人人范文网 范文大全

推理与证明总复习

发布时间:2020-03-02 09:57:16 来源:范文大全 收藏本文 下载本文 手机版

推理与证明总复习

编写人:杨素华审核:高二数学组(1)

一、知识结构框图

二、考纲分解解读

1合情推理与演绎推理

(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.

(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.

2直接证明与间接证明

(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.

(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 3数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.三、基础知识

(一)合情推理与演绎推理

1推理的概念

根据一个或几个已知事实(或假设)得出一个判断,这种___________叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做___________,一部分是由已知推出的判断,叫做___________.

2合情推理

根据已有的事实,经过___________、___________、___________、___________,再进行___________、___________,然后提出___________的推理称为合情推理.合情推理又具体分为归纳推理和类比推理两类.

(1)归纳推理:由某类事物的___________对象具有某些特征,推出该类事物的___________对象具有这些特征的推理;或者由___________事实概括出___________

的推理称为归纳推

1理.简言之,归纳推理是由部分到___________,由___________到___________的推理,归纳推理简称归纳.(2)类比推理:由两类对象具有___________和其中一类对象的某些___________,推出另一类对象也具有这些特征的推理,称为类比推理.简言之,类比推理是由___________到___________的推理,类比推理简称类比.

3演绎推理

(1)从___________出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由___________到___________的推理.

(2)三段论是演绎推理的一般模式,它包括:①大前提——________________;②小前提——________________;③结论——________________________________.

(二)直接证明与间接证明

1.直接证明

(1)综合法:从题设的____________出发,运用一系列有关_______________作为推理的依据,逐步推演而得到要证明的结论,这种证明方法叫做综合法.综合法的推理方向是由____________到____________,表现为____________,综合法的解题步骤用符号表示是:_____________________.

特点:“由因导果”,因此综合法又叫____________法.

(2)分析法:分析法的推理方向是由____________到____________,论证中步步寻求使其成立的____________,如此逐步归结到已知的条件和已经成立的事实,从而使命题得证,表现为____________,分析法的证题步骤用符号表示为_____________________________.特点:“执果索因”,因此分析法又叫____________法或____________法.

2.间接证明

假设原命题的结论不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.这样的证明方法叫反证法.反证法是一种间接证明的方法.

(1)反证法的解题步骤:____________——推演过程中引出矛盾——____________.

(2)反证法的理论依据是:原命题为真,则它的____________为真,在直接证明有困难时,就可以转化为证明它的____________成立.

(3)反证法证明一个命题常采用以下步骤:

①假定命题的结论不成立.

②进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾. ③由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的.

④肯定原来命题的结论是正确的.

即“反设——归谬——结论”.

(4)一般情况下,有如下几种情况的求证题目常常采用反证法:

第一,问题共有n种情况,现要证明其中的一种情况成立时,可以想到用反证法把其它的 n-1种情况都排除,从而肯定这种情况成立;

第二,命题是以否定命题的形式叙述的;

第三,命题用“至少”、“至多”的字样叙述的;

第四,当命题成立非常明显,而要直接证明所用的理论太少,且不容易说明,而其逆命题又是非常容易证明的.(三)数学归纳法

1.数学归纳法

对于某些与正整数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k∈N*,k≥n0)时命题成立,证明当________时命

题也成立,这种证明方法就叫做________.

2.用数学归纳法证明一个与正整数(或自然数)有关的命题的步骤

(1)(归纳奠基)当n取第一个值________________________时,证明命题成立;

(2)(归纳递推)假设当_______________________时结论正确,证明当________时结论也正确. 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确.

3.特点注意

用数学归纳法来证明与正整数有关的命题时,要注意:________不可少,________要用到,________莫忘掉.

四、题型归纳

(一)归纳推理

例1平面内的1条直线把平面分成2部分,2条相交直线把平面分成4部分,3条相交但不共点的直线把平面分成7部分,则n条彼此相交而无三条共点的直线,可把平面分成多少部分?

分析:可通过画图当直线条数n为3,4,5时,分别计算出它们将平面分成的区域数Sn,从中发现规律,再归纳出结论.

解析:设平面被n条直线分成Sn部分,则

当n=1时,S1 =1+1=2;

当n=2时,S2 =1+1+2=4;

当n=3时,S3 =1+1+2+3=7;

当n=4时,S4 =1+1+2+3+4=11.

据此猜想,得Sn=1+ n(n1)

2nn222= .

点评:本题是由部分到整体的推理,先把部分的情况都写出来,然后寻找规律,概括出整体的情况.

(二)类比推理

例2(2009年微山模拟)在平面几何中,对于Rt△ABC,设AB=c,AC=b,BC=a,则

(1)a2+b2=c2;

22(2)cos2A+cos2B=1; ab

(3)Rt△ABC的外接圆半径为r=

2.

把上面的结论类比到空间写出相类似的结论.分析:我们在空间中选取3个面两两垂直的四面体作为直角三角形的类比对象,考虑面积,二面角,及外接球的半径即可得.

解析:(1)设3个两两垂直的侧面的面积

分别为S1,S2,S3,底面面积为S,则

S12+S22+S32=S2.

(2)设3个两两垂直的侧面与底面所成的角

分别为α,β,γ,则

cosα+cosβ+cosγ=1.

(3)设3个两两垂直的侧面形成的侧棱长分

别为a,b,c,则这个四面体的外接球的半径

为R=a2222b

32c2.

(三)演绎推理

演绎推理是证明数学问题的基本推理形式,因此在高考中经常出现,三段论推理是演绎推理的一种重要的推理形式,是由一般到特殊的推理,在前提真实并且推理形式正确的前提下,其结论就必然真实.

2例3证明:函数f(x)=-x+2x在[1,+∞)上是减函数.

(四)用综合法证明数学命题

例4已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是圆周上不同于A,B的任一点,过A点作AE⊥PC于点E,如右图所示.求证:AE⊥平面PBC.

(五)用分析法证明数学命题

例5若a>0,求证: a212a

(六)用反证法证明数学命题

例6已知:a3+b3=2,求证:a+b≤2.

分析:本题直接证明命题较困难,宜用反证法.

证明:假设a+b>2,则b>2-a .

于是a+b>a+(2-a)=8-12a+6a

=6(a-1)2+2≥2 .

与已知相矛盾,所以 a+b≤2.

(七)数学归纳法

ⅰ归纳、猜想、证明

例7在各项为正的数列{an}中,数列的前n项和Sn满足

(1)求a1,a2,a3.

ⅱ用数学归纳法证明恒等式11an.Sn= 2 a  n333322a1a2.(2)由(1)猜想数列{an}的通项公式,并且用数学归纳法证明你的猜想.

22例8用数学归纳法证明:n ( n1 ) 2n(n1)(3n1  223 12

211n10)

ⅲ用数学归纳法证明整除问题

例9用数学归纳法证明:对于任意自然数n,数11n+2+122n+1是133的倍数.

ⅳ用数学归纳法证明不等式问题

例10设函数f(x)xxlnx.数列an满足0a11,an1f(an). (Ⅰ)证明:函数f(x)在区间(0,1)是增函数;

(Ⅱ)证明:anan11;

1),整数k≥(Ⅲ)设b(a1,a1ba1lnb.证明:ak1b.

解:

(I)当0

f′(x)=1-lnx-1=-lnx>0

所以函数f(x)在区间(0,1)是增函数,

(II)当0x

又由(I)有f(x)在x=1处连续知,

当0

因此,当0

下面用数学归纳法证明: 0

(i)由0

则由①可得0

故当n=k+1时,不等式②也成立

综合(i)(ii)证得:an

(III)由(II)知,{an}逐项递增,故若存在正整数m≤k,使得am≥b,则ak+1>am≥b 否则,若am

amlnam≤a1lnam

ak+1=ak-aklnak

=ak-1-ak-1lnak-1-aklnak

……

k

=a1-amlnam

m1

k

由③知amlnam

m1

于是ak+1>a1+k|a1lnb|

≥a1+(b-a1) =b

高中数学高考总复习推理与证明

推理与证明 复习

推理与证明小结复习

推理与证明复习(基础)

025推理与证明复习

高三推理与证明专题复习

高二期末复习推理与证明

期末复习:推理与证明,复数

推理与证明

推理与证明

推理与证明总复习
《推理与证明总复习.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档