人人范文网 证明

正弦定理证明(精选多篇)

发布时间:2021-04-22 07:40:14 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:正弦定理证明

新课标必修数学5“解三角形”内容分析及教学建议

江苏省锡山高级中学杨志文

新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。

一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较

1.课程内容安排上的变化

“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。

2.教学要求的变化

原大纲对“解斜三角形”的教学要求是:

(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。

(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。 《标准》对“解三角形”的教学要求是:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。

3、课程关注点的变化

原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。

4、内容处理上的变化

原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。

二、教学中应注意的几个问题及教学建议

原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。 而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。

1.要重视探究和推理

《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。

参考案例:正弦定理的探索、发现与证明

教学建议:建议按如下步骤设计教学过程:

(1)从特殊三角形入手进行发现

让学生观察并测量一个三角板的边长。

提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?

例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,

58.610

,,101010 000

sin30sin60sin90

abc

对于特殊三角形,我们发现规律:。 

sinAsinBsinC

则有:

提出问题:上述规律,对任意三角形成立吗? (2)实验,探索规律

二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,

忽略测量误差,通过实验, 对任意三角形,有结论:

abc

,即在一个三角形中,

sinAsinBsinC

各边和它所对的角的正弦的比相等。

提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?

(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。 ②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A, 向

量j

与向量CB的夹角为900-C,(如图1) ,且有:ACCBAB, 所以j·(+) = j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)

ac

。 

sinAsinC

cbabc

同理,过点C做单位向量j垂直于,可得:,故有 。 

sinCsinBsinAsinBsinC

③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与

则得 a sinC = c sinA,即

向量AB的夹角为A -900,向量j与向量的夹角为900-C,且有:,同样可证得:

abc

。 

sinAsinB

提出问题:你还能利用其他方法证明吗?

方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。

2.要重视综合应用

《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:

参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,

BDA=60,BCD=135 .求BC的长.教学建议:

引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将

A B

四边形问题转化为三角形问题,选择余弦定理求BD ,再由正弦定理

例2图 求BC。

3.要重视实际应用

《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。

参考案例:解三角形在实际中的应用

参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与

乙船相遇?

教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇, 构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。

答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点

例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E

者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为

解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已

知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在

例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.

4.要重视研究性学习

解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习

课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.

教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。

参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB

平行。从图形的特点来看,涉及到线段的长度和角度,将

这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.

NBB

PO图(2)

QM

O图(1)

按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:

时,Smax200.

4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:

sin120

又MN2OMsin(60)40sin(60), MQ

20sin

40

3sin. 3

MP20sin,OP20cos,从而S400sincos200sin2.即当

∴SMQMN

33

sinsin(60)cos(260)cos60. 33



∴当30时,Smax由于

400. 3

400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33

也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。

参考文献:

①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。

②《普通高中数学课程标准(实验))》。人民教育出版社。2003年4月第一次印刷。 ③《普通高中数学课程标准(实验)解读》。严士健 张奠宙王尚志等主编。江苏教育出版社。2004年4月。

推荐第2篇:正弦定理证明

正弦定理

1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍,

abc2R sinAsinBsinC

证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB90 在RtABD中 A sinCsinDc 2RD

b c c2R sinCab同理:2R,2R

sinAsinBabc所以2R

sinAsinBsinC2.变式结论

1)a2RsinA,b2RsinB,c2RsinC 2)sinAC

a

B abc ,sinB,sinC2R2R2R3)asinBbsinA,asinCcsinA,csinBbsinC 4)a:b:csinA:sinB:sinC

例题

在ABC中,角A,B,C所对的边分别是a,b,c,若(3bc)cosAacosC,求cosA的值.解:由正弦定理 a2RsinA,b2RsinB,c2RsinC得

(3sinBsinC)cosAsinAcosC

3sinBcosAsin(AC)sin(AC)sinB3sinBcosAsinBB(0,)0sinB1cosA33

推荐第3篇:正弦定理证明

正弦定理证明1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到

a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。 2.三角形的余弦定理证明:平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。 2 谈正、余弦定理的多种证法 聊城二中 魏清泉

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则 (1)(正弦定理) = = ; (2)(余弦定理) c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.

一、正弦定理的证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA, BE=c•sin∠CAB, CF=a•sin∠ABC。

所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC, BE=a•sin∠BCA=c•sin∠CAB。 证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。 因为AB=AC+CB,

所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,

j•CB=| j ||CB|cos(90°-∠C)=a•sinC, j•AB=| j ||AB|cos(90°-∠A)=c•sinA .

二、余弦定理的证明

法一:在△ABC中,已知 ,求c。

推荐第4篇:向量证明正弦定理

向量证明正弦定理

表述:设三面角∠p-ABC的三个面角∠BpC,∠CpA,∠ApB所对的二面角依次为∠pA,∠pB,∠pC,则Sin∠pA/Sin∠BpC=Sin∠pB/Sin∠CpA=Sin∠pC/Sin∠ApB。

目录

1证明2全向量证明

证明

过A做OA⊥平面BpC于O。过O分别做OM⊥Bp于M与ON⊥pC于N。连结AM、AN。显然,∠pB=∠AMO,Sin∠pB=AO/AM;∠pC=∠ANO,Sin∠pC=AO/AN。另外,Sin∠CpA=AN/Ap,Sin∠ApB=AM/Ap。则Sin∠pB/Sin∠CpA=AO×Ap/(AM×AN)=Sin∠pC/Sin∠ApB。同理可证Sin∠pA/Sin∠BpC=Sin∠pB/Sin∠CpA。即可得证三面角正弦定理。

全向量证明

如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤

1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三级

记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2.在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,

4过三角形ABC的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB与向量AD的夹角为90°-B,向量AC与向量AD的夹角为90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB*向量AD=向量AC*向量AD即向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

推荐第5篇:正弦定理的证明

正弦定理的证明

(方法一)可分为锐角三角形和钝角三角形两种情况:当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则a

sinb

sin同理可得

从而a

sinAcsinCbsinBb

sinBcsinC

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(方法二)利用向量证明

如图,在ABC中,过点A作一个单位向量j,使jAC。

当BAC为钝角或直角时,同理可证上述结论。

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a

sinb

sinc

sin

[理解定理

]

- 1 -

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k

使aksinA,bksinB,cksinC;

(2)

下面还介绍几种证明的方法,供感兴趣同学探索。

(方法三)利用复数证明

如图,如图2,建立平面直角坐标系.在复平面内,过点A作BC的平行线,过点C作AB的平行线,交于点D.

asinAbsinBcsinC等价于asinAbsinB,csinCbsinB,asinAcsinC

根据复数相等的定义,实部等于实部,虚部等于虚部.可以得出

(方法四)利用ABC的外接圆证明Ⅰ

如图,O是ABC的外接圆,设半径为R,分

别连结OA、OB、OC,过点O作ODBC,垂足为

D。

证明:

(方法五)利用ABC的外接圆证明Ⅱ

O是ABC的外接圆,如图,设半径为R,连结BO并延长,交 O于点D,连结AD。

证明:

(方法六)利用ABC的高线证明 如图,在ABC中,过点B作BDAC,垂足为D 证明:

(方法七)利用两角和的正弦公式证明

如图,在ABC中,过点B作BDAC,垂足为D

此题还能这样入手:

以下过程同上。

推荐第6篇:原创正弦定理证明

1.直角三角形中:sinA= ,sinB=, sinC=1

即c=

∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC

2.斜三角形中

证明一:(等积法)在任意斜△ABC当中

S△ABC=absinCacsinBbcsinA

两边同除以abc即得:

证明二:(外接圆法)

如图所示,∠A=∠D ∴aaCD2R sinAsinD

bc=2R,=2R sinBsinC12121212abc== sinAsinBsinC

同理

证明三:(向量法)

过A作单位向量j垂直于AC

由 AC+CB=AB

两边同乘以单位向量j 得 j•(AC+CB)=j•AB 则•+•=•

∴|j|•|AC|cos90+|j|•|CB|cos(90C)=| j|•|AB|cos(90A)

∴asinCcsinA∴ac= sinAsinC

cbabc同理,若过C作j垂直于CB得: =∴== sinCsinBsinAsinBsinC

正弦定理的应用 从理论上正弦定理可解决两类问题:

1.两角和任意一边,求其它两边和一角;

2已知a, b和A, 用正弦定理求B时的各种情况

:

⑴若A为锐角时: absinA无解absinA一解(直角)

bsinAab二解(一锐, 一钝)ab一解(锐角)

已知边a,b和A

a

无解a=CH=bsinA仅有一个解

CH=bsinA

ab无解⑵若A为直角或钝角时: ab一解(锐角)

推荐第7篇:正弦定理证明方法

正弦定理证明方法

方法1:用三角形外接圆

证明:任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

∴a/sinA=b/sinB=c/sinC=2R

方法2:用直角三角形

证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC

在直角三角形中,在钝角三角形中(略)。

方法3:用向量

证明:记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c

=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0∴a/sinA=c/sinC(b与i垂直,i·b=0)

方法4:用三角形面积公式

证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得b/sinB=c/sinC

∴a/sinA=b/sinB=c/sinC

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证

正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC

证明如下:在三角形的外接圆里证明会比较方便

例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:

2RsinD=BC(R为三角形外接圆半径)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

这样就得到正弦定理了

2

一种是用三角证asinB=bsinA

用面积证

用几何法,画三角形的外接圆

听说能用向量证,咋么证呢?

三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,

因为AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

3

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证

4

满意答案好评率:100%

正弦定理

步骤1.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

余弦定理

平面向量证法:

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*CosC

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

平面几何证法:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sinB²·c²+a^2+cosB²·c^2-2ac*cosB

b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

推荐第8篇:正弦定理的证明

正弦定理的证明

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证

正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC

证明如下:在三角形的外接圆里证明会比较方便

例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:

2RsinD=BC(R为三角形外接圆半径)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

这样就得到正弦定理了

2

一种是用三角证asinB=bsinA

用面积证

用几何法,画三角形的外接圆

听说能用向量证,咋么证呢?

三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,

因为AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

3

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证

4

满意答案好评率:100%

正弦定理

步骤1.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

余弦定理

平面向量证法:

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*CosC

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

平面几何证法:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sinB²·c²+a^2+cosB²·c^2-2ac*cosB

b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

推荐第9篇:正弦定理

正弦定理

一、教学目标分析

1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。

2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。

二、教学重点、难点分析

重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教学过程

(一)提出问题

我们知道,在任意三角形中有大边对大角,小边对小角的边角关系,我们能否找出边角准确的量化关系呢?

(二) 正弦定理的发现与证明在ABC中,内角A,B,C对边的边长分别是a,b,c

问题

1、在RtABC中,已知C900,则A的正弦与B的正弦有何关系?

问题

2、对于一般的三角形,问题1中所找到的关系是否成立?

(三) 正弦定理及其可求解的三角形的类型

1、正弦定理成立的条件是什么?它有何特征?

2、解三角形的定义是怎样的?

3、由正弦定理可求解的三角形的类型有哪些?

(四)例题与练习

[例1]在ABC中,已知A32.00,B81.80,a

[练习1] 在ABC中,已知A450,a

[例2]在ABC中,已知a

[练习2] 在ABC中,已知A600,a23 ,c22,解三角形。

[练习3]解决“

(一)正弦定理的引入”环节提出的问题。

(五)小结

1、我们是通过什么方法发现并证明正弦定理的?

2、正弦定理成立的条件是什么?它有何特征?

3、解三角形的定义是怎样的?

4、由正弦定理可求解的三角形的类型有哪些?

5、用正弦定理解三角形时要注意些什么?

(六)布置作业

课本第10页习题1.1A组第

1、2题 20cm2 42.9cm ,解三角形。 ,c6,解三角形。 ,b28cm,A400,解三角形(角度精确到10,边长精确到1cm)。

推荐第10篇:正弦定理

《正弦定理》情境设计

情境创设的意图(目的)

1.“正弦定理”既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。

2.通过设置联系生活实际的鲜活情境展开教学,把原来枯燥的、抽象的数学知识变得生动形象、饶有趣味,不仅可以使学生在操作、探究、体验、讨论、合作中学到有价值的、终身发展必备的数学知识和技能,而且伴随着知识的获得、能力的提高,学生的情感体验也得到了丰富。

3.在对正弦定理的探索过程中,有利于激发学生的求知欲和思维的积极性;有利于学生面对适度的难度,经受锻炼,尝试成功。借此激发学生的学习兴趣,激发学生内在的学习动机,提高学生参与教学过程的积极性。

二、情境素材

(一)情境信息素材

【教学情境】利用投影展示:如图,在河的对岸有一电线铁塔AB,某人在测量河对岸的塔高AB时,选与塔底B在同一水平面内的两个测量点C与D,现测得BCD,BDC,CDs,并在点C测得塔顶A的仰角为,求塔高AB.

(二)情境教学素材

1、创设一个现实问题情境作为提出问题的背景;.

2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两个角和一边,求另两边及另外一个角。解决这两个问题需要先回答目标问题:在三角形中,各边与它们的对角之间有怎样的关系?

3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。

三、由情境引发的问题组

(1) 大家想一想,能否把这个实际问题抽象为数学问题? (2) 根据已有的知识,能不能解决提出的问题? (3) 这道题的实质是什么? (4) 在锐角三角形中,怎样证明等式

=

=

(5) 在正弦定理的推到证明过程中,应用了哪些数学思想?

附:情境教学过程设计

第11篇:正弦定理

正弦定理的说课稿

大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。 一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想: 在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。 2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.(1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列条件,解三角形.(1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。 2.它表述了三角形的边与对角的正弦值的关系。 3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。 (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五 板书设计

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

第12篇:用向量证明正弦定理

用向量证明正弦定理

如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤

1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三级

记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2.在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,

4过三角形ABC的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB与向量AD的夹角为90°-B,向量AC与向量AD的夹角为90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB*向量AD=向量AC*向量AD即向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

第13篇:正弦定理的三种证明

△ABC中的三个内角∠A,∠B,∠C的对边,分别用a,b,c表示.正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即

asinA

=

bsinB

=

csinC

A

证明:按照三角形的种类,分三种情形证明之.(1) 在RtABC中,如图1-1

sinA=

ac

bc

,sinB=

a

=

b

=c

asinA

=

bsinBCDb=asinA

=

csinC

因此,

b

c

sinAsinB

有因为sinC=1,所以

C

CDa

a

C

B

(2)在锐角△ABC中,如图1-2 作CDAB于点D,有sinA=因此,bsinA=asinB,即同理可证:

asinA

=

csinC

asinA

,sinB=

b

sinB=

b

=

csinC

b

.

A

c ,故

sinB

(3)在钝角△ABC中,如图1-3

作CDAB,交AB的延长线于点D,则

sinA=

CDb

CDabsinB

B

D

,sinABC=sinCBD=

asinA

=

因此,bsinA=asinB,即同理可证:

b

=

c

b

a

sinBsinC

abc

==故 sinAsinBsinC

A

综上所述,在任意的三角形中,正弦定理总是成立.

B D

证明:如图所示,圆O是△ABC的外接圆,半径为R

连接AO并延长,交圆O于点D,连接CD,

易知,ACD=90,B=D

sinD=AC

AD=b

2R,即sinB=b

2R

因此b

sinB=2R B 同理,延长BO,CO,

可证

asinAasinA==csinCbsinB==2R csinC=2R 证明:过点B作单位向量jBC,那么就有jACjABjBC

bcos(90C)ccos(90B)0bsinCA

b

sinB

acsinC

b, b同理有故asinA=sinB=。 csinAsinBsinC

B

C

【小技巧】

根据几何图形确定向量夹角的方法:

如果两个向量所在之间直线相交,或通过平移一个向量而相交,那么

(1) 向量夹角为锐角,很容易判断;

(2) 向量夹角为钝角时,可以先判断锐角,再取补角

例如:

确定向量j与向量AB的夹角时,由于是钝角,

先确定向量j与向量BA的夹角为90B,再求补角,即为90B

ACj确定向量与向量的夹角时,先平移j,同上可得,夹角为90C

第14篇:向量法证明正弦定理

向量法证明正弦定理

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

2如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤

1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三级

记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2.在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,

4过三角形ABC的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB与向量AD的夹角为90°-B,向量AC与向量AD的夹角为90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB*向量AD=向量AC*向量AD即向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

第15篇:正弦定理的几种证明

正弦定理的几种证明

内蒙古赤峰建筑工程学校迟冰邮编(024400)

正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养学生的探索精神,体验数学的探索活动过程,也有利于教师根据不同的教学质量要求和学次,进行适当的选择。

正弦定理的内容:

在ABC中的三边和三角分别是

a

sinA=b

sinB=c

sinC:a,b,c和A,B,C则:

一向量法

证明:在ABC中做单位向量

iABi(ACCB)

|sinA|i||CB|sinCi

⊥AC,,则:c

sinC

a

sinA

:bsinBa

sinAb

sinBc

sinC 同理可证:即正弦定理可证

证明:在ABC中做高线CD,

则在RtADC和RtBDC中

CD=bsinA,

CD=asinB

即bsinA=asinB

a

sinA=b

sinB,同理可证:ac

sinA=sinC,

即正弦定理可证

三外接圆法

证明:做

ABC的外接圆O,过点C连接圆心与圆交于点设圆的半径为R

∴CAD为Rt,且bRsinD,且a∠D∠B

∴b2RsinB,即b

sinB2R

同理:ac

sinA2R,sinC2R

∴ac

sinAb

sinBsinCD,连接AD,

四面积法 SABC12bcsinA1

a

sinAabsinCb

sinB12acsinBc

sinC∴正弦定理可证:

第16篇:正弦定理的证明方法

正弦定理的证明方法

如图1,△ABC中,AD平分乙A交BC于D,由三角形内角平分线有ABBDAC一DC由正弦定理有:由(1)(2)(3,得:韶=韶幼朋=Ac:.△ABc为等腰三角形。证明‘三角证法,:BE平分匕B二器二黯…(l)ABACAB滋nC舀石乙二蕊丽劝元二舀丽””’‘(2)CF平分二C幼器二默…(2);EF//BC

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证

正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC

证明如下:在三角形的外接圆里证明会比较方便

例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:

2RsinD=BC(R为三角形外接圆半径)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

这样就得到正弦定理了

2

一种是用三角证asinB=bsinA

用面积证

用几何法,画三角形的外接圆

听说能用向量证,咋么证呢?

三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,

因为AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

3

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证

4

满意答案好评率:100%

正弦定理

步骤1.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

余弦定理

平面向量证法:

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*CosC

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

平面几何证法:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sinB²·c²+a^2+cosB²·c^2-2ac*cosB

b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

第17篇:正弦定理与余弦定理的证明

在△ABC中,角A、B、C所对的边分别为a、b、c,则有

a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)

正弦定理(Sine theorem)

(1)已知三角形的两角与一边,解三角形

(2)已知三角形的两边和其中一边所对的角,解三角形

(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。

证明

步骤1

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠ACB.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

余弦定理的证明:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

第18篇:向量法证明正弦定理[版]

向量法证明正弦定理证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R 2 如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C 由图1,AC+CB=AB(向量符号打不出) 在向量等式两边同乘向量j,得· j·AC+CB=j·AB ∴│j││AC│cos90°+│j││CB│cos(90°-C) =│j││AB│cos(90°-A) ∴asinC=csinA ∴a/sinA=c/sinC 同理,过点C作与向量CB垂直的单位向量j,可得 c/sinC=b/sinB ∴a/sinA=b/sinB=c/sinC 2步骤1 记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A) =-asinC+csinA=0 接着得到正弦定理 其他 步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤3.证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。

第19篇:正弦定理,余弦的多种证明

正弦(余弦)定理的另类证明

课本利用向量法证明正弦定理,本文来介绍的另外两种证法.正弦定理:在一个三角形中,各边和它所对角的正弦比相等,即a=bsinAsinB=csinC. 证法1:(等积法)在任意斜三角形ABC中,S△111absinCacsinBbcsinA, 222两边同除以1abc即得:a=b=c2sinAsinBsinCABC=

.

C点评:证法1主要利用了任意斜三角形面积可分别转化为三角形不同边与其对应高的乘积的12.此证法体现了转化与化归的思想方法.

abAOBDc证法2:(外接圆法)如图1所示,设O为△ABC的外接圆的圆心,

连接CO并延长交圆O于D,连接BD,则A=D,

BCaa所以sinAsinDCD,即2R.同理 2RsinAbsinB=2R,

csinC=2R.

故 a=b=csinAsinBsinC=2R(R为三角形外接圆半径).点评:证法2建立了三角形中的边与对角、外接圆半径三者之间的联系,这三者知二可求一,为正弦定理增添了新内容,体现了数形结合的思想.小结:由以上证明过程,我们可以得到正弦定理的几种变形形式: 1.a: b: c = sinA : sinB :sinC ; 2.a=2RsinA; b=2RsinB; c=2RsinC; 3.sinA=2aR;sinB= 2bR;sinC=2cR.(其中R为△ABC外接圆的半径)

在解决三角形问题时,一定要根据问题的具体情况,恰当地选用公式.公式选择得当、方法运用对路是简化问题的必要手段.

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.

对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质

a^2=b^2+c^2-2*b*c*CosA

b^2=a^2+c^2-2*a*c*CosB

c^2=a^2+b^2-2*a*b*CosC

CosC=(a^2+b^2-c^2)/2ab

CosB=(a^2+c^2-b^2)/2ac

CosA=(c^2+b^2-a^2)/2bc

证明: 如图:

∵a=b-c

∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc 再拆开,得a^2=b^2+c^2-2*b*c*CosA 同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。 ------------------平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 从余弦定理和余弦函数的性质可以看出, 如果一个三角形两边的平方和等于第三 边的平方,那么第三边所对的角一定是直 角,如果小于第三边的平方,那么第三边所 对的角是钝角,如果大于第三边,那么第三边

所对的角是锐角.即,利用余弦定理,可以判断三角形形状。 同时,还可以用余弦定理求三角形边长取值范围。

第20篇:1.1正弦定理

§1.1正弦定理(1)

【学习目标】

1.了解正弦定理推导过程,会利用正弦定理求解简单斜三角形边角问题;

2.了解三角形的面积公式S

运用.【活动方案】

活动一 正弦定理的推导

1.知识探究,△ABC中,根据下列条件求

的半径):

(1)abc6,(2)C90,ab3;(3)C90,a3,c6;

结论:.

2.结合课本P5~6的证明、P12,了解正弦定理推导的思路,体会转化及分类讨论的思想.

活动二利用正弦定理解三角形

例1 在△ABC中,已知c=10,A=45°,C=30°,求a、b.例2 根据下列条件解三角形

1)a,b30, A60;

111absinCbcsinAcasinB的推导过程,并会简单的222abc、2R(其中R为△ABC外接圆sinAsinBsinC

(2

)a50,bA45;

(3)a20,b

利用正弦定理,可以解决以下两类有关三角形问题:

⑴;

⑵.

活动三正弦形式的三角形面积公式的推导与运用

例3仿照正弦定理的证法1,证明三角形的面积公式203,A120.3S111absinCbcsinAcasinB,并运用这一结论解决下面的问题: 222

ABC(1)在△ABC中,若a2,b3,C150,求S;

ABC(2)在△ABC中,若c10,A45,C30,求b和S

【课堂反馈】

1.在△ABC中,已知b=12,A=30°,B=120°,则a.

2.在△ABC中,已知c=3 ,A=45°,B=60°,则b3.在△ABC

中,abA60,则B

4.在△ABC中,a3,b2,B45,则c

5.在△ABC

中,A30,a8,b△ABC的面积是.

正弦定理证明
《正弦定理证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档