人人范文网 范文大全

用数学归纳法证明不等式

发布时间:2020-03-02 14:02:21 来源:范文大全 收藏本文 下载本文 手机版

人教版选修4—5不等式选讲

课题:用数学归纳法证明不等式

教学目标:

1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。

2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。

3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。

重点、难点:

1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。

2、应用数学归纳法证明的不同方法的选择和解题技巧。

教学过程:

一、复习导入:

1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤?

(1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。

(2)步骤:1)归纳奠基;

2)归纳递推。

2、作业讲评:(出示小黑板)

习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1)

如采用下面的证法,对吗?

证明:①当n=1时,左边=2=右边,则等式成立。

②假设n=k时,(k∈N,k≥1)等式成立,

即2+4+6+8+……+2k=k(k+1)

当n=k+1时,

2+4+6+8+……+2k+2(k+1)

∴ n=k+1时,等式成立。

由①②可知,对于任意自然数n,原等式都成立。

(1)学生思考讨论。

(2)师生总结: 1)不正确

2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,

违背了数学归纳法本质:递推性。

二、新知探究

明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板)

例1观察下面两个数列,从第几项起an始终小于bn?证明你的结论。 {an=n}:1,4,9,16,25,36,49,64,81, …… {bn=2}:2,4,8,16,32,64,128,256,512, …… (1)学生观察思考 (2)师生分析

(3)解:从第5项起,an < bn ,即 n²<2,n∈N+(n≥5)

证明:(1)当 n=5时,有52<25,命题成立。 (2)假设当n=k(k≥5)时命题成立 即k<

2当n=k+1时,因为

(k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2

由(1)(2)可知n²<2n(n∈N+,n≥5)

学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k

2②归纳假设:2k

例2

证明不等式│Sin nθ│≤n│Sinθ│(n∈N+)

k n

n2

2k

分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。

证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

当n=k+1时,

│Sin (k+1)θ│=│Sin kθCosθ+Cos kθSin θ│ ≤│Sin kθCosθ│+│Cos kθSin θ│ =│Sin kθ││Cosθ│+│Cos kθ││Sin θ│ ≤│Sin kθ│+│Sin θ│ ≤k│Sinθ│+│Sin θ│ =(k+1)│Sinθ│

所以当n=k+1时,不等式也成立。

由(1)(2)可知,不等式对一切正整数n均成立。

学生思考、小组讨论:①绝对值不等式: │a+b│≤ │a│+│b│

②三角函数的有界性:│Sinθ│≤1,│Cosθ│≤1 ③三角函数的两角和公式。

(板书)例3 证明贝努力(Bernoulli)不等式:

如果x是实数且x>-1,x≠0,n为大于1的自然数,那么有(1+x)>1+nx 分析:①贝努力不等式中涉几个字母?(两个:x,n)

②哪个字母与自然数有关?(n是大于1的自然是数)

(板书)证:(1)当n=2时,左边=(1+x)=1+2x+x,右边=1+2x,因x>0,则原不等式成立.

(在这里,一定要强调之所以左边>右边,关键在于x>0是由已知条件x≠0获得,为下面证明做铺垫)

(2)假设n=k时(k≥2),不等式成立,即(1+x)>1+kx. 师:现在要证的目标是(1+x)>1+(k+1)x,请同学考虑.

生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当

k+1k

n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)=(1+x)(1+x),因为x>

k

-1(已知),所以1+x>0于是(1+x)(1+x)>(1+kx)(1+x).

师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x. 显然,上式中“=”不成立.

k+

1k

2n

故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些?

生:证明不等式的基本方法有比较法、综合法、分析法.

(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)

生:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法. (1+kx)(1+x)-[1+(k+1)x] =1+x+kx+kx-1-kx-x

=kx>0(因x≠0,则x>0). 所以,(1+kx)(1+x)>1+(k+1)x. 生:也可采用综合法的放缩技巧.

(1+kx)(1+x)=1+kx+x+lx=1+(k+1)x+kx.

因为kx>0,所以1+(k+1)x+kx>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.

生:……

(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)

师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生用放缩技巧证明显然更简便,利于书写.

(板书)将例3的格式完整规范.

证明:(1)当n=2时,由x≠0得(1+x)=1+2x+x>1+2x,不等式成立。

(2)假设n=k(k≥2)时,不等式成立, 即有(1+x)>1+kx 当n=k+1时,

(1+x)k+1=(1+x)(1+x)>(1+x)(1+kx)

k

k

=1+x+kx+ kx>1+x+kx=1+(k+1)x 所以当n=k+1时,不等式成立

由①②可知,贝努力不等式成立。

(通过例题的讲解,在第二步证明过程中,通常要进行合理放缩,以达到转化目的)

三、课堂小结

1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.

2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.

四、课后作业

1.课本P53:1,3,5 2.证明不等式:

用反证法证明不等式

用导数证明不等式

用均值不等式证明不等式

不等式·用分析法证明不等式

不等式·用综合法证明不等式

用向量可以证明不等式

用放缩法证明不等式

用比较法证明不等式·教案

用数学归纳法证明不等式教案

用数学归纳法证明不等式教案

用数学归纳法证明不等式
《用数学归纳法证明不等式.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档