人人范文网 范文大全

第七章 推理与证明第2课时 直接证明与间接证明

发布时间:2020-03-02 05:25:50 来源:范文大全 收藏本文 下载本文 手机版

第七章 推理与证明第

(理)95~96页

) 2课时 直接证明与间接证明(对应学生用书(文)、

1.已知向量m=(1,1)与向量n=(x,2-2x)垂直,则x=________.

答案:

2解析:m·n=x+(2-2x)=2-x.∵ m⊥n,∴ m·n=0,即x=2.2.用反证法证明命题“如果a>b,那么a>b”时,假设的内容应为______________. 答案:a=b或a

3333解析:根据反证法的步骤,假设是对原命题结论的否定,即a=b或a5-7

解析:由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+41010.因为42>40,所以6-5-7成立.

4.定义集合运算:A·B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A·B的所有元素之和为________.

答案:0

π解析:依题意知α≠kπ+,k∈Z.

423π2①α=kπ+(k∈Z)时,B=, 422

22A·B=0,; 22

π②α=2kπ或α=2kπ+∈Z)时,B={0,1},A·B={0,1,-1}; 2

π③α=2kπ+π或α=2kπ-(k∈Z)时,B={0,-1},A·B={0,1,-1}; 2

kπ3π④α≠α≠kπ+∈Z)时,B={sinα,cosα},A·B={0,sinα,cosα,-sinα,24

-cosα}.

综上可知A·B中的所有元素之和为0.

115.(选修12P44练习题4改编)设a、b为两个正数,且a+b=1≥μ恒成立ab的μ的取值范围是________.

答案:(-∞,4]

1111ba=2+≥2+2解析:∵ a+b=1,且a、b为两个正数,∴ +=(a+b)abababab

1

1=4.要使得≥μ恒成立,只要μ≤

4.ab

1.直接证明

(1) 定义:直接从原命题的条件逐步推得命题成立的证明方法. (2) 一般形式

本题条件

已知定义已知公理已知定理ÞAÞBÞ

C„本题结论.

(3) 综合法

① 定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.

② 推证过程

已知条件Þ

„Þ

Þ结论

(4) 分析法

① 定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法称为分析法.

② 推证过程

结论

Ü„Ü„Ü

已知条件

2.间接证明

(1) 常用的间接证明方法有 (2) 反证法的基本步骤

① 反设——假设命题的结论不成立,即假定原结论的反面为真.

② 归谬——从反设和已知出发,经过一系列正确的逻辑推理,得出矛盾结果. ③ 存真——由矛盾结果,断定反设不真,从而肯定原结论成立. [备课札记]

题型1 直接证明(综合法和分析法)

例1 数列{an}的前n项和记为Sn,已知a1=1,an+1=

S

(1) 数列n是等比数列;

n+

2(n=1,2,3,„),证明: nn

(2) Sn+1=4an.n+2

(n=1,2,3,„),∴ (n+2)Sn=n(Sn+1-Sn), nn

Sn+1S整理得nSn+1=2(n+1)Sn,∴ ,

nn+

1Sn+1n+1S即2,∴ 数列n是等比数列.

Sn

Sn+1Sn-1Sn-1

(2) 由(1)知:=(n≥2),于是Sn+1=4·(n+4an(n≥2).又a2=3S1

n+1n-1n-1

=3,∴ S2=a1+a2=1+3=4a1,

∴ 对一切n∈N*,都有Sn+1=4an.

例2 设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.

lgclgc

证明:(分析法)由于a>1,b>1,c>1,故要证明logac+logbc≥4lgc,只要证明lgalgb

lga+lgb

14lgc,即≥4,因为ab=10,故lga+lgb=1.≥4,由于a>1,b>1,故

lgalgblga·lgb

lga+lgb21211

lga>0,lgb>0,所以0

4lgalgb2

变式训练

设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n、m,Sn+m=Sm+qmSn总成立.求证:数列{an}是等比数列.

证明:因为对任意正整数n、m,Sn+m=Sm+qmSn总成立,令n=m=1,得S2=S1+qS1,则a2=qa1.令m=1,得Sn+1=S1+qSn ①, 从而Sn+2=S1+qSn+1 ②,②-①得an+2=qan+1(n≥1),综上得an+1=qan(n≥1),所以数列{an}是等比数列.

题型2 间接证明(反证法)

证明:(1) ∵ an+1=Sn+1-Sn,an+1=

例3 证明:2,3,5不能为同一等差数列中的三项.

证明:假设2,3,5为同一等差数列的三项,则存在整数m、n满足3=2+md ①,

=2+nd②,

①×n-②×m3n5m=2(n-m),两边平方得3n2+5m2-15mn=2(n-m)2,左边为无理数,右边为有理数,且有理数≠不能为同一等差数列的三项.

备选变式(教师专享)

已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.

解:若方程没有一个实数根,则

16a-4(3-4a)

3(a-1)2-4a2

3

a≥-1或a≤.故三个方程至少有一个方程有实数根的a的取值范围是a

2

1.用反证法证明命题“a·b(a、b∈Z)是偶数,那么a、b中至少有一个是偶数.”那么反设的内容是__________________________________.

答案:假设a、b都是奇数(a、b都不是偶数)

解析:用反证法证明命题时反设的内容是否定结论.

19

2.已知a、b、c∈(0,+∞)且a<c,b<c+1,若以a、b、c为三边构造三角形,

ab

则c的取值范围是________.

答案:(10,16)

解析:要以a、b、c为三边构造三角形,需要满足任意两边之和大于第三边,任意两边

19b9a=10之差小于第三边,而ac恒成立.而a+b=(a+b)abab

11111019

16,∴c,=1,∴c>10,∴10

1

1f0(x)-,fn(x)=fn-1(x,(n≥1,n≥N),3.设函数f0(x)=1-x2,f1(x)=22

n11

则方程f1(x)=________个实数根,方程fn(x)=3有________个实数根.

3+

答案:4 2n1

1111

51-x2=x2-= x2=x2=有4个解. 解析:f1(x)=22366

∵ 可推出n=1,2,3„,根个数分别为22,23,24,

1n+∴ 通过类比得出fn(x)=3有2n1个实数根.

4.若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.(1) 若x2-1比1远离0,求x的取值范围;

(2) 对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离ab.(1) 解:x∈(-∞2)∪(2,+∞).

(2)证明:对任意两个不相等的正数a、b,有 a3+b3ab,a2b+ab2ab.因为|a3+b3-ab|-|a2b+ab2-2ab=(a+b)(a-b)2>0,所以|a

3+b3-2abab|>|a2b+ab2-2abab|,即a3+b3比a2b+ab2远离2abab.

1.已知a>b>c,且a+b+c=0,求证:b-证明:要证b-ac0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵ a>b>c,∴ a-b>0,a-c>0,∴ (a-b)(a-c)>0显然成立.故原不等式成立.

2.已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,且m+n=2p(m、n、p∈N*),求证:Sn+Sm≥2Sp.

证明:∵m2+n2≥2mn,∴2(m2+n2)≥(m+n)2.又m+n=2p,∴m2+n2≥2p2.3.如图,ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.

(1) 求证:PA⊥BD;

(2) 若PC与CD不垂直,求证:PA≠PD.

证明:(1) 因为ABCD为直角梯形,AD2AB2BD, 所以AD2=AB2+BD2,因此AB⊥BD.

又PB⊥BD,AB∩PB=B,AB,PBÌ平面PAB, 所以BD⊥平面PAB,

又PAÌ平面PAB,所以PA⊥BD.

(2) 假设PA=PD,取AD中点N,连结PN、BN, 则PN⊥AD,BN⊥AD,且PN∩BN=N, 所以AD⊥平面PNB,得PB⊥AD.

又PB⊥BD,且AD∩BD=D,得PB⊥平面ABCD,所以PB⊥CD.又因为BC⊥CD,且PB∩BC=B,所以CD⊥平面PBC,所以CD⊥PC,与已知条件PC与CD不垂直矛盾,所以PA≠PD.x-

24.已知f(x)=ax(a>1).

x+

1(1) 证明f(x)在(-1,+∞)上为增函数; (2) 用反证法证明方程f(x)=0没有负数根.

证明:(1) 设-1<x1<x2,则x2-x1>0,ax2-x1>1,ax1>0,x1+1>0,x2+1>0,

x-2x-23(x-x)

从而f(x2)-f(x1)=ax2-ax1+-ax1(ax2-x1-1)+>0,所以

x2+1x1+1(x2+1)(x1+1)

f(x)在(-1,+∞)上为增函数.

x0-2

(2) 设存在x0<0(x0≠-1)使f(x0)=0,则ax0=-x0+1

x0-21

由0<ax0<10<-<1,即<x0<2,此与x0<0矛盾,故x0不存在.

2x0+1

1.分析法的特点是从未知看已知,逐步靠拢已知,综合法的特点是从已知看未知,逐步推出未知.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较烦;综合法从条件推出结论,较简捷地解决问题,但不便于思考,实际证明时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.

2.反证法是从否定结论出发,经过逻辑推理,导出矛盾,说明结论的否定是错误的,从而肯定原结论是正确的证明方法.适宜用反证法证明的数学命题:①结论本身是以否定形式出现的一类命题;②关于唯一性、存在性的命题;③结论以“至多”“至少”等形式出现的命题;④结论的反面比原结论更具体更容易研究的命题.

请使用课时训练(B)第2课时(见活页).

[备课札记]

直接证明与间接证明

直接证明与间接证明

第2讲 直接证明与间接证明

推理与证明13.2 直接证明与间接证明(教案)

5直接证明与间接证明

课时作业39 直接证明与间接证明

2.12 合情推理与演绎推理、直接证明与间接证明

课题25 直接证明与间接证明

6.6 直接证明与间接证明修改版

直接证明与间接证明测试题[材料]

第七章 推理与证明第2课时 直接证明与间接证明
《第七章 推理与证明第2课时 直接证明与间接证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档