2)“空间与图形”:可以借助数的知识及数量关系进行各平面图形的周长和面积的计算;(3)“实践与综合应用”:从所给问题的情境中辨认出数与形的一种特定关系或结构,运用画线段图、画分析图、画示意图等方法分析理解;(4)“统计与概率”:通过图形演示移多补少来理解平均数的含义。

2、教学时让学生在探索中感受数形结合思想

布鲁纳指出:“掌握基本的数学思想方法,能使数学更易于理解和记忆,领会基本的数学思想和方法是通向迁移大道的‘光明之路’。”在教学中,要让学生自主探索,感受数形结合思想,增强对数形结合思维模式的认知,体会图形对数学知识形成的意义。如果教师在教学中教师充分利用学生形象思维的特点,大量地用“形”解释、演现,经常引导学生将数与形结合起来,借助形象的图形理解算理,提炼算法,就能降低学习难度,有效地改善突破教学难点的方法,提高课堂教学效率。

3、课后延伸时让学生在解决问题中体验数形结合思想

数学是研究现实世界的空间形式和数量关系的科学,而数形结合思想贯穿于整个数学领域,我们可以将复杂的数量关系和抽象的数学概念通过图形、图像变得形象、直观。同样,复杂的几何形体可以用数量关系、公式、法则等手段,转化为简单的数量关系。在课后的知识延伸中,经常引导学生通过数形结合来解决生活中的实际问题,从而体验数形结合的好处。

数形结合是小学阶段的一个重要手段,而这一手段对学生们今后在初、高中的学习构建空间思维起着关键作用。今天我所讲的只是一些初步的、浅显的认识,思维作为一个认知过程,总是与个体的动机、兴趣情感等密切联系并受其制约的,相信只要不断激发学生的兴趣,启迪学生的动机,就能够有效地增强学生的逻辑思维能力和空间想象能力。巧妙地渗透、应用数形结合思想,既能为小学数学教学开辟一片广阔的天地,又能为学生的终身学习和可持续发展奠定扎实的基础。

推荐第7篇:优化“数形结合” 灵动数学课堂(小学数学教学论文)

优化“数形结合”灵动数学课堂

(贵州省晴隆县花贡小学

付作伦)

【摘要】“数形结合”思想是小学数学中常用的、重要的思想方法。“数行结合”即通过数与形之间的相互转化,把抽象的数量关系转化为适当的图形,从图形的结构直观地发现数量之间存在的内在联系,解决数量关系的数学问题。在小学数学中,应用“数形结合”的思想,充分利用“形”把题中的数量关系形象、直观的表示出来。实践证明,数形结合与抽象思维协同运用,和谐发展,是全面提高学生素质的重要方法之一,在数学教学中有至关重要作用和地位。 “数”与“形”之间密不可分,它们相互转化,相辅相成。 【关键词】数形结合小学数学课堂教学

“数形结合”思想是小学数学中常用的、重要的思想方法。“数行结合”即通过数与形之间的相互转化,把抽象的数量关系转化为适当的图形,从图形的结构直观地发现数量之间存在的内在联系,解决数量关系的数学问题。在小学数学中,应用“数形结合”的思想,充分利用“形”把题中的数量关系形象、直观的表示出来。实践证明,数形结合与抽象思维协同运用,和谐发展,是全面提高学生素质的重要方法之一,在数学教学中有至关重要作用和地位。 “数”与“形”之间密不可分,它们相互转化,相辅相成。在课堂教学中适当地利用数形结合,把握好数形结合之度,就可以使问题化难为易,化繁为简。在引进新知、建构概念、解决问题时,还可激发学生的学习兴趣,有利于发展学生的想象力及提高学生的思维能力。

一、“以形助数”在直观中理解数。

借助图形的直观性将抽象的数学概念、运算等形象化、简单化,给学生以直观感,让学生以多种感官充分感知,在形成表象的基础上理解数学的本质,解决数学问题,形成数学思想的目的。小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方法。

二、以“图助学”帮助学生理解题意,理清解题思路。

线段图是小学数学教学中常用的方法;它是学生从直观向抽象过渡的桥梁,有助于学生理解数量关系,从而找到解题方法。让学生画线段图,将数量关系直观科学地体现出来,可以提高学生的分析问题的能力,如果应用得当,会收到意想不到的效果。

例如我在教“几倍求和的应用题”时,我出示了例题:小明家养鸡24只,养的鸭是鸡的5倍,养的鸡和鸭一共有多少只?我并没有急于让学生解题,而是让他们画线段图,然后我让学生自己尝试做题,在交流时,一些学生除了用“24×5+24”这种方法,还用了“24×(1+5)”的方法。我问你们是怎么想的?他们都说是看到线段图后想到的,由此可见,线段图除了帮助学生理解数量关系外,还可以激发学生创新能力。

三、“以数想形”帮助理解各种公式。

在教学有关的数学公式时,如果只是让学生死记硬背,这样只会将知识学死。如果学生稍微碰到有变化的图形问题,就不能灵活解决。所以我在教学长方形周长公式的时候,就让学生借助图形充分理解公式的含义, 求长方形周长大体有三种方法:①长+宽+长+宽,②长×2+宽×2,③(长+宽)×2,通过对学生的检测,我发现学生对于前两种方法应用的比较多,第三种应用的比较少。还有一部分学生对于第三种方法没本质上的认识,只是知道有这样一个公式可以求长方形的周长,知其然,而不知所以然。于是根据自己的检测我设计了让学生边说边摆小棒的方法介绍第三种求周长的方法。

四、以“情导学”使计算中的算式形象化,利于学生理解算理

在小学数学中计算教学占了相当一部分的内容,学生理解算理是计算教学的关键,在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,而数形结合,是帮助学生正确理解算理的一种很好的方式。如:在教学“分数乘分数”时,创设情境:小区铺一块绿地,每小时铺这块地的1/2,照这样计算,1/4小时能铺这块地的几分之几?在引出算式1/2×1/4后,我采用三步走的策略:第一,学生独立思考后用图来表示出1/2×1/4这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领学困生。学困生受到启发后修改自己的图形,更好地理解1/2×1/4这个算式所表示的意义。第三,全班点评,展示、交流。这样把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解了分数乘分数的算理。

总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。最重要的是它能使抽象枯燥的数学知识形象化、具体化,使得数学教学充满乐趣,我们有理由相信:只要巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。

推荐第8篇:浅谈小学数学教学数形结合思想的运用

浅谈小学数学教学数形结合思想的运用

摘要:数形结合思想是新课程背景下重要的数学教学理念,受到了广泛的重视。在小学数学一线教学中,数形结合思想还有待数学教师进一步的学习与运用,促进小学生思维能力的发展,提升小学数学教学质量的提高。

关键字:小学数学; 数形结合思想 ; 运用

一、小学数学运用数形结合思想的作用

数学是小学教育阶段的基础学科,它是研究数量、形状之间关系的学科,由于小学生思维的发展以具体形象思维为主要特点,因此,通过将数字以具体的图形体现出来,可以帮助小学生深入理解数量之间的关系。然而,在当前小学数学教学之中,由于数学教师对数形结合运用的不够,尤其是对数形结合思想的认识不足,对该思想的理论体系学习不够充分,使得数形结合思想在当前小学数学教学中的实际应用存在?^多的问题。通过研究表明,运用数形结合教学可以大大提高小学生对数学的理解程度。

数形结合二者是相互促进、相互补充的,通过恰当的转换,可以将数形结合运用在教学中,促进小学生对数学知识的掌握。一是数形结合有利于小学生对数学知识的掌握。当前小学数学所使用的教材较为系统科学,然而,教材中所呈现的知识对于小学生来说学习较为困难。因此,数学教师在教学过程中必须用学生易于理解的方式,才能让小学生轻松的学习掌握知识。比如,学生对符号和图形较为感兴趣并且能够记忆深刻,如果将数学中的一些知识用图形来代替,将知识与图形相对应,能够帮助小学生更加深刻的理解。

二是数形结合可以帮助小学生提高解决数学问题的能力。数形结合,其实是对数与形之间进行了联系与转化,从而为学生的学习提供了新的思路。尤其是在学习较为复杂的数量关系时,数学教师完全可以借助图形,反之亦然,学习图形的过程中,可以用数字之间的关系来表征。

三是通过数形结合更加有利于小学生思维的发展。心理学研究表明,人的左大脑使用最多,并且擅长进行抽象与逻辑思维,因此数学学科的学习较多运用左大脑。右大脑较为擅长形象思维,比如图形与想象活动,如果能够在学习中结合左半脑与右半脑,对于学生思维的发展、大脑潜能的开发具有重要的作用。

二、当前小学数学数形结合运用存在的问题

虽然数形结合思想在小学数学教学中具有重要的价值与作用,然而在实际教学过程中,其运用还有很多问题。

第一,部分数学教师对数形结合思想认识不够。数形结合思想在小学数学教学中并未得到全面的普及,这是由于部分数学教师对数形结合思想的价值与意义没有全面的认识,很多数学教师对新的教学理念持怀疑与观望的态度,尤其是在数学教学中普遍采用题海战术对学生进行机械式的训练,而没有通过运用数形结合这种有效的方式让学生了解概念本质,提高学习的效率。

第二,数形结合思想在教学过程中运用的方式不当。一是体现在大多数数学教师在进行新课讲授的过程中选择运用数形结合思想,而只有少数教师则选择在复习课中运用数形结合思想。因此,数学教师对于数形结合教学方式的运用倾向不同,如果只在新课讲授中采用数形结合思想而复习课中忽视,则会造成学生很容易将数形结合的方式忘记。二是部分数学教师在采用数学结合过程中,只选择在讲授图形与几何领域的内容中使用,而在数字关系中使用较少。

第三,数学教师在运用数形结合思想中,忽视了对学生进行思想的渗透。主要体现在数学教师对学生课后作业的完成中是否使用数形结合策略缺乏要求,虽然采用传统的做题方式,能够提高做题的效率。然而通过数形结合方式,可以在做一些较难的题的过程中大大提高做题的正确率。数学老师并没有给予学生及时的要求与提醒,因此,数形结合的思想并未形成学生自己的认知结构。

三、小学数学运用数形结合的主要策略

首先,小学数学教师应该加强学习数形结合的思想,认识数形结合思想的价值所在,并且将其形成教学的理念渗透在教学之中。虽然小学阶段的数学知识较为简单,然而最简单的数学中也蕴含着深刻的道理,只有通过将数字与图形结合,从抽象到形象,才能提升小学生解决问题的能力,锻炼小学生的思维能力。小学数学教师的任务不仅是要教会学生知识,更要锻炼学生的思维能力。同时,数学教师自身要加强对数形结合教学思想的学习,通过不断的学习,积累教学经验,并且将其运用在教学之中。

其次,小学数学教师要在教学过程中对学生渗透数形结合的思想。数学教师需要在不同的课型中采用数形结合教学思想,这样才能够让学生认识到数形结合学习策略的重要性与价值。比如,在新知识教学中借助图形与符号来感知,如果数学教师在教学的过程中能够采用数形结合,则学生很容易模仿老师。再比如,在复习课中采用数形结合,主要是老师要通过数形结合对学生进行归纳与总结,让小学生养成运用数形结合进行理清自己知识结构的习惯。

最后,数学教师应该实现教学方式的多元化,让数形结合思想全面渗透在小学数学教学过程中。当前的小学数学教材对数学计算没有做更高的要求,而将教学的目标与重点放在了培养小学生数形结合的思想方面。因此,在每一章的教学过程中都可以用用数形结合思想,数学教师要善于挖掘数形结合思想并将其渗透在课堂中。与此同时,数学教师应该在教学的方式上实现情景创设的多样化,给予学生接触数形结合的机会,让学生通过体验数形结合来学习和巩固知识,内化为自己的一种能力。再者,还要在多元化的评价方式上实现数形结合的思想,只有在评价的时候重视对数形结合运用方式的鼓励,学生才会有更强的学习动机,才会更加重视对数形结合的运用。

参考文献:

[1]张雅芬.以“形”助“数”促发展――例谈数形结合思想在小学数学教学中的应用[J].课程教育研究.2015(32)

[2]范凌红.数形结合思想在小学数学教学中的实践研究[J].课程教育研究.2015(28)

[3]李凤云“数形结合”.在小学低段数学教学中的应用[J].课程教育研究.2015(24)

推荐第9篇:浅谈小学数形结合思想

浅谈小学数形结合思想方法

摘要:数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,本文介绍相关概念并结合人教版小学数学教材,初步整理了数形结合思想方法在各教学领域的渗透与应用,提出培养数形结合思想方法的策略。

关键词:小学数学;数形结合

1.数形结合思想方法的概念

数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。1数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。2

2.数形结合思想在各个学习领域的渗透与应用

小学数学分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”这四个学习领域,数形结合思想在这四个领域中都得到了广泛的应用。我通过对教材的分析,初步整理了数形结合思想方法在各教学领域的渗透与应用。

2.1数形结合思想方法在“数与代数”知识领域中的渗透与应用 数是十分抽象的,教材在编排上充分利用了数形结合,帮助孩子理解数的含义。如,一年级上册1~5的认识这一课时:

教材的内容与目标体现以下两方面:(1)体会“形”的直观性。借助各种实物图作为直观工具,帮助学生理解数字的含义。(2)了解可以用数来描述几何图形。通过让学生用相应数量的小棒摆一摆图形的过程,引导学生数一数,增强用数的量化来描述形,让学生初步感受数中有形、形中有数的思想。

除此之外,在加减法的计算学习中,利用画图来直观呈现各种信息,帮助学生分析数量关系;在乘法口诀的学习中,利用各种图形(点子图、数轴、表格)帮助学生理解乘法的意义和口诀的推导;在分数的学习中,为了让学生能够理解分数的含义,教材运用了大量的图形作为直观手段;在小数的学习中,利用尺子、线段、正方形等直观手段帮助学生理解小数的意义与性质;在方程的学习中,利用天平图作为直观手段,理解等式的性质,利用画线段图帮助学生理解数量关系……可以说,数形结合思想在“数与代数”的学习中无处不在,应用十分广泛。

2.2数形结合思想方法在“图形与几何”知识领域中的渗透与应用

12 王永春.小学数学与数学思想方法[M].上海:华东师范大学出版社,2014:65. 毕保洪,贺家兰.数形结合思想的应用[J].中学教与学,2017,1:15-16.在探索图形的性质、特点等过程中,也需要数形结合思想方法的帮助。如:四年级下册第五单元三角形的内角和这一课时:

通过操作把一个三角形的三个内角拼成了一个平角,让学生直观体验三角形的内角和时180°,通过动手操作,体验知识的生成过程,提高了学生的学习兴趣与学习效率。在知道三角形的内角和的基础上再探索四边形的内角和,让学生体会从数量的角度研究图形的性质。

除此之外,在角、长方形、正方形等平面图形的认识中,通过直观的图形,让学生发现图形的特点与性质;在长方形和正方形面积的学生中,用数量表示长方形、正方形的大小,感受“以数解形”方法的实用性;在圆柱和圆锥的学习中,通过探索圆柱的表面积、体积,圆锥的体积等方面的知识,体会从量化的角度研究圆柱和圆锥,更好地认识它们的性质……在“图形与几何”的学习中,不仅让学生通过直观了解图形,也使学生体会以数解形的作用。

2.3数形结合思想方法在“统计与概率”知识领域中的渗透与应用 统计图就是一种把数据通过直观图形的形式体现的一种方法,是数形结合思想的体现。在二年级下册,教材便设计了用简单的条形图来表示数据,让学生初步感受图形也可以表示统计数据。四年级上册第七单元条形统计图:

描述生活中的各种数据,既可以用统计表,也可以用条形统计图,在直角坐标系里画长方形来表示数据,具有直观、易比较数据之间的大小等特点,让学生体会以形助数方法的直观性。

除此之外,在集合的学习中,通过文氏图帮助学生理解相关的统计概念和计算原理;在折线统计图的学习中,让学生理解统计图是数形结合思想的体现;在扇形统计图的学习中,体会把圆作为单位“1”,然后用圆中的一些扇形表示各部分的数量与总量之间的百分比……

2.4数形结合思想方法在“综合与实践”知识领域中的渗透与应用

数形结合思想在“综合与实践”学习领域也有广泛应用。如五年级下册打电话:

直接去解决这个问题十分抽象,对学生来说难度太大,可以引导学生运用树状图作为直观手段,帮助学生归纳出最优方法。

除此之外,在学习和解决排列组合问题时,结合操作卡片、列表、树状图、线段图等手段,感受数形结合的方法;在解决优化问题和植树问题的过程中,都利用了画图的方法来帮助理解,解决数学问题;在六年级上册的教材中,运用数形结合的方法让学生理解完全平方公式。

3.数学结合思想方法的培养

3.1引导学生体会数形结合思想方法的作用

数形结合思想方法能够把看上去困难的题目简单化、明朗化,能够帮助学生理解抽象的数学问题,因此,在教学过程中,教师要有意识地渗透数形结合思想方法,利用数形之间的关系,帮助学生通过几何直观理解抽象概括,树立起学生数形结合的数学思想,培养主动运用数形结合思想方法去解决问题的意识,提高学生的数学素养与能力。

3.2培养学生画图识图的能力

运用数形结合思想方法解决问题的基本要求是通过题意画出符合的图像,利用图像来探讨数量关系。在实际教学过程中,出现了两方面的困难。一方面,多数的学生在把题目转化成图像的过程中遇到了困难,画不出符合题意的图或者画错了图导致不会解题、解错题;另一方面,对于画出的图像,学生不能看懂其含义,不能利用图去解决问题。教师必须认识到这个问题,在教学过程中重视画图和看图过程,引导学生理解,培养学生画图、看图的能力。

3.3培养学生运用数形结合思想方法的习惯 在小学中,学生在解决问题的过程中,并不会选择数形结合的方法,一方面是教师意识薄弱,不重视这样的解题方法;另一方面,学生嫌麻烦,不喜欢画图。在这样的情况下,教师应引导学生认识到数形结合思想方法的作用,坚持培养和训练,使学生形成利用数形结合思想方法的习惯,从而提高学生思维能力、分析能力和解决问题的能力。

3.4适当拓展数形结合思想的应用

在小学数学的教学中,通常采用“以形助数”,而“以数解形”在中学中的应用较多,在小学中比较常见的就是计算图形的周长、面积和体积等内容。在此基础内容上,还可以创新求变,深入挖掘“图形与几何”学习领域的素材,在学生已有的知识基础上适当拓展,丰富小学数学的数形结合思想。

4.结语

著名的数学家华罗庚说过:“数缺形时少直觉,形少数时难入微。”这句话深

3刻地揭示了数形结合的重要性。小学生的逻辑思维能力较弱,但在学习数学时必须面对数学的抽象性这一现实问题,因此,数形结合思想在小学数学中有重大意义。不管是教材的编排还是课堂的教学,我们都应使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,使学生通过直观理解抽象的数学,培养学生数形结合思维,提高学生用数形结合方法解决问题的能力,使数学的学习充满乐趣。

参考文献:

[1]毕保洪,贺家兰.数形结合思想的应用[J].中学教与学,2017,1:15-16.[2]梁秀娟.蒋建华.浅议小学数学教学中数形结合思想的渗透与应用[J] .数学学习与研究:教研版,2013(22):119-119 .[3]王永春.小学数学与数学思想方法[M].上海:华东师范大学出版社,2014:65.

3 梁秀娟.蒋建华.浅议小学数学教学中数形结合思想的渗透与应用[J] .数学学习与研究:教研版,2013(22):119-119 .

推荐第10篇:《数形结合解决问题》教学反思

在我们小学阶段所学的内容,有两条线贯穿其中,有明线又有暗线。明线是指知识与技能,暗线是指思想方法的渗透并且渗透在每一册的教学中。这两条线始终在伴随着我们整个教学过程。青岛版教材五年级下册的总复习部分编排较好,既有对小学阶段所学数学知识地整理和复习,又有对教学策略与方法的整理与复习,但针对策略与方法这部分内容多数老师感觉到新鲜和陌生。这也是我们开学初所提出的困惑。基本技能的教学,老师们都很重视并积累了丰富的经验,有了成形的东西。但是对于策略与方法,没有放在突出的位置,大部分老师一带而过。

基于这种现状,既然教材中编排了,课标中又把基本思想方法提出来了,所以我们研究了这个课题仅供老师们研究参考。

下面我就把这节课设计中的一些想法简单的介绍如下:

1、通过实例,让学生初步感知什么是数形结合,虽然经常用到数形结合,但这个词学生没有听说过。于是我们就借助于第一题,通过学生画图做题,让学生初步感知和理解什么是数形结合。

2、借助回顾于整理,让学生体会数形结合的优越性。

比如:在解决问题时通过画线段图的方法来帮助我们分析题里面的数量关系,使问题变得更加清晰明了。再如:在平面内确定位置时,用数对来表示物体位置的时候,就时把形转化成数,这样描述起更加简单准确。

3、通过应用与反思进一步体会数形结合的作用。比如:搭配问题中用连线列举图方法非常的简单明了,解决问题中比较难想,抽象的问题,借助线段图就使复杂的问题迎刃而解了。

4、本节课中,我们还借助于数学家华罗庚的名言来帮助学生感悟数形结合的优越性。数学家华罗庚的名言在这节课中出现了两次。第一次是让学生初步感知数形结合的优越性。第二次是让学生更加深刻理解到数形结合的优点和作用。使学生在今后的学习中能够自觉运用数形结合的方法来解决问题

以上是我对这节课的教学设想,让数学思想成为学生思考问题的一种习惯,不仅体会到生活中处处有数学,而且也渗透了要灵活运用知识解决现实问题的思想方法,体现了人人学有价值的数学的基本观念。因为这样的课是第一次上,希望能给老师们起到抛砖引玉的作用。

第11篇:初中数学——数形结合思想(初二)

数形结合思想

“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中, 包括“以数助形”和“以形助数”两个方面.“数”与“形”好比数学的“左右腿”.全面理解数与形的关系,就要从“以数助形”和“以形助数”这两个方面来体会.此外还应该注意体会“数”与“形”各自的优势与局限性,相互补充.“数缺形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事非.”华罗庚的这四句诗很好地总结了“数形结合、优势互补”的精要,“数形结合”是一种非常重要的数学方法,也是一种重要的数学思想,在以后的数学学习中有重要的地位.

一、以数助形

要在解题中有效地实现“数形结合”,最好能够明确“数”与“形”常见的结合点,,从“以数助形”角度来看,主要有以下两个结合点:(1)利用数轴、坐标系把几何问题代数化(在高中我们还将学到用“向量”把几何问题代数化);(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用三角函数研究角的大小、利用线段比例证明相似等. 例

1、如图,在正△ABC的三边AB、BC、CA上分别有点D、E、F.若DE⊥BC,EF⊥AC,FD⊥AB同时成立,求点D在AB上的位置.例

2、如图,△ABC三边的长分别是BC=17,CA=18,AB=19.过△ABC内的点P向△ABC 的三边分别作垂线PD、PE、PF(D、E、F为垂足).若

BDCEAF27.求:BDBF的长.例

3、已知ABC的三边长分别为mn、2mn及mn(m、n为正2222整数,且 mn)。求ABC的面积(用含m、n的代数式表示)。

【海伦公式:如果一个三角形的三边长分别是a,b,c,设pabc

2,则S】 p(pa)(pb)(pc)。

4、将如图的五个边长为1的正方形组成的十字形剪拼成一个正方形.

5、如图,ABC是一块锐角三角形余料,边AD80毫米,BC120毫 米,

要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个定点分

别在AB,AC上,设该矩形的长QMy毫米,宽MNx毫米.当x与y

分别取什么值时,矩形PQMN的面积最大?最大面积是多少?

6、如图,点P是矩形ABCD内一点,PA3,PB=4,PC=5,求PD的长.

二、以形助数

几何图形在数学中所具有的最大的优势就是直观易懂,所以在谈到“数形结合”思想时,就更偏好于“以形助数”的方法,利用几何图形解决相关不易求解的代数问题。几何图形直观的运用于代数中主要体现在几个方面:

(1)利用相关的几何图形帮助记忆代数公式,例如:完全平方公式与平方差公式;

(2)利用数轴及平面直角坐标系将一些代数表达式赋予几何意义,通过构造几何图形,进而帮

助求解相关的代数问题,或者简化相关的代数运算。

1、在等腰ABC中,ABAC5,BC6,P是底边上任一点,求P到两腰的距离的和.

2、已知a、b均为正数,且ab2。求a24b21的最小值。

3、若将数轴折叠,使得A点与-2表示的点重合,若数轴上M、N两点之间的距离为2012(M在N

的左侧),且M、N两点经过折叠后互相重合,则M、N两点表示的数分别是:M:N:

4、数轴上标出若干个点,每相邻两点相距一个单位,点A,B,C,D分别表示整数a,b,c,d,

且d-2a=10,则原点在()的位置

A.点AB.点BC.点CD.点D

x-a>0例

5、已知关于x的不等式组的整数解共有2个,则a的取值范围是___________. 2-x>0

6、如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.

(1) 若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;

若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为.

(2) 由题(1)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:

一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?

1例

7、如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的正2

三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一

1块被剪掉正三角形纸板边长的)后,得图③,④,„,记第n(n≥3) 块纸板的周长为Pn,则Pn2

-Pn-1

①②③④

第12篇:初一数学教学中的数形结合_4

初一数学教学中的数形结合

丰城市淘沙初级中学

李小凯

数形结合是数学学科学习中一种极为重要的思想方法。我国著名数学家华罗庚先生指出:“数缺形时少直观,形缺数时难入微。”初一学生虽然在第二学期才开始接触系统的几何知识,但抓住教学契机及时渗透数形结合的思想、解题观,对于他们思维的发展、思路的拓展及解题能力的提高,无疑是有很大帮助的。

在小学的知识基础上,初一学生开始从代数和几何两个角度来系统地学习数学知识。在此期间,数形结合主要体现在两个方面:

一、利用几何图形解代数题,尤其是利用数轴来解决有关问题;

二、利用代数方法解几何题,最常见的是用方程来进行计算。下面我就从这两个方面结合自己在将近一年的教学工作中运用数形结合思想来指导教学的一点体会。

一、利用几何图形解代数题

《代数》第一章告诉学生代数学的主要内容与主要手段——用字母表示数,紧随其后的第二章在初步认识正、负数后,立即进行了数轴这一知识点的教学。意在让学生进行数形结合思想的渗透。此后又以数轴为重要载体讲解相反数与绝对值概念,为学生学习有理数的加、减、乘、除、乘方等运算打下基础。因此,数轴不仅是解题工具,更成了联系直观与抽象的纽带,帮助学生更加深刻地认识有理数的有关知识。作为几何图形,首先要细致周到地指导学生画好数轴,培养仔细认真的作图习惯,其次更要帮助学生在头脑中建立起数形结合的直观表象,便捷迅速地解决一些代数问题。

如比较两个有理数的大小,一旦学生能在头脑中形成数轴及这两个有理数的左右位置关系,那么根据“左小右大”的原则,数的大小判断易如反掌。

又如解一元一次不等式组时,只有在数轴上找出各个不等式解集的公共部分,才能避免凭空想象时混淆不清的许多错误概念,把某个区间或无解等情形直观表示出来。

【例一】 利用数轴比较下列有理数的大小,并用“

11-3-,4,-1.5,2-,0,1,8,-2. 22分析:先在数轴上标出各数,再根据数轴上右边的点表示的数总比左边的点表示的数大,立即可以得出结论。

11-3-

-2 -1.5

0

2-

8 22

11∴-3-

【例二】 若a、b均为有理数,且a>0,b

分析:要用“

解:∵a>0,

∴在数轴上易于表示出a和-a相对应的两点 ∵b

∴b应位于原点的左侧。 又∵a+b

∴b在数轴上所对应的位置应位于表示-a的点的左侧

因而四个数a、-a、b、-b用“

b

以上两个例题由浅入深、从直观到抽象地应用数轴来比较有理数的大小,对于接触负数概念不久的初一年级学生,理解并掌握这种方法不是难事。

二、利用代数方法解几何题

在初一开始学习几何后,由于所掌握的知识有限,对学生的要求不能一下子提得太高,不可能要求他们严格地按照推理证明过程来完成一些较复杂的计算题。此时,可以在几何教学中灌输代数思想,用代数方法解决一些几何问题。

【例三】已知,如图,点C分线段AB为5∶7,点 D分线段AC为1∶4,CD=4cm,

则AB= cm。

分析:由5∶7与1∶4联想到比例问题,此时可用代数方法解几何计算题。设AD=x cm,则问题可迎刃而解。

解:设AD=xcm,则CD=4xcm,AC=5xcm,BC=7xcm,AB=12xcm,根据题意,得

4x=4. 解这个方程,得 x=1. ∴12x=12. 答:AB长为12cm.

【例四】一个角的余角的3倍比这个角的补角大18º,求这个角的度数。

分析:此题的关键在于理解互余与互补的定义,可直接根据几何语言的文字叙述转化为代数方程。

解:设该角为xº,则其余角为(90-x)º,补角为(180-x)º,根据题意,得

3(90-x)-(180-x)=18, 解这个方程,得

x=36. 答:这个角为36º.

【例五】如图,已知直线AB、CD相交于点O,OE平分∠AOC,且∠AOD-∠AOE=60º,求∠AOD的度数。

分析:这里出现了角度之差∠AOD-∠AOE=60º形式的条件,学生可能会计算结果,但难以说明道理。应引导他们从其它已知条件中推出∠AOD与∠AOE的另一关系,再通过代数方法计算求解。

解:∵OE平分∠AOC,(已知)

∴∠COE=∠AOE.(角平分线定义)

又∵∠AOD+∠AOE +∠COE =180º,(平角定义) ∴∠AOD +2∠AOE =180º.(等量代换)

{ x-y=60, x=100, y=40.设∠AOD为xº,∠AOE为yº,根据题意,得

x+2y=180. 解这个方程组,得

{ ∴∠AOD为100º.

通过以上三例的解答,学生对于用代数方法解决几何计算题的思路已基本掌握,很快就能触类旁通地用类似方法解决许多问题。数形结合的优越性又一次得到了体现。

对于一个几何问题,能不能通过代数计算而求得解决,关键就在于几何问题中的数量关系能不能较方便地表示成适应代数计算的表达式,因而我们在解题分析时既要善于发现直接或间

接存在于各相关元素中的数量关系,又要能够从几何性质出发,将所探索到的数量关系代数化,从而在代数计算中完成推理而求得问题的结论。

数学家拉格朗日曾这样说过:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄,但是当这两门学科结合成伴侣时,它们就互相吸取新鲜的活力,从那以后,就以快速的步伐走向完善。”在教学中不拘泥于代数与几何的界限,尽量使它们结合在一起发挥出更大的作用,可使学生体会到数学的无穷奥妙,诱发出他们学习数学的浓厚兴趣,对教学活动无疑是有很大帮助的。

第13篇:“数形结合”在小学低段数学教学中的应用

《“数形结合”在小学低段数学教学中的应用》

龙南县龙翔学校

曾智勇

一、有利于把抽象的数学概念直观化,帮助学生形成概念

学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知、建构概念、解决问题,就相当于在原有的知识体系上添砖加瓦,新知识的学习就变得更简单。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果,也就是所谓深入浅出。

例如:二年级数学第一册中《乘法的引入》。

用相同的图像引导学生列出同数相加的算式,这样一方面利用数形结合思想直观、形象、生动的特点展现乘法的初始状态,懂得乘法的由来(知识的产生与发展);另一方面借助学生已有的知识经验——看图列加法算式,加深了图、式的对应思想,无形中也降低了教学难度。

我在实际课堂教学中运用PPT幻灯片技术展现一个盆子里有三个苹果,然后依次出现这样的第二个盆子,第三个盆子,一直到第五个盆子,如何来表示这个场景呢?学生自然会用同数相加的方法来表示。接着,教师一边出示课件一边提出:“如果有20个盆子,30个盆子,甚至100个盆子,你们怎么办呢?”学生一片哗然:“哦~~!算式太长了,本子都写不下呢。”这时,建立乘法概念水到渠成!数形结合使学生不仅理解了乘法的意义,而且懂得了乘法是同数相加的简便运算。

从学生的思维活动过程来看:在这个片段中,学生经历了由具体到抽象的思维过程,也就是由直观的小船,抽象成连加算式,抽象成乘法算式,经历了由一般到特殊的思维过程。

二、使计算中的算式形象化,帮助学生在理解算理

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。

如,在教学有余数的除法时,我就是利用7根小棒来完成的教学的。首先出示7根小棒,问能搭出几个三角形?要求学生用除法算式表示搭三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。

三、应用“数形结合”,提高学生的能力

对大脑的科研成果表明,大脑的两半球具有不同的功能,左半脑功能偏重于抽象的逻辑思维,讲究规范严谨,稳定封闭,如数的运算、代数式的运算、逻辑推理、归纳演绎等。右半脑功能则偏听偏重于形象思维,讲究直觉想象,自由发散,如猜想、假设、构思开拓、奇异创造等。左、右半脑的功能各有特征,如果互相补充就会使大脑功能更加健全和发达。“数形结合”就同时运用了左、右半脑的功能,在培养形象思维能力时,也促进了逻辑思维能力的发展。

1.“数形结合”有助于对数学知识的记忆

“记忆是智慧的仓库”。人的知识、经验的积累、技能的形成、技巧的熟练、思维能力的培养、事业的成就等都离不开良好的记忆能力。 中等职业教育中的数学知识是基础性知识,需要牢固地记忆并掌握这些基础知识,在此基础上做到灵活应用,在整个教学过程中,这二者是相辅相成的。记忆正是掌握知识的基本手段,记忆的过程也就是知识积累的过程,同时有助于知识的深化,知识水平的提高更是要以记忆为前提。有的学生面对一些数学问题束手无策,找不到解题的思路与方法,这与脑子里记忆的数学知识太少有关。只有对数学的基础知识记忆牢固,才能做到温故而知新,应用时熟能生巧,才能进一步发展数学思维,提高数学能力。教学中运用形象记忆的特点,使抽象的数学尽可能地形象化,对学生输入的数学信息和映象就更加深刻,在学生的脑海中形成数学的模型,可以形象地帮助学生理解和记忆。

2.应用“数形结合”,训练学生数学直觉思维能力

在数学里,存在着大量的直觉思维。这就是人们在求解数学问题时,运用已有的知识,从整体上对数学对象及其结构迅速识别、判断,进而作出大胆的猜想,合理的假设,并作出试探性的结论。它具有顿悟、飞跃的特征。

3.应用“数形结合”,培养学生的发散思维能力

发散思维是从同一来源的材料或同一个问题,探求不同思路和方法的思维过程,其思维方向是从不同角度、不同方面看待同一个问题。在教学中常借助“一题多解”或“一题多变”的形式,突出已知与未知之间的矛盾联系,来引发学生提出新的思想、新的方法、新的问题,达到知识融会贯通,发展思维的广阔性和灵活性,激励学生的好奇心和求知欲,提高解决问题的应变能力。

四、应用“数形结合”,解决大量实际问题

运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。

如植树问题,就是从图形中总结出解决方法。先模拟植树,得出线上植树的三种情况。

“___”代表一段路,用“ / ”代表一棵树,画“ / ”就表示种了一棵树。让学生在这段路上种上四棵树,想想、做做,你能有几种种法? 学生操作,独立完成后,在小组里交流说说你是怎么种的?

师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板:

① \\___\\___\\___\\两端都种

② \\___\\___\\___\\___ 或 ___\\___\\___\\___\\ 一端栽种

③ ___\\___\\___\\___\\___两端都不种

师生共同小结得出: 两端都种:棵数=段数+1; 一端栽种:棵数=段数;两端都不种 :棵数=段数—1。本学期遇到了的几个题型,如锯木头、路边植树、上楼梯等问题,通过“形”的教学收到了明显的效果。许多孩子不会列算式,但是,会先画图,利用图形再列算式,像这些题目都是利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。实践证明,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化。

因此教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透数形结合思想的教学,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们数学教学着力追求的目标。

第14篇:数形结合思想在小学数学教学中的渗透

数形结合思想在小学数学教学中的渗透

数形结合既是解决问题的一种方法、又是一种策略,更是一种思想。数形结合思想就是依据数与形之间相互对应的关系,将数和形互相转化,通过数形结合解决问题的一种思想。数形结合形式可以数化形和以形转数,或借助“形”探究有关“数”的问题,或倚托“数”研究相关“形”的问题,数形之间有机结合,相辅相成。数形结合的价值就在于将形象思维与抽象思维有效转换,使得问题形象化、简单化,从而实现解决问题的高效性。在平时教学中,我尤为关注数形结合在小学数学教学中的渗透研究,培养学生数形结合思想。

一、数因形而直观,感知数形结合思想价值

数学思想是关于数学内容和方法的本质认知,是在具体内容中的进一步感知中抽象与概括,是数学学习迁移的基点,是数学知识获取的本质内核。数形结合对于分析和解决问题有着重要的价值,我们要在实际教学中学习运用数形结合的方法解决实际问题,在此过程中提炼数学结合的策略,感知数学结合思想的价值。

数形结合体现在于将数学语言转化为直观图形,以使形象鲜明,将问题显性化,让问题的解决来得更直观简明。例如,在教学苏教版五年级上册中的《负数的认识》时,对于学生来讲“负数”是一种新的数学概念,为了使学生更为直观形象的认识负数,助力理解负数所表达的深刻涵义,在教学中,我重点开展数轴教学。我将例题情境化:“小林和小华分别住在学校的两侧,他们两人的家与学校在同一条直线上,两人的家距离学校各2千米。你能根据题意画出示意图吗?”具有一定分析理解能力的五年级学生很快画出了示意图,并在示意图中标明数据。于是我继续启发:“小林的家所在方向正好和小华家相反,我们能否用前面刚刚认识的一个数表示?”机灵的孩子迅速联想到刚认识的“负数”,于是回答:“我们可以用-2千米来表示小林家到学校的距离,也就是说小林家距离学校2千米我们可以记作-2千米。”为了使学生更进一步认识负数,我又让学生将示意图转画为直线,在直线上选取一点表示学校,用“0”表示,然后以0为基点,在0刻度的两边画出等距离单位刻度,分别用正数和负数表示。我接着追问:“如果以学校为起点,小华向东走4千米,小林向西走4千米,分别怎样记数表示。”“我们可以分别记作+4千米和-4千米。”学生的反应敏捷。学生在直观简洁的数轴上有效地理解了负数。

我们在教学小数的意义、分数的意义时都可以将枯燥难懂的小数和分数的意义认识依靠数轴,把数转化为形,将数和形完美结合,让抽象化的数量关系更为形象直观,帮助学生有效学习,感知数形结合思想的价值。

二、形因数而简练,感受数形结合思想魅力

图形虽有直观优势,但有时复杂的图形中的数量关系也是较为繁琐的,这时就得借助简约的数学语言或者表达式来言表,让学生精确地把握相关形的特征。形因数而简练,学生更能感受到数形结合的魅力。

例如,在教学苏教版四年级下册第一单元《图形的平移》后,我为了开拓学生思维,给学生出了这样一道题:图

一、在一个等边三角形内画出1个等边三角形;图

2、在一个稍大一点的等边三角形内画出3个等边三角形;图

3、在一个再大一点的等边三角形内画出6个等边三角形;依此类推,第10个等边三角形内应该有多少个小的等边三角形?我让学生观察后独立解答,但是只有3个学生解答出来,而且其中1个学生是用画图的方法花了很长时间才得出答案,其他学生都无解。看来,此刻是发挥数的功效的时候了,我问那个画图的学生感觉怎么样?他说很麻烦。于是,我引导大家观察图形,寻找规律,在我的引导下孩子们发现第一个图形内有1个等边三角形,图2内有1+2=3(个)等边三角形,图3内有1+2+3=6(个),我问道:“图4中应该有几个等边三角形?”发现规律的孩子知道如何通过列式计算出答案:“1+2+3+4=10(个)”,“现在你们有更好的办法解答这个问题吗?”“我们可以通过计算的办法算出第10个图形内一共有:1+2+3+4+5+6+7+8+9+10=55(个)。”“计算和画图哪种方法更好?”“列式计算太方便了。”孩子们毫不犹豫地说出真心话,这道题着实让学生领略到数形结合的魅力。

再如在几何图形教学中,有许多问题的解决凭直观难以做出决断,需要以形转数,依靠数的计算来快捷解决,发挥数的简洁干练特性,彰显数学结合思想的魅力。

三、数形交融合璧,感悟数形结合思想真谛

数和形的紧密联系就像唇齿相依的关系,形影不离,数学结合思想实际上是一种转化思想,贯穿整个数学领域。数形结合思想要在要在反复的实际运用过程中概括提炼,逐渐感悟其思想真谛,指引着数学问题解决的方向,催促着数学的发展。

让孩子们在学习应用过程中反复实践,将数形交融合璧,体验享受到数形结合方法的优势,感悟到数形结合思想的真谛。

具有丰富内涵的数形思想是数学的灵魂之一,在小学数学教学中,我们要当有心人,有意识的渗透数形结合思想,提高学生数学能力,提升数学品质。

(作者单位:江苏省苏州市吴江经济技术开发区花港迎春小学)

第15篇:向量与数形结合

数形结合是中学数学的重要思想方法之一,向量的运算法则以及运算律的给出,容易使学生认为向量是属于代数内容,但向量实际上又是属于几何范畴的.向量有时也会脱离图形而进行形式运算,但所研究的内容大都与图形有关。向量具有“数”与“形”的双重特征,因而它可以作为联系代数与几何的纽带,成为讨论数形结合的有力工具。

向量是重要的数学概念和工具,教材中的主要内容有:向量的概念和性质、向量的四种基本运算、解斜三角形、向量的应用。近几年的高考考察方向主要有两个方面:一是对向量的基本概念、基本运算的考察,二是对向量的工具作用的考察。向量与平面几何、解析几何、三角函数、函数与不等式、复数、立体几何都有联系,综合运用向量,采用数形结合的思想解决实际问题是对向量的基本要求,更好的体现了向量作为工具的实用性。

总之,由于向量具有几何形式和代数特征的“双重身分”,所以它是培养和提高学生数形结合能力的一个很好的载体。对优化学生的思维品质,培养和发展思维能力,发挥了巨大的作用。

第16篇:数形结合教案1月

《数与形》教学设计

教学目标: 1.让学生经历观察、操作、归纳等活动,帮助学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。

2.培养学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。 教学重点:

借助“形”(面积模型、线段图、等)感受形与“数”之间的关系,培养学生用“数形结合”的思想解决问题。 教学难点是:

让学生体会极限思想。 教学过程:

一、导入。

1、同学们好,今天由王老师来给大家上一节数学课,同学们你们上过很多的数学课,你知道,数学是研究什么的科学吗?(数),除了数还有吗?我们来看看数学专家是怎么给数学下定义的。请同学们看前面,读出来。数学是研究数量关系和空间形式的科学。数与形是数学研究的两大主题,两者之间是有紧密联系的。我们在小学阶段学过很多的数,也学过很多的形。还记得老师在讲数的时候总是联系到形。讲图形的时候也会结合到数。数与行结合起来解决问题,可使抽象的问题,变得更直观,复杂的问题变得更简单。

二、新授

1、复习旧知识,理解省略号的含义。1(1) 下面我们穿越回低年级,来做个小游戏好吗?

5游戏一:看数想图形。课件出示

1、

生:我想到了一个正方形、生2:我想到了一个三角形。 生3:我想到了一堆沙子。 „„

生4:我想到了画出五个三角形,把其中一个图上红色。

生5:我想到了一条线段,平均分成5分。其中的一份就是五分之一。 „„

游戏二:看图写数。 生1:二分之一。(老师追问,还能用其他的数表示吗?) 生2:

0.5(鼓励) 生3:四分之一。 生4:

0.25.师:它还可以表示出求二分之一加四分之一的和的计算过程。再次出示:三分之一图。 生1: 三分之一,(教师板书) 生2:0.33 师:这是一个什么数? 生:循环小数,

师:后面的省略号表示什么意思?

生:后面有无数个3.生:小数的数位有时无限的。后面的3写不完。就用省略号代替了。(教师板书) 师:也就是说我不管写到多少位,他的后面总能够再接着写出很多的3来。

师:还有什么意思呢?这里写了两位。我接着写第三位上是几?(3)在写(还是3)我在写我写4不行吗?(不行)为什么?

生:因为前面的都是3,他的规律是3不断地重复出现。

师:看来,在我们的数学里面省略号还有着“以此类推”的意思。(师板书) (2) 我们利用形还可以表示一些计算式子。 课件出示:0.330.330.33 0.99 出示:三分之一图相加。 帮助学生理解原来0.99=1 师:我们利用图形很轻松的就解释了这么一个让很多人费解的难题。

2、学生初步试算。

今天我们继续学习数与形,首先我们来算一道题。(课件出示例题) 师:同学们来看,这道题目中也有一个省略号。它表示什么意思呢? 生:表示“以此类推”

师:那这个“以此类推”的此,我们前面说了就是按照一个规律。这道题有什么规律呀。

生:分子不变,分母乘2.(分母乘了2,他和前一个数比较,也就是,它是前一个数的)二分之一。

师:那以此类推下去。接着写就是„„ 生:„„

师:我们难道就这样写下去吗?

说明它的加数有无数个。那他的结果是多少呢? 生:根不能没有答案。

方案

一、这位同学你怎么不算呀?生:没有办法算。(你怎么也不算呀?这位同学你怎么算着算着停下来了。)生:算不完,根本没有答案。(真的没有答案吗?真的吗?你怎么就认为没有答案呢?)生:题目后面是省略号。(我明白了。你的意思是说加数有无数个,无限个加数加起来就没有答案了吗?)今天我们就来研究这样你们认为没有答案的问题。

方案

二、有的同学有答案是1.很有想法。他提出了一个大胆的想象。但是这道题的答案真的是一吗?他为什么等于1呢?他说的有什么道理吗?我们是不是需要验证一下。接下来我们就来研究一下这样有的同学认为没有答案的问题。

方案

3、生:假如最后一个加数是16分之一。用简便方法做。你的方法很好。但是你的方法解决的是知道最后一个加数是几的时候用的方法,对于这个不知道他最后加到是几的算式可以怎么办。

3、

我们从哪里开始研究呢?孩子们对于这么复杂的问题如果你如从下手的话。不要着急。我们可以请教高人。我的老师曾经给我介绍过一位数学界的高人。今天我也把这个高人介绍给你们好吗?我们来开大屏幕。(课件出示)这是谁? 他告诉给我们一个非常好的解决问题的方法,那就是“数缺形时少直观,形缺数时难入微。数形结合百般好, 隔离分家万事休。 。师:你怎么理解?

生:„„

3、数形结合体会极限。

对于这么抽象的数的知识。我们可以请谁来帮忙更加直观的来 解释一下?(画图)有的同学说用画图形的方法。你想画什么什么图形,(线段,圆形,长方形)不管什么图形那你想怎样画来表示出二分之一加四分之一呢?再加八分之一呢?你还能从这幅图中往后接着画吗?

同学们可以用自己喜欢的方式来画出这道题的计算过程。 学生上来实物展示。主要说自己如何画的。发现了什么?

师:老师没有用画图的方法,但是老师也借助了形,老师用撕纸的方法。看。老师有两张完全一样的纸。其中一张,对折,然后“刺啦”撕开,就有了二分之一。然后那其中一个再对折,”刺啦“就有了加四分之一。知道老师为什么对折吗? 生:„„

很好。同学们接着看。

(教师展示情绪激动)同学们快看,看结果愈来愈大越来越大,越来越接近谁,涂满了就是1个图形。他的极限就是1.

三、课堂总结

回想一下当我们刚刚看到这个算式的时候很多同学的迷茫。我们通过数形结合的方法我们理解了这么这么抽象的数的知识。这就是数形结合的奇妙,两者之间是相辅相成的。数与行结合起来解决问题,可使抽象的问题,变得更直观,复杂的问题变得更简单。

《数与形》教学设计

王海彬

第17篇:数形结合思想论文

三新二移之基不可失

摘要:数学是一门应用性非常广泛的学科,伟大的数学家华罗庚曾经说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生活之谜、日月之繁,无处不用数学。”数学家华罗庚的话把数学的重要性及与生活的联系体现的淋漓尽致。那么对于一个中学生来说,该怎么学习数学,怎样学好数学就变得至关重要了。还是那句熟透了的话,一座无比雄伟的大楼,离不了基础的牢固。 对基础知识清晰明朗的掌握,是鉴定是否学活、学通的标准。千变万化的数学难题,没有牢固的基础知识,就好比漂浮的氢气球,永远没有落脚点,无从下手。好的学习方法加上好的教学方法则是进入成功之门的必经之路。而数学课堂教育是培养学生数学能力的主要阵地,在数学课堂中创设教学中的自由、学生的自我、教师的总结及转移学生的兴趣和转移学生的注意力应是教学的关键。

关键词: 数学课堂教育

基础知识 怎样学好数学 学习方法 教学方法

数学是一门逻辑性及系统性相当强的学科,对于很多中学生来说,由于学习方法掌握不当,而导致学习起来相当吃力,以至于很多学生萌生了放弃学习数学的念头。这是不可取的,数学的重要性已不需要我们再重申了。你应该相信柳暗花明又一村的佳话。通过对本文的了解与学习,我们将带领你走出“旧版教育”的“天地君亲师”这一老师至上的教条主义,从而走上“新版教育”的“自由平等”的光明大道。本着数学课堂教学必须为学生创设一种和谐、自由、充满生命活力的民主气氛的宗旨,本文特提出了三种具有创新意义的学习方法及两种转移学习思想和提高学习兴趣的两种途径,即“三新二移”。从而为学生打好坚实的数学基础。

本文“ 三新二移之基不可失”,将紧跟我国数学教学改革的步伐,由“双基”向“四基”跨越的教育理念。为莘莘学子们提供三种新的学习方法及两种思想移位法。如孔老夫子所言:“知之者,不如好之者,好之者不如乐知者”。相信我们提供的学习方法,定能让广大学子们在兴趣中学,在愉快中收获。为您开辟一条通往成功的光明大道。

本文将从教学的自由、学生的自我、教师的总结及转移学生的兴趣和转移学生的注意力等方面入手,做到“移形换步”,却万变不离其宗。这些方法将有利于学生主动地进行观察、实验、猜想、推理、与交流等数学活动。让学生的学习能充分做到主动探究、动手实践、合作交流、阅读自学等。

“基础知识-- 暗中摸索总非真,眼触心生法自神;

基本技能 -- 及之而后知,履之而后艰 ;

基本经验活动-- 闲云一片不成雨,黄叶满城都是秋;

基本思想-- 一语天然万古新,豪华落尽见真淳;”

具体实施过程如下:

一、把学习数学的自由还给学生

在新课标理念下教学,我们应该把学习数学的“自由”还给学生。所谓的自由,不是放任学生不管,任其自由发展,如果这样理解就大错特错了。我们应该把学习的主动权交给学生,然后在其左右辅助学生学习,简而言之就是以学生为主体,教师是数学学习的组织者、引导者与合作者的教学模式。 弗赖登塔尔说每个学生都有自己不同的“数学现实”。作为老师的任务不是把自己的数学现实代替学生的数学现实,而是帮助学生构造数学现实。用弗赖登塔尔的教学观说,数学教育所提供的内容应该是学生各自的“数学现实”,通过学生自己的认识活动,构建数学观,促进数学知识结构的优化。

(一)、学生学习数学的现状以及传统教学模式对学生的影响 根据调查结果分析,我们可以看出,大部分学生对数学都不感兴趣。这就引起了我们的深思,为什么会这样,数学是与现实生活很贴切的一门科学。经过了解,我们得知大部分学生他们不明白为什么要学习数学,数学是那么的枯燥,整天除了解题还是解题或者有的说学数学的目的就是想应付考试。 在调查过程中,当问及学生怎样才能打好数学基础时,70%的学生说背概念,背公式,题海战术之类。虽然知道这是一种方法,但他们缺乏信心,解题时急躁,还有定势思维。让他们的数学基础打不好。 我们传统的数学教学模式为“填鸭式”教学模式,习惯灌输知识给学生,同学们习惯于接受知识,而不是发现知识;同学们渐渐的就形成了定势思维模式,发散性思维渐渐被封锁,而发散思维是创新型人才所必备的。

(二)、如何把学习数学的“自由”还给同学 帮助同学们打好数学基础知识,我们应让同学们“自由”的去学习数学知识。数学有这三个特点:高度的抽象性、严密的逻辑性和广泛的应用性。然而这些特点正好是我们打好数学基础知识的关键。在我们学习数学的时候,同学们如何理解高度抽象的数学概念?怎样掌握数学严密的逻辑性?怎么才能把所学的数学知识应用到现实生活中? 当同学们“自由”的学习数学基础知识时老师应该做到:

1、教同学们学会问 爱因斯坦指出:“提出一个问题往往比解决一个问题更重要,因为解决问题也许仅仅数学上或实验上的技能而已,提出的新问题、新的可能性、从新的角度去看待旧的问题,却需要有创造性的想象力”.创新源于问题,没有问题就不可能有创新,问题是创新的基础和源泉.问题能激起同学们进行思考,能带给同学们学习数学的兴趣,可活跃学习数学的氛围。 方法有:创设数学情景;有意识的保护同学的好奇心;培养和训练学生们发现问题并提出有意义的问题等。

2、让同学们学会合作互动学习合作互动学习是指学生在小组或团队中为了完成共同任务,有明确的责任分工,并彼此合作的互动互助式的学习。合作学习强调在合作中达到信息互动,人际互动。在合作互动的学习过程中,学生不仅可以相互实现信息与资源的整合,不断的扩展和完善自我认知,而且可以在合作学习中学会交往、学会参与、学会倾听、学会尊重他人。这将对学生的认知、情感、自信心以及同伴关系等产生积极地影响。 方法:可由老师进行设计互动学习或指导学生来设计互动学习,最后由全班来共同完成。

3、教给同学们数学建模的方法 新课标中特别强调学生生活的数学,用生活的数学,用数学知识解决实际问题把生活融汇到学校数学教育中是现代教育的一个趋势。当前数学教育以促进学生的全面发展、以提高学生的数学素质为根本。学生们掌握了一定的数学知识,可让他们学习应用这些数学知识到现实生活当中。让他们明白学习数学的实际意义,这就给予了他们学习数学知识的动机,也可大大的提高他们自主思考,和动手实践的能力。要培养学生的数学能力,在教学中培养学生的数学建模意识是很重要的。 知识不能简单地由教师或其他人传授给学生而只能由学生依据自身已有的知识和经验主动地加以建构。所以数学建模的教学符合现代教学理念必将有助于教学质量的提高。在数学建模中能培养学生的转换能力,创新能力,能让他们知道怎么把一个抽象的问题,形象化,能够激发学生们学习数学的兴趣。 方法:联系学生身边的实际给学生们构建数学问题情境;用学生所了解的身边事物去引导他们构建适当的数学模型;辅导他们如何把抽象的现实问题数学化;适当的营造一些积极的数学建模氛围。 数学教育应坚决摒弃“教师讲、学生听”的机械灌输的教学模式,代之以读、讲、议、练、师生对话、课堂讨论等使学生主体参与的教学方式,使问题解决、数学应用、数学交流、数学建模成为课堂的主流,要冲破以教材为本位的束缚,在课堂中提供学生参与的机会,把握好启发的时机、力度,学生作为独立的个体,存在着智力和非智力因素的差异,使得他们对知识的内化程度和能力的形成速度也有所不同,因此教育模式也不能一成不变,不能只用一个标准要求所有学生,要因人而异,因材施教,分类指导,分层要求,使学生各得其所,各展其长,各成其才,整体发展,全面提高。

二、引导学生学会三个“自我”

新课改下怎样才能打好中学生的数学基础

在传统的教学过程中.教师往往以“满堂灌”的教学方法为主,整节课都在灌输新知识、传授新内容,忽视学生的主体地位,以至于学生"消化不良",学习积极性不高,且产生厌倦情绪,最终导致教学质量偏低。面临如此危机,我们不得不寻求一些新的教学方法,教育界的专家们费尽心思,几经周折最终提出了新课改,这样一来,学生自主探索的时间与空间大大增加,相对于以前“一丝不苟”的教材分析,现在的中学教材更注重的是学生自我思考与探索新知识的能力,教材往往是点到为止。

而面对新课改,教师固然面临着更大的挑战,虽然课堂上不用那么苦口婆心的强调非此即彼,但备课时却要大费周章、绞尽脑汁。为了适应新课改的要求,教师们必须转变教学观念,创新教学方法,在彻底克服教者“包办代替”、学者“生吞活剥”的前提下,更重要的是把注意力更多的转移到学生心理状况的发展上。我们知道,中学阶段正是一个生理与心理发展的转折点,这个时候如果不积极地、正确地引导学生步入学习正轨,那么后果不堪设想。这里我们想浅谈几点建议,对于如此“大好时光”的中学生而言,如何才能引导他们打好数学基础。

(一)引导学生自我评价

对于很多学生而言,常常出现“不了解自己”的情况,不知道自己处于那个等级,还有何不足,应该怎样自我定位、自我鉴定,以便及时补缺。为此,老师应该引导学生进行自我评价并及时反馈意见,方便因材施教。可从以下几个方面作自我评价:

1、知识掌握的自我评价

在学习新知识之前,应自评一下自己是否对此知识有一定的了解,学习之后,可根据认知的分类,从记忆、领会、应用、分析、综合等方面来评估自己对知识的学习情况。将所学到的知识点与目标得分率制成简易图表,这样就能清楚地了解自己学习上的优势与不足。还可从以下几方向分析自己的情况:是否清楚基本概念的内涵和外延?能否将新学知识和已有知识联系起来?能否对所学知识举一反

三、触类旁通?能否在实际条件下灵活运用所学知识?

2、学习动力的自我评价

学习动力有内在动力与外在动力之分。自我评价要对内在动力进行分析、判断。包括:(1)学习目标是否明确?有无长远目标和近期目标?(2)对学好数学是否充满信心?是否有浓厚的学习兴趣?(3)学习态度是否勤奋、认真?(4)是否有主动积极的进取精神?有无战胜学习困难的勇气和毅力?(5)学习情绪是否稳定、持久?等。

3、学习策略的自我评价

(1)是否有计划地安排学习活动?是否有预习的习惯?能否及时复习当天的功课并完成作业?能否妥善安排学习时间?(2)能否正确利用各种资料?(3)能否与同学、教师合作学习?(4)能否集中精力听课?(5)对发回的试卷是否能认真分析原因,拟定补救措施?(6)是否有错题集?是否给自己出检测题?(7)能否总结自己或借鉴他人好的学习方法和经验?等等

4、学习能力的自我评价

学习能力的评价可从以下几个方面进行:(1) 获取信息的能力:包括感知能力、阅读能力、搜集资料的能力等;(2) 加工、应用、创造信息的能力:包括记忆能力、思维能力、表达能力(口头的、文字的)、动手操作能力、创造能力等;(3) 学习的调控能力:包括确定学习目的、制定和调整学习计划、培养学习兴趣、克服学习困难等;(4)自我意识和自我超越的能力。

(二)引导学生自我调控

中学阶段,是人的情绪充分发展的时期,中学生的情绪世界,早已不再是风平浪静的港湾,而是汹涌澎湃的大海,虽然这时他们已有了驾驭自己情绪的能力,但情绪的浪潮依然时起时落,而对于繁重的学习压力,他们更是头疼不已,稍不留心将埋下祸根。因此,指导和帮助中学生认识自己的情绪问题,努力培养积极的情绪,调适消极的情绪,是教师在心理健康教育工作中的一项重要任务。所以应鼓励学生做到以下几点:

1、在做题遇到困难时不应忙着退缩,应养成一种“叛逆”心理的习惯,越是不会,越要征服。所谓“世上无难事,只怕有心人”,永不言败的精神方能成功。

2、看到其他同学玩耍时不应盲目羡慕,也不应在自己玩耍时侥幸的认为别人都在玩。不得不承认现在的中学生学习压力确实很大,一方面要让父母开心,另一方面又要让老师省心。劳逸结合是必须的,人又不是机器,总要吃饭、睡觉、消遣,但要记住“耐得住寂寞的人才能更快的走在别人的前面”,如果不想以后有所作为,那就尽情的玩个痛快吧!落魄的你可能更像你。

3、心情烦闷时可找同学倾诉,或者直接与老师交流,不要老是耿耿于怀走极端,没有过不去的坎,寻找适合自己发泄情绪的方式,尽快走出阴影。

4、学会宽恕自己,别总是自暴自弃、怨天尤人,别老是觉得自己是世上最不幸的人,好像别人什么都比你强,其实没有十全十美,只有更全更美,你要做的就是不断提升自己、完善自己,让自己满意自己。

(三)引导学生自我探究 在新的课程理念下,学生完全处于主导地位,教师其实已经“退居二线”,学生再也别指望老师会和你细细研究,但教师要变“指导者”为“引导者”,引导学生独立思考、自主探索。因此,为引导学生自主探究,应做到以下几点:

1、创设情景,创造探究平台

教师要教会学生改变以往陈旧的学习方法,将训练思路、方法教给每一个学生,让他们知道什么是异,怎样去求,怎样去想。在学习某个新知识点时有目的地去寻找、去尝试、去创造新颖。找到适合自己的,自己理解的现象或意境帮助理解和掌握新知识,现实生活中数学的应用不计其数,我们可以信手拈来。如:讲平移这一节时,没必要照本宣科,对于平移,其实在我们的日常生活中,随处可见,就算是学生在“三点”(教室、寝室、食堂)奔波,也可以说是从此处平移到彼处。这样的情景学生应该是最熟悉不过的了,何愁他们记不住。这样一来,学生就有话可谈、有事可做。

2、循序渐进,拓宽探究范围

学习过程的各个阶段是相互联系、相互依靠的,决不是孤立存在的,实践、认识、再实践、再认识......每个阶段都是在原有实践经验或间接经验学习的基础上进行的,在学习中遵循循序渐进的规律,可以取得事半功倍的效果,促使学习想纵向与横向都得到发展。而在数学的学习过程中,循序渐进的思想更是贯穿整个教学过程,一般老师都是按照由易到难、由浅到深、由具体到抽象的顺序逐一加深,让学生一步一个脚印步入学习乐园。课堂上,老师点到为止后,让学生交流互动、讨论分析,培养学生养成一种良好的探究习惯。

三、教会学生进行归纳总结

很大部分学生之所以出现基础知识的不扎实,原因并不是智力上的差异和努力程度不够,更多的是没有一个好的学习方法和端正的学习态度。

我们通过问卷调查的形式对兴义一中高一120名学生的数学基础知识出现的问题进行了调查,调查结果使我们深刻体会到:学生的基础如何与平时的学习态度及在学习的过程中出现的问题进行归纳与否密切相关。

通过调查我们发现有70%左右的中差生在学习的过程中都是草率对待、交差的学习心态。平时他们更没有把容易犯错的知识点进行归纳与总结的好习惯,无论是老师还是学生在学习的过程中遇到困难和犯错误都是难免的。但是怎样处理这些不良习惯呢?

好的学习心态:积极主动、化被动为主动、化厌学为乐学,放弃好高骛远的学习心态,比如说:老师给你一个非常简单的习题都要认真对待,不要产生会而不做的学习心态。因为大部分学生都是学习态度的不端正从而导致基础知识的不扎实。 即使有了好的学习心态还得有好的学习方法:归纳与总结法

(一)归纳知识点

尤其是数学学科知识具有紧密的逻辑性和系统性,若能在学习过程中对以往所学知识进行恰当的归纳总结,那么不管是对接下来的内容的学习还是对于基本知识点的掌握便都不成问题了。例如:函数内容,必修第一册,先讲函数定义, 然后学习指数函数、对数函数、幂函数,进而研究函数的图像与性质。点坐标与解析式的关系为第四册学习三角函数打好基础。

(二)归纳解题方法

解题的方法很多,但总有一些常用方法, 对打好基础非常有用,例如:求函数的值域常用方法有:观察法、配方法、反函数法、判别式法、换元法、不等式法、单调性法、数形结合法、另加选修中的导数求解法等等。这样归纳总结解题方法,就会比较容易的确定解题思路。

(三)归纳常考易错的知识点法

学生对基础知识的掌握局限于当堂学会,但还是有很大一部分学生对于课堂上和课后出现的一些问题不重视,而往往反映出来的却是一些对基础知识的不掌握,时间长久了这些常考易错的知识点得不到纠正。 例如:求函数y(x1)x10的定义域对于每一步都须归纳与总结,对于分式来讲分母:x≠1即可,但是却忘了二次根式下了数 即使x-10没忘记也容易给x10忘记,像这类问题是很简单的一些基础的知识点,却非常容易犯错,如果不及时加以归纳总结,那么一个班里基础成绩较差的学生基础会更差。

所以在教学中特别注意培养学生的学习方法,尤其是归纳与总结的培养,对打好学生的基础知识更有效。

四、将学生的兴趣转移在学习数学上

数学是一门抽象、严谨、应用非常广泛的学科,也是一门逻辑性、系统性较强的学科,要想学好它必须循序渐进,一步一个脚印地去学,这就要求学生对数学维持长久的兴趣。孔子曰:“知之者,不如好之者,好之者,不如乐知者。”浓厚的学习兴趣可使大脑处于最活跃状态,增强人的观察力、注意力、记忆力和思维力,还可抑制学习中的疲劳和困苦,保持旺盛的精力与敏捷思维。因此,作为一名教师,应从多方面着手,激发学生的数学兴趣,引发学生强烈的求知欲望,促使学生努力探索新知识,从而提高学生成绩。

(一)、静中设疑

“学源于思,思源于疑。”中学生求知欲强而注意力易分散,设疑可以激起学生去寻求答案,变被动为主动的思维,教师在授新课之前,根据内容设计一些与新课有直接联系的问题让学生操作或思考,让他们操作或思考过程中产生疑问,从而激发他们解疑途径,激发学习兴趣,例如,在学习三角形三边关系定理之前,先要求学生用(1)长为6cm、8cm、10cm,(2)长为4cm、6cm、10cm,(3)长为4cm、5cm、6cm的三组线段围成三角形的模型,学生在操作过程中产生疑问,使他们在“迷惑”中激发求知欲,提高学习兴趣。

(二)、融兴趣于幽默中,培养学生的抽象性 对数学的学习具有抽象性,有的学生在学习时感到枯燥乏味,难于接受。作为授课教师应该想办法使自己的课堂活跃,必要时可以引人生活中的幽默言语,网络流行词汇,使课堂气氛活跃。变抽象为形象,在函数的讲解时,这是比较抽象的课程,可将数形结合的思维引人,将抽象的函数表达式在坐标中展现出它的图像,从而学生就不觉得学数学有那么难了,已至于能保持他们对数学学习的兴趣。。

(三)、巧设“课饵”创立“新境”,是激发学生学习兴趣的法宝

随教育思想的转变,学生为主体,教师辅导,教师辅导的时间就要着重引导、诱使学生形成爱思考,爱提问的性格,要求教师以谜团的形式设问题,使学生对谜底的追求,逐步寻求求解过程,得出正确答案。例如:在教授等差数列课程时,教师可先让学生算10以内的几项累加,再逐步累加20,30„以内的,使学生总结出前n项和公式,这样既让学生对等差数列的概念、性质有了了解,又对自己总结的公式加深记忆。

(四)、与实际生活相结合,提供数学应用的机会 数学在生活中的应用是相当广泛的,而生活与生产是学生感兴趣的教学因素,如果教师在所讲知识中渗入生活实例,会使学生有熟悉感,从而会激起学生强烈的求知欲望,这使他们更加关注这次学习知识,例如:在讲授相似三角形后,可让他们自己设法测量学校旗杆的长度。在学习了排列组合后,可让学生算一下福利彩票的各种玩法的概率。等让他们在生活中学数学,数学中关心生活。

(五)、制造悬念,创设情境,抓住学生的好奇心

教师要精心设疑,激发学生的求知欲望,努力创设启发或情境,好奇心是学生学习的强烈动机之一,教师必须设法使学生的好奇心变为强烈的求知欲望,培养学生浓厚的学习兴趣。例:在讲授分式的性质时,我们可以说:“我可以证明2=0,同学们认为可以吗?”这时同学的回答应该都是否定的,这时就在黑板上演算下a-bba(ab)1120。学生看后,有的说面式:当ab时,ababab不可能,有的说不对,2不可能和0相等。于是,我们就可以把上题的对与错解释给学生听,抓住学生的求知欲,生动有趣的讲完分式的性质。

(六)因人施教

在教学中,因学生人数众多,成绩各异,设计提问时要有针对性,要分析学生的缺差面和疑难点,不同层次的学生应根据不同的情况,提出不同的问题,让学生都有回答问题的机会和成功的喜悦。使其在各自的水平上有所提高和发展,感受成功的快乐,倍添学习兴趣。

五、从数学的艺术性提高学生课堂注意力

注意是心理活动对一定对象的指向和集中,当人对某一事物产生高度注意时,就会对这一事物反应得更迅速、更清楚、更深刻、更持久。叶圣陶先生曾说:“教师当然要教,而尤宜致力于导,导者,多方设方,是学生自求得之,卒低于不待教授之谓也”。课堂上教师固然要教,但如何去教,达到最大限度提高学生注意力,这就要求教师教学的艺术性。

(一)、趣味引趣

中学生由于身心发展、个性特征差异和外部因素的影响,有相当多的中学生不具有坚忍不拔不达目的不罢休的意志和毅力,表现在学习中常常知难而退,对于枯燥抽象、学生感到难懂的教材内容,采用趣味引趣法来提高学生注意力比较适宜。

(二)、风趣语言

教育家苏霍姆林斯基曾说:“如果老师不想方设法使学生产生情绪高昂和智力振奋的内心状态就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲倦”。由于教育对象是有感情的人,所以感情因素能否贯穿于教育的全过程,不仅影响着知识的传递、智力的发展,而且还潜移默化地影响学生的行为及意志品质的形成。于是,在讲授某个知识点时,我们可用当时流行的词语、歌曲名等适当插入,从而使学生从别的注意力上转移过来。 例如,讲到双曲线cab中时,由于在前面已学过椭圆的相关性质,

222222而在椭圆的相关性质acb中有,于是,我们可把这两个知识点结合起来讲,不经意的插上一句:它们真“给力”啊!高考中出现椭圆和双曲线的题目一般都得用到。接下来再强调一定不能用错,否则我们的高考试卷中就会少得几分,这几分又使你与大学擦肩而过,“伤不起”啊!

这样,学生不仅认为这个知识点重要,还会活跃课堂气氛,从而提高注意力。

(三)、名句激之

学生不可能整堂课都注意力集中,有时还会感到疲倦,这时,在数学教学中有意识地进行渗透,充分利用数学家故事或名人名句启迪学生热爱数学学科的思想。

例如,在进行一题多解的引导教学中,给同学们插上一句“梅花香自苦寒来,宝剑锋从磨砺出”,再讲现代著名数学大师陈省身刻苦求学的感人事迹,激发学生热爱数学、积极探索的精神,达到集中学生注意力的效果。

第18篇:高考数学专题复习:数形结合思想

高考冲刺:数形结合

编稿:林景飞

审稿:张扬

责编:辛文升 热点分析 高考动向

数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半功倍的效果。高考中利用数形结合的思想在解决选、填题中十分方便,而在解答题中书写应以代数推理论证为主,几何方法可作为思考的方法。数形结合的重点是研究“以形助数”,但“以数解形”在近年高考试题中也得到了加强,其发展趋势不容忽视。历年的高考都有关于数形结合思想方法的考查,且占比例较大。

知识升华

数形结合是通过“以形助数”(将所研究的代数问题转化为研究其对应的几何图形)或“以数助形”(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调节作用。

具体地说,数形结合的基本思路是:根据数的结构特征,构造出与之相应的几何图形,并利用图形的特性和规律,解决数的问题;或将图形信息全部转化成代数信息,使解决形的问题转化为数量关系的讨论。

选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形”上的直观是不够严密的。 1.高考试题对数形结合的考查主要涉及的几个方面:

(1)集合问题中Venn图(韦恩图)的运用;

(2)数轴及直角坐标系的广泛应用;

(3)函数图象的应用;

(4)数学概念及数学表达式几何意义的应用;

(5)解析几何、立体几何中的数形结合。

2.运用数形结合思想分析解决问题时,要遵循三个原则:

(1)等价性原则。要注意由于图象不能精确刻画数量关系所带来的负面效应;

(2)双方性原则。既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分

析容易出错;

(3)简单性原则。不要为了“数形结合”而数形结合,具体运用时,一要考虑是否可行和是否有利;

二要选择好突破口,恰当设参、用参、建立关系,做好转化;三要挖掘隐含条件,准确界定参变

量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线为佳。

3.进行数形结合的信息转换,主要有三个途径:

(1)建立坐标系,引入参变数,化静为动,以动求解,如解析几何;

(2)构造成转化为熟悉的函数模型,利用函数图象求解;

(3)构造成转化为熟悉的几何模型,利用图形特征求解。 4.常见的“以形助数”的方法有:

(1)借助于数轴、文氏图,树状图,单位圆;

(2)借助于函数图象、区域(如线性规划)、向量本身的几何背景;

(3)借助于方程的曲线,由方程代数式,联想其几何背景,并用几何知识解决问题,如点,直线,斜

率,距离,圆及其他曲线,直线和曲线的位置关系等,对解决代数问题都有重要作用,应充分予

以重视。

5.常见的把数作为手段的数形结合:

主要体现在解析几何中,历年高考的解答题都有这方面的考查.

经典例题透析

类型一:利用数形结合思想解决函数问题 1.(2010全国Ⅰ·理)已知函数a+2b的取值范围是

A.

解析:画出

由题设有

B.

的示意图.

,若

,且

,则

C.

D.

∴ ,

令 ,

∴ , ∴ 在

.上是增函数.

举一反三:

【变式1】已知函数

.选C.

在0≤x≤1时有最大值2,求a的值。

解析:∵

∴抛物线

的开口向下,对称轴是

,如图所示:

(1)

(2)

(3)

(1)当a<0时,如图(1)所示,

当x=0时,y有最大值,即

∴1―a=2。即a=―1,适合a<0。

(2)当0≤a≤1时,如图(2)所示,

当x=a时,y有最大值,即

。 。

∴a―a+1=2,解得

2。

∵0≤a≤1,∴不合题意。

(3)当a>1时,如图(3)所示。

当x=1时,y有最大值,即

综合(1)(2)(3)可知,a的值是―1或2

【变式2】已知函数

(Ⅰ)写出

(Ⅱ)设的单调区间; ,求

在[0,a]上的最大值。

。∴a=2。

解析:

如图:

(1)的单调增区间:

;单调减区间:(1,2)

时,,

(2)当a≤1时,

【变式3】已知

(

)

(1)若,在上的最大值为,最小值为,求证:;

(2)当]时,都

,时,对于给定的负数,有一个最大的正数,使得x∈[0,

有|f(x)|≤5,问a为何值时,M(a)最大?并求出这个最大值。

解析:

(1)若a=0,则c=0,∴f(x)=2bx

当-2≤x≤2时,f(x)的最大值与最小值一定互为相反数,与题意不符合,∴a≠0;

若a≠0,假设,

∴区间[-2,2]在对称轴的左外侧或右外侧,

∴f(x)在[-2,2]上是单调函数,

(这是不可能的)

(2)当,时,,

∵,所以,

(图1)

(图2)

(1)当

所以

即是方程

,时(如图1),则的较小根,即

(2)当

所以

即是方程

,时(如图2),则的较大根,即

(当且仅当

时,等号成立),

由于,

因此当且仅当时,取最大值

类型二:利用数形结合思想解决方程中的参数问题 2.若关于x的方程有两个不同的实数根,求实数m的取值范围。

思路点拨:将方程的左右两边分别看作两个函数,画出函数的图象,借助图象间的关系后求解,可简化运算。

解析:画出

的图象,

当直线过点,即时,两图象有两个交点。

又由当曲线

与曲线

相切时,二者只有一个交点,

设切点

又直线

,则过切点

,即,得

,解得切点,

∴当时,两函数图象有两个交点,即方程有两个不等实根。

误区警示:作图时,图形的相对位置关系不准确,易造成结果错误。

总结升华:

1.解决这类问题时要准确画出函数图象,注意函数的定义域。

2.用图象法讨论方程(特别是含参数的方程)解的个数是一种行之有效的方法,值得注意的是首先把

方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两

个函数的图象,由图求解。

3.在运用数形结合思想分析问题和解决问题时,需做到以下四点:

①要准确理解一些概念和运算的几何意义以及曲线的代数特征;

②要恰当设参,合理用参,建立关系,做好转化;

③要正确确定参数的取值范围,以防重复和遗漏;

④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,便于问题求解.

举一反三:

【变式1】若关于x的方程在(-1,1)内有1个实根,则k的取值范围是 。

解析:把方程左、右两侧看作两个函数,利用函数图象公共点的个数来确定方程根的个数。

设(x∈-1,1)

如图:当内有1个实根。

或时,关于x的方程在(-1,1)

【变式2】若0<θ<2π,且方程取值范围及这两个实根的和。

有两个不同的实数根,求实数m的

解析:将原方程

与直线

转化为三角函数的图象

有两个不同的交点时,求a的范围及α+β的值。

设,,在同一坐标中作出这两个函数的图象

由图可知,当

时,y1与y2的图象有两个不同交点,

即对应方程有两个不同的实数根,

若,设原方程的一个根为,则另一个根为.

∴.

若,设原方程的一个根为,则另一个根为,

∴.

所以这两个实根的和为或.

且由对称性可知,这两个实根的和为或。

类型三:依据式子的结构,赋予式子恰当的几何意义,数形结合解答

3.(北京2010·理)如图放置的边长为1的正方形PABC沿x轴滚动,设顶点,则函数

的最小正周期为________;

在其两个相邻的轨迹方程是零点间的图象与x轴所围成的区域的面积为________.

解析:为便于观察,不妨先将正方形PABC向负方向滚动,

使P点落在x轴上的

点,此点即是函数

的一个零点(图1).

(一)以A为中心,将正方形沿x轴正方向滚动90°,此时顶点B位于x轴上,

顶点P画出了A为圆心,1为半径的个圆周(图2);

(二)继续以B为中心,将正方形沿x轴正方向滚动90°,此时顶点C位于x轴上,

顶点P画出B为圆心,为半径的个圆周(图3);

(三)继续以C为中心,将正方形沿x轴正方向滚动90°,此时,顶点P位于x轴上,为点,

它画出了C为圆心,1为半径的个圆周(图4).为又一个零点.

∴ 函数

的周期为4.

相邻两个零点间的图形与x轴围成的图形由两个半径为1的圆、

半径为的圆和两个直角边长为1的直角三角形,其面积是

.

举一反三:

2

2【变式1】已知圆C:(x+2)+y=1,P(x,y)为圆C上任一点。

(1)求的最大、最小值;

(2)求的最大、最小值;

(3)求x―2y的最大、最小值。

解析:联想所求代数式的几何意义,再画出草图,结合图象求解。

(1)

表示点(x,y)与原点的距离,

由题意知P(x,y)在圆C上,又C(―2,0),半径r=1。

∴|OC|=2。

的最大值为2+r=2+1=3, 的最小值为2―r=2―1=1。

(2)表示点(x,y)与定点(1,2)两点连线的斜率,

设Q(1,2),,过Q点作圆C的两条切线,如图:

将整理得kx―y+2―k=0。

∴,解得,

所以的最大值为,最小值为。

(3)令x―2y=u,则可视为一组平行线系,

当直线与圆C有公共点时,可求得u的范围,

最值必在直线与圆C相切时取得。这时

,最小值为

∴x―2y的最大值为

【变式2】求函数

解析:

的最小值。

则y看作点P(x,0)到点A(1,1)与B(3,2)距离之和

如图,点A(1,1)关于x轴的对称点A'(1,-1),

则 即为P到A,B距离之和的最小值,∴

【变式3】若方程x+(1+a)x+1+a+b=0的两根分别为椭圆、双曲线的离心率,则值范围是( )

2

的取

A.

B.或

C.

D.或

解析:如图

由题知方程的根,一个在(0,1)之间,一个在(1,2)之间,

则 ,即

下面利用线性规划的知识,则斜率

可看作可行域内的点与原点O(0,0)连线的

则 ,选C。

第19篇:高考数学重点难点37数形结合思想

重点重点难点36 函数方程思想

函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●重点重点难点磁场

1.(★★★★★)关于x的不等式2•32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为

.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点;

(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值.●案例探究

[例1]已知函数f(x)=logm

(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;

(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1) x<–3或x>3.∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有

当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数.∴

即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴

∴0<m<

故当0<m< 时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. -1- 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属 ★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏.(1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:

又A、B锐角为三角形内两内角 ∴ <A+B<π

∴tan(A+B)<0,即

∴ ∴m≥5 (2)证明:∵f(x)=(x–1)(x–m) 又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0 即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0 ∴m≥x但xmax=3,∴m≥xmax=3 (3)解:∵f(sinα)=sin2α–(m+1)sinα+m= 且 ≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3 ●锦囊妙计

函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:

(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭重点重点难点训练

一、选择题

1.(★★★★★)已知函数f(x)=loga[ –(2a)2]对任意x∈[ ,+∞]都有意义,则实数a的取值范围是(

) A.(0,

B.(0, )

C.[ ,1

D.( , ) 2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是(

) A.[ ,+∞

B.(1,

C.[ ,+∞

D.(1, ]

二、填空题

3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是

.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为

.

三、解答题

5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;

(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且 -2- 方程f(x)=2x有等根.(1)求f(x)的解析式;

(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], „gn(x)=f[gn–1(x)],„

(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立; (2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点; (3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0, 且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠ ),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)= (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;

(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;

(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.

参 考 答 案

●重点重点难点磁场

1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞) 2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,

∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根 ∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1 故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2) 又∵A、B关于y=kx+ 对称.∴k=–1.设AB的中点为M(x′,y′) ∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′= ,又点M在直线 上有

,即

∵a>0,∴2a+ ≥2 当且仅当2a= 即a= ∈(0,1)时取等号, 故b≥– ,得b的最小值– .●歼灭重点重点难点训练

一、1.解析:考查函数y1= 和y2=(2a)x的图象,显然有0<2a<1.由题意 得a= ,再结合指数函数图象性质可得答案.答案:A 2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x– )2– ,其递减区间为[ ,+∞).答案:C -3- 3.解析:显然有x>3,原方程可化为

故有(10–a)•x=29,必有10–a>0得a<10 又x= >3可得a> .答案: <a<10 4.解析:原式化为 .当 <–1,ymin=1+m=–4 m=–5.当–1≤ ≤1,ymin= =–4 m=±4不符.当 >1,ymin=1–m=–4 m=5.答案:±5

二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有 ①f(t)=0有两等根时,Δ=0 16–4a=0 a=4 验证:t2–4t+4=0 t=2∈(0,+∞),这时x=1 ②f(t)=0有一正根和一负根时,f(0)<0 a<0 ③若f(0)=0,则a=0,此时4x–4•2x=0 2x=0(舍去),或2x=4,∴x=2,即A中只有一个元素

综上所述,a≤0或a=4,即B={a|a≤0或a=4} (2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须

<x≤2 6.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=– =1得a=–1,故f(x)=–x2+2x.(2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤

而抛物线y=–x2+2x的对称轴为x=1 ∴n≤ 时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则

又m<n≤ ,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立; 设n=k时,有gk(x0)=x0(k∈N)成立, 则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0 即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0 由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0= ∴稳定不动点为0和 .(3)解:∵f(x)<0,得6x–6x2<0 x<0或x>1.∴gn(x)<0 f[gn–1(x)]<0 gn–1(x)<0或gn–1(x)>1 要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<0 6x–6x2<0 x<0或x>1 由g1(x)>0 6x–6x2>1

故对于区间( )和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=

-4- ∵x1>x2>0,∴x1x2>0,x1–x2>0, ∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵ ≤2x在(0,+∞)上恒成立,且a>0, ∴a≥ 在(0,+∞)上恒成立,令 (当且仅当2x= 即x= 时取等号),要使a≥ 在(0,+∞)上恒成立,则a≥ .故a的取值范 围是[ ,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2– m+1=0,n2– n+1=0 故方程x2– x+1=0有两个不相等的正根m,n,注意到m•n=1,故只需要Δ=( )2–4>0,由于a>0,则0<a< .

重点难点37 数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征. ●重点难点磁场

1.曲线y=1+ (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围

.2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.●案例探究

[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A },若C B,求实数a的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C.进而将C B用不等式这一数学语言加以转化.错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决.解:∵y=2x+3在[–2, a]上是增函数

∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3} 作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:

①当–2≤a≤0时,a2≤z≤4即C={z|z2≤z≤4} 要使C B,必须且只须2a+3≥4得a≥ 与–2≤a<0矛盾.②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C B,由图可知: 必须且只需

解得 ≤a≤2 ③当a>2时,0≤z≤a2,即C={z|0≤z≤a2},要使C B必须且只需

-5- 解得2<a≤3 ④当a<–2时,A= 此时B=C= ,则C B成立.综上所述,a的取值范围是(–∞,–2)∪[ ,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:

.命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几 何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A(cosα,sinα)与点B(cosβ, sinβ)是直线l:ax+by=c与单位圆x2+y2=1的两个交点如图.从而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2 =2–2cos(α–β)

又∵单位圆的圆心到直线l的距离

由平面几何知识知|OA|2–( |AB|)2=d2即

∴ .●锦囊妙计

应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图 (2)函数及其图象

(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭重点难点训练

一、选择题

1.(★★★★)方程sin(x– )= x的实数解的个数是(

) A.2

B.3

C.4

D.以上均不对

2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b ,且α、β是方程f(x)=0的两根(α<β ,则实数a、b、α、β的大小关系为(

) A.α<a<b<β

B.α<a<β<b C.a<α<b<β

D.a<α<β<b

二、填空题

3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t为参数)的最大值是

.4.(★★★★★)已知集合A={x|5–x≥ },B={x|x2–ax≤x–a},当A B时,则a的取值范围是

.

三、解答题

-6- 5.(★★★★)设关于x的方程sinx+ cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围; (2)求tan(α+β)的值.6.(★★★★)设A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠ ,求a的最大值与最小值.7.(★★★★)已知A(1,1)为椭圆 =1内一点,F1为椭圆左焦点,P为椭圆上一动点.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm、20 cm、5 cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?

参 考 答 案 ●重点难点磁场

1.解析:方程y=1+ 的曲线为半圆,y=r(x–2)+4为过(2,4)的直线.

答案:( ]

2.解法一:由f(x)>a,在[–1,+∞)上恒成立 x2–2ax+2–a>0在[–1,+∞)上恒成立.考查函数g(x)=x2–2ax+2–a的图象在[–1,+∞]时位于x轴上方.如图两种情况:

不等式的成立条件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1) (2) a∈(–3,–2 ,综上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1) 令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图象.如图满足条件的直线l位于l1与l2之间,而直线l

1、l2对应的a值(即直线的斜率)分别为1,–3,

故直线l对应的a∈(–3,1).●歼灭重点难点训练

一、1.解析:在同一坐标系内作出y1=sin(x– )与y2= x的图象如图.

答案:B 2.解析:a,b是方程g(x)=(x–a)(x–b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示:

答案:A

二、3.解析:联想到距离公式,两点坐标为A(4cosθ,3sinθ),B(2t–3,1–2t) 点A的几何图形是椭圆,点B表示直线.考虑用点到直线的距离公式求解.答案:

4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},画数轴可得.答案:a>3

三、5.解:①作出y=sin(x+ )(x∈(0,π))及y=– 的图象,知当|– |<1且– ≠

时,曲线与直线有两个交点,故a∈(–2,– )∪(– ,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相减得tan , 故tan(α+β)=3. -7- 6.解:∵集合A中的元素构成的图形是以原点O为圆心, a为半径的半圆;集合B中的元素是以点O′(1, )为圆心,a为半径的圆.如图所示

∵A∩B≠ ,∴半圆O和圆O′有公共点.显然当半圆O和圆O′外切时,a最小

a+a=|OO′|=2,∴amin=2 –2 当半圆O与圆O′内切时,半圆O的半径最大,即 a最大.此时 a–a=|OO′|=2,∴amax=2 +2.7.解:由 可知a=3,b= ,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|, ∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2| 如图:

由||PA|–|PF2||≤|AF2|= 知 – ≤|PA|–|PF2|≤ .当P在AF2延长线上的P2处时,取右“=”号; 当P在AF2的反向延长线的P1处时,取左“=”号.即|PA|–|PF2|的最大、最小值分别为 ,– .于是|PF1|+|PA|的最大值是6+ ,最小值是6– .8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:

设AE=x,BE=y, 则有AE=AH=CF=CG=x,BE=BF=DG=DH=y ∴

∴ .高考数学重点难点突破 重点难点38 分类讨论思想.txt人永远不知道谁哪次不经意的跟你说了再见之后就真的再也不见了。一分钟有多长?这要看你是蹲在厕所里面,还是等在厕所外面„„

重点难点38 分类讨论思想

分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到\"确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.\"

●重点难点磁场

1.(★★★★★)若函数在其定义域内有极值点,则a的取值为

.2.(★★★★★)设函数f(x)=x2+|x-a|+1,x∈R.(1)判断函数f(x)的奇偶性; (2)求函数f(x)的最小值.

●案例探究

-8-

[例1]已知{an}是首项为2,公比为的等比数列,Sn为它的前n项和.

(1)用Sn表示Sn+1;

(2)是否存在自然数c和k,使得成立.

命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.

知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.

错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出.

技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k,c轮流分类讨论,从而获得答案.

解:(1)由Sn=4(1-),得

,(n∈N*)

(2)要使,只要

因为

所以,(k∈N*)

故只要Sk-2<c<Sk,(k∈N*)

因为Sk+1>Sk,(k∈N*)

所以Sk-2≥S1-2=1.

又Sk<4,故要使①成立,c只能取2或3.

当c=2时,因为S1=2,所以当k=1时,c<Sk不成立,从而①不成立.

当k≥2时,因为,由Sk<Sk+1(k∈N*)得

Sk-2<Sk+1-2

故当k≥2时,Sk-2>c,从而①不成立.

当c=3时,因为S1=2,S2=3,

所以当k=1,k=2时,c<Sk不成立,从而①不成立

因为,又Sk-2<Sk+1-2

所以当k≥3时,Sk-2>c,从而①成立.

综上所述,不存在自然数c,k,使成立.

[例2]给出定点A(a,0)(a>0)和直线l:x=-1,B是直线l上的动点,∠BOA的角平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.

命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.

知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点.

错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.

技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.

解法一:依题意,记B(-1,b),(b∈R),则直线OA和OB的方程分别为y=0和y=-bx.

设点C(x,y),则有0≤x<a,由OC平分∠AOB,知点C到OA、OB距离相等.

根据点到直线的距离公式得|y|=

依题设,点C在直线AB上,故有

-9-

由x-a≠0,得

将②式代入①式,得y2[(1-a)x2-2ax+(1+a)y2]=0 若y≠0,则

(1-a)x2-2ax+(1+a)y2=0(0<x<a) 若y=0则b=0,∠AOB=π,点C的坐标为(0,0)满足上式.综上,得点C的轨迹方程为

(1-a)x2-2ax+(1+a)y2=0(0<x<a (i)当a=1时,轨迹方程化为y2=x(0≤x<1

③ 此时方程③表示抛物线弧段; (ii)当a≠1,轨迹方程化为

所以当0<a<1时,方程④表示椭圆弧段; 当a>1时,方程④表示双曲线一支的弧段.解法二:如图,设D是l与x轴的交点,过点C作CE⊥x轴,E是垂足.(i)当|BD|≠0时,

设点C(x,y),则0<x<a,y≠0 由CE∥BD,得.∵∠COA=∠COB=∠COD-∠BOD=π-∠COA-∠BOD ∴2∠COA=π-∠BOD ∴

∴整理,得

(1-a)x2-2ax+(1+a)y2=0(0<x<a) (ii)当|BD|=0时,∠BOA=π,则点C的坐标为(0,0),满足上式.综合(i)、(ii),得点C的轨迹方程为 (1-a)x2-2ax+(1+a)y2=0(0≤x<a) 以下同解法一.解法三:设C(x,y)、B(-1,b),则BO的方程为y=-bx,直线AB的方程为

∵当b≠0时,OC平分∠AOB,设∠AOC=θ,

∴直线OC的斜率为k=tanθ,OC的方程为y=kx于是

又tan2θ=-b ∴-b=

① ∵C点在AB上 ∴

由①、②消去b,得

③ 又,代入③,有

整理,得(a-1)x2-(1+a)y2+2ax=0

当b=0时,即B点在x轴上时,C(0,0)满足上式:

-10-

a≠1时,④式变为

当0<a<1时,④表示椭圆弧段;

当a>1时,④表示双曲线一支的弧段; 当a=1时,④表示抛物线弧段.

●锦囊妙计

分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:

1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.

2.由公式条件分类.如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.

3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.

在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.

●歼灭重点难点训练

一、选择题

1.(★★★★)已知其中a∈R,则a的取值范围是(

)

A.a<0

B.a<2或a≠-2

C.-2<a<2

D.a<-2或a>2

2.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有(

)

A.150种

B.147种

C.144种

D.141种

二、填空题

3.(★★★★)已知线段AB在平面α外,A、B两点到平面α的距离分别为1和3,则线段AB的中点到平面α的距离为

.

4.(★★★★★)已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+2=0},且A∪B=A,A∩C=C,则a的值为

,m的取值范围为

.

三、解答题

5.(★★★★)已知集合A={x|x2+px+q=0},B={x|qx2+px+1=0},A,B同时满足:

①A∩B≠,②A∩B={-2}.求p、q的值.

6.(★★★★)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,并说明它表示什么曲线.

7.(★★★★★)已知函数y=f(x)的图象是自原点出发的一条折线.当n≤y≤n+1(n=0,1,2,...)时,该图象是斜率为bn的线段(其中正常数b≠1),设数列{xn}由f(xn)=n(n=1,2,...)定义.

(1)求x

1、x2和xn的表达式;

(2)计算xn;

(3)求f(x)的表达式,并写出其定义域.

8.(★★★★★)已知a>0时,函数f(x)=ax-bx2

(1)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;

(2)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2;

(3)当0<b≤1时,讨论:对任意x∈[0,1],|f(x)|≤1的充要条件. -11-

参 考 答 案

●重点难点磁场

1.解析:即f(x)=(a-1)x2+ax-=0有解.

当a-1=0时,满足.当a-1≠0时,只需Δ=a2-(a-1)>0.

答案:或a=1

2.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.

当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1.f(-a)≠f(a),f(-a)≠-f(a)

此时函数f(x)既不是奇函数,也不是偶函数.

(2)①当x≤a时,函数f(x)=x2-x+a+1=(x-)2+a+

若a≤,则函数f(x)在(-∞,a]上单调递减.

从而函数f(x)在(-∞,a上的最小值为f(a)=a2+1

若a>,则函数f(x)在(-∞,a上的最小值为f()=+a,且f()≤f(a).

②当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+

若a≤-,则函数f(x)在[a,+∞]上的最小值为f(-)=-a,且f(-)≤f(a);

若a>-,则函数f(x)在[a,+∞)单调递增.

从而函数f(x)在[a,+∞]上的最小值为f(a)=a2+1.

综上,当a≤-时,函数f(x)的最小值为-a;

当-<a≤时,函数f(x)的最小值是a2+1;

当a>时,函数f(x)的最小值是a+.

●歼灭重点难点训练

一、1.解析:分a=

2、|a|>2和|a|<2三种情况分别验证.

答案:C

2.解析:任取4个点共C=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种.

答案:C

二、3.解析:分线段AB两端点在平面同侧和异侧两种情况解决.

答案:1或2

4.解析:A={1,2},B={x|(x-1)(x-1+a)=0},

由A∪B=A可得1-a=1或1-a=2;

由A∩C=C,可知C={1}或.

答案:2或3 3或(-2,2)

三、5.解:设x0∈A,x0是x02+px0+q=0的根.

若x0=0,则A={-2,0},从而p=2,q=0,B={-}.

此时A∩B=与已知矛盾,故x0≠0.

将方程x02+px0+q=0两边除以x02,得

.即满足B中的方程,故∈B.∵A∩={-2},则-2∈A,且-2∈.设A={-2,x0},则B={},且x0≠2(否则A∩B=).若x0=-,则-2∈B,与-2B矛盾.又由A∩B≠,∴x0=,即x0=±1. -12-

即A={-2,1}或A={-2,-1}.

故方程x2+px+q=0有两个不相等的实数根-2,1或-2,-1

6.解:如图,设MN切圆C于N,则动点M组成的集合是P={M||MN|=λ|MQ|,λ>0}.

∵ON⊥MN,|ON|=1,

∴|MN|2=|MO|2-|ON|2=|MO|2-1

设动点M的坐标为(x,y),

即(x2-1)(x2+y2)-4λ2x+(4λ2+1)=0.

经检验,坐标适合这个方程的点都属于集合P,故方程为所求的轨迹方程.

(1)当λ=1时,方程为x=,它是垂直于x轴且与x轴相交于点(,0)的直线;

(2)当λ≠1时,方程化为:

它是以为圆心,为半径的圆.

7.解:(1)依题意f(0)=0,又由f(x1)=1,当0≤y≤1,函数y=f(x)的图象是斜率为b0=1的线段,故由

∴x1=1

又由f(x2)=2,当1≤y≤2时,函数y=f(x)的图象是斜率为b的线段,故由

即x2-x1= ∴x2=1+ 记x0=0,由函数y=f(x)图象中第n段线段的斜率为bn-1,故得

又由f(xn)=n,f(xn-1)=n-1 ∴xn-xn-1=()n-1,n=1,2,......由此知数列{xn-xn-1}为等比数列,其首项为1,公比为.因b≠1,得(xk-xk-1) =1++...+ 即xn= (2)由(1)知,当b>1时,

当0<b<1,n→∞, xn也趋于无穷大.xn不存在.(3)由(1)知,当0≤y≤1时,y=x,即当0≤x≤1时,f(x)=x; 当n≤y≤n+1,即xn≤x≤xn+1由(1)可知 f(x)=n+bn(x-xn)(n=1,2,...),由(2)知 当b>1时,y=f(x)的定义域为[0,); 当0<b<1时,y=f(x)的定义域为[0,+∞).8.(1)证明:依设,对任意x∈R,都有f(x)≤1 ∵ ∴≤1 ∵a>0,b>0 ∴a≤2.(2)证明:必要性:

对任意x∈[0,1],|f(x)|≤1-1≤f(x),据此可以推出-1≤f(1) -13-

即a-b≥-1,∴a≥b-1

对任意x∈[0,1],|f(x)|≤1f(x)≤1.

因为b>1,可以推出f()≤1即a•-1≤1,

∴a≤2,∴b-1≤a≤2

充分性:

因为b>1,a≥b-1,对任意x∈[0,1].

可以推出ax-bx2≥b(x-x2)-x≥-x≥-1

即ax-bx2≥-1

因为b>1,a≤2,对任意x∈[0,1],可以推出ax-bx2≤2x-bx2≤1

即ax-bx2≤1,∴-1≤f(x)≤1

综上,当b>1时,对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2.

(3)解:∵a>0,0<b≤1

∴x∈[0,1],f(x)=ax-bx2≥-b≥-1

即f(x)≥-1

f(x)≤1f(1)≤1a-b≤1

即a≤b+1

a≤b+1f(x)≤(b+1)x-bx2≤1

即f(x)≤1 所以当a>0,0<b≤1时高考数学重点难点突破 重点难点39 化归思想.txt人和人的心最近又最远,真诚是中间的通道。试金可以用火,试女人可以用金,试男人可以用女人--往往都经不起那么一试。

-14-

第20篇:数形结合思想在小学数学教学中的渗透重点

数形结合思想在小学数学教学中的渗透 (河北省唐县高昌镇淑吕小学赵敬敏

日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:不管他们(指学生从事什么业务工作,即使把所教给的知识(概念、定理、法则和公式等全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地地发生作用,使他们受益终生。随着社会的发展,要想实现“终身学习”和“人的可持续发展”,重要的是在教育中发展学生的能力,使之掌握获得知识和进一步学习的方法,逐渐掌握蕴涵在知识内的数学思想方法。只有这样,才能使学生真正感受到数学的价值和力量。小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。

数形结合思想是一种重要的数学思想。数形结合就是通过数(数量关系与形(空间形式的相互转化、互相利用来解决数学问题的一种思想方法。它既是一个重要的数学思想,又是一种常用的数学方法。数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。著名数学家华罗庚说过“数缺形时少直观、形少数时难入微”。有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。

一、在理解算理过程中渗透数形结合思想。

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”

根据教学内容的不同,引导学生理解算理的策略也是不同的,笔者认为数形结合是帮助学生理解算理的一种很好的方式。

(一“分数乘分数”教学片段

课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面,提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几? 在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来表示出1/5×1/4这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。后进生受到启发后修改自己的图形, 更好地理解1/5×1/4这个算式所表示的意义。第三,全班点评,请一些画得好的同学去展示、交流。也请一些画得不对的同学谈谈自己的问题以及注意事项。

这样让学生亲身经历、体验

“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。

(二“有余数除法”教学片段

课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。

生:9÷4 师:结合图我们能说出这题除法算式的商吗? 生:2,可是两个搭完以后还有1根小棒多出来。 师反馈板书:9÷4=2……1,讲解算理。

师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒? ……

通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。学生学得很轻松,理解得也比较透彻。

二、在教学新知中渗透数形结合思想。

在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。

(一“植树问题”教学片段

模拟植树,得出线上植树的三种情况。 师:“___”代表一段路,用“ / ”代表一棵树,画“ /

”就表示种了一棵树。请在这段路上种上四棵树,想想、做做,你能有几种种法? 学生操作,独立完成后,在小组里交流说说你是怎么种的? 师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板: ① \\___\\___\\___\\两端都种

② \\___\\___\\___\\___ 或 ___\\___\\___\\___\\ 一端栽种 ③ ___\\___\\___\\___\\___两端都不种

师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。

以上片段教师利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

(二连除应用题教学片段

课一始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。

30÷2÷3,学生画了右图:先平均分成2份,再将获得一份平均分成3份。 30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。 30÷(3×2,学生画了右图:先平均分成6份,再表示出其中的1份。

以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

三、在数学练习题中挖掘数形结合思想。

运用数形结合是帮助学生分析数量关系,正确解答应用题的有效途径。它不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。

(一三角形面积计算练习

民医院包扎用的三角巾是底和高各为9分米的等腰三角形。现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块? 有些学生列出了算式:72×18÷(9×9÷2,但有些学生根据题意画出了示意图, 列出72÷9×(18÷9×

2、72×18÷(9×9×2和72÷9×2×(18÷9等几种算式。

在上面这个片段中,数形结合很好地促进学生联系实际,灵活解决数学问题,而且还有效地防止了学生的生搬硬套,打开了学生的解题思路,由不会解答到用

多种方法解答,学生变聪明了。 (二百分数分数应用题练习

参加乒乓球兴趣小组的共有80人,其中男生占60%,后又有一批男生加入,这时男生占总人数的2/3。问后来又加入男生多少人? 先把题中的数量关系译成图形,再从图形的观察分析可译成:若把原来的总人数80人看作5份,则男生占3份,女生占2份,因而推知现在的总人数为6份,加入的男生为6—5=1份,得加入的男生为80÷5=16(人。

从这题不难看出:“数”、“形”互译的过程。既是解题过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要而巧妙。

总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。最关键一点,能使抽象枯燥的数学知识,形象化具体化,使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。

小学数学数形结合教学心得体会
《小学数学数形结合教学心得体会.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档