人人范文网 范文大全

解析几何教案

发布时间:2020-03-02 04:59:24 来源:范文大全 收藏本文 下载本文 手机版

解析几何教案

一、位移向量:既有大小又有方向的量,简称向量;

两点的距离公式: 中点公式:

例题:

二、直线的倾斜角和斜率

1.直线方程:

一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是 2.直线的倾斜角: 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.

直线倾斜角角的定义有下面三个要点:(1)以x轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角.

3.直线的斜率

倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示,即

对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P

1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到. 例1 如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l

1、l2的斜率.

∵l2的倾斜角α2=90°+30°=120°,

例2 求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角.

∴tgα=-1.∵0°≤α<180°,∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°.

三、直线方程的一般形式:点斜式、斜截式、两点式和截距式

在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线. (一)点斜式

设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得

当直线的斜率为0°时,k=0,直线的方程是y=y1. 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

(二)斜截式

已知直线l在y轴上的截距为b,斜率为k,求直线的方程.

这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是

它是由直线的斜率和它在y轴上的截距确定的.

当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.

(三)两点式

已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请大家求直线l的方程.

(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,规律完全一样.

(四)截距式

例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.

解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得当y1≠y2时,为了便于记忆,我们把方程改写成

就是

学生也可能用先求斜率,然后用点斜式方程求得截距式.

对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示. 例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.

解:直线AB的方程可由两点式得:

即 3x+8y+15=0这就是直线AB的方程.

BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径: 由斜截式得:由截距式方程得AC的方程是

即 5x+3y-6=0.这就是直线BC的方程.

即 2x+5y+10=0.这就是直线AC的方程.

例3 证明:三点A(1,3)、B(5,7)、C(10,12)在同一条直线上.

证法一

直线AB的方程是:

化简得 y=x+2.将点C的坐标代入上面的方程,等式成立.∴A、B、C三点共线.

∴A、B、C三点共线.

例4 直线x+2y-10=0与过A(1,3)、 B(5,2)的直线相交于C,

此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一些.如果先用定比分点公式设出点C的坐标(即满足点C在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多.

代入x+2y-10=0有:解之得

λ=-3.

在直角坐标系内,已知两点A(x1,y1),B(x2,y2);在两点连线上有一点P,设它的坐标为(x,y),且线段AP比线段PB的比值为λ,那么我们说P分有向线段AB的比为λ

且P的坐标为

x=(x1 + λ · x2) / (1 + λ) y=(y1 + λ · y2) / (1 + λ) 例4 直线x+2y-10=0与过A(1,3)、 B(5,2)的直线相交于C,

此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一些.如果先用定比分点公式设出点C的坐标(即满足点C在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多.

代入x+2y-10=0有:解之得

λ=-3.

定比分点公式的特殊情况

中点公式:

已知两点A(x1,y1),B(x2,y2),设两点中点为P(x,y)

则 x=(x1+x2)/2;y=(y1+y2)/2 .

三角形重心公式:

已知三角形ABC [A(x1,y1),B(x2,y2),C(x3,y3)],设三角形重心为G(x,y)

则x=(x1+x2+x3)/3;y=(y1+y2+y3)/3 分点的不同情况

当P为内分点时,λ>0;

当P为外分点时,λ

当P与A重合时,λ=0; 当P与B重合时λ不存在

四、两条直线的位置关系:两条直线的平行与垂直

(一)特殊情况下的两直线平行与垂直 当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.

(二)斜率存在时两直线的平行与垂直

设直线l1和l2的斜率为k1和k2,它们的方程分别是l1: y=k1x+b1; l2: y=k2x+b2.

两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征.

我们首先研究两条直线平行(不重合)的情形.如果l1∥l2(图1-29),那么它们的倾斜角相等:α1=α2.∴tgα1=tgα2.即 k1=k2.反过来成立

结论:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即 ( ,b1不等于b2) l1与l2重合《==》k1= k2,b1= b2 两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即

例1 已知两条直线l1: 2x-4y+7=0, L2: x-2y+5=0.求证:l1∥l2. 证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合. 例2求过点 A(1,-4),且与直线2x+3y+5=0平行的直线方程.

因所求直线与2x+3y+5=0平行,可设所求直线方程为2x+3y+m=0,将A(1,-4)代入有m=10,故所求直线方程为

2x+3y+10=0.

例3 求过点A(2,1),且与直线2x+y-10=0垂直的直线方程:x-2y=0.

五、两条直线的位置关系:两条直线所成的角

一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题.

l1到l2的角正切

两条直线l1和l2相交构成四个角,它们是两对对顶角.为了区别这些角,我们把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角.图1-27中,直线l1到l2的角是θ1,l2到l1的角是θ2(θ1+θ2=180°).

l1到l2的角有三个要点:始边、终边和旋转方向.

现在我们来求斜率分别为k

1、k2的两条直线l1到l2的角,设已知直线的方程分别是

l1∶y=k1x+b1 l2∶y=k2x+b2 如果1+k1k2=0,那么θ=90°,

下面研究1+k1k2≠0的情形.征进行记忆. (四)例题

解:k1=-2,k2=1.

上面的关系记忆时,可抓住分子是终边斜率减始边斜率的特

∴θ=arctg3≈71°34′.

例3等腰三角形一腰所在的直线l1的方程是x-2y-2=0,底边所在的直线l2的方程是x+y-1=0,点(-2,0)在另一腰上,求这腰所在直线l3的方程. 解:先作图演示一腰到底的角与底到另一腰的角相等,并且与两腰到底的角与底到另一腰的角相等,并且与两腰的顺序无关.设l

1、l

2、l3的斜率分别是k

1、k

2、k3,l1到l2的角是θ1,l2到l3的角是θ2,则

因为l

1、l

2、l3所围成的三角形是等腰三角形,所以θ1=θ2.tgθ2=tgθ1=-3.

解得 k3=2.因为l3经过点(-2,0),斜率为2,写出点斜式为y=2[x-(-2)],

即 2x-y+4=0.这就是直线l3的方程.

讲此例题时,一定要说明:无须作图,任一腰到底的角与底到另一腰的角都相等,要为锐角都为锐角,要为钝角都为钝角.

六、两条直线的位置关系:两条直线的交点 (一)两直线交点与方程组解的关系 设两直线的方程是

l1: A1x+B1y+c1=0, l2: A2x+B2y+C2=0.

如果两条直线相交,由于交点同时在两条直线上,交点的坐标一定是这两个方程的公共解;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是直线l1和l2的交点.因此,两条直线是否相交,就要看这两条直线的方程所组成的方程组

是否有唯一解.

例2 已知两条直线:l1: x+my+6=0,l2: (m-2)x+3y+2m=0. 当m为何值时,l1与l2:(1)相交,(2)平行,(3)重合.

解:将两直线的方程组成方程组

解得m=-1或m=3.

(2)当m=-1时,方程组为∴方程无解,l1与l2平行.

(3)当m=3时,方程组为两方程为同一个方程,l1与l2重合.

七、点到直线的距离公式

平面内一点P(x0,y0)到一条直线Ax+By+C=0的距离公式:例2 求平行线2x-7y+8=0和2x-7y-6=0的距离.

解:在直线2x-7y-6=0上任取一点,例如取P(3,0),则两平行线间的距离就是点P(3,0)到直线2x-7y+8=0的距离(图1-38).

例3 正方形的中心在C(-1,0),一条边所在的直线方程是x+3y-5=0,求其它三边所在的直线方程.

解:正方形的边心距

设与x+3y-5=0平行的一边所在的直线方程是x+3y+C1=0,则中心到

C1=-5(舍去0)或C1=7.∴与x+3y-5=0平行的边所在的直线方程是x+3y+7=0. 设与x+3y-5=0垂直的边所在的直线方程是3x-y+C2=0,则中心到这

解之有C2=-3或C2=9.∴与x+3y-5=0垂直的两边所在的直线方程是3x-y-3=0和3x-y+9=0.

一、圆的标准方程

1,标准方程:由两点间的距离公式得:

将上式两边平方得:(x-a)2+(y-b)2=r2.圆心是C(a,b)、半径是r 当圆心在原点即C(0,0)时,方程为 x2+y2=r2.

2,一般方程:我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.

将方程x2+y2+Dx+Ey+F=0左边配方得:

(1)

(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程

半径的圆;

(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形. 当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:

(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0; (3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.

解析几何教案

《解析几何》教案

《解析几何》课程教案

解析几何

解析几何教案(三)(材料)

解析几何9.6 椭圆(教案)

数学史解析几何部分教案

平面解析几何

《解析几何》讲稿

第七章 空间解析几何习题课教案

解析几何教案
《解析几何教案.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档