人人范文网 教案模板

初中数学圆教案模板(精选多篇)

发布时间:2020-04-18 13:37:57 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:初中数学《圆的切线》教案

初中数学《圆的切线》教案

教学内容 24.2圆的切线(1)

课型 新授课 课时 32 执教

教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题

通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力

教学重点 切线的识别方法

教学难点 方法的理解及实际运用

教具准备 投影仪,胶片

教学过程 教师活动 学生活动

(一)复习情境导入

1、复习、回顾直线与圆的三 种位置关系.

2、请学生判断直线和圆的位置关系.

学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出 问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切 线的其它方法.(板书课题) 抢答

学生总结判别方法

(二)

实践与探索1:圆的切线的判断方法

1、由上面 的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1定义法:与圆只有一个公共点的直线是圆的切线.

2、当然,我们还可以由上节课所学的用圆心到直线的距离 与半径 之间的关系来判断直线与圆是否相切,即:当 时,直线与圆的位置关系是相切.以此作为识别切线的方法2数量关系法:圆心到直线的距离等于半径的直线是圆的切线 .

3、实验:作⊙O的半径OA,过A作lOA可以发现:(1)直线 经过半径 的外端点 ;(2)直线 垂直于半径 .这样我们就得到了从位 置上来判断直线是圆的切线的方法3位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线. 理解并识记圆的切线的几种方法,并比较应用。

通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。

三、课堂练习

思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?

请学生回顾作图过程,切线 是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径.

请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)

(图1) (图2) 图(3)

图(1)中直线 经过半径外端,但不与半径垂直; 图(2)中直线 与半径垂直,但不经过半径外端. 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

最后引导学生分析,方法3实际上是从前一节所讲的“圆 心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式. 试验体会圆的位置判别方法。

理解位置判别方法的两个要素。

(四)应用与拓展

1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?

2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D.BD是⊙ O的切线吗?为什么?

分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BDOD,因OA=OD,BAD=B,易证BDOD.

教师板演,给出解答过程及格式.

课堂练习:课本练习1-4 先选择方法,弄清位置判别方法与数量判别方法的本质区别。

注意圆的切线的特征与识别的区别。

(四)小结与作业 识 别一条直线是圆的切线,有 三种方法:

(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;

(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,

说明一条直线是圆的切线,常常需要作辅助线,如果 已知直线过圆上某 一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2).

各抒己见,谈收获。

(五)板书设计

识别一条直线是圆的切线,有三种方法: 例:

(1 )根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆 的切线;

(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,

说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明 直线垂直于半径

(六)教学后记

教学内容 24.2圆的切线(2) 课型 新授课 课时 执教

教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。

教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。

教学难点 三角形的内心及其半径的确定。

教具准备 投影仪,胶片

教学过程 教师 活动 学生活动

(一)复习导入:

请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)

你能说明以下这个问题?

如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?

回顾旧知,看谁说的全。

利用旧知,分析解决该问题。 (二)

实践与探索 问题

1、从圆外一点可以作圆的几条切线?请同学们画一画。

2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?

3、切线长的定义是什么?

通过以 上几个问题的解决,使同学们得出以下的结论:

从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线

平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。

(三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。

解:(1)连结PA、PB、EF是⊙O的切线

所以 , ,

所以 的周长 (2)因为PA、PB、EF是⊙O的切线

所以 , , ,

所以

所以

画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。

(四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好

(五)板书设计

切线(2)

切线长相等 例:

切线长性质

点与圆心连 线平分两切线夹角

(六)教学后记

推荐第2篇:初中数学圆证明题

圆的证明

1.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD

2.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.

3.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

4.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,弧ABAF,BF和AD交于E, 求证:AE=BE.

5.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.

6.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.求∠ACM的度数.

7.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.若点O沿CA移动,当OC等于多少时,⊙O与AB相切?

如图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.

(1)求证:OP∥CB;

(2)若PA=12,DB:DC=2:1,求⊙O的半径.

如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE•的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.

如图,BC是半圆O的直径,EC是切线,C是切点,割线EDB交半圆O于D,A是半圆O上一点,AD=DC,EC=3,BD=2.5

(1)求tan∠DCE的值;(2)求AB的长.

推荐第3篇:初中数学圆的证明题

圆的证明题 九年级上

1.(01海淀)如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线,∠PAC=∠B. P

(1)求证:PA是⊙O的切线;

(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8, CE:ED=6:5, AE:EB=2:3,求AB的长和∠ECB的正切值. A

F

2.(02海淀)如图,AB是⊙O的直径,AE平分∠BAF交⊙O于点E,过点E作直线与AF垂直交AF延长线交于D点,且交AB延长

线于C点.

(1)求证:CD与⊙O相切于点E;

(2)若CE·DE=15,AD=3,求⊙O的直径及∠AED的4正切值. C

3.(03海淀)已知:以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,E为BC边上的中点,连结DE。

(1)如图,求证:DE是⊙O的切线;

(2)连结OE,AE,当∠CAB为何值时,四边形AOED是平

行四边形,并在此条件下求sin ∠CAE的值。(第(2)问答题要求:不要求写出解题过程,只需将结果

填写在答题卡相应题号的横线上。)

A

1.如图,AB是⊙O的直径,AC是⊙O的切线,且AC =AB,OC交⊙O于D ,BD的延长线交AC于点E .

求证:(1)△ACD∽△DCE;

(2)AE = CD.

C

2.如图,已知CP为⊙O的直径,AC切⊙O于点C,AB切⊙O于点D,并与CP延长线相交于点B,又BD=2BP.

求证:(1)PC=3BP;

(2)AC=PC.

B

已知:如图,正方形ABCD的边长为2a,以BC为直径在正方形内作半圆,过A作半圆的切线,切关圆于F,交DC于E,交BC延长线于P,求CP的长.A

B

8.如图,△ABC内接于⊙O,AB的延长线与过点C的切线相交于点D,PE与AC相交于点F,且CB=CE.

求证:(1)BE∥DG;

(2)CB2CF2BFFE.

GC

P

3.如图,PA切⊙O于A点,割线PBC交⊙O于B、C两点,D为PC中点,AD的延长线交⊙O于E,且BE2DEAE. 求证:2BPADDE.

10.如图,△ABC内接于⊙O1,AB=AC,⊙O2与BC相切于点B,与AB相交于点E,与⊙O1相交于点D,直线AD交⊙O2于点F,交CB的延长线于点G. 求证:∠G=∠AFE;

A

5.如图17—78,BC为半圆的直径, O为圆

心,BC=10,AD与半圆相切于D,DA⊥AB, AD=4. (1)试求BE的长;

A(2)求tan ∠AED 的值;

(3)求证:CD=DE.

O

18(03 扬州市)如图,BD是⊙O的直径, E是⊙O上的一点,直线AE交BD的延长线于点A,BC⊥AE于C ,且∠CBE=∠DBE(1) 求证:AC是⊙O的切线

(2) 若⊙O的半径为

2,AE求DE的长.B

19(03 胜利石油)如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD.

⑴求证:AD是⊙O的切线;

⑵如果AB=2,AD=4,EG=2,求⊙O的半径.

E

2.如图AB是⊙O的直经,⊙O交BC于D,过D作⊙O的切线DE 交AC于E,且DE ⊥AC.

(1)求证:D是BC的中点;

(2)已知:CD=8,CE=6.4, 点O1为弦 AD上的动点,以O1为圆心,以1为半径的⊙O1与有怎样的位置关系?请说明理由.

C

5.如图,AB是⊙O的直经,CD切⊙O于E , AC⊥CD于C, BD⊥CD于D,交⊙O于F , 连结 AE , EF.

(1)求证:AE是∠BAC 的平分线,

(2)若∠ABD=60° 问:AB 与 EF是否平行?请说明理由.

DEC

6.如图 ,已知AB为半圆O的直径,AP为过点A的半圆的切线 ,在弧AB上任取一点C (点C与A,B不重合),过点C作半圆的切线CD交AP于点D ;过点C作CE⊥AB于点E ,连BD,交CE与F . (1)当点C为弧AB的中点时,(如图(1)),求证:CF=FE; (2)当点C不是弧AB的中点时(如图(2)),试判断CF与EF的相等关系是否保持不变,并证明你的结论.

PP

DD

AABB

O

O

图1图

20如图,设P是正三角形ABC外接圆O的劣弧BC上的一点,AP交BC于C,(1 ) PA2=BC2+PB•PC

(2 )求证:PB、PC是方程x2PAxPAPD0的两个根.

推荐第4篇:初中数学知识点圆总结

今天小编为大家精心整理了一篇有关初中数学圆的知识点内容,以供大家阅读,谢谢!

知识点:

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

六、圆的判定性质

1.不在同一直线上的三点确定一个圆。

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 dr

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

16.推论2 经过切点且垂直于切线的直线必经过圆心

17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等 外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离 dR+r ②两圆外切 d=R+r

③.两圆相交 R-rr)

④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)

[初中数学知识点圆总结]相关文章:

推荐第5篇:初中数学圆教学反思

初中数学圆教学反思

篇1:初中数学圆教学反思

段时间我们一直沉浸在对《圆》这一节课的研究中,通过不断地琢磨、仔细地推敲,反复地修改,对这节课的认识越来越深,教学设计的思路也越来越清晰,形成了以下的反思:

一、关于导入的设计

本节课的导入分四个层次进行,首先通过老师用线绳工具在空中旋转,让学生清晰地看到形成的轨迹是一个圆。接着介绍含有圆的图片,让学生找出圆;再让学生举例生活中见到的圆;最后通过摸一摸的游戏,让学生体会圆与其他平面图形的区别,从而认识圆是平面上的一种曲线图形。圆在日常生活中到处可见,学生对它也比较熟悉,在课的一开始我们就让学生在老师的演示和图片的观察中清晰地看到这是圆,借助这样的表象,让学生在头脑中搜索自己曾经见到过的圆,从而初步地感知圆。最后通过摸一摸的游戏活动,让学生感受圆与其他图形的不同,在比较中,进一步感知圆。通过这样有层次的感知活动,调动了学生的多种感官,激发了学生学习圆的兴趣。

二、关于对圆的认识和特征的处理

在研究圆的认识与特征这一知识点时,我们比较了两种不同的设计思路:第一种,把介绍圆的各部分名称和它的特征结合起来,即认识半径以后,马上研究同一圆中有无数条半径并且长度相等等特征;另一种:是先介绍圆的各部分名称再研究各部分之间的关系。我们觉得第一种方法比较传统,由于这一环节的知识点比较多,而且研究几个知识点的方法雷同,这样老师的讲解就比较繁琐,学生缺乏研究的兴趣。所以我们就选择第二种方法,先让学生通过自学书本,找到圆各部分的名称,并认识它们,能在自己画的圆中标出。接着通过小组合作讨论的形式,发挥学生学习的主动性,让他们通过有目的的探究活动,讨论交流半径的特征、直径的特征、半径和直径的关系以及圆是轴对称图形等相关知识。这样的设计避免了教师冗长的讲解,学生学习方式的单调,而且通过灵活多样的学习方式,促使学生有兴趣的,主动的进行探索。

三、关于数学史料的运用

本节课中我们两处引用到数学史料。这些凝聚着智慧的数学研究史料,我们不仅仅把它们作为引语或欣赏,而且还力求让史料成为学生发现问题、研究问题的素材、发挥其数学的文化价值。

首先在学生对圆有了一些初步的感知以后,联系古希腊的一位数学家曾说过:在所有的平面图形中,圆是最美的。以此引发学生研究圆与其他平面图形的不同。在探究圆的特征结束之后,借助多媒体呈现墨子的一句话:圆,一中同长。让学生用掌握的一些知识解释这句话的含义。这样不仅让学生了解了古代关于圆的史料记载,还可以巩固对圆的特征的认识。。引用《周髀算经》中关于圆的记载,圆出于方,方出于矩,拓展对圆的认识。在播放录象,理解意思以后,进一步引导思考:如正方形的边长是16厘米,你能从中获得关于圆的哪些信息?让学生进一步关注圆与正方形之间的关系,为后继学习埋下伏笔。

四、关于媒体的处理

随着以计算机和网络为核心的现代技术的不断发展,多媒体技术辅助教学越来越多的运用于小学数学课堂。这节课我们把多媒体和其他传统手段有效结合,力求找准最佳作用点进行有的放矢,起到画龙点睛的作用。

在导入新课时,为了让学生初步感知圆,先借助多媒体呈现生活中一些常见的带有圆形的实物图片,利用这些学生熟悉的,色彩鲜艳的图片,刺激学生的多种感官,激发学生用数学的眼光去观察事物的兴趣。接着运用动态演示,从实物中勾勒出圆,使学生清晰看到圆是有曲线围成的。

在教学画圆时,运用多媒体播放两段录像。第一段在学习用圆规画圆时播放,通过展示一个完整的画圆过程,为学生提供清晰地、正确的画圆方法,为学生独立用圆规正确画圆奠定基础;第二段在介绍用线绳画圆时播放,通过体育老师在操场上画圆的过程,重现生活场景,让学生体会到用线绳画圆的实用价值。

在研究圆的半径、直径的特征时,当学生通过画一画、折一折、量一量,知道在同一圆中半径可以有许多条,在此基础上运用多媒体动态演示:同一圆中,从圆心到圆上可以发散出无数条线段。通过强烈的视觉刺激,让学生体会到同一圆中半径有无数条,感受初步的极限思想。

在研究车轮为什么是圆的?车轴应装在哪里?这两个实际问题时,根据学生的交流情况,结合媒体的动态演示,让学生随着画面和声音效果的逐步展示,体会当车轮不是圆时或者车轴不在圆心位置时,车子行驶的感觉是不稳当的。从而体会到车轮要做成圆的,车轴要装在圆心位置的原理和实际应用价值。

五、关于细节的处理

1.在导入环节的摸一摸游戏中,为了使全体学生参与这个游戏。我们考虑装的器皿应该是透明的,而摸的同学蒙住眼睛。其他同学通过观察摸的过程,共同感受圆与其他平面图形的不同。另外为了让学生的探索活动不受到其他因素的干扰,我们在器皿中装的就是用硬纸板剪成的以前学过的平面图形和圆。

2.整节课的知识点比较多,而且知识的呈现是逐步完成的。为了完整地展示这一节课的重点,我们准备跟随课堂流程,在黑板上板演各个知识点,一步一步地完成板书。这样的设计避免了多媒体展示的不足,使得学生在全课小结之时,能根据板书,迅速在头脑中形成知识网络。

3.在探究圆的基本特征时,组织学生借助圆规画出任意大小的圆进行探索。在认识半径以后,学生通过量一量,量出半径的长度。在学生的交流反馈中,引导学生发现自己量出的所有的半径都是一样长的,但自己量出的半径和别人量出的半径长度是不一样的,从而体悟出只有在同一圆中,所有的半径长度才相等。

篇2:初中数学圆教学反思

圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

一、以旧引新,渗透“转化”思想

新课标指出,教师是学生数学活动的组织者、引导者、合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。本节教学内容原先的教材是直接让学生操作把圆平均分成16份,用转化法推导出圆的面积。这样学生固然也能掌握圆的面积,但对知识的推导是只知其然不知其所以然。而新教材。让学生先根据旧知概括出求面积的两种方法,然后让学生大胆地猜想数方格能不能求出圆的面积。在发现数方格的方法很难求出圆的面积后,让学生根据方格图大胆地猜想出圆面积的范围。之后在教师的启发引导下,使学生获得用转化法可能求出圆的面积,在此基础上让学生通过自学、讨论、操作、探究得出圆面积的计算。这一过程的设计正体现了新课标所倡导的三维教学目标,由重结论向重过程转变。不仅重视学生数学知识的获得,更重视数学思想和数学方法的形成。使学生学得更有趣,更有价值。

二、自主探究,感受知识形成“过程”

数学学习的本质是“再创造”。数学学习的过程不是让学生被动地吸收教材和教师给出现成结论,而是一个由学生亲自参与、生动活泼的、主动的和富有个性的过程。因此,在数学学习过程中,应给学生搭建探究的舞台,强化过程意识,以激励学生再创新。课堂的生命活力正是来自于对事件或事实的感受、体验,来自于对问题的敏感、好奇,来自于情不自禁的、丰富活跃的猜想、假设、直觉,来自于不同观点的碰撞,争辩,更来自于探究体验中的时而山穷水尽,时而柳暗花明的惊险和喜悦。只有经历这样的感悟、体验的过程,才能得到能力的锤炼,智慧的升华。

在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。

通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。

三、分层练习,体验运用价值

结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式。第二,提高练习收集了身边的实际内容,融入了解决实际问题的情境之中,求自动喷水器旋转一周后的喷灌面积就是求半径是5米的圆的面积,使学生感受到学习的知识是有价值的,是有作用的。第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,教师注重了每个练习的指导侧重点。

篇3:初中数学圆教学反思

一、联系生活,体现生活数学。

数学来源于生活,并应用于生活。

我引导学生说出身边的物体哪些是圆形的,让学生初步了解圆形的。课末引导学生开展游戏活动选择汽车,不但调动了学生的积极性,加深了学生对圆的认识,而且拉近了数学与生活的距离,使学生深刻体会到身边有数学,伸出手就能触摸到数学,从而对数学产生亲切感,增强学生对学习数学的兴趣和提高学生应用数学的能力。

二、自主探索,培养创新精神。

在教学中,学生是学习的主体,教师要设计一些具有探索性和开放性的问题,给学生提供自主探索的机会,引导学生开展合作型的探究性活动,让学生在观察、实验、讨论、交流、合作学习中,理解新知识,使所有学生都能获得成功感,树立自信心。如教学圆心、直径、半径,不急于传授,通过引导学生动手操作折圆,发现圆中心的一点,比一比、量一量、画一画,发现圆的一些特征;通过观察、比较,自主看书,发现同圆中,所有半径都相等,所有直径也相等,半径是直径的一半,直径是半径的2倍,教师适时引导,使学生懂得归纳知识的一般方法,同时学会了观察、实验、操作、发现等学习方法,并伴随新知识的获得,体验到了成功的快乐,增强了克服困难的勇气和毅力。

推荐第6篇:初三数学圆教案

初三数学 圆教案

一、本章知识框架

二、本章重点

1.圆的定义:

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质:

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论:

(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧.

(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等.

5.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示. (3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线. (2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系:

设⊙O 半径为R,点O到直线l的距离为d.

(1)直线和圆没有公共点直线和圆相离d>R.

(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R. (3)直线l和⊙O 有两个公共点直线l和⊙O 相交dr),圆心距

(1)外离(2)含(3)外切(4)dR+r. 没有公共点,且

的每一个点都在

外部

内有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部d=R+r.

的每个点都在

内部有唯一公共点,除这个点外,内切d=R-r.

相交(5)有两个公共点R-r

10.两圆的性质:

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:

,周长C=2πR.

圆心角为n°、半径为R的弧长.

圆心角为n°,半径为R,弧长为l的扇形的面积弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为面积为2πRl,全面积为

,侧圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为【经典例题精讲】

例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?

,母线长、圆锥高、底面圆的半径之间有

分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律. 解:

连结OP,

P点为中点.

小结:此题运用垂径定理进行推断. 例2 下列命题正确的是( ) A.相等的圆周角对的弧相等 B.等弧所对的弦相等 C.三点确定一个圆

D.平分弦的直径垂直于弦. 解:

A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确. B.等弧就是在同圆或等圆中能重合的弧,因此B正确. C.三个点只有不在同一直线上才能确定一个圆. D.平分弦(不是直径)的直径垂直于此弦. 故选B.

例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D. 分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等. 解:

设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x. x+2x+3x+2x=360°, x=45°.

∴∠D=90°.

小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.

例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.

分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行

合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解. 解:

小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型. 例5 已知

相交于A、B两点,

的半径是10,

的半径是17,公共弦AB=16,求两圆的圆心距. 解:分两种情况讨论: (1)若位于AB的两侧(如图23-8),设

与AB交于C,连结又∵AB=16 ∴AC=8. 在在故(2)若,则垂直平分AB,∴

中,中,

. .

位于AB的同侧(如图23-9),设

的延长线与AB交于C,连结∵垂直平分AB,

∴.

又∵AB=16,

∴AC=8. 在在故中,中,

. .

注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.

三、相关定理:

1.相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)

说明:几何语言:

若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理)

例1. 已知P为⊙O内一点,P任作一弦AB,设为 。

,⊙O半径为

,过

,则关于的函数关系式解:由相交弦定理得,即,其中 2.切割线定理

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB 例2. 已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。

解:设TD=,BP=,由相交弦定理得:即由切割线定理,理,∴

(舍) 由勾股定∴

四、辅助线总结 1.圆中常见的辅助线

1).作半径,利用同圆或等圆的半径相等.

2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明.

3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.

4).作弦构造同弧或等弧所对的圆周角.

5).作弦、直径等构造直径所对的圆周角——直角. 6).遇到切线,作过切点的弦,构造弦切角. 7).遇到切线,作过切点的半径,构造直角.

8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.

9).遇到三角形的外心常连结外心和三角形的各顶点.

10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点.

11).遇相交两圆,常作:(1)公共弦;(2)连心线. 12).遇两圆相切,常过切点作两圆的公切线.

13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边.

2、圆中较特殊的辅助线

1).过圆外一点或圆上一点作圆的切线. 2).将割线、相交弦补充完整. 3).作辅助圆.

例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为( )

A.2 B.3 C.4 D.5 分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=DE.设AE=x,则在Rt△CEO中,则,(舍去).

,即

,答案:A.

例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于( )

A.35° B.90° C.110° D.120°

分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C.

例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于( ) A. B.

C.

D.

分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高,即

.答案:B.

例4 如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,求:EM的长.

简析:(1)由DC是⊙O的直径,知DE⊥EC,于是则AM·MB=x(7-x),即

.所以

.设EM=x,

.而EM>MC,即EM=4.

例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程

(其中m为实数)的两根.

(1)求证:BE=BD; (2)若,求∠A的度数.

简析:(1)由BE、BD是关于x的方程

的两根,得

,则m=-2.所以,原方程为(2)由相交弦定理,得

.得

,即

.故BE=BD.

.而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,则

,所以

,所以

.在Rt△ACB中,

,故∠A=60°.

推荐第7篇:高二数学圆教案

竞赛讲座09

-圆

基础知识

如果没有圆,平面几何将黯然失色.

圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.

圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础.

本部分着重研究下面几个问题: 1.角的相等及其和、差、倍、分; 2.线段的相等及其和、差、倍、分; 3.二直线的平行、垂直; 4.线段的比例式或等积式; 5.直线与圆相切;

6.竞赛数学中几何命题的等价性.

命题分析

例1.已知A为平面上两个半径不等的⊙O1和⊙O2的一个交点,两圆的外公切线分别为P1P2,Q1Q2,M

1、M2分别为P1Q

1、P2Q2的中点,求证:O1AO2M1AM2.

例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB至D,以AD为直径作半圆,圆心为H,G是半圆上一点,ABG为锐角.E在线段BH上,Z在半圆上,EZ∥BG,且EHEDEZ,BT∥HZ.求证:

21TBGABG.

3例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A是△ABC中最小的内角,点B和C将这个三角形的外接圆分成两段弧,U是落在不含A的那段弧上且不等于B与C的一个点,线段AB和AC的垂直平分线分别交线段AU于V和W,直线BV和CW相交于T.证明:AUTBTC.

例6.菱形ABCD的内切圆O与各边分别切于E,F,G,H,在EF与GH上分别作⊙O切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ∥NP.

例7.⊙O1和⊙O2与△ABC的三边所在直线都相切,E,F,G,H为切点,并且EG,FH的延长线交于点P.求证:直线PA与BC垂直.

例8.在圆中,两条弦AB,CD相交于E点,M为弦AB上严格在E、B之间的点.过

⌒⌒D,E,M的圆在E点的切线分别交直线BC、AC于F,G.已知

AMCEt,求(用t表ABEF示).

例9.设点D和E是△ABC的边BC上的两点,使得BADCAE.又设M和N分

1111. MBMDNCNE例10.设△ABC满足A90,BC,过A作△ABC外接圆W的切线,交直线BC于D,设A关于直线BC的对称点为E,由A到BE所作垂线的垂足为X,AX的中点为Y,BY交W于Z点,证明直线BD为△ADZ外接圆的切线. 别是△ABD、△ACE的内切圆与BC的切点.求证:例11.两个圆1和2被包含在圆内,且分别现圆相切于两个不同的点M和N.1经过2的圆心.经过1和2的两个交点的直线与相交于点A和B,直线MA和直线MB分别与1相交于点C和D.求证:CD与2相切.

例12.已知两个半径不相等的⊙O1和⊙O2相交于M、N两点,且⊙O

1、⊙O2分别与⊙O内切于S、T两点.求证:OMMN的充要条件是S、N、T三点共线.

例13.在凸四边形ABCD中,AB与CD不平行,⊙O1过A、B且与边CD相切于点P,⊙O2过C、D且与边AB相切于点Q.⊙O1和⊙O2相交于E、F,求证:EF平分线段PQ的充要条件是BC∥AD.

例14.设凸四边形ABCD的两条对角线AC与BD互相垂直,且两对边AB与CD不平行.点P为线段AB与CD的垂直平分线的交点,且在四边形的内部.求证:A、B、C、D四点共圆的充要条件为SPABSPCD.

训练题

1.△ABC内接于⊙O,BAC90,过B、C两点⊙O的切线交于P,M为BC的中点,求证:(1)AMcosBAC;(2)BAMPAC. AP⌒⌒⌒CA,AB的中点,BC2.已知A,B,C分别是△ABC外接圆上不包含A,B,C的弧BC,分别和CA、AB相交于M、N两点,CA分别和AB、BC相交于P、Q两点,AB分别和BC、CA相交于R、S两点.求证:MNPQRS的充要条件是△ABC为等边三角形.

CA分别 交于点D和E,3.以△ABC的边BC为直径作半圆,与AB、过D、E作BC的垂线,垂足分别为F、G.线段DG、EF交于点M.求证:AMBC.

C内的旁切圆与AB相切于E,4.在△ABC中,已知B内的旁切圆与CA相切于D,过DE和BC的中点M和N作一直线,求证:直线MN平分△ABC的周长,且与A的平分线平行.

5.在△ABC中,已知,过该三角形的内心I作直线平行于AC交AB于F.在BC边上取点P使得3BPBC.求证:BFP1B. 26.半圆圆心为O,直径为AB,一直线交半圆于C,D,交AB于M(MBMA,MCMD).设K是△AOC与△DOB的外接圆除点O外之另一交点.求证:MKO为直角 .

7.已知,AD是锐角△ABC的角平分线,BAC,ADC,且cosco2s.求证:AD2BDDC.

8.M为△ABC的边AB上任一点,r1,r2,r分别为△AMC、△BMC、△ABC的内切圆半径;1,2,分别为这三个三角形的旁切圆半径(在ACB内部).

求证:r112r2r.

9.设D是△ABC的边BC上的一个内点,AD交△ABC外接圆于X,P、Q是X分别到AB和AC的垂足,O是直径为XD的圆.证明:PQ与⊙O相切当且仅当ABAC.

10.若AB是圆的弦,M是AB的中点,过M任意作弦CD和EF,连CD,DE分别交AB于X,Y,则MXMY.

11.设H为△ABC的垂心,P为该三角形外接圆上的一点,E是高BH的垂足,并设PAQB与PARC都是平行四边形,AQ与BR交于X.证明:EX∥AP.

12.在△ABC中,C的平分线分别交AB及三角形的外接圆于D和K,I是内切圆圆心.证明:(1)111CIID1. ;(2)IDIKCIIDIK

推荐第8篇:初三数学 圆教案

一、本章知识框架

二、本章重点

1.圆的定义:

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论:

(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧.

(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等.

5.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示. (3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线. (2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系:

设⊙O 半径为R,点O到直线l的距离为d.

(1)直线和圆没有公共点直线和圆相离d>R.

(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R. (3)直线l和⊙O 有两个公共点直线l和⊙O 相交dr),圆心距

. (1)外离(2)含(3)外切(4)dR+r. 没有公共点,且

的每一个点都在

外部

内有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部d=R+r.

的每个点都在

内部有唯一公共点,除这个点外,内切d=R-r.

相交(5)有两个公共点R-r

10.两圆的性质:

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:

,周长C=2πR.

圆心角为n°、半径为R的弧长.

圆心角为n°,半径为R,弧长为l的扇形的面积弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为面积为2πRl,全面积为

,侧圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为

,母线长、圆锥高、底面圆的半径之间有

本文由:西安论坛http://www.daodoc.com 西安婚纱摄影http://www.daodoc.com 宝鸡论坛http://www.daodoc.com 共同整理

推荐第9篇:[初中数学]正多边形和圆教案2 人教版

《正多边形和圆》教案2 教学目标 :

(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;

(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;

(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

教学重点:

正多边形的概念与正多边形和圆的关系的第一个定理.

教学难点 :

对定理的理解以及定理的证明方法.

教学活动设计:

(一)观察、分析、归纳:

观察、分析:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

归纳:等边三角形与正方形的边、角性质的共同点.

教师组织学生进行,并可以提问学生问题.

(二)正多边形的概念:

(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.

(2)概念理解:

①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….)

②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.

(三)分析、发现:

问题:正多边形与圆有什么关系呢?

发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

(四)多边形和圆的关系的定理

定理:把圆分成n(n≥3)等份:

(1)依次连结各分点所得的多边形是这个圆的内接正n边形;

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

我们以n=5的情况进行证明.

已知:⊙O中, = = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.

求证:(1)五边形ABCDE是⊙O的内接正五边形;

(2)五边形PQRST是⊙O的外切正五边形.

证明:(略)

引导学生分析、归纳证明思路:

弧相等

说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.

(2)要注意定理中的“依次”、“相邻”等条件.

(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.

(五)初步应用

P157练习

1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么? 2.求证:正五边形的对角线相等.

3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

(六)小结:

知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

能力和方法:正多边形的证明方法和思路,正多边形判断能力

(七)作业 教材P172习题A组

2、3. 教学设计示例2 教学目标 :

(1)理解正多边形与圆的关系定理;

(2)理解正多边形的对称性和边数相同的正多边形相似的性质;

(3)理解正多边形的中心、半径、边心距、中心角等概念;

(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;

教学重点:

理解正多边形的中心、半径、边心距、中心角的概念和性质定理.

教学难点 :

对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.

教学活动设计:

(一)提出问题:

问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?

(二)实践与探究:

组织学生自己完成以下活动.

实践:

1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?

2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?

探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?

探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.) (2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?

(3)正方形有内切圆吗?圆心在哪?半径是谁?

(三)拓展、推理、归纳:

(1)拓展、推理:

过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.

同理,点E在⊙O上.

所以正五边形ABCDE有一个外接圆⊙O.

因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.

(2)归纳:

正五边形的任意三个顶点都不在同一条直线上

它的任意三个顶点确定一个圆,即确定了圆心和半径.

其他两个顶点到圆心的距离都等于半径.

正五边形的各顶点共圆.

正五边形有外接圆.

圆心到各边的距离相等.

正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.

照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆.

定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .

(3)巩固练习:

1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.

2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.

3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.

4、正n边形的一个外角度数与它的______角的度数相等.

(四)正多边形的性质:

1、各边都相等.

2、各角都相等.

观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?

3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.

4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.

5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神.

(五)总结

知识:(1)正多边形的中心、半径、边心距、中心角等概念;

(2)正多边形与圆的关系定理、正多边形的性质.

能力:探索、推理、归纳等能力.

方法:证明点共圆的方法.

(六)作业 P159中练习

1、

2、3.

教学设计示例3 教学目标 :

(1)巩固正多边形的有关概念、性质和定理;

(2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;

(3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识.

教学重点:

综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归.

教学难点 :综合运用知识证题.

教学活动设计:

(一)知识回顾

1.什么叫做正多边形?

2.什么是正多边形的中心、半径、边心距、中心角?

3.正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心) 4.正n边形的每个中心角都等于 .

5.正多边形的有关的定理.

(二)例题研究:

1、求证:各角相等的圆外切五边形是正五边形.

已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’.

求证:五边形ABCDE是正五边形.

分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可.

教师引导学生分析,学生动手证明.

证法1:连结OA、OB、OC,

∵五边形ABCDE外切于⊙O.

∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,

又∵∠BAE=∠ABC=∠BCD.

∴∠BAO=∠OCB.

又∵OB=OB

∴△ABO≌△CBO,∴AB=BC,同理 BC=CD=DE=EA.

∴五边形ABCDE是正五边形.

证法2:作⊙O的半径OA’、OB’、OC’,则

OA’⊥AB,OB’⊥BC、OC’⊥CD.

∠B=∠C ∠1=∠2 = .

同理 = = = ,

即切点A’、B’、C’、D’、E’是⊙O的5等分点.所以五边形ABCDE是正五边形.

反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点.由同样的方法还可以证明“各角相等的圆外切n边形是正边形”.

此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。

拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.

求证:五边形ABCDE是正五边形.(证明略)

分小组进行证明竞赛,并归纳学生的证明方法.

拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、N.

求证:五边形ABCDE是正五边形.(证明略)

学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬.

2、已知:正六边形ABCDEF.

求作:正六边形ABCDEF的外接圆和内切圆.

作法:1过A、B、C三点作⊙O.⊙O就是所求作的正六边形的外接圆.

2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆.

用同样的方法,我们可以作正n边形的外接圆与内切圆.

练习:P161

1、求证:各边相等的圆内接多边形是正多边形.

2、(口答)下列命题是真命题吗?如果不是,举出一个反例.

(1)各边相等的圆外切多边形是正多边形;

(2)各角相等的圆内接多边形是正多边形.

3、已知:正方形ABCD.求作:正方形ABCD的外接圆与内切圆.

(三)小结

知识:复习了正多边形的定义、概念、性质和判定方法.

能力与方法:重点复习了正多边形的判定.正多边形的外接圆与内切圆的画法.

(四)作业

教材P172习题

4、5;另A层学生:P174B组

3、4.

探究活动

折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最大的正六边形.

(提示:①对折;②再折使A、B、C分别与O点重合即可)

(2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4的正六边形.

(提示:可以.主要应用把一个直角三等分的原理.参考图形如下:

①对折成小正方形ABCD;

②对折小正方形ABCD的中线;

③对折使点B在小正方形ABCD的中线上(即B’);

④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形.)

探究问题:

(安徽省2002)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:

甲同学:这种多边形不一定是正多边形,如圆内接矩形;

乙同学:我发现边数是6时,它也不一定是正多边形.如图一,△ABC是正三角形, 形, = = ,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能也 是正多边形.

(1)请你说明乙同学构造的六边形各内角相等.

(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证).

(3)根据以上探索过程,提出你的猜想(不必证明).

(1)[说明] (2)[证明] (3)[猜想]

解:(1)由图知∠AFC对 .因为 = ,而∠DAF对的 = + = + = .所以∠AFC=∠DAF.

同理可证,其余各角都等于∠AFC.所以,图1中六边形各内角相.

(2)因为∠A对 ,∠B对 ,又因为∠A=∠B,所以 = .所以 = .

同理 = = = = = = .所以 七边形ABCDEFG是正七边形.

猜想:当边数是奇数时(或当边数是3,5,7,9,……时),各内角相等的圆内接多边形是正多边形

推荐第10篇:初中数学圆的几何复习题

圆复习测试

班级________学号_________姓名_________________

一、填空(每题2分,共30分)

1、在⊙O中,AB是直径,CD是弦,若AB⊥CD于E,且AE=2,BE=8,则CD=______.2、在圆内接四边形ABCD中,若AB=BC=CD,AC是对角线,∠ACD=30°,则∠

CAD=______°.3、如图1,∠APC=30°,弧BD等于30°,则弧AC等于_______°,∠AEB=_____°.

4、过⊙O内一点P,的最长弦是10,最短的弦是6,那么OP的长为____________.5、圆内相交的两弦中,一弦长是20,且被交点平分,另一弦被交点分成两线段之比

是1:4,另一弦长是____________.6、在圆内接四边形ABCD中,∠A:∠B:∠C=5:2:1,则∠D=_______.

7、若PA、PB分别切⊙O于A、B,∠APB=60°,OP=12,则OA=______,PB=________.8、⊙O的内接正方形ABCD的边长为6,E是BC的中点,AE的延长线交⊙O于F,

则EF=______

9、△ABC中,∠A=80°,若O1是内心,则∠BO1C=_____;若O2是外心,则∠

BO2C=______.10、如图2,AB=BC=CD,过点D作B的切线DE,E为切点,过C点作AD的垂线

交DE于F,则EF:FD=___________(填比值).11、如图3,⊙O中弦AD、CE相交于点F,过点A作⊙O的切线与EC延长线相交

于点B,若AB=BF=FD,BC=1,CE=8,则AF=______________.12、如图4,PAB、PCD是⊙O的两条割线。且PA=AB,CD=3PC,则PC:PA=______.

二、选择题(每题3分,共27分)

1、下列命题中假命题是()

A.相等的圆心角所对的弧相等B.圆内接四边形对角互补

C.一条弧的对的圆心角等于它所对的圆周角的2倍D.直径所对的圆周角是直角

2、圆的外切平行四边形为()

A.矩形B.菱形C.等腰梯形D.平行四边形

3、已知⊙O的半径为6cm,⊙O的一条弦AB的长为63cm,则弦AB所对的圆周角是()

A.30°B.60°C.30°或150°D.60°或120°

4、若两半径分别是R和r,圆心距是d,且drR2dr,则两圆位置关系是()

22

2A.外切或内切B.外离C.相交D.内含

5、已知两圆的半径分别是方程x211x20的两根,圆心距为12,那么两圆公切

线的条数是()

A.1B.2C.3D.

46、半径为为25cm的⊙O中,弦AB=40cm,则此弦和所的对弧的中点的距离是()

A.10cmB.15cmC.40cmD.10cm和40cm

7、圆心在x轴上的两圆相交于A、B两点,A点的坐标为(,2),则B点的坐标是()

A.,2)B.(3,2)C.(3,2)D.(2,3)

8、如图5,ABCD为⊙O的内接四边形,AC平分∠BAD,并与BD交于E点,,CF切⊙O于C点并与AD的延长线交于F,图中的四个三角形:①△CAF;②△ABC;③△ABD;④△BEC,其中与△CDF一定相似的是()

A.①②③B.②③④C.①③④D.①②④

9、以长为a的线段AB为斜边的Rt△ABC的直角顶点C的轨迹是()

a的一条直线;

2aB.与AB平行且到AB距离为的二条直线; 2

aC.以AB的中点为圆心,为半径的一个圆; 2A.与AB平行且到AB距离为

D.以AB为直径的一个圆(A、B两点除外)。

三、计算题(18分)

1、已知:⊙O的外切等腰梯形的中位线长为10,两底长的差为12,求⊙O的半径。

2、如图,AB是⊙O的直径,PCM与⊙O相切于点C,且∠ACM=57°,求P的度数。

3、如图,△ABC中,∠C=90°,点O在BC边上,半圆O过点C,切AB于点D,交BC于E,又BE=1,BD=2,求AD的长。

三、证明题(25分)

1、如图,已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥弦AD。求证:DC是⊙O的切线。

2、如图:PA切⊙O于点A,PBC交⊙O于点B、C,M是弧BC的中点,AM交BC于点D。求证:PDPBPC

3、如图,已知:ADB、AEC是⊙O的两条割线,PA∥ED交CB的延长线于点P,PE

切⊙O于点F。

求证:PA=PF。

附加题

已知:如图,在△ABC中,AB=AC,以AB为直径作圆分别交BC、AC于D、G,作DE⊥AC于E,连结BE交⊙O于F。

求证:(1)DE为⊙O的切线;

(2)DG=DC;

(3)AE·EC=BE·

EF

第11篇:学年初中数学圆单元测试题

2018-2019学年初中数学圆单元测试题

数学 2018.7

本试卷共7页,120分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

一、选择题 共10小题,每小题3分,共30分。在每小题列出的四个选项中,选出符合题目要求的一项。

1.一个正多边形的每个外角都等于36°,那么它是(

A. 正六边形

B. 正八边形

C. 正十边形

D. 正十二边形 2.的半径,点与圆心的距离外

B. 点在

,则点与

的位置关系是(

A. 点在上

C. 点在内

D. 不确定

3.在半径为的圆中有一条长度为的弦,则该弦所对的圆周角的度数是(

) A.

B. 或

C.

D.

4.三角形外接圆的圆心为(

A. 三条高的交点

B. 三条角平分线的交点

C. 三条垂直平分线的交点

D. 三条中线的交点 5.如图,,,是

上的三个点,

,则

的度数是(

A.

B.

C.

D.

6.已知点,,且,画经过,两点且半径为的圆有(

A. 个

B. 个

C. 个

D. 无数个 7.已知点在半径为的A.

B.

内,点与点的距离为,则的取值范围是(

D.

的中点,连接

于点,若

C. 中,8.如图,在度.点是半圆弧半圆弧的圆心为,点、点关于圆心对称.则图中的两个阴影部分的面积,之间的关系是(

试卷第1页,总7页

A.

B.

C.

D. 不确定

9.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是(

A.

B.

2C. 2

D.

410.如图,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则⊙O的半径为(

A.

B. 2

C. 2

D. 4

二、填空题 共10小题,每小题3分,共30分。 11.如图,在菱形于点.若,

中,

,点,分别在

边上,且

,则四边形的面积为________.

12.如图,是的外接圆,的半径,,则弦的长为________.

试卷第2页,总7页 13.如图,,是的直径,弦,垂足是,是的中点,延长交于,,则的长是________.

14.如图,四边形,则

的内接四边形,点是的中点,点是上的一点,若

________度.

15.如图,已知论: ①;②;③

;④

;⑤

, 是

的半径,过

的中点作

的垂线交

于点,,以下结正确的是________.(填序号).

16.如图,在圆的内接五边形

中,

,则

________.

17.如图,四边形

的内接四边形,若

,则

的大小为________.

18.如图,则的直径为

,弦

,点为弦上的一动点,若

的长为整数,的可能值是________.

试卷第3页,总7页

19.如图,,是

的半径,点在

上,连接

,若

,则________度.

20.如图,为

的直径,

为弦,且弧BC=4弧AC,则

______,________°,________°.

三、解答题 共10小题,每小题6分,共60分。解答应写出文字说明、演算步骤或证明过程。 21.已知交点. 如图,当点在线段上,且

上时,试判断

的大小关系,并证明你的结论; 为直径,是直径

上一动点(不与点,,重合),过点作直线

,直线交直线

于于,两点,是上一点(不与点,重合),且当点在线段时,其它条件不变.

①请你在图②判断中画出符合要求的图形,并参照图

标记字母;

中的结论是否还成立,请说明理由.

内接于

为直径,.

的平分线交

于点,交

于点22.己知:如图,于点,且交于点,连结

试卷第4页,总7页

求证: 当,时,求

的半径及

的长.

23.联想三角形外心的概念,我们可引入如下概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.例:已知

,则点为

的准外心(如图).

如图,如图,若探究为正三角形的高,准外心在高

上,且,

,求,准外心在

的度数. 边上,试为直角三角形,的长.

24.如图,在形,与中,

,为

的外心,

为等边三角相交于点,连接

求求的度数; 的度数.

中,

,是线段

的中点,以

为直径作

,试判断25.如图,在点与的位置关系.

试卷第5页,总7页

26.如图,是的直径,是弧BC的中点,、的延长线相交于点,求证:

27.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F. (1)求证:CF是⊙O的切线;

(2)若∠F=30°,EB=8,求图中阴影部分的面积.(结果保留根号和π)

28.如图,AB=AC=8,∠BAC=90,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连结DA交⊙O点E. (1)当点D在AB上方且BD=6时,求AE的长; (2)当CE恰好与⊙O相切时,求BD的长为多少?

29.如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°. (1)CD与⊙O有怎样的位置关系?请说明理由; (2)若∠CDB=60°,AB=6,求

的长.

试卷第6页,总7页

30.如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.

(1)求证:PA是⊙O的切线; (2)若PD=,求⊙O的直径.

试卷第7页,总7页

参考答案

1.C 【解析】 【分析】

利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】 ∵360°÷36°=10, ∴正多边形是正十边形.故选C.【点睛】

本题考查了多边形的内角和外角,熟练掌握多边形内角和外角是本题解题的关键.2.C 【解析】 【分析】

已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可. 【详解】

∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm, 5>3,

∴点P与⊙O的位置关系是点P在圆内, 故选:C. 【点睛】

考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外. 3.B 【解析】 【分析】

根据半径为R的圆中有一条长度为R的弦,知这条弦和两条半径组成了一个等边三角形.则该弦所对的圆心角是60°,要进一步求其所对的圆周角,应分情况考虑:当圆周角的顶点

答案第1页,总28页

在优弧上时,根据圆周角定理,得此圆周角等于30°;当圆周角的顶点在劣弧上,根据圆内接四边形的性质,此圆周角和第一种的圆周角互补,即150°. 【详解】

∵半径为R,长度为R的弦,

∴这条弦和两条半径组成了一个等边三角形, ∴该弦所对的圆心角是60°,

①当圆周角的顶点在优弧上时,得此圆周角等于30°; ②当圆周角的顶点在劣弧上,得此圆周角等于150°. 故选:B. 【点睛】

考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:此类题一定要分情况考虑.即一条弦所对的圆周角有两种情况,且两种情况中的角是互补的关系. 4.C 【解析】 【分析】

根据三角形外心的性质进行判断. 【详解】

A选项:三角形三条高的交点是三角形的垂心,故A错误; B选项:三角形三条角平分线的交点是三角形的内心,故B错误;

C选项:由于三角形的外心是三角形三条边的垂直平分线的交点,故C正确; D选项:三角形三边中线的交点是三角形的重心,故D错误; 故选:C. 【点睛】

考查了三角形外心的性质.注意三角形重心、垂心、内心、外心的区别. 5.B 【解析】 【分析】

根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.

答案第2页,总28页

【详解】

∵∠ABC=25°,∠AOC=2∠ABC, ∴∠AOC=50°, 故选:D. 【点睛】

考查了圆周角定理,理解定理是关键. 6.C 【解析】 【分析】

作AB的垂直平分线,在垂直平分线上找到A、B两点距离为2的点,该点有两个. 【详解】

根据题意作图如右,

由图可知经过A,B两点且半径为2的圆有2个. 故选:C. 【点睛】

考查确定圆的条件的知识点,此题不是很难,但需要有较强的作图能力. 7.A 【解析】 【分析】

直接根据点与圆的位置关系的判定方法求解. 【详解】

∵点A在半径为r的⊙O内, ∴OA小于r 而OA=6, ∴r>6.

答案第3页,总28页

故选:A. 【点睛】

考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系. 8.C 【解析】 【分析】

根据已知及圆的轴对称性质进行分析. 【详解】

根据条件上面的半圆关于OP对称,因而S1,S2直径AC上面的两部分的面积相等,△CDB与△AEB的底CD与AE相等,高相同,因而面积相同,因而S1=S2. 故选:C. 【点睛】

考查了圆的轴对称性质. 9.C 【解析】 【分析】 连接,交于点设

根据△AMN的面积为4,列出方程求出的值,再计算半径即可.【详解】 连接,交于点

内切于正方形经过点

的切线,

为等腰直角三角形,

答案第4页,总28页

设则

的切线,

△AMN的面积为4,

即解得

故选:C.【点睛】

考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.10.B 【解析】 【分析】 过点作得到【详解】 过点作 连接

连接对式子

根据垂径定理可得

根据

进行变换,即可求出半径.

答案第5页,总28页

解得:故选:B.【点睛】

考查垂径定理,等腰直角三角形的性质等,把式子

进行变形是解题的关键.

11.

【解析】 【分析】

首先利用菱形的性质得出AB=AD,又由AB=BD得出△ABD是等边三角形,进一步证明△CDE≌△DBF,得出∠BGE=∠DGF=60°,证得四边形ABGD是圆内接四边形,过点A再分别作AM⊥DE,AN⊥BF,证明△ABN≌△ADM,把四边形ABGD的面积转化为四边形AMGN的面积即可. 【详解】

解:∵四边形ABCD是菱形, ∴AB=AD, 又∵AB=BD

∴△ABD是等边三角形, ∴∠BAD=∠ABD=60° ∴∠DBC=∠BDF=∠C=60° 在△CDE和△DBF中,

答案第6页,总28页

∴△CDE≌△DBF(SAS) ∴∠CDE=∠DBF ∴∠GBE=∠BDE

∴∠DBF+∠GBE=∠DBF+∠BDE=∠BGE=∠DGF=60°=∠BAD ∴四边形ABGD是圆内接四边形, ∴∠BGD=120°

如图,过点A分别作AM⊥DE,AN⊥BF,垂足分别为M、N

∵AG是角平分线, ∴AN=AM,

在Rt△ABN和Rt△ADM中,

,

∴Rt△ABN≌Rt△ADM(HL) ∴BN=DM

∴GN+GM=BG+DG=2+3=5 连接AG,

在Rt△AGN和Rt△AGM中

,

答案第7页,总28页

∴Rt△AGN≌Rt△AGM(HL)

∴NG=MG=(BG+DG)=,∠AGN=∠BGD=60°

∴AN=NG•tan∠AGN=

∴S四边形ABGD=S四边形ANGM.

S四边形ABGD=2S△AGN,=2××NG×AN=×

=.

故答案为:【点睛】 .

此题考查菱形的性质,等边三角形的判定,三角形全等的判定与性质,圆内接四边形的判定与性质等知识点. 12.3 【解析】 【分析】

连接AO并延长至⊙O于点D,根据直径所对的圆周角为直角,则△ACD为直角三角形;又根据同弧所对的圆周角相等,所以∠B=∠D,则sinD=sinB=为AD=2R=4,所以AC=3.

【详解】

连接AO并延长至⊙O于点D,则△ACD为直角三角形, ∵∠B=∠D,

;因∴sinD=sinB=,

答案第8页,总28页

∵AD=2R=4, ∴AC=3. 故答案是:3.【点睛】

考查了同弧所对的圆周角相等、直径所对的圆周角为直角及解直角三角形的知识. 13.4 【解析】 【分析】

根据相交弦定理及垂径定理求解. 【详解】

∵AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,

∴CG=GD,CF=FG=CG,

∵CF=2,∴CG=GD=2×2=4,FD=2+4=6, 由相交弦定理得EF•AF=CF•FD,

即EF=故答案是:4.

【点睛】 .

解答此题的关键是熟知相交弦定理及垂径定理.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等;垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 14.100 【解析】 【分析】

先求出∠AEC,再用圆内接四边形的性质即可得出结论. 【详解】

如图:连接AE,

答案第9页,总28页

∵点D是 的中点, ∴∠AED=∠CED, ∵∠CED=40°, ∴∠AEC=2∠CED=80°,

∵四边形ADCE是圆内接四边形, ∴∠ADC+∠AEC=180°, ∴∠ADC=180°-∠AEC=100°, 故答案是:100.

【点睛】

考查了圆内接四边形的性质,同圆中,等弧所对的圆周角相等,解本题的关键是作出辅助线. 15.①②③④⑤ 【解析】 【分析】

由OC是⊙O的半径,过OC的中点D作DC的垂线交⊙O于点A,B,根据垂径定理可得AD=BD,

;又由圆心角与弧的关系,可得∠AOC=∠BOC,由垂直平分线的性质,可得AC=BC,然后由含30°角的直角三角形的性质,求得∠OAB=30°.

【详解】

∵OC⊥AB, ∴AD=BD,故①③正确;

∴∠AOC=∠BOC,故④正确;

∵过OC的中点D作DC的垂线交⊙O于点A,B, 即OC是AB的垂直平平分线,

答案第10页,总28页 ,

∴AC=BC,故②正确;

∵OD=OC=OA,

∴∠OAB=30°,故⑤正确. 故答案是:①②③④⑤.

【点睛】

考查了圆心角与弧的关系、垂径定理、线段垂直平分线的性质以及含30°直角三角形的性质.注意理解题意是关键. 16.40° 【解析】 【分析】

连接OA,OC,OD,利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可. 【详解】

连接OA,OC,OD,如图所示:

∵在圆的内接五边形ABCDE中,∠B+∠E=220°, ∴∠AOC+∠AOD=440°(两角为大于平角的角), ∴∠COD=440°-360°=80°,

则∠CAD=∠COD=40°. 故答案为:40°

【点睛】

考查了圆心角、弧、弦的关系,以及圆周角定理,熟练掌握定理及法则是解本题的关键. 17.100° 【解析】 【分析】

答案第11页,总28页

根据圆内接四边形的性质求出∠D的度数,根据圆周角定理计算即可. 【详解】

∵四边形ABCD是⊙O的内接四边形, ∴∠B+∠D=180°, ∴∠D=180°-130°=50°,

由圆周角定理得,∠AOC=2∠D=100°, 故答案是:100°. 【点睛】

考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键. 18.或 【解析】 【分析】

根据题意画出图形,由图可知当OP垂直于AB是最短,当P与B重合时最长,求出OP的长的范围即可. 【详解】

如图:连接OA,作OM⊥AB与M,

∵⊙O的直径为10, ∴半径为5, ∴OP的最大值为5, ∵OM⊥AB与M, ∴AM=BM, ∵AB=6, ∴AM=3,

在Rt△AOM中,OM=

=4,

答案第12页,总28页

∵OM的长即为OP的最小值, ∴4≤OP≤5. ∵OP是整数, ∴OP=4或5. 故答案是:4或5.

【点睛】

考查了垂径定理、勾股定理,熟练掌握垂径定理是解本题的关键,学会添加常用辅助线的方法. 19.60 【解析】 【分析】

根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案. 【详解】

∵∠AOB=120°,

∴∠ACB=120°× =60°, 故答案是:60.

【点睛】

考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 20.36°18°144° 【解析】 【分析】

由 ,得∠BOC=4∠AOC,而∠BOC+∠AOC=180°,则可求出∠AOC,∠BOC,利用圆周角定理可得到∠B的度数.

【详解】

∴∠BOC=4∠AOC, 而∠BOC+∠AOC=180°,

答案第13页,总28页

∴5∠AOC=180°, 即∠AOC=36°,

∴∠BOC=4×36°=144°,

∴∠B=∠AOC=18°.

故答案是:36°,18°,144°.

【点睛】

考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半. 21.见解析 【解析】 【分析】

(1)AE=BE,可根据垂径定理得出弧AB=弧BH,已知了弧AB=弧AF,因此弧BH=弧AF,根据圆周角定理可得出∠BAH=∠ABF根据等角对等边即可得出AE=BE.(方法不唯一) (2)结论不变,证法同(1),根据垂径定理可得出弧AC=弧CH,因此弧AB=弧BH,由于弧AB=弧AF,因此弧AF=弧BH,即∠BAE=∠ABE,因此AE=BE. 【详解】

证法①: ∵∴又∵∴∴∴ . 为 直径,

于点

证法②: 连,

答案第14页,总28页

∵∴∴∴∵∴又∵∴∴∴ .

,是直径,

于点

证法③: 连接∵∴又∵∴又∵∴∴∵

答案第15页,总28页 ,交于点

∴∴∴

①所画图形如图所示,

成立

证法①: ∵∴又∴∴∴. 是

直径,

于点

证法②: 连接∵∴∵∴

答案第16页,总28页 ,是 直径,

于点

又∵∴又∵∴∴

证法③: 连接∵∴又∵∴又∵∴又∵∴∴∴.

为直径, 并延长, 于点

交于点

过圆心

【点睛】

考查了垂径定理、圆周角定理等知识.找出与所求边相关的弧之间的关系是解题的关键. 22.(1)见解析;(2)2.4.【解析】 【分析】

(1)利用角平分线的性质得出∠CBD=∠DBA,进而得出∠DAC=∠DBA; (2)利用勾股定理得出AB的长,再利用三角形面积求出DE即可.

答案第17页,总28页

【详解】 证明:∵∴∵∴∴解:连接与平分, 都是弧, ; , 所对的圆周角, ,

∵∴∵∴∵∴故∵∴∴, ,即的长为

. , 的半径为, , , ﹦, ,

, ,

【点睛】

考查的是三角形的外接圆与外心及圆周角定理和勾股定理以及三角形面积等知识,熟练利用圆周角定理得出各等量关系是解题关键.

答案第18页,总28页

23.∠APB=90°;(2)PA=【解析】 【分析】

或6.

(1)利用分类讨论:①若PB=PC,②若PA=PC,③若PA=PB,进而求出即可; (2)利用分类讨论:①若PB=PA,②若PA=PC,③若PC=PB,进而求出即可. 【详解】

(1)①若PB=PC,连结PB,则∠PCB=∠PBC. ∵CD为等边三角形的高.∴AD=BD,∠PCB=30°,

∴∠PBD=∠PBC=30°,∴PD=DB=AB.

与已知PD=AB矛盾,∴PB≠PC. ②若PA=PC,连结PA,

则∠PCA=∠PAC.

∵CD为等边三角形的高.∴AD=BD,∠PCA=30°,

∴∠PAD=∠PAC=30°,∴PD=DA=AB.

与已知PD=AB矛盾,∴PA≠PC.

③若PA=PB,由PD=AB,得PD=BD, ∴∠BPD=45°, 故∠APB=90°;

(2)①若PB=PA,设PA=x, ∵∠C=90°,AB=13,BC=5,

答案第19页,总28页

∴AC=12,则CP=12-x, ∴x2=(12-x)2+52,

∴解得:x=,即PA=.

②若PA=PC,则PA=6. ③若PC=PB,由图知,

在Rt△PBC中,不可能,

故PA=【点睛】 或6.

考查了勾股定理以及三角形外心的性质等知识,利用分类讨论得出是解题关键. 24.(1)35°;(2)50° 【解析】 【分析】

(1)直接利用三角形外心的性质以及等腰三角形的性质得出即可;

(2)利用三角形外心的性质以及利用等腰三角形的性质得出∠OAC=∠OCA=35°,进而结合三角形外角的性质得出答案. 【详解】 (1)∵为∴∵为∴∴∴,

答案第20页,总28页 的外心,(垂直平分

,则三线合一),

的外心, ,

∵∴为正三角形,

【点睛】

考查了三角形的外心的性质以及等边三角形的性质等知识,得出∠OAC=∠OCA=35°是解题关键. 25.点在【解析】 【分析】

要求D与⊙O的位置关系,需先求OD的长,再与其半径相比较;若大于半径则在圆外,等于半径在圆上,小于半径则在圆内. 【详解】 点在上. 上.理由见解析

理由如下: 连接,

∵∴是,, 的中位线,

∴∵, ,

∴∴点在【点睛】 , 上.

答案第21页,总28页

考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.同时考查了三角形中位线定理. 26.见解析 【解析】 【分析】

连结AD,如图,根据圆周角定理,由AB是⊙O的直径得到∠ADB=90°,由D是 的中点得到∠1=∠2,则AD⊥BE,AD平分∠BAE,于是可判断△ABE为等腰三角形,即有AB=AE.

【详解】 证明:连结,如图,

∵∴∴, 是的直径, ,

∵是的中点, 即∴即∴∴, ,平分,

为等腰三角形, .

【点睛】

考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也

答案第22页,总28页

考查了等腰三角形的判定与性质.

27.(1)证明见解析;(2)16【解析】 【分析】

﹣π.

(1)欲证明CF是⊙O的切线,只要证明∠ODC=90°,只要证明△ODC≌△OAC,即可. (2)根据条件首先证明△OBD是等边三角形,根据S阴=2•S△AOC-S扇形OAD即可解决问题. 【详解】

(1)证明:连接OD,如图, ∵四边形EBOC是平行四边形, ∴OC∥BE,

∴∠1=∠3,∠2=∠4, ∵OB=OD, ∴∠3=∠4, ∴∠1=∠2, 在△ODC和△OAC中

∴△ODC≌△OAC, ∴∠ODC=∠OAC=90°, ∴OD⊥CD, ∴CF是⊙O的切线; (2)解:∵∠F=30°, ∴∠FOD=60°, ∴∠1=∠2=60°,

∵四边形EBOC是平行四边形, ∴OC=BE=8,

在Rt△AOC中,∴图中阴影部分的面积=S四边形AODC﹣S扇形AOD

答案第23页,总28页

【点睛】

考查圆的切线的判定,不规则图形面积的计算,掌握切线的判定定理以及扇形的面积公式是解题的关键.

28.(1)AE=【解析】 【分析】 ;(2)BD= 4.

(1)连接BE,在Rt△ABD中,利用勾股定理求出AD的长,进而利用直角三角形等面积求出BE的长,在Rt△ABE中,利用勾股定理即可求出AE的长。

(2)连接OC,证明△ABD≌△CAO,根据全等三角形的性质即可求出BD的长.【详解】

解:(1)∵AB为直径, ∴∠AEB=90°, ∵BD为切线, ∴AB⊥BD, ∴∠ABD=90°, 在Rt△ABD中,

答案第24页,总28页

在Rt△ABE中, (2)连接OC,如图, ∵∠BAC=90°, ∴CA为⊙O的切线, ∵CE为⊙O的切线, ∴CA=CE, 而OA=OE, ∴OC垂直平分AE, ∴∠1+∠3=90°, 而∠1+∠2=90°, ∴∠2=∠3,

而AB=CA,∠CAO=∠ABD, ∴△ABD≌△CAO, ∴BD=AO=4.

【点睛】

本题主要考查与圆有关的位置关系、勾股定理,全等三角形的判定与性质等,掌握切线的性质是解题的关键.

29.(1)相切,理由见解析;(2)π.

答案第25页,总28页

【解析】 【分析】

(1)连接OD,根据BD是∠ABC的平分线的性质有∠CBD=∠ABD,根据OD=OB,得到∠ODB=∠ABD,等量代换得到∠ODB=∠CBD,根据平行线的判定得到OD∥CB,根据平行线的性质有∠ODC=∠C=90°,即可证明CD与⊙O相切; (2)根据扇形的弧长公式进行计算即可.【详解】

(1)相切.理由如下: 连接OD,

∵BD是∠ABC的平分线, ∴∠CBD=∠ABD, 又∵OD=OB, ∴∠ODB=∠ABD, ∴∠ODB=∠CBD, ∴OD∥CB, ∴∠ODC=∠C=90°, ∴CD与⊙O相切;

(2)若∠CDB=60°,可得∠ODB=30°, ∴∠AOD=60°, 又∵AB=6, ∴AO=3,

【点睛】

考查直线和圆的位置关系以及弧长公式,熟练掌握切线的判定方法是解题的关键.30.(1)证明见解析;(2)⊙O的直径为2

答案第26页,总28页

【解析】 【分析】

(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC-∠P,可得出OA⊥PA,从而得出结论; (2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP-PD=OD,再由 可得出⊙O的直径. 【详解】

(1)证明:连接OA,

∵∠B=60°,

∴∠AOC=2∠B=120°, 又∵OA=OC,

∴∠OAC=∠OCA=30°, 又∵AP=AC, ∴∠P=∠ACP=30°,

∴∠OAP=∠AOC﹣∠P=90°, ∴OA⊥PA, ∴PA是⊙O的切线.

(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD, 又∵OA=OD, ∴PD=OA, ∵

∴⊙O的直径为

答案第27页,总28页

【点睛】

考查了切线的判定以及圆周角定理,解答本题的关键是掌握切线的判定定理,圆周角定理以及含角的直角三角形的性质.

答案第28页,总28页

第12篇:数学f1初中数学3.2 圆的对称性教案一

知识决定命运 百度提升自我

本文为自本人珍藏

版权所有

仅供参考 本文为自本人珍藏

版权所有

仅供参考

圆的对称性

教学目标 (一)教学知识点 1.圆的轴对称性. 2.垂径定理及其逆定理.

3.运用垂径定理及其逆定理进行有关的计算和证明. (二)能力训练要求

1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.

2.培养学生独立探索、相互合作交流的精神. (三)情感与价值观要求

通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.

垂径定理及其逆定理. 垂径定理及其逆定理的证明. 指导探索和自主探索相结合. 投影片两张:

第一张:做一做(记作§3.2.1A) 第二张:想一想(记作§3.2.1B) 教学过程

Ⅰ.创设问题情境,引入新课

[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?

[生]如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.

[师]我们是用什么方法研究了轴对称图形? [生]折叠.

[师]今天我们继续用前面的方法来研究圆的对称性.

知识决定命运 百度提升自我

Ⅱ.讲授新课

[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?

[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴. [师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下. [生]我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.

[师]很好. 教师板书:

圆是轴对称图形,其对称轴是任意一条过圆心的直线. 下面我们来认识一下弧、弦、直径这些与圆有关的概念. 1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc). 2.弦:连接圆上任意两点的线段叫做弦(chord). 3.直径:经过圆心的弦叫直径(diameter).

如下图,以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弧CD是⊙O的一条直径.

注意:

1.弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作ACD),劣弧ABD(记作AD).半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.

2.直径是弦,但弦不一定是直径.

知识决定命运 百度提升自我

下面我们一起来做一做:(出示投影片§3.2.1A) 按下面的步骤做一做:

1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.

2.得到一条折痕CD.

3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.

4.将纸打开,新的折痕与圆交于另一点B,如上图. [师]老师和大家一起动手. (教师叙述步骤,师生共同操作) [师]通过第一步,我们可以得到什么?

[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴. [师]很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?

. ,[生]我发现了,AM=BM,ADBDACBC[师]为什么呢?

[生]因为折痕AM与BM互相重合,A点与B点重合.

[师]还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系? [师生共析]如下图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,此AM=BM,=

=

重合,

重合.因

知识决定命运 百度提升自我

[师]在上述操作过程中,你会得出什么结论?

[生]垂直于弦的直径平分这条弦,并且平分弦所对的弧.

[师]同学们总结得很好.这就是利用圆的轴对称性得到的与圆相关的一个重要性质——垂径定理.在这里注意;①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.

下面,我们一起看一下定理的证明: (教师边板书,边叙述) 如上图,连结OA、OB,则OA=OB. 在Rt△OAM和Rt△OBM中, ∵OA=OB,OM=OM, ∴Rt△OAM≌Rt△OBM, ∴AM=BM.

∴点A和点B关于CD对称. ∵⊙O关于直径CD对称,

∴当圆沿着直径CD对折时,点A与点B重合,重合.

∴=,

=

重合,

与[师]为了运用的方便,不易出现错误,易于记忆,可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分弦,②平分弦所对的优弧,③平分弦所对的劣弧.

即垂径定理的条件有两项,结论有三项.用符号语言可表述为: 如图3-7,在⊙O中,

知识决定命运 百度提升自我

AMBM,CD是直径ADBD,

CDAB于MACBC.下面,我们通过求解例1,来熟悉垂径定理:

[例1]如下图所示,一条公路的转弯处是一段圆弧(即图中

,点O是

上一点,且OE⊥CD,垂足为F,EF=90m,圆心),其中CD=600m,E为CD求这段弯路的半径.

[师生共析]要求弯路的半径,连结OC,只要求出OC的长便可以了.因为已知OE⊥CD,所以CF=

1CD=300cm,OF=OE-EF,此时就得到了一个Rt2△CFO,哪位同学能口述一下如何求解?

[生]连结OC,设弯路的半径为R m,则 OF=(R-90)m,∵OE⊥CD, ∴CF=11CD=×600=300(m). 22据勾股定理,得 OC2=CF2+OF2, 即R2=3002+(R-90)2 解这个方程,得R=545. ∴这段弯路的半径为545m.

[师]在上述解题过程中使用了列方程的方法,用代数方法解决几何问题,这种思想应在今后的解题过程中注意运用.

随堂练习:P92.1.略

下面我们来想一想(出示投影片§3.2.1B) 如下图示,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.

知识决定命运 百度提升自我

[师]上图是轴对称图形吗?如果是,其对称轴是什么? [生]它是轴对称图形,其对称轴是直径CD所在的直线.

[师]很好.你是用什么方法验证上述结论的?大家互相交流讨论一下,你还有什么发现?

[生]通过折叠的方法,与刚才垂径定理的探索方法类似,在一张纸上画一个⊙O,作一条不是直径的弦AB,将圆对折,使点A与点B重合,便得到一条折痕CD与弦AB交于点M.CD就是⊙O的对称轴,A点、B点关于直径CD对称.由轴对称可知,AB⊥CD,

=

=

[师]大家想想还有别的方法吗?互相讨论一下.

[生]如上图.连接OA、OB便可得到一个等腰△OAB,即OA=OB,又AM=MB,即M点为等腰△OAB底边上的中线.由等腰三角形三线合一的性质可知CD⊥AB,又CD是⊙O的对称轴,当圆沿CD对折时,点A与点B重合,重合,与重合.

与[师]在上述的探讨中,你会得出什么结论?

[生]平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧. [师]为什么上述条件要强调“弦不是直径”?

[生]因为圆的任意两条直径互相平分,但是它们不一定是互相垂直的. [师]我们把上述结论称为垂径定理的一个逆定理. [师]同学们,你能写出它的证明过程吗? [生]如上图,连结OA、OB,则OA=OB. 在等腰△OAB中,∵AM=MB, ∴CD⊥AB(等腰三角形的三线合一). ∵⊙O关于直径CD对称.

知识决定命运 百度提升自我

∴当圆沿着直径CD对折时,点A与点B重合,重合.

∴=,

=

与重合,与[师]接下来,做随堂练习:P92.

2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么? 答:相等.

理由:如下图示,过圆心O作垂直于弦的直径EF,由垂径定理设=成立. ,用等量减等量差相等,得

=

,即

=

=

,故结论

符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.

Ⅲ.课时小结

1.本节课我们探索了圆的对称性.

2.利用圆的轴对称性研究了垂径定理及其逆定理.

3.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.

Ⅳ.课后作业

(一)课本P93,习题3.2,

1、2 (二)1.预习内容:P94~97 2.预习提纲: (1)圆是中心对称图形.

(2)圆心角、弧、弦之间相等关系定理. Ⅴ.活动与探究

知识决定命运 百度提升自我

1.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60cm,水面至管道顶部距离为10cm,问修理人员应准备内径多大的管道?

[过程]让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理基本结构图,进而发展学生的思维.

[结果]

如下图示,连结OA,过O作OE⊥AB,垂足为E,交圆于F,则AE=

1AB2=30cm.令⊙O的半径为R,则OA=R,OE=OF-EF=R-10.在Rt△AEO中,OA2=AE2+OE2,即R2=302+(R-10)2.解得R=50cm.修理人员应准备内径为100cm的管道.

板书设计

§3.2.1 圆的对称性

一、圆是轴对称图形,其对称轴是任意一条过圆心的直径.

二、与圆有关的概念:

1.圆弧 2.弦 3.直径

注意:弧包括优弧、劣弧、半圆.

三、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.

例1:略

知识决定命运 百度提升自我

四、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.

注意;弦不是直径.

五、课堂练习

六、课时小结

七、课后作业

第13篇:初三数学圆教案含答案

亿库教育网

http://www.daodoc.com 百万教学资源免费下载

第七章 圆

一.本周教学内容:

第七章 圆

三 圆和圆的位置关系

[学习目标]

1.掌握圆和圆的各种位置关系的概念及判定方法; 2.理解并掌握两圆相切的性质定理;

3.掌握相交两圆的性质定理,并完成相关的计算和证明;

4.理解圆的内、外公切线概念,会计算内、外公切线长及两公切线夹角;并能根据公切线的条数确定两圆的位置关系;

5.通过两圆位置关系的学习,进一步理解事物之间是相互联系和运动变化的观点,学会在变化中寻找规律,培养综合运用知识的能力。

[知识回顾]

1.圆与圆的位置关系的判定方法及图形特征 两圆位置关公共点个数 系 外离 0 相对关系 一圆在另一圆外部 除公共点外,一圆在另一圆外部 数量关系 d>R+r 公切线条数 4 外切 1 d=R+r 3 R-r

2.两圆相切的性质:如果两圆相切,那么切点一定在连心线上。 3.两圆相交的性质:相交两圆的连心线垂直平分两圆的公共弦。 4.设两圆公切线长L,两圆半径R、r,两公切线的夹角α

则有:外公切线长L外d2(Rr)2这时sin2Rr d亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

内公切线长L内d2(Rr)2这时sin2Rr d

【典型例题】

例1.已知⊙O

1、⊙O2半径分别为15cm和13cm,它们相交于A、B两点,且AB长24cm,求O1O2长。

分析:该题没有给出图形,两圆相交有两种可能性: 1.两圆心在公共弦的两侧; 2.两圆心在公共弦的同侧;

因此,我们必须分两种情况来解。

解:(1)连结O1O2交AB于C (2)连结O1O2并延长交AB于C ∵⊙O1 ⊙O2交于A、B两点 ∴O1O2⊥AB,且AC1AB12cm 2 在Rt△AO1C中,由勾股定理: O1CO1A2AC21521229(cm)

在Rt△AO2C中,由勾股定理: O2CO2A2AC21321225cm

∴如图(1) O1O2=O1C+O2C=14cm

如图(2) O1O2=O1C-O2C=4cm 亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

例1是两圆相交时的一题两解问题,希望引起同学们的重视。

例2.如图,⊙O1与⊙O2外切于点P,AC切⊙O2于C交⊙O1于B,AP交⊙O2于D,求证:

(1)PC平分∠BPD (2)若两圆内切,结论还成立吗?证明你的结论。

证明:(1)过P点作公切线PM交AC于M点

∵AC切⊙O2于C ∴MP=MC ∴∠MCP=∠MPC 在⊙O1中,由弦切角定理:

∠BPM=∠A ∵∠CPD为△APC的外角

∴∠CPD=∠A+∠MCP=∠BPM+∠MPC=∠BPC ∴PC平分∠BPD。

(2)两圆内切时仍有这样的结论。

证明:过P点作公切线PM交AB延长线于M

∵AM切⊙O2于C,∴MC=MP ∴∠MPC=∠MCP ∴∠MPB=∠A ∵∠MCP为△CPA的外角 ∠MCP=∠CPA+∠A 又∠MPC=∠MPB+∠BPC ∴∠BPC=∠CPA 即PC平分∠BPD。

在解决有关两圆相切的问题时,过切点作两圆的公切线是常见的一条辅助线,利用弦切角及圆周角的性质或切线长定理,可使问题迎刃而解。

亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

从这道题我们还可以联想到做过的两道题,

①当A、B重合时,也就是AC成为两圆的外公切线时,PC⊥AD,即我们书上的例题(P129 例4)

②当APD经过O

1、O2时,PB⊥AC,PC平分∠BPD的证法就更多了。

例3.如图,以FA为直径的⊙O1与以OA为直径的⊙O1内切于点A,△ADF内接于⊙O,DB⊥FA于B,交⊙O1于C,连结AC并延长交⊙O于E,求证:

(1)AC=CE (2)AC=DB-BC

分析:(1)易证

(2)由(1)我们可联想到相交弦定理,延长DB交⊙O于G:即AC·CE=DC·CG 由垂径定理可知DB=BG,问题就解决了。

证明:(1)连结OG,延长DB交⊙O于G,

∵OA为⊙O1直径 ∴OC⊥AE 在⊙O中 OC⊥AE ∴AC=CE (2)在⊙O中, ∵DG⊥直径AF ∴DB=GB 由相交弦定理:AC·CE=DC·CG=(DB-BC)(BG+BC)

∵AC=CE ∴AC=DB-BC

本题中主要应用了垂径定理,相交弦定理等知识,另外,证明过程中线段代换比较巧妙,应认真体会。

例4.如图:⊙O1和⊙O2相交于A、B两点,过A作⊙O1切线交⊙O2于点C,过点B作两圆割线交⊙O1和⊙O2于D、E,DE与AC相交于P点,

222222亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

(1)求证:PA·PE=PC·PD (2)当AD与⊙O2相切且PA=6,PC=2,PD=12时,求AD的长。

分析:(1)从图中我们看到有相交弦定理和切割线定理可用。

(2)求AD想到用切割线定理,但PB、PE均未知,利用相交弦定理也只能求出它们的乘积,我们连结公共弦得两个弦切角,再连结CE,可推出AD∥CE,这样,问题就解决了。

(1)证明:∵PA切⊙O1于A,PBD为⊙O1割线 ∴PAPB·PD2PA2∴PB

PD 在⊙O2中 由相交弦定理 PA·PCPB·PE∴PBPA·PC

PEPA2PA·PC ∴PDPE (2)连结AB、CE

∴PA·PEPC·PD

∵CA切⊙O1于A AB为弦 ∴∠CAB=∠D ∵⊙O2中∠CAB=∠E ∴∠D=∠E ∴AD∥CE ∴PCPEPAPD∵PC2PA6PD12

∴PEPC·PD2×124

PA6∴PB2×63 4 由相交弦定理:PB·PEPC·PA ∴BE=3+4=7 DB=12-3=9 由切割线定理 AD=DB·DE=9×(9+7) ∴AD=12 亿库教育网

http://www.daodoc.com 百万教学资源免费下载 2亿库教育网

http://www.daodoc.com 百万教学资源免费下载

解与两圆相交的有关问题时,作两圆的公共弦为辅助线,使不同的两个圆的圆周角建立联系,沟通它们之间某些量的关系,同学们应注意它的应用。

例5.如图,已知:⊙O与⊙B相交于点M、N,点B在⊙O上,NE为⊙B的直径,点C在⊙B上,CM交⊙O于点A,连结AB并延长交NC于点D,求证:AD⊥NC。

分析:要证AD⊥NC,我们可证∠C+∠CAD=90°或∠DBN+∠BND=90°,这里可用到的是①NE为直径,它对的圆周角是直角,因此我们连结EC,而∠ECM=∠ENM,又可利用圆内接四边形的性质得∠ENM=∠CAD,从而得证。

证明:连结EC ∵EN为直径 ∴∠ECM+∠ACD=90°

∵四边形ABNM内接于⊙O ∴∠CAD=∠MNE ∵∠ECM=∠MNE ∴∠CAD+∠ACD=90°

∴∠ADC=180°-90°=90°

∴AD⊥NC 从证明中可见点B在⊙O上这一条件的重要性。

例6.如图:已知△DEC中DE=DC,过DE作⊙O1交EC、DC于B、A,过A、B、C作⊙O2,过B作BF⊥DC 于F,延长FB交⊙O1于G,连DG交EC于H,

(1)求证:BF过⊙O2的圆心O2

(2)若EH=6,BC=4,CA=4.8,求DG的长。

分析:要证BF过⊙O2圆心O2,只需证它所在弦对的圆周角是直角即可,故应延长BF交⊙O2于M,连CM,去证∠MCA+∠ACB=90°,而连AB后可得∠MCA转移到∠MBA,再由圆内接四边形的性质转移到∠CDG,而DH⊥EC,于是可证。

(1)证明:延长BF交⊙O2于M,连MC、AB ∵四边形ABGD内接于⊙O1 ∴∠ABM=∠ADG ∵DG⊥EC于H ∴∠ADG+∠DCH=90°

亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

∵∠ABM=∠ACM ∴∠ADG=∠ACM ∵∠ACM+∠ACB=90° ∴BM为⊙O2直径

∴BF过⊙O2的圆心O2。

(2)解:∵四边形ADEB内接于⊙O1

∴∠CAB=∠E ∵DE=DC ∠E=∠DCB ∴∠CAB=∠ACB ∴AB=BC=4 ∴等腰△CBA∽△CDE ∴CDBC45 ECAC4.86 ∴设CD=5k,EC=6k ∵DH⊥EC DE=DC ∴EC=2EH=12=6k,∴k=2 ∴CD=10 在Rt△DHE中,由勾股定理: DH102628

∵BH=6-4=2 由相交弦定理:DH·HG=EH·HB ∴HGEH·HB2×6315.

DH82 ∴DG=8+1.5=9.5

例7.如图:⊙O1与⊙O2外切于点P,AB是两圆外公切线,AB与O1O2延长线交于

C点,AP延长线上一点E,满足条件APACABAEPE交⊙O2于点D,

(1)求证:AC⊥EC (2)求证:PC=EC (3)若AP4PD (1)证明:连结BP ∵94求BC的值 ECAPACABAE∠A∠A

∴△APB∽△AEC ∴∠ACE=∠APB 由例4结论得∠APB=90°

∴∠ACE=90° 即AC⊥EC 亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

(2)证明:连结BD,

∵∠APB=∠BPD=90° ∴BD为直径

∵AB为外公切线 B为切点 ∴BD⊥AC于B ∵AC⊥EC ∴BD∥EC ∴△PO2D∽△PCE ∴PC=EC (3)解:设PC交⊙O2于F,连结BF 在Rt△ABD中 BP⊥AD ∴由射影定理:BPAP·PD4× ∴BP=3 ∵CB切⊙O2于B ∴∠CBF=∠BPC ∠ABP=∠BFP ∵∠BCF=∠PCB ∴△BCF∽△PCB∴ ∵PC=EC ∴

2O2DEC1 O2PPC9 4BCBFBP3ctg∠BFPctg∠ABP PCBPAP4BCBC3 ECPC4亿库教育网

http://www.daodoc.com 百万教学资源免费下载

第14篇:九年级数学上册圆教案

九年级《数学》上册《圆》教案

教学内容:正多边形与圆 第二课时

教学目标:(1)理解正多边形与圆的关系;

(2)会正确画相关的正多边形

(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

教学重点:

会正确画相关的正多边形(定圆心角与弧长)

教学难点:

会正确画相关的正多边形(定圆心角与弧长)

教学活动设计:

(一)观察、分析、归纳:实际生活中,经常会遇到画正多边形的问题,举例(见课本如画一个六角螺帽的平面图,画一个五角星等等。

观察、分析:如何等分圆周,画正多边形?

教师组织学生进行,并可以提问学生问题.

(二)回忆正多边形的概念,正确画正多边形:

(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.

问题:正多边形与圆有什么关系呢?

发现:正三角形与正方形都有外接圆。

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

可得:把圆分成n(n≥3)等份:

依次连结各分点所得的多边形是这个圆的内接正n边形;

(2)以画正六边形为例: 分析:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆,从而得到相应的正多边形。例如,画一个边长为2cm的正六边形时,我们可以以2cm为半径作一个⊙O,用量角器画一个等于3600/6=600的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得出正六边形(如图)

对于一些特殊的正多边形,还可以用圆规和直尺来作。例如,我们可以这样来作正六边形。(见课本)等等

(三)初步应用

1.画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画出一个五角星。

2.用等分圆的方法画出下列图案:(见课本107页)

(四)归纳小结:

(五)作业布置;107-108

第15篇:九年级数学圆教案4

第二十四章“圆”简介

课程教材研究所

李海东

与三角形、四边形等一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形。本章将在学生前面学习了一些基本的直线形──三角形、四边形等的基础上,进一步研究一个基本的曲线形──圆,探索圆的有关性质,了解与圆有关的位置关系等,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力。本章共安排四个小节和两个选学内容,教学时间大约需要17课时,具体安排如下(仅供参考):

24.1

5课时 24.2 与圆有关的位置关系

6课时 24.3 正多边形和圆

2课时 24.4 弧长和扇形的面积

2课时 数学活动

小结

2课时

一、教科书内容和课程学习目标

(一)本章知识结构框图

本章知识结构如下图所示:

(二)教科书内容

本章是在学习了直线图形的有关性质的基础上,来研究一种特殊的曲线图形──圆的有关性质。圆也是常见的几何图形之一,不仅日常生活中的许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以看到圆。圆的有关性质,也被广泛的应用。圆也是平面几何中最基本的图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学的重要的基础。圆的许多性质,比较集中地反映了事物内部量变与质变的关系、一般与特殊的关系、矛盾的对立统一关系等等。结合圆的有关知识,可以对学生进行辩证唯物主义世界观的教育。所以这一章的教学,在初中的学习中也占有重要地位。

本章是在小学学过的一些圆的知识的基础上,系统的研究圆的概念、性质、圆中有关的角、点与圆、直线与圆、圆与圆、圆与正多边形之间的位置、数量关系。本章共分为四个小节,第1小节是“圆”,主要是圆的有关概念和性质,圆的概念和性质是进一步研究圆与其他图形位置、数量关系的主要依据,是全章的基础。这一节包括“圆”“垂直于弦的直径”“弧、弦、圆心角”“圆周角”四个部分。“24.1.1 圆”的主要内容是圆的定义和圆中的一些相关概念。圆的定义是研究圆的有关性质的基础。在小学,学生接触过圆,对它有一定的认识。教科书首先结合生活中一些圆的实际例子,在学生小学学过的画圆的基础上,通过设置一个观察栏目,用“发生法”给出了圆的定义。进一步的教科书又分析了圆上每一个点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,这样实际上从点和集合的角度进一步认识圆,这样再认识之后,学生对圆的

认识就加深了。接下来,是与圆有关的一些概念,如半径、直径、弦、弧等,对于这些概念要让学生结合图形进行认识,并多进行比较,以搞清他们的异同。 在接下来的几部分,教科书探究并证明了垂径定理、弧、弦、圆心角的关系定理、圆周角定理。垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法。所以垂径定理及其推论、圆周角定理及其推论是本小节的重点,也是本章的重点内容。而垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对与分类证明的必要性不易理解,所以这两部分内容也是本节的难点。

“24.2 与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。 正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形

不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。

教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。

(三)课程学习目标

1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。

5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。

二、本章编写特点

(一)突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合 圆是日常生活中常见的图形之一,也是平面几何中的基本图形,本章重点研究了与圆有关的一些性质。教科书在编写时,注意突出图形性质的探索过程,重

视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。

例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角、圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。

(二)注意联系实际

圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。这部分内容与实际联系比较紧密。在教科书编写时,也充分注意到这一点。例如,在引入圆、正多边形等概念时,举出了大量的实际生活中的例子;在介绍点与圆、直线与圆、圆与圆的位置关系时,也是注意从它们在实际生活中的应用引入;利用垂径定理解决求赵州桥的主桥拱半径的问题;根据海洋馆中人们视野的关系引出研究圆周角与圆心角、圆周角之间的关系;利用正多边形的有关计算求亭子的地基;实际问题中有关弧长、扇形的面积、圆锥的侧面积和全面积的计算问题等等。教科书的例、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。教学时,还可以根据本地区的实际,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。

(三)重视渗透数学思想方法

教学中不仅要教知识,更重要的是教方法,本章重涉及的数学思想方法也比较多。例如,圆周角定理证明中的通过分类讨论,把一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时的分类的思想;研究正多边形的有关问题是通过把问题转化为解直角三角形来解决的;正多边形的画图是通过等分圆来完成的;等等。通过这些知识的教学,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力。

另外,在本章,通过理论联系实际,对学生进行唯物论认识论的教育;通过圆的许多性质之间的内在联系,圆与其他图形之间量变与质变的关系,一般与特殊之间的关系等,对学生进行辩证唯物主义观点的教育;使学生增强民族的自豪感和振兴中华的使命感,对他们进行学习目的的教育,培养他们良好的个性品质。

三、几个值得关注的问题

(一)进一步培养推理论证能力

从培养学生的逻辑思维能力来说,“圆”这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,熟悉探索法的推理过程,而且要求了解反证法。教学中要重视推理论证的教学,进一步提高学生的思维能力。教科书在这方面也还是很重视的。在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有一些图形的性质是直接由已有的结论经过推理论证得出的。另外,为了巩固并提高学生的推理论证能力,本章的定理证明中,除了采用了规范的证明方法外,还有一些采用了探索式的证明方法。这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。这些对激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处。教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展。

另外,这部分内容所涉及的图形很多是圆和直线形的组合,而且题目也相对以前比较复杂,教学时应注意多帮助学生复习有关直线形的知识,做到以新带旧、新旧结合,而且要加强解题思路的分析,帮助学生树立已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。如对于圆周角定理的证明,可以先从最简单的情况──角的一边经过圆心时入手,再推广到一般情形。通过这样的训练,可以提高学生逻辑思维能力和分析解决实际问题的能力。

(二)重视知识间的联系与综合

圆是学生学习的第一个曲线形。学生由学习直线形到曲线形,在认识上是一个飞跃。在教学时,应注意充分利用学生在小学学过的圆的知识,搞好衔接。同时要注意加强圆和直线形的联系,把圆和直线形的有关问题对照讲解。如在讲“不在同一直线上的三个点确定一个圆”时,可以和“两点确定一条直线”相对照,这样可以加深学生对知识的理解。教科书在编写时,也注意从学生学习的规律出发,加强新旧知识的联系,发挥知识的迁移作用。例如,在讲圆的定义时,先回顾小学学过的定义,在分析圆上的点的特征的基础上,用集合语言重新给出描述;在学习圆及正多边形的计算时,注意将新知识与直角三角形的知识、小学学过的圆的周长与面积的知识联系起来,使新知识在学生眼里不陌生,容易接受。

圆是一种特殊曲线,它有独特的对称性。它不仅是轴对称图形、中心对称图形,而且它的任何一条直径所在直线都是它的对称轴。绕圆心旋转任意一个角度都能与原来的图形重合(旋转对称性)。圆的对称性在日常生活和生产中有着广泛的应用,因此应当让学生很好地掌握。在研究圆的有关性质时,充分利用圆的

对称性也是本章编写的一个特点。如垂径定理,弧、弦、圆心角的关系,切线长定理等,都是让学生充分利用圆的这些对称性,通过观察、实验等探究出性质,再进行证明,体现图形的认识、图形的变换、图形的证明的有机结合。这些也是教学时应当重点注意的。

(三)注意把握好教学要求

本章教学内容与以往教材内容相比,删减幅度比较大(原义教大纲教材53课时,现在17课时),教学时要注意把握好教学要求。教学内容应当限制在课标和教材所出现的范围,按照课标要求删减的内容,教学中不要再拣回,以免影响学生对基础知识的学习。对于推理论证的要求,课程标准中在本章没有明确规定。教科书中是按照整套教科书对于推理证明的要求来处理的。在本章,要求学生对于一些圆的有关性质进行证明,并利用这些性质去证明一些相关的结论。但要注意,这里的证明也要控制难度,对于一般学生,控制在教科书“综合应用”的题目难度内,对于学有余力的学生,可以要求他们完成“拓广探索”栏目的习题。

反证法的思想在七年级上册教科书代数部分就有涉及,在后续的相关章节也有应用。但当时只是渗透反证法的思想,没有作为一种方法提出。在本章,结合“过同一直线上的三点不能作圆”,正式提出了反证法,并且在后续内容,如“圆的切线垂直于过切点的半径”的证明时也有应用。由于反证法是一种间接证法,学生接受起来有一定困难。因此,教科书主要是要求让学生理解反证法的思想,后续习题也没有安排相应的习题。这里也要注意把握好对反证法的要求,不要让学生作过多过难的关于反证法的习题。

另外,圆有许多重要性质,其中最主要的是圆的对称性(轴对称和旋转不变性),教科书在证明圆的许多重要性质时,都运用了它的对称性。但是,因为用对称的定义证明问题,对学生来说比较困难,所以在本章的教学中, 一方面要重视利用圆的对称性(教科书中在使用圆的对称性);另一方面又不应要求学生严格地利用对称性写出证明过程。教学中要把握好这个要求。

(四)重视信息技术的应用

在本章的教学中,有条件的学校还是要重视信息技术工具的使用。利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来。许多计算机软件还具有测量功能,这也有利于我们在图形运动变化的过程中去发现其中不变的位置关系和数量关系,有利于发现图形的性质。

例如,本章许多图形的性质都可以利用计算机软件设置一些探究活动,让图形动起来,在这种运动变化中发现图形的性质。如弧、弦、圆心角之间的关系。

有许多计算机软件具有测量功能,可以方便地测出角的大小和线段的长度,这也有利于在运动变化中观察它们的关系,发现图形的性质。如圆周角定理。另外还可以通过计算机软件让图形动起来,在动态变化过程中去发现点与圆、直线与圆、圆与圆的位置关系,还可以通过测量,去发现这种位置关系所对应的数量关系,如直线与圆的位置关系中直线到圆心的距离与圆的半径的关系,两圆位置关系中圆心距与圆半径的关系等。

第16篇:初三数学圆教案.doc

第七章 圆

一.本周教学内容:

第七章 圆

三 圆和圆的位置关系

[学习目标]

1.掌握圆和圆的各种位置关系的概念及判定方法; 2.理解并掌握两圆相切的性质定理;

3.掌握相交两圆的性质定理,并完成相关的计算和证明;

4.理解圆的内、外公切线概念,会计算内、外公切线长及两公切线夹角;并能根据公切线的条数确定两圆的位置关系;

5.通过两圆位置关系的学习,进一步理解事物之间是相互联系和运动变化的观点,学会在变化中寻找规律,培养综合运用知识的能力。

[知识回顾]

1.圆与圆的位置关系的判定方法及图形特征

2.两圆相切的性质:如果两圆相切,那么切点一定在连心线上。 3.两圆相交的性质:相交两圆的连心线垂直平分两圆的公共弦。 4.设两圆公切线长L,两圆半径R、r,两公切线的夹角α

【典型例题】

例1.已知⊙O

1、⊙O2半径分别为15cm和13cm,它们相交于A、B两点,且AB长24cm,求O1O2长。

分析:该题没有给出图形,两圆相交有两种可能性: 1.两圆心在公共弦的两侧; 2.两圆心在公共弦的同侧;

因此,我们必须分两种情况来解。

解:(1)连结O1O2交AB于C (2)连结O1O2并延长交AB于C ∵⊙O1 ⊙O2交于A、B两点

在Rt△AO1C中,由勾股定理:

在Rt△AO2C中,由勾股定理:

∴如图(1) O1O2=O1C+O2C=14cm

如图(2) O1O2=O1C-O2C=4cm

例1是两圆相交时的一题两解问题,希望引起同学们的重视。

例2.如图,⊙O1与⊙O2外切于点P,AC切⊙O2于C交⊙O1于B,AP交⊙O2于D,求证:

(1)PC平分∠BPD (2)若两圆内切,结论还成立吗?证明你的结论。

证明:(1)过P点作公切线PM交AC于M点

∵AC切⊙O2于C ∴MP=MC ∴∠MCP=∠MPC 在⊙O1中,由弦切角定理:

∠BPM=∠A ∵∠CPD为△APC的外角

∴∠CPD=∠A+∠MCP=∠BPM+∠MPC=∠BPC ∴PC平分∠BPD。

(2)两圆内切时仍有这样的结论。

证明:过P点作公切线PM交AB延长线于M

∵AM切⊙O2于C,∴MC=MP ∴∠MPC=∠MCP ∴∠MPB=∠A ∵∠MCP为△CPA的外角 ∠MCP=∠CPA+∠A 又∠MPC=∠MPB+∠BPC ∴∠BPC=∠CPA 即PC平分∠BPD。

在解决有关两圆相切的问题时,过切点作两圆的公切线是常见的一条辅助线,利用弦切角及圆周角的性质或切线长定理,可使问题迎刃而解。

从这道题我们还可以联想到做过的两道题,

①当A、B重合时,也就是AC成为两圆的外公切线时,PC⊥AD,即我们书上的例题(P129 例4)

②当APD经过O

1、O2时,PB⊥AC,PC平分∠BPD的证法就更多了。

例3.如图,以FA为直径的⊙O1与以OA为直径的⊙O1内切于点A,△ADF内接于⊙O,DB⊥FA于B,交⊙O1于C,连结AC并延长交⊙O于E,求证:

(1)AC=CE (2)AC=DB-BC

分析:(1)易证

(2)由(1)我们可联想到相交弦定理,延长DB交⊙O于G:即AC·CE=DC·CG 由垂径定理可知DB=BG,问题就解决了。

证明:(1)连结OG,延长DB交⊙O于G,

∵OA为⊙O1直径 ∴OC⊥AE 在⊙O中 OC⊥AE ∴AC=CE (2)在⊙O中, ∵DG⊥直径AF ∴DB=GB 由相交弦定理:AC·CE=DC·CG=(DB-BC)(BG+BC)

∵AC=CE ∴AC=DB-BC

本题中主要应用了垂径定理,相交弦定理等知识,另外,证明过程中线段代换比较巧妙,应认真体会。

例4.如图:⊙O1和⊙O2相交于A、B两点,过A作⊙O1切线交⊙O2于点C,过点B作两圆割线交⊙O1和⊙O2于D、E,DE与AC相交于P点,

222222

(1)求证:PA·PE=PC·PD (2)当AD与⊙O2相切且PA=6,PC=2,PD=12时,求AD的长。

分析:(1)从图中我们看到有相交弦定理和切割线定理可用。

(2)求AD想到用切割线定理,但PB、PE均未知,利用相交弦定理也只能求出它们的乘积,我们连结公共弦得两个弦切角,再连结CE,可推出AD∥CE,这样,问题就解决了。

(1)证明:∵PA切⊙O1于A,PBD为⊙O1割线

在⊙O2中 由相交弦定理

(2)连结AB、CE ∵CA切⊙O1于A AB为弦 ∴∠CAB=∠D ∵⊙O2中∠CAB=∠E ∴∠D=∠E ∴AD∥CE

∴BE=3+4=7 DB=12-3=9 由切割线定理 AD=DB·DE=9×(9+7) ∴AD=12

2 解与两圆相交的有关问题时,作两圆的公共弦为辅助线,使不同的两个圆的圆周角建立联系,沟通它们之间某些量的关系,同学们应注意它的应用。

例5.如图,已知:⊙O与⊙B相交于点M、N,点B在⊙O上,NE为⊙B的直径,点C在⊙B上,CM交⊙O于点A,连结AB并延长交NC于点D,求证:AD⊥NC。

分析:要证AD⊥NC,我们可证∠C+∠CAD=90°或∠DBN+∠BND=90°,这里可用到的是①NE为直径,它对的圆周角是直角,因此我们连结EC,而∠ECM=∠ENM,又可利用圆内接四边形的性质得∠ENM=∠CAD,从而得证。

证明:连结EC ∵EN为直径 ∴∠ECM+∠ACD=90°

∵四边形ABNM内接于⊙O ∴∠CAD=∠MNE ∵∠ECM=∠MNE ∴∠CAD+∠ACD=90°

∴∠ADC=180°-90°=90°

∴AD⊥NC 从证明中可见点B在⊙O上这一条件的重要性。

例6.如图:已知△DEC中DE=DC,过DE作⊙O1交EC、DC于B、A,过A、B、C作⊙O2,过B作BF⊥DC 于F,延长FB交⊙O1于G,连DG交EC于H,

(1)求证:BF过⊙O2的圆心O2

(2)若EH=6,BC=4,CA=4.8,求DG的长。

分析:要证BF过⊙O2圆心O2,只需证它所在弦对的圆周角是直角即可,故应延长BF交⊙O2于M,连CM,去证∠MCA+∠ACB=90°,而连AB后可得∠MCA转移到∠MBA,再由圆内接四边形的性质转移到∠CDG,而DH⊥EC,于是可证。

(1)证明:延长BF交⊙O2于M,连MC、AB ∵四边形ABGD内接于⊙O1 ∴∠ABM=∠ADG ∵DG⊥EC于H ∴∠ADG+∠DCH=90°

∵∠ABM=∠ACM ∴∠ADG=∠ACM ∵∠ACM+∠ACB=90° ∴BM为⊙O2直径

∴BF过⊙O2的圆心O2。

(2)解:∵四边形ADEB内接于⊙O1

∴∠CAB=∠E ∵DE=DC ∠E=∠DCB ∴∠CAB=∠ACB ∴AB=BC=4 ∴等腰△CBA∽△CDE

∴设CD=5k,EC=6k ∵DH⊥EC DE=DC ∴EC=2EH=12=6k,∴k=2 ∴CD=10 在Rt△DHE中,由勾股定理:

∵BH=6-4=2 由相交弦定理:DH·HG=EH·HB

∴DG=8+1.5=9.5

例7.如图:⊙O1与⊙O2外切于点P,AB是两圆外公切线,AB与O1O2延长线交于

(1)求证:AC⊥EC (2)求证:PC=EC

(1)证明:连结BP

∴△APB∽△AEC ∴∠ACE=∠APB 由例4结论得∠APB=90°

∴∠ACE=90° 即AC⊥EC

(2)证明:连结BD,

∵∠APB=∠BPD=90° ∴BD为直径

∵AB为外公切线 B为切点 ∴BD⊥AC于B ∵AC⊥EC ∴BD∥EC

∴PC=EC (3)解:设PC交⊙O2于F,连结BF 在Rt△ABD中 BP⊥AD

∴BP=3 ∵CB切⊙O2于B ∴∠CBF=∠BPC ∠ABP=∠BFP ∵∠BCF=∠PCB

∵PC=EC

第17篇:圆初中数学教案

(1)知识结构

(2)重点、难点分析

重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.

难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.

2、教法建议

本节内容需要4课时

第一课时:圆的定义和点和圆的位置关系

(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆

(一));

(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.

第二课时:圆的有关概念

(1)对(a)层学生放开自学,对(b)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.

第三、四课时:点的轨迹

条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.第一课时:圆

(一)

教学目标:

1、理解圆的描述性定义,了解用集合的观点对圆的定义;

2、理解点和圆的位置关系和确定圆的条件;

3、培养学生通过动手实践发现问题的能力;

4、渗透“观察→分析→归纳→概括”的数学思想方法.

教学重点:点和圆的关系

教学难点:以点的集合定义圆所具备的两个条件

教学方法:自主探讨式

教学过程设计(总框架):

一、创设情境,开展学习活动

1、让学生画圆、描述、交流,得出圆的第一定义:

定义1:在一个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆.固定的端点o叫做圆心,线段oa叫做半径.记作⊙o,读作“圆o”.

2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.

从旧知识中发现新问题

观察:

共性:这些点到o点的距离相等

想一想:在平面内还有到o点的距离相等的点吗?它们构成什么图形?

(1) 圆上各点到定点(圆心o)的距离都等于定长(半径的长r);

(2) 到定点距离等于定长的点都在圆上.

定义2:圆是到定点距离等于定长的点的集合.

3、点和圆的位置关系

问题三:点和圆的位置关系怎样?(学生自主完成得出结论)

如果圆的半径为r,点到圆心的距离为d,则:

点在圆上d=r;

点在圆内d

点在圆外d&r.

“数”“形”

二、例题分析,变式练习

练习: 已知⊙o的半径为5cm,a为线段op的中点,当op=6cm时,点a在⊙o________;当op=10cm时,点a在⊙o________;当op=18cm时,点a在⊙o___________.

例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

已知(略)

求证(略)

分析:四边形abcd是矩形

a=oc,ob=od;ac=bd

oa=oc=ob=od

要证a、b、c、d 4个点在以o为圆心的圆上

证明:∵ 四边形abcd是矩形

∴ oa=oc,ob=od;ac=bd

∴ oa=oc=ob=od

∴ a、b、c、d 4个点在以o为圆心,oa为半径的圆上.

符号“”的应用(要求学生了解)

证明:四边形abcd是矩形

oa=oc=ob=od

a、b、c、d 4个点在以o为圆心,oa为半径的圆上.

小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.

问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)

练习1 求证:菱形各边的中点在同一个圆上.

(目的:培养学生的分析问题的能力和逻辑思维能力.a层自主完成)

练习2 设ab=3cm,画图说明具有下列性质的点的集合是怎样的图形.

(1)和点a的距离等于2cm的点的集合;

(2)和点b的距离等于2cm的点的集合;

(3)和点a,b的距离都等于2cm的点的集合;

(4)和点a,b的距离都小于2cm的点的集合;(a层自主完成)

三、课堂小结

问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:

(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;

(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;

(3)注重对数学能力的培养

四、作业 82页

2、

3、4.

此文章共有3页第 1 2 3 页

第18篇:【初中数学】第24章圆单元测验

第24章《圆》单元测验

说明:满分120分,测试时间90分钟。

一、选择题(每小题4分,共40分)

1、下列说法正确的是( ) A.长度相等的两条弧是等弧; B.优弧一定大于劣弧;

C.不同的圆中不可能有相等的弦; D.直径是弦且是一个圆中最长的弦;

2、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为(

A.2cm

B.3cm

C.

23cm

D.25cm

第2题图

第4题图

第5题图

第7题图

第8题图

3、O1和O2的半径分别为8和5,两圆没有公共点,则圆心距O1O2的取值范围是(

) A.O1O21

3 B.O1O23

C.3O1O213

D.O1O213或O1O23

4、如图,AB是O的直径,点C、D在O上,BOD1100,AC//OD,则AOC的度数为(

A.700

B.600

C.500

D.400

5、如图所示,在O内有折线OABC,其中OA8,AB12,AB600,则BC的长为(

A.19

B.16

C.18

D.20

6、下列说法中,正确的是( ) A.经过三个点一定可以作一个圆;

B.经过圆心且平分弦的直线一定垂直于这条弦; C.经过四个点一定可以作一个圆;

D.三角形的外心到三角形各顶点的距离都相等;

O在BAC的内部,ABO,BOC,

7、如图,O中,AB、AC是弦,ACO,下列关系式中,正确的是(

A.

B.22

C.1800

D.3600

8、如图,在平面直角坐标系中,点P在第一象限,P与x轴相切于点Q,与y轴交于点M(0,2),N(0,8)两点,则点P的坐标是(

A.(5,3)

B.(3,5)

C.(5,4)

D.(4,5)

9、如图,王大爷家屋后有一块长为12m,宽为8m的矩形空地,他在以BC为直径的半圆内种菜,他家养的一只羊平时栓在A处,为了不让羊吃到菜,栓羊的绳子可以选用(

) A.3m

B.5m

C.7m

D.9m

第9题图

第10题图

第11题图

10、如图,过点C的直线交O于D、E两点,且ACD450,C为O直径AB上一动点,DFAC于F,EGAB于点G,当点C在AB上运动时,设AFx,DEy,下列图像中,能表示y与x的函数关系式的图像大致是(

二、填空题(每小题3分,共21分)

11、如图,A,B,C,D是圆上的点,1700,A400,则D________________;

12、如图,AB为半圆O的直径,延长AB到点P,使BPAB,PC切半圆与点C,点D

21是AC上和C不重合的一点,则D的度数为___________________;

第12题图

第14题图

第17题图

13、已知A和B相切,圆心距为10cm,其中A的半径为4cm,则B的半径_____________;

14、如图,PA,PB切O于A,B,点C在AB上,DE切O于C,交PA,PB于D,E,已知PO13cm,O的半径为5cm,则PDE的周长是________cm;

15、O到直线l的距离为d,O的半径为R,当d,R是方程x24xm0的根,当l与O相切时,m的值为______________;

16、一个正多边形的中心角是360,这个正多边形的变数是______;

CDPB,CCDP是O的直径BC延长线上的一点,PA与O相切于A,

17、如图,且PCD3,,则PB=___________________________;

三、解答题(共59分)

18、(8分)如图,已知AB为O的直径,BD为O切线,过点B的弦BCOD交O于点C,垂足为M。

(1)求证:CD是O的切线;

(2)当BCBD6cm时,求图中阴影部分的面积(结果不取近似值)。

P的半径为5,

19、(6分)若点P的坐标为(4,0),且P与x轴P点的左右分别交于点A,B,与y轴P点的上下分别交于点C,D,这求出点A,B,C,D的坐标。

20、(10分)如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CDAB交半圆O于点D,将ACD沿AD折叠得到AED,AE交半圆于点F,连接DF。(1)求证:DE是半圆的切线;

(2)连接OD,当OCBC时,判断四边形ODFA的形状,并证明你的结论。

0

21、(10分)如图, BC是半圆O的直径,P是BC延长线上一点,PA切O于点A,B30。(1)试问:AB与AP是否相等?请说明理由;

(2)若PA3,求半圆O的直径。

22、(12分)如图所示,AB是O的直径,延长AB至C,使BC12AB,过C作O的切线CD,D为切点,过B作O的切线BE,交CD于E。求DE:CE。

23、(13分)如图,A是半径为12cm的O上的定点,动点P从A出发,以2cm/s的速度沿圆周逆时针运动,当点P回到A点立即停止运动。(1)如果POA900,求点P运动的时间;(2)如果点B是OA延长线上的一点,ABOA,那么当点P运动的时间为2s时,判断直线BP与O的位置关系,并说明理由。

第24章《圆》单元测验参考答案

一、选择题

1.D 2.C 3.D 4.D 5.D 6.D 7.B 8.D 9.A 10.A

二、填空题

11.300

12.300

13.6cm或14cm 14.24 15.4 16.10 17.629

三、解答题

18.(2)(433)cm2

19.A(1,0);B(9,0);C(0,3);D(0,3)20.四边形ODFA 是菱形 21.(2)直径为2 22.DE:CE1:2

23.点P的运动时间为3s或9s

第19篇:初中数学与圆有关的证明题

圆的证明

三、解答题

1.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,

求证:AC=BD.

2.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.

3.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

4.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,ABAF,BF和AD交于E,

求证:AE=BE.

5.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.

6.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.(1)求∠ACM的度数.

7.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)若圆心O与C重合时,⊙O与AB有怎样的位置关系?(2)若点O沿CA移动,当OC等于多少时,⊙O与AB相切?

圆的证明答案:

三、解答题

19.证明:过点O作OE∥AB于E,则AE=BE.在△OCD中,OE⊥CD,OC=OD,

∴CE=•DE.•∴AC=BD.

20.证明:∵四边形ABDE是圆内接四边形,∴∠DEC=∠B.又∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴DE=CD.∴△DEC为等腰三角形.

21.证明:连结BC,由AB是直径可知,

ACB90

∠ABC=60°.

A30

CD是切线∠BCD=∠A=30°∠D=30°=∠AAC=CD. 22.证明:连结AB,AC,

BC是直径BAC90ABCACB90

ADBCADB90ABCBAD90ACBBAD

∠BAD=∠ABFAE=BE. ABAFACBABF

23.证明:(1)连结OD,AO是直径(2)连结O1D,

ADO90

AD=DC.

AOCO

O1DO1AAADO1

OAOCACCADO1

DECECCDE90

ADO1CDE90O1DE90

DE是切线.

D在O1上

24.解:(1)连结BC,

AB是直径ACB90

∠B=62°.

A28

MN是切线∠ACM=∠B=62°.

(2)过点B作BD⊥MN,则

BDC190ACB

△ACB∽△CNB

MN是切线BCNA

ACAB

AB·CD1=AC·BC. CD1BC

过点A作AD2⊥MN,则

AD1C90ACB

△ABC∽△ACD2

MN是切线MCACBA

ACCD2

CD2·AB=AC·CB ABCB

25.解:(1)过点C作CH⊥AB于H,由三角形的面积公式得AB·CH=AC·BC,

ACBC6060

=,即圆心到直线的距离d=. AB131360

∵d=>3,∴⊙O与AB相离.

13

∴CH=

(2)过点O作OE⊥AB于E,则OE=3.

∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,

OEAB31313

= BC124

137

∴OC=AC-OA=5-=. 447

∴当OC=时,⊙O与AB相切.

∵OA=

第20篇:初中数学圆的知识点总结归纳

初中数学圆的知识点总结归纳

定义:

(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:

(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式

1.、已知直径:C=πd

2、已知半径:C=2πr

3、已知周长:D=cπ

4、圆周长的一半:1周长(曲线)

5、半圆的长:1周长+直径

面积计算公式:

1、已知半径:S=πr平方

2、已知直径:S=π(d)平方

3、已知周长:S=π(cπ)平方

点、直线、圆和圆的位置关系

1.点和圆的位置关系

①点在圆内点到圆心的距离小于半径

②点在圆上点到圆心的距离等于半径

③点在圆外点到圆心的距离大于半径

2.过三点的圆不在同一直线上的三个点确定一个圆。

3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

4.直线和圆的位置关系

相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

5.直线和圆位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

①直线l和⊙O相交d

②直线l和⊙O相切d=r;

③直线l和⊙O相离d>r。

圆和圆

定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:

两圆外离d>R+r两圆外切d=R+r两圆相交R-r=r)

两圆内切d=R-r(R>r)两圆内含dr)

正多边形和圆

1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:

(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:

(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。

练习题

1、已知:弦AB把圆周分成1:5的两部分,这弦AB所对应的圆心角的度数为________。

2、已知:⊙O中的半径为4cm,弦AB所对的劣弧为圆的1/3,则弦AB的长为_______cm,

AB的弦心距为_____cm。

3、如图,在⊙O中,AB∥CD,⌒AC的度数为450,则∠COD的度数为_______。

4、如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦长相等,则

∠BOC=(

)。

A.140°

B.135°

C.130°

D.125°

5、下列语句中,正确的有(

(1)相等的圆心角所对的弧相等;

(2)平分弦的直径垂直于弦;

(3)长度相等的两条弧是等弧;

(4)

圆是轴对称图形,任何一条直径都是对称轴

A.0个

B.1个

C.2个

D.3个

6、已知:在直径是10的⊙O中,⌒AB的度数是60°,求弦AB的弦心距。

7、已知:如图,⊙O中,AB是直径,CO⊥AB,D是CO的中点,DE∥AB,

求证:⌒AB=2⌒AE

8、已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?

9、如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。

11.如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。你认为图中有哪些相等的线段?为什么?

答案:

1.60度

2.4√3

1

3.90度

4.D

5.A

6.2.5

7.提示:连接OE,求出角COE的度数为60度即可

8.略

9.100毫米

10.AC=OC,OA=OB,AE=ED

初中数学圆教案模板
《初中数学圆教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档